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Abstract

Time Series Foundation Models (TSFMs) have recently garnered attention for
their ability to model complex, large-scale time series data across domains such
as retail, finance, and transportation. However, their application to sensitive,
domain-specific fields like healthcare remains challenging, primarily due to the
difficulty of fine-tuning these models for specialized, out-of-domain tasks with
scarce publicly available datasets. In this work, we explore the use of Parameter-
Efficient Fine-Tuning (PEFT) techniques to address these limitations, focusing
on healthcare applications, particularly ICU vitals forecasting for sepsis patients.
We introduce and evaluate two selective (BitFit and LayerNorm Tuning) and two
additive (VeRA and FourierFT) PEFT techniques on multiple configurations of
the Chronos TSFM for forecasting vital signs of sepsis patients. Our comparative
analysis demonstrates that some of these PEFT methods outperform LoRA in
terms of parameter efficiency and domain adaptation, establishing state-of-the-art
(SOTA) results in ICU vital forecasting tasks. Interestingly, FourierFT applied to
the Chronos (Tiny) variant surpasses the SOTA model while fine-tuning only 2,400
parameters compared to the 700K parameters of the benchmark.

1 Introduction

Foundational Models (FMs) have advanced deep learning by offering robust, pre-trained architectures
effective across multiple domains. Inspired by their success in language and vision, researchers
have begun exploring Time Series FMs (TSFMs) to address the complexities of large-scale time
series data, such as non-standard quantization, varying scales and frequencies, and irregular intervals
[1–3]. While TSFMs perform well on datasets similar to their pre-training data (e.g., retail, finance,
transport, weather), they underperform in domains with scarce publicly available data like healthcare
[4, 5]. Healthcare data involves diverse signals and tasks—including stress detection [6], emotion
recognition [7], vitals forecasting [8] and others in both contact and non-contact settings [9]. Although
task-specific models exist, they lack the generalized representations learned by large FMs.Recent
efforts to develop domain-specific TSFMs, such as SleepFM [10] and ECG-FM [11], have resulted in
highly specialized models which are, however, less adaptable to a broader range of tasks.

A common method of integrating domain knowledge into FMs is through Parameter-Efficient Fine-
Tuning (PEFT), which is widely used in language and vision FMs [12]. These techniques fine-tune
only a small subset of weights—either selected from the existing FM architecture or newly introduced,
while keeping the rest of the model weights frozen. This approach leverages the rich feature
representations learned by FMs during pre-training while integrating domain-specific knowledge
through targeted fine-tuning. By doing so, it reduces the computational burden and inefficiencies
associated with fine-tuning the entire FM for a specific task or dataset. However, the impact of PEFT
on TSFMs for out-of-domain data remains largely unexplored. A recent study by [4] provides insights
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into the application of Low-Rank Adaptation (LoRA) [13], a prevalent PEFT technique, within
TSFMs in the healthcare domain. There are, however, more recent and efficient PEFT techniques
that claim to achieve comparable, if not superior, performance to LoRA while fine-tuning even fewer
parameters. This is particularly advantageous in scenarios with limited datasets, however they are yet
to be applied and benchmarked in the context of TSFMs. To address this gap, we introduce several
other PEFT techniques into TSFMs for forecasting vital signs of sepsis patients in critical care and
conduct a comparative analysis. Our contributions are summarized as:

1. We present and assess two selective and two additive PEFT methods, thereby broadening the
spectrum of fine-tuning approaches explored with multiple configurations of the Chronos
[2] TSFM.

2. We perform a thorough comparative analysis of these PEFT methods against LoRA, high-
lighting their influence on performance and parameter efficiency in the context of forecasting
vital signs, a task involving out-of-domain modalities for TSFMs.

3. We benchmark our findings against state-of-the-art (SOTA) models that are trained from
scratch with a large number of parameters. Our results demonstrate that PEFT can enable
certain TSFM variants to achieve, and in some cases exceed, the performance of these
models while requiring fine-tuning of significantly fewer parameters.

2 Method

In this section, we provide a brief overview of our methodology, which includes the TSFM used as
the backbone for our experiments, the two selective and two additive PEFT methods, the dataset and
its preprocessing, and finally, the implementation details.

Backbone: Recently, multiple TSFMs have been introduced, each employing different strategies for
modeling time series data. Among these, we use the Chronos [2] family of TSFMs in our experiments
due to their superior performance across various settings—including zero-shot, fully fine-tuned,
and LoRA fine-tuned settings [2, 4]. Chronos utilizes the encoder-decoder transformer architecture
from the T5 [14] language FM family to perform time series forecasting. The model simplifies data
processing by discretizing real-valued inputs through a binning and scaling function. Additionally,
Chronos offers multiple-sized model variants providing valuable insights into the effects of scaling
when introducing PEFT on larger FMs.

Selective PEFT: Selective PEFT provides domain adaptation by fine-tuning only a small set of model
weights already present in the architecture. For our experiments, we use:

• BitFit [15]. This technique focuses on fine-tuning only the bias terms within the model
architecture. By adjusting these bias parameters, BitFit can achieve task/data-specific
adaptations with minimal changes to the overall model structure.

• LayerNorm (LN) Tuning [16]. This technique fine-tunes the parameters of the LN compo-
nents present in the attention module of the model architecture. By adjusting the weights
and biases of LN layers, the model can learn to better normalize activations across different
tasks, potentially stabilizing training and improving performance.

Additive PEFT: Additive PEFT enables domain adaptation by introducing new parameters into
the model architecture, which are then fine-tuned keeping all the original weights frozen. For our
experiments, we use the recently introduced:

• Vector-based Random Matrix Adaptation (VeRA) [17]. This technique adds a parallel
processing path in the linear layers of the attention module using fixed, randomly initialized
rank matrices, similar to LoRA. These matrices are shared across layers and remain frozen
during training. VeRA introduces two learnable scaling vectors that, when multiplied by the
frozen matrices, facilitate domain adaptation. The weight update is given by:

W ′ = W + λbBλdA. (1)

Here, W is the original weight matrix, W ′ is the updated weight matrix, B and A are the
frozen rank matrices, and λb and λd are the learnable scaling vectors (used as diagonal
matrices) for matrices B and A respectively that modulate the adaptation.
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Table 1: Results compare MeanBP and HR forecasts across various fine-tuning settings, including
full fine-tuning (FullFT) as reported in [4]. We also analyze the total number of trainable parameters
(in millions) to assess efficiency. The best results for each fine-tuning setting within each TSFM are
underlined, while the overall best values are highlighted in bold.

Model Setting MeanBP* HR* #Params.
MSE ↓ DTW ↓ MAPE ↓ MSE ↓ DTW ↓ MAPE ↓ (in M.) ↓

Bhatti et al. [8]
N-HiTS 19.81 16.32 7.90 7.18 7.92 6.27 0.7

N-BEATS 27.42 18.60 9.64 12.98 17.90 9.15 0.73
TFT 19.00 23.46 7.78 7.57 15.79 6.52 0.53

Chronos
(Tiny)

0-shot 25.60 21.40 8.64 7.37 11.41 5.97 -
Full FT [4] 19.90 20.51 8.03 8.80 14.99 6.86 8.3
LoRA [4] 19.79 19.86 7.90 7.22 11.17 5.90 0.049

BitFit 20.68 19.79 8.01 7.35 11.31 5.95 0.0002
LN Tuning 20.25 19.05 7.87 7.38 11.30 5.94 0.005

VeRA 20.16 18.50 7.80 7.29 11.19 5.96 0.013
FourierFT 19.51 18.55 7.76 7.06 10.80 5.81 0.002

Chronos
(Small)

0-shot 25.04 20.28 8.49 7.19 11.01 5.92 -
Full FT [4] 20.93 20.95 8.23 10.04 16.53 7.37 46.1
LoRA [4] 19.89 20.44 8.02 7.08 10.83 5.88 0.147

BitFit 20.65 19.87 8.09 7.19 10.90 5.93 0.0005
LN Tuning 19.81 19.85 7.99 7.21 10.88 5.94 0.016

VeRA 20.98 19.08 7.98 7.21 10.87 5.94 0.038
FourierFT 19.65 19.98 7.94 7.20 10.82 5.93 0.003

Chronos
(Base)

0-shot 25.70 20.32 8.53 7.33 11.02 5.96 -
Full FT [4] 20.80 21.09 8.20 10.15 16.82 7.37 201
LoRA [4] 20.12 21.06 8.06 7.25 10.96 5.93 0.442

BitFit 19.77 19.30 7.91 7.42 11.16 5.99 0.0007
LN Tuning 19.87 19.58 7.92 7.41 11.16 5.99 0.047

VeRA 21.58 18.30 7.92 7.40 11.10 5.97 0.113
FourierFT 20.98 17.96 7.86 7.40 11.12 5.97 0.007

*MSE values are normalized by 1e-4, and DTW values by 1e-3 for clearer interpretation.

• Fourier Transform for Fine-Tuning (FourierFT) [18]. This technique leverages the Fourier
transform to reduce the number of trainable parameters by encoding them into a small set of
spectral coefficients. These coefficients correspond to a subset of spectral entries, which
are randomly initialized and shared across all layers. The inverse discrete Fourier transform
(IDFT) is then applied to convert the modified spectral data back into the spatial domain,
forming the weight update matrix. The weight update in FourierFT can be expressed as:

W ′ = W + αR{F (−1)(E ⊙ c)} (2)
where E represents the frozen spectral entries, c is the set of learnable spectral coefficients,
⊙ denotes the element-wise operation to create the spectral matrix, F (−1) is the IDFT, R
extracts the real part of the transformed data, and α serves as a scaling factor.

Dataset and Processing: We used the publicly available eICU Collaborative Research Database [19]
to forecast mean blood pressure (MeanBP) and heart rate (HR) for sepsis patients in ICU. Following
methods from [4, 8], missing values were imputed with forward filling. We extracted 9-hour windows
of vital signs before diagnosis, with the first 6 hours as context and the last 3 hours as the prediction
horizon. Vitals were sampled every 5 minutes, resulting in context and horizon windows of 72 and 36,
respectively. A low-pass filter was then applied to reduce noise, followed by global min-max scaling
for normalization. The preprocessed dataset consisted of 4,020 samples from 1,442 patients, split
into training, validation, and test sets in an 8:1:1 ratio, with no patient data overlapping across splits.

Implementation Details: We optimized performance across various data types and fine-tuning
configurations using learning rates between 1e-2 and 1e-5 with the Adam optimizer. For additive
PEFT methods, we fine-tuned all attention weight matrices (Query, Key, Value, and Output) for both
FourierFT and VeRA for fair comparison with LoRA used in [4]. For VeRA, we set the adapter
rank r to 16, which is much higher than the rank 2 used for LoRA in prior work [4], following
recommendations [17] due to the smaller fraction of fine-tuned weights. For FourierFT, α was set
to 300, with number of coefficients, n tuned to 50. We have provided a rationale for selecting the
above values for r and n in Section A. Other hyperparameters were kept as specified in the original
model checkpoints. Experiments were conducted in PyTorch on an NVIDIA RTX 4090 GPU, with
forecasting performance evaluated using mean squared error (MSE), dynamic time warping (DTW),
and mean average percentage error (MAPE) as per [8, 4, 20]. Owing to the probabilistic nature of the
forecasts, the median of 20 samples is used for each prediction, with metrics averaged over 10 runs
for robust evaluation.
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3 Results and Discussion

We evaluate the effectiveness of various PEFT techniques across different Chronos model vari-
ants—Tiny, Small, and Base—comprising 8.3M, 46.1M, and 201M trainable parameters, respectively,
with the results presented in Table 1. These findings are further compared against LoRA and full
model fine-tuning as reported in [4]. We observe that, in nearly all configurations, the PEFT methods
consistently outperform the TSFM without domain adaptation (zero-shot) and full fine-tuning ap-
proaches. Techniques such as BitFit, LN Tuning, VeRA, and FourierFT demonstrate comparable or
superior performance to LoRA across multiple metrics for both MeanBP and HR forecasting, while
requiring significantly fewer trainable parameters. Notably, FourierFT, when applied to the Chronos
(Tiny) variant, surpasses the SOTA model [8]. Our calculations, based on the configuration in their
study, the SOTA model comprises approximately 700K trainable parameters, whereas FourierFT
requires fine-tuning of only 2,400 parameters. This highlights the effectiveness of training a small set
of parameters for domain adaptation, leveraging the strong generalization capabilities of large FMs,
rather than training smaller models with a narrow focus on specific data or tasks.

Among all the PEFT techniques, BitFit fine-tuned the smallest number of parameters while delivering
comparable and sometimes even the best performance. For example, in the case of Chronos (Base),
which originally has 201M parameters, BitFit fine-tuned only 768 parameters and achieved the best
values for the MSE metric in MeanBP forecasting. It closely followed FourierFT, the best-performing
PEFT in that setting, which fine-tuned 7200 parameters. After BitFit, FourierFT consistently gave the
best results for both vitals across multiple metrics in various settings. It excelled particularly with
the other two TSFMs particularly with Chronos (Tiny) which surpassed the SOTA by fine-tuning a
small number of parameters compared to techniques like LoRA, VeRA, and LN Tuning. This aligns
with the findings of the original work [18], where the authors propose that only a small number
of sparse coefficients need to be learned in the spectral domain to achieve the desired effect in the
spatial domain. LN Tuning required more fine-tunable parameters compared to FourierFT, but still
produced comparable results in several settings. Among the new PEFT techniques introduced, VeRA
fine-tuned the most parameters, approaching the parameter count of LoRA. This can be explained by
the way PEFT is performed in VeRA. Since VeRA fine-tunes only the scaling vectors, the rank of the
frozen matrices needs to be much higher than in LoRA to achieve similar results. For instance, while
LoRA used rank-2 matrices to fine-tune 49K parameters for Chronos (Tiny), VeRA required rank-16
matrices to fine-tune 13K parameters to attain comparable performance. Interestingly, we observe
that for Chronos (Base) using LoRA with 442K trainable parameters yields the best performance
for forecasting HR vitals. This can be attributed to the relatively low variability in HR readings,
which likely necessitate tuning a larger number of parameters in a model of this size (201M original
parameters) that has been pre-trained on a broad range of highly variable time series data.

Overall, the results underscore a critical trade-off between the number of fine-tuned parameters and
model performance. While techniques such as BitFit and FourierFT demonstrate that competitive
outcomes can be achieved by fine-tuning a minimal subset of parameters, methods like VeRA and LN
Tuning involve fine-tuning a larger number of parameters, which can lead to improved performance in
certain settings but at the cost of increased computational requirements. Moreover, additive methods
like FourierFT, VeRA, and LoRA offer greater flexibility, owing to the additional hyperparameters
that accompany these techniques.

4 Conclusion and Future Work

In this work, we conducted a comparative study of various PEFT techniques within the context of
adapting TSFMs for forecasting healthcare time series data, specifically vital signs in ICUs. We
explored two selective PEFT methods, BitFit and LayerNorm Tuning, alongside two additive PEFT
methods, VeRA and FourierFT. Our results showed that in addition to the commonly used LoRA
method, other PEFT techniques achieve comparable or superior performance, fine-tuning only a
small fraction of the total model parameters. Notably, FourierFT, when applied to Chronos (Tiny)
TSFM, outperformed SOTA models trained from scratch on this task. Our experiments further
demonstrated that tuning as few as 256 parameters (BitFit) can yield competitive results underscoring
the importance of continued research in the evolving TSFM space. In future work, we plan to
investigate hybrid approaches that combine multiple PEFT techniques and explore more complex
TSFMs as the field progresses.
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A Appendix

In the appendix, we present the experiments supplementary to our work. Herein we include the results from
tuning the hyperparameters of the additive PEFT techniques, and also the experiment results from the other two
Chronos variants (Mini - 20.4M parameters and Large - 708M parameters) for comprehensiveness.

A.1 VeRA

We observe in Table 2 that setting the rank r to 16 provided the optimal results when tuning this hyperparameter.
Additionally, as r increased, the change in the number of tunable parameters was not substantial. This is due to
VeRA’s approach, where instead of learning full matrices, the PEFT learns only scaling vectors, significantly
reducing the parameter overhead despite higher ranks.

Table 2: Results comparing MeanBP and HR forecasts across different ranks r of the introduced
adapters by VeRA for adapting Chronos (Tiny).

Rank (r) MeanBP* HR* #Params.
MSE ↓ DTW ↓ MAPE ↓ MSE ↓ DTW ↓ MAPE ↓ (in M.) ↓

1 20.43 21.31 8.16 7.36 11.31 5.99 0.0123
2 20.20 20.76 8.06 7.30 11.20 5.96 0.0124
4 20.10 18.65 7.87 7.31 11.18 5.96 0.0125
8 20.25 18.59 7.87 7.32 11.20 5.96 0.0127

16 20.16 18.50 7.80 7.29 11.19 5.96 0.0131
32 20.26 18.59 7.87 7.35 11.24 5.96 0.0139

*MSE values are normalized by 1e-4, and DTW values by 1e-3 for clearer interpretation.

A.2 FourierFT

Similar to VeRA, we observe in Table 3 that setting the number of spectral coefficients n to 50 yielded the
optimal results when tuning this hyperparameter. This configuration consistently provided the best performance
across the evaluated settings.

Table 3: Results comparing MeanBP and HR forecasts across different number of spectral coefficients
n of the introduced adapters by FourierFT for adapting Chronos (Tiny).

#Spectral MeanBP* HR* #Params.
Coefficients (n) MSE ↓ DTW ↓ MAPE ↓ MSE ↓ DTW ↓ MAPE ↓ (in M.) ↓

25 19.89 18.67 7.85 7.17 10.98 5.88 0.0012
50 19.51 18.55 7.76 7.06 10.80 5.81 0.0024
100 19.71 20.44 7.93 7.31 11.19 5.99 0.0048
200 19.85 20.46 7.99 7.39 12.01 6.16 0.0096

*MSE values are normalized by 1e-4, and DTW values by 1e-3 for clearer interpretation.

A.3 Chronos

Table 4: Results comparing MeanBP and HR forecasts across different fine-tuning settings including
full fine-tune (FullFT) from [4] for Chronos (Mini) and Chronos (Large). The best values for the
fine-tune settings are underlined for each TSFM.

Model Setting MeanBP* HR* #Params.
MSE ↓ DTW ↓ MAPE ↓ MSE ↓ DTW ↓ MAPE ↓ (in M.) ↓

Chronos
(Mini)

0-shot 25.21 20.44 8.52 7.44 11.20 5.97 -
Full FT [4] 20.50 21.80 8.19 10.46 17.45 7.50 20.4
LoRA [4] 20.05 20.72 8.03 7.26 10.88 5.90 0.086

BitFit 20.68 20.02 8.01 7.47 11.25 5.98 0.0005
LN Tuning 20.48 21.26 8.19 7.48 11.22 5.99 0.008

VeRA 20.21 17.95 7.73 7.44 11.19 5.97 0.024
FourierFT 20.43 21.46 8.17 7.45 11.10 5.97 0.002

Chronos
(Large)

0-shot 25.54 19.75 8.50 7.21 10.84 5.93 -
Full FT [4] 21.01 20.58 8.22 9.56 16.45 7.32 708
LoRA [4] 20.00 20.34 8.06 7.16 10.76 5.91 1.1

BitFit 25.09 19.49 8.43 7.30 10.92 5.94 0.001
LN Tuning 25.09 19.49 8.43 7.30 10.92 5.94 0.125

VeRA 25.09 19.49 8.43 7.30 10.92 5.94 0.3
FourierFT 22.11 18.24 7.97 7.31 10.91 5.94 0.014

*MSE values are normalized by 1e-4, and DTW values by 1e-3 for clearer interpretation.
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We present the results of experimenting with the remaining Chronos variants in Table 4, where similar trends to
those discussed in Section 3 are observed. For MeanBP, VeRA, and FourierFT outperformed LoRA on DTW and
MAPE metrics. However, for the lower variability vital, HR forecasting, LoRA remained the best-performing
PEFT method. Additionally, for Chronos (Large), fine-tuning fewer parameters than LoRA did not lead to
better performance with results stagnating regardless of the number of parameters fine-tuned, likely due to the
large-scale nature of the model. FourierFT, however, stood as an exception, yielding distinct outcomes compared
to the other newly introduced PEFT methods. This divergence can be attributed to FourierFT’s unique processing
and learning mechanisms in the spectral domain.
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