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Abstract

Adversarial attacks hamper the decision-making ability of neural networks by perturbing
the input signal. For instance, adding calculated small distortions to images can deceive a
well-trained image classification network. In this work, we propose a novel attack technique
called Sparse Adversarial and Imperceptible Attack Framework (SAIF). Specifically, we
design imperceptible attacks that contain low-magnitude perturbations at a few pixels and
leverage these sparse attacks to reveal the vulnerability of classifiers. We use the Frank-Wolfe
(conditional gradient) algorithm to simultaneously optimize the attack perturbations for
bounded magnitude and sparsity with O(1/

√
T ) convergence. Empirical results show that

SAIF computes highly imperceptible and interpretable adversarial examples, and largely
outperforms state-of-the-art sparse attack methods on ImageNet and CIFAR-10.

1 Introduction

Deep neural networks (DNNs) are widely utilized for various tasks such as object detection (Redmon et al.,
2016; Girshick, 2015), classification (Krizhevsky et al., 2012; He et al., 2016), and anomaly detection (Chan-
dola et al., 2009). These DNNs are ubiquitously integrated into real-world systems for medical diagnosis,
autonomous driving, surveillance, etc., where misguided decision-making can have catastrophic consequences.
Therefore, it is crucial to inspect the limitations of DNNs before deployment in such safety-critical systems.
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Figure 1: Using the Frank-Wolfe algorithm to jointly constrain the perturbation magnitude and sparsity, we
craft a highly sparse and imperceptible adversarial attack. By restricting attack sparsity, we can visualize
the most vulnerable pixels in an image. The GT bounding boxes for the subject of the input x are drawn in
red. Note that SAIF mostly distorts pixels within that region. Inception-v3 is used for predicting labels.
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Adversarial attacks (Szegedy et al., 2014) are one means of exposing the fragility of DNNs. In the classification
task, these attacks can fool well-trained classifiers to make arbitrary (untargeted) (Moosavi-Dezfooli et al.,
2016) or targeted misclassifications (Carlini & Wagner, 2017) by negligibly manipulating the input signal. For
instance, a road sign classifier can be led to interpret a slightly modified stop sign as a speed limit sign (Benz
et al., 2020). Such adversarial attacks fool learning algorithms with high confidence while being imperceptible
to the human eye. Most attack methods achieve this by constraining the pixel-wise magnitude of the
perturbation. Minimizing the number of modified pixels is another strategy for making the perturbations
unnoticeable (Su et al., 2019; Narodytska & Kasiviswanathan, 2017). Bringing these two together generates
high-stealth attacks (Modas et al., 2019; Croce & Hein, 2019; Dong et al., 2020; Fan et al., 2020; Williams
& Li, 2023).

Existing methods, however, fail to produce attacks with simultaneously very high sparsity and low magnitude
perturbations. In this paper, we address this limitation by designing a novel method that produces strong
adversarial attacks with a significantly low perturbation strength and high sparsity. Our proposed approach,
we call Sparse Adversarial and Imperceptible attack Framework (SAIF), minimally modifies only a fraction
of pixels to generate highly concealed adversarial attacks.

SAIF aims to jointly minimize the perturbation magnitude and sparsity. We formulate this objective as a
constrained optimization problem. Previous works propose projection-based methods (such as PGD (Madry
et al., 2018)) to optimize similar objectives, however, these require a projection step at each iteration to
obtain feasible solutions (Croce & Hein, 2019). Such projections give rise to iterates very close to/at the
constraint boundary, and projecting the solutions can diminish their ‘optimality’. Optimization methods
such as ADMM (Xu et al., 2019; Fan et al., 2020) and homotopy (Fan et al., 2020) have also been explored
but have prohibitively long running times for large images.

To address these limitations, we propose to optimize our objective using the Frank-Wolfe algorithm (FW)
(Frank et al., 1956). FW is a projection-free, iterative method for solving constrained convex optimization
problems using conditional gradients. In contrast to PGD attacks, the absence of a projection step allows
Frank-Wolfe to find perturbations well within the constraint boundaries. Throughout optimization, the
iterates are within the constraint limits as they are convex combinations of feasible points. Moreover, there
are several algorithmic variants of Frank-Wolfe for efficient optimization.

Furthermore, the benefit from adversarial examples can be maximized by examining the vulnerabilities of
deep networks alongside model explanations (Ignatiev et al., 2019; Wang et al., 2022; Xu et al., 2019).
Magnitude-constrained attacks distort all image pixels, leaving little room to interpret the additive pertur-
bations. Our proposed attack offers explicit control over the sparsity of the distortions. This facilitates more
controlled and straightforward semantic analyses, such as identifying the top-‘k’ pixels critical to fool DNNs.

Concretely, the contributions of this paper are:

• We introduce a novel optimization-based adversarial attack that is visually imperceptible due to
low-magnitude distortions to a fraction of image pixels.

• We show through comprehensive experiments that, for tight sparsity and magnitude constraints,
SAIF outperforms state-of-the-art sparse attacks by a large margin (by ≥ 2× higher fooling rates
for most thresholds).

• Our sparse attack provides transparency by indicating vulnerable pixels in images. We quantitatively
evaluate the overlap between perturbations and salient image regions to emphasize the utility of SAIF
for such analyses.

2 Related Works

Magnitude-Constrained Adversarial Attacks. The first discovered adversarial attack by Szegedy et al.
(2014) uses box-constrained L-BFGS to minimize the ℓ2 norm of additive distortion, however, it is slow and
does not scale to larger inputs. To overcome speed limitations, the Fast Gradient Sign Method (FGSM)
(Goodfellow et al., 2015) uses ℓ∞ constrained gradient ascent w.r.t. the loss gradient for each pixel, to
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compute an efficient attack but with poor convergence. Projected Gradient Descent (PGD) is another
optimization-based attack algorithm that is fast and computationally cheap, but yields solutions closer to
the boundary and often fails to converge (Madry et al., 2018). Auto-attack (Croce & Hein, 2020) addresses
the convergence limitations of PGD. Nevertheless, these attacks distort all the image pixels, potentially
leading to high visual perceptibility. We address this shortcoming by explicitly constraining the sparsity of
the adversarial perturbations.

Sparsity-Constrained Adversarial Attacks. The Jacobian-based Saliency Map Attack (JSMA) denotes
pixel-wise saliency by backpropagated gradient magnitudes, then searches over the most salient pixels for a
sparse targeted perturbation (Papernot et al., 2016). This attack is slow and fails to scale to larger images.
SparseFool (Modas et al., 2019) extends DeepFool (Moosavi-Dezfooli et al., 2016) to a sparse attack within
the valid pixel magnitude bounds. The attack, however, is untargeted. Croce & Hein (2019) devise a black-
box attack by evaluating the impact of each pixel on logits and randomly sampling salient pixels to find a
feasible sparse combination. Similar to JSMA, these attacks are expensive to compute, visually noticeable,
and unstructured. The same limitations hold for SA-MOO (Williams & Li, 2023). StrAttack (Xu et al., 2019)
uses ADMM (Alternating Direction Method of Multipliers) to optimize for group sparsity and perturbation
magnitude constraints, but the perturbations are computationally expensive, visually noticeable, and of
low sparsity. SAPF (Fan et al., 2020) also uses ADMM with projections to solve a factorized objective.
It fails to converge for a tighter sparsity budget, requires extensive hyperparameter tuning, and has a
prohibitively long running time. Among generator-based methods, Dong et al. (2020) propose GreedyFool, a
two-stage approach to greedily sparsify perturbations obtained from a generator. Similarly, TSAA (He et al.,
2022) generates sparse, magnitude-constrained adversarial attacks with high black-box transferability. The
perturbations are typically spatially contiguous and are therefore more noticeable than other sparse attacks.
The design of our attack, and employing Frank-Wolfe for optimization, yield highly sparse and inconspicuous
adversarial examples efficiently.

Understanding Adversarial Attacks A fairly novel research direction examines adversarial examples
and model explanations in conjunction, by noting the overlap between core ideas in the domains. On simple
datasets such as MNIST, Ignatiev et al. (2019) demonstrates a hitting set duality between model explanations
and adversarial examples. Similarly, Wang et al. (2022) leverage adversarial attacks to devise a novel model
explainer. Xu et al. (2019) examine the correspondence of attack perturbations with discriminative image
features. We formulate our attack with an explicit sparsity constraint which emphasizes only the most
vulnerable pixels in an image. We also empirically analyze the overlap of adversarial perturbations and
salient regions in images.

3 Background

In this section, we introduce the notations and conventions for adversarial attacks. We also provide a brief
review of the Frank-Wolfe algorithm.

3.1 Adversarial Attacks

Given an image x ∈ Rh×w×c, a trained classifier f : Rh×w×c −→ {1 . . . k} that maps the image to one of k
classes, and f(x) = c. Adversarial attacks aim at finding x′ that is very similar to x by a distance metric,
i.e. ||x − x′||p ≤ ϵ, (p ∈ {0, 1, 2, ∞}, ϵ is small) such that f(x′) = t, where t ̸= c.

Depending on the adversary’s knowledge of the target model, adversarial attacks can be white-box (known
model architecture and parameters) or black-box (unknown learning algorithm, the attacker only sees the
most likely prediction given an input). We adopt the white-box setting in this work, however, gradient
approximations (Chen et al., 2020) can be used for black-box attacks.
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3.2 Frank Wolfe Algorithm

The Frank-Wolfe algorithm (FW) (Frank et al., 1956) is a first-order, projection-free algorithm for optimizing
a convex function f(x) over a convex set X. It is a projection-free method since it solves a linear approxima-
tion, known as the Linear Minimization Oracle (LMO), of the objective over X. The key advantage of FW
is that the iterates xt always remain feasible (xt ∈ X) throughout the optimization process. The algorithm
was popularized for machine learning applications by Jaggi (2013) with rigorous proofs in objective value
f(xt) − f(x∗), where x∗ is the optimal point.

The first work using Frank-Wolfe for adversarial attacks (Chen et al., 2020) constrains only the magnitude of
perturbation ∥x − x′∥∞. As a result, the crafted attack is non-sparse. Later works also employ Frank-Wolfe
for explaining predictions (Roberts & Tsiligkaridis, 2021) and for faster adversarial training (Tsiligkaridis &
Roberts, 2022; Wang et al., 2019).

Our motivation to employ FW for optimizing SAIF is twofold: (1) it is a ‘conservative’ algorithm with
iterates strictly in the feasible region throughout the optimization. Its projection-free nature prevents sub-
optimal solutions common in methods like PGD, and (2) it has sparsity-inducing properties, which fits our
goal.

4 Method

Our goal is to calculate an adversarial attack that has low magnitude and high sparsity simultaneously.
Formally, the perturbations should have low ℓ0-norm and low ℓ∞-norm to satisfy the sparsity and magnitude
requirements, respectively. Moreover, the (untargeted) attack should maximize classification loss for the true
class.

To implement such an attack, we define a sparsity-constrained mask s to preserve pixels of an additive
adversarial perturbation p. We also impose an ℓ∞ constraint on the magnitude of p. Decoupling the attack
into a sparse mask and perturbation also allows visualizing the vulnerable pixels of the image.

Untargeted Attack. Given f(x) = c, we define our untargeted objective function D(s, p)adv as

D(s, p)adv = Φ(x + s ⊙ p, c) (1)

Here Φ(., c) is the classification loss function (e.g., cross-entropy) with respect to the true class c.

Note that optimization over the ℓ0 constraint is NP-hard. We use ℓ1 as the tightest convex approximation
for ℓ0 over s following the common practice in the literature (Macdonald et al., 2022; He et al., 2022). Thus,
the optimization objective is to maximize the loss for the original class as:

max
s,p

D(s, p)adv, s.t.∥s∥1 ≤ k, s ∈ [0, 1]h×w×c, ∥p∥∞ ≤ ϵ (2)

This formulation not only highlights the vulnerable regions of the image to perturb via s, but also yields
an adversarial attack method where we can explicitly control the sparsity using k and the perturbation
magnitude per pixel with ϵ.

Targeted Attack. We extend (1) to targeted attacks by replacing c with a chosen target class c̃.

D(s, p)c̃,adv = Φ(x + s ⊙ p, c̃), c̃ ̸= c (3)

Then to enhance the odds of predicting c̃, we minimize D(s)c̃,adv to obtain the SAIF attack:

min
s,p

D(s, p)c̃,adv, s.t.∥s∥1 ≤ k, s ∈ [0, 1]h×w×c, ∥p∥∞ ≤ ϵ (4)

Optimization. We use Frank-Wolfe as the solver for our objectives 2 and 4 in order to ensure that the
variable iterates remain feasible (see Algorithm 1). The algorithm proceeds by moving the iterates towards
a minimum by simultaneously minimizing the objective w.r.t. s and p.
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To constrain s we use a non-negative k-sparse polytope, which is a convex hull of the set of vectors in
[0, 1]h×w×c, each vector admitting at most k non-zero elements. We adopt the method in Macdonald et al.
(2022) to perform the LMO over this polytope. That is, for zt we choose the vector with at most k non-zero
entries, where the conditional gradient ms

t assumes k smallest negative values (thus highest in magnitude).
These k components of zt are then set to 1 and the rest to zero. For example, if k = 10 and there are 20
negative values in ms

t , the 10 smallest values are set to 1 and the rest to 0.

For p, the LMO of ℓ∞ has a closed-form solution (Chen et al., 2020).

vt = −ϵ · sign(mp
t ) + x (5)

Note that it is possible to combine s and p into one variable using a method such as Gidel et al. (2018).
However, in doing so we would lose the interpretability brought by disentangling the sparse mask s. This is
because enforcing an ℓ1 constraint is not the same as the currently enforced k-sparse polytope. Therefore,
such a dual constraint would result in a perturbation of varying values which is harder to interpret than a
[0, 1]-valued mask.

Since the objective of SAIF is non-convex, a monotonicity guarantee is helpful to ensure that the separate
optimizations of each variable sync well. To this end, we use the following adaptive step size formulation
(Carderera et al., 2021; Macdonald et al., 2022) for monotonicity in the objective:

ηt = 1
2rt

√
t + 1

(6)

where we choose the rt ∈ N by increasing from rt−1, until we observe primal progress of the iterates. This
method is conceptually similar to the backtracking line search technique often used with standard gradient
descent.

Algorithm 1: SAIF - Adversarial attack using Frank-Wolfe for joint optimization.
Input: Clean image x ∈ [0, Imax]h×w×c, target class c̃ ∈ 1 . . . k, s0 ∈ Cs = {s ∈ [0, 1]h×w×c : ∥s∥1 ≤ k},

p0 ∈ Cp = {p ∈ [0, Imax]h×w×c : ∥p∥∞ ≤ ϵ}.
Output: Perturbation p, Sparse mask s

1 for t = 1, . . . , T do
2 mp

t = ∇pD(st−1, pt−1)
3 ms

t = ∇sD(st−1, pt−1)
4 vt = argminv∈Cp

⟨mp
t , v⟩

5 zt = argminz∈Cs
⟨ms

t , z⟩
6 pt = pt−1 + ηt(vt − pt−1)
7 st = st−1 + ηt(zt − st−1)
8 end

5 Experiments

We evaluate SAIF against several existing methods for both targeted and untargeted attacks. We report
performance on the effectiveness as well as saliency of adversarial attacks.

Dataset and Models We use the ImageNet classification dataset (ILSVRC2012) (Krizhevsky et al., 2012)
in our experiments, which has [299 × 299] RGB images belonging to 1,000 classes. We evaluate all attacks
on 5,000 samples chosen from the validation set. For classification, we test on two deep convolutional
neural network architectures, namely Inception-v3 (top-1 accuracy: 77.9%) and ResNet-50 (top-1 accuracy:
74.9%). We use the pre-trained models from Keras applications (Chollet et al., 2015). We also report results
on CIFAR-10 in the appendix.
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∥p∥∞ ≤ ϵ Attacks Inception-v3 ResNet50
Sparsity ‘k’ Sparsity ‘k’

100 200 600 1000 2000 100 200 600 1000 2000

ϵ = 255

GreedyFool 0.40 1.19 19.36 49.70 87.82 0.59 2.59 28.94 70.06 96.21
TSAA 0.00 1.15 31.61 77.01 100.0 -* -* -* -* -*

Homotopy-Attack 0.00 18.23 90.97 100.0 100.0 0.00 0.00 0.00 0.00 0.00
SAIF (Ours) 55.97 84.00 100.0 100.0 100.0 80.10 100.0 100.0 100.0 100.0

100 200 600 1000 2000 100 200 600 1000 2000

ϵ = 100
GreedyFool 0.20 0.40 4.59 12.18 25.35 0.20 1.59 12.57 28.54 44.11

Homotopy-Attack 9.04 18.27 72.07 100.0 100.0 0.00 0.00 0.00 0.00 0.00
SAIF (Ours) 21.73 66.27 100.0 100.0 100.0 59.01 90.72 100.0 100.0 100.0

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

ϵ = 10
GreedyFool 0.20 1.39 2.99 5.59 8.98 5.59 18.36 30.14 39.12 47.50

Homotopy-Attack 0.00 30.05 58.27 69.59 85.03 0.00 0.00 0.00 0.00 0.00
SAIF (Ours) 14.28 44.79 90.29 94.97 100.0 60.19 80.02 89.93 90.42 100.0

Table 1: Quantitative evaluation of targeted attack on ImageNet. We report the ASR for varying constraints
on sparsity ‘k’ and ℓ∞-norm of the magnitude of perturbation ‘ϵ’. (* TSAA codebase lacks pre-trained
generators for targeted attacks on ResNet50 and lower ϵ.)

Implementation We implement the experiments in Julia and use the Frank-Wolfe variants library (Be-
sançon et al., 2021). We code the classifier and gradient computation backend in Python using TensorFlow
and Keras deep learning frameworks. The experiments are run on a single Tesla V100 SXM2 GPU, for
an empirically chosen number of iterations T for each dataset. SAIF typically converges in ∼20 iterations,
however, we relax the maximum iterations to T = 100 in our experiments.

5.1 Evaluation Metrics

Adversarial Attacks. Adversarial attacks are commonly evaluated by the attack success rate.

• Attack Success Rate (ASR). A targeted adversarial attack is deemed successful if perturbing the
image fools the classifier into labeling it with a premeditated target class c̃. An untargeted attack
is successful if it leads the classifier to predict any incorrect class. Given n images in a dataset, if m
attacks are successful, the attack success rate is defined as ASR = m/n(%).

Note that for RGB images, SparseFool (Modas et al., 2019) and Greedyfool (Dong et al., 2020) average the
perturbation p across the channels and report the ASR for sparsity ||pflat||0 ≤ k, where pflat ∈ [0, Imax]h×w.
Since for SAIF the sparsity constraint k applies across all h×w ×c pixels, we report the ASR for all methods
without averaging the final perturbation across the channels (i.e. for ||p||0 ≤ k, p ∈ [0, Imax]h×w×c).

Attack Saliency. We use the following metric to capture the correspondence between the vulnerable and
salient pixels in the input images. The score represents the overlap of the ground-truth (GT) bounding box
of the subject of the input image with the (sparse) adversarial perturbation.

• Localization (Loc.) (Chattopadhay et al., 2018) Effectively the same as IoU for object de-
tection. Given image pixels X, GT salient pixels S and SAIF sparse mask A, the localization score
is:

Loc. = ∥A ∩ S∥0

∥S∥0 + ∥A ∩ (X \ S)∥0
(7)

In the event of perfect correspondence between the GT salient regions and adversarial perturbation,
Loc.→1. Whereas, Loc.→0 when there is poor overlap between the two.
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Figure 2: Qualitative results of targeted SAIF attack on Inception-v3 trained on ImageNet, using ϵ = 100
(39% of the dynamic range of image) and k = 400 (0.15% of pixels). The source and target class, along with
the corresponding probability, are stated below each x and x + p respectively.

∥p∥∞ ≤ ϵ Attacks Inception-v3 ResNet50
Sparsity ‘k’ Sparsity ‘k’

10 20 50 100 200 10 20 50 100 200

ϵ = 255

SparseFool 1.59 4.39 15.37 32.14 32.14 1.79 3.19 8.78 17.76 33.33
GreedyFool 3.99 7.58 16.57 35.33 62.87 4.19 7.78 21.76 42.12 72.26

TSAA 0.00 0.00 0.00 0.00 2.02 0.00 0.00 0.00 1.95 16.06
PGD ℓ0 + ℓ∞* 0.81 0.81 3.63 5.65 7.80 11.20 11.20 11.67 12.25 12.25

SA-MOO* 9.52 10.04 14.28 38.09 39.47 27.98 44.32 45.12 54.83 60.91
SAIF (Ours) 19.88 60.16 90.05 100.0 100.0 38.25 61.72 100.0 100.0 100.0

10 20 50 100 200 10 20 50 100 200

ϵ = 100

SparseFool 0.79 3.39 9.98 27.54 48.90 1.39 2.59 7.58 19.56 35.72
GreedyFool 2.39 3.79 10.18 23.15 45.11 2.20 5.99 15.77 34.73 61.68

PGD ℓ0 + ℓ∞* 0.00 1.24 3.29 5.22 6.86 11.67 12.25 12.25 12.25 14.49
SA-MOO* 4.67 9.52 9.98 14.28 23.81 29.86 34.10 35.56 39.83 50.24

SAIF (Ours) 0.00 28.91 60.26 90.03 100.0 20.42 41.26 79.32 100.0 100.0
200 500 1000 2000 3000 200 500 1000 2000 3000

ϵ = 10

SparseFool 4.19 14.17 38.92 67.86 82.24 11.98 39.92 69.46 90.02 95.61
GreedyFool 8.78 22.55 40.52 65.07 77.25 18.77 47.70 74.65 93.41 97.21

TSAA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 6.89
PGD ℓ0 + ℓ∞* 4.83 7.69 11.21 22.03 30.47 11.28 11.28 11.64 12.80 14.83

SA-MOO* 4.76 4.98 5.02 9.52 10.98 15.56 17.82 18.01 18.94 20.97
SAIF (Ours) 10.21 52.40 89.02 90.00 100.0 50.04 73.09 95.00 100.0 100.0

Table 2: Quantitative evaluation of untargeted attack on Inception-v3 and ResNet50 trained on ImageNet
dataset. We report the ASR for varying constraints on sparsity ‘k’ and ℓ∞-norm of the magnitude of
perturbation ‘ϵ’. Black-box attacks are marked with *.

6 Results

6.1 Quantitative Results.

We evaluate the ASR of all attack methods on a range of constraints on perturbation magnitude ϵ and sparsity
k. The results for targeted attacks on ImageNet are reported in Table 1. The target class is randomly chosen
for each sample. Note that TSAA (He et al., 2022) does not evaluate attacks for ϵ = 100. Moreover, for
both targeted and untargeted attacks, SAPF (Fan et al., 2020) fails for all the evaluated thresholds.

Table 1 demonstrates that SAIF consistently outperforms both targeted attack baselines by a large margin
for all ϵ and k thresholds. For smaller ϵ, GreedyFool fails to attack samples unless the sparsity threshold is
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significantly relaxed. A similar pattern is observed for the sparsity budget - competing attacks completely
fail for tighter bounds on perturbation magnitude (see ϵ = 10/100/255 at k = 2000). Moreover, at lower k,
ResNet50 is easier to fool than Inception-v3.

We also compare the ASR for untargeted attacks against the baselines in Table 2. Here as well SAIF
significantly outperforms other attacks, particularly on tighter perturbation bounds. By jointly optimizing
over the two constraints, we are able to fool DNNs with extremely small distortions. For instance, at ϵ = 10,
SAIF modifies only 0.37% pixels per image to successfully perturb 89.02% of input samples. This is more
than twice the ASR of state-of-the-art sparse attack methods. Similarly, at ϵ = 255, only 0.03% pixels
are attacked to achieve a perfect ASR. On CIFAR-10, SAIF achieves ∼3× higher ASR on lower sparsity
thresholds. The results are reported in the Appendix.

SA-MOOInput image SparseFool GreedyFool TSAA

le
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d 
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s 
fo

rk
lif

t 

PGD l∞ + l0 SAIF (Ours)

Figure 3: Visual results of untargeted attack on three images for ϵ = 255, k = 600. Our method produces
the most imperceptible adversarial examples despite the relaxed constraint on magnitude.

Note that sparse attacks like ours address a more challenging problem than ℓ∞-norm threat models since
both the perturbation magnitude and sparsity are to be constrained. For ℓ∞ constraints ϵ =10, 100, and
255, AutoAttack (Croce & Hein, 2020) achieves 100% ASR while perturbing ∼98% of image pixels for each
ϵ. For the same ϵ, SAIF achieves 100% ASR with 1.12%, 0.07%, and 0.037% sparsity, respectively.
Moreover, sparse attacks are more visually interpretable than ℓ∞ attacks.

6.2 Qualitative Results.

We include some examples of targeted adversarial examples using SAIF in Figure 2. Note that the pertur-
bations p have been enhanced in all figures for visibility. Visually, the perturbations generated by SAIF
are only slightly noticeable in regions with a uniform color palette/low textural detail, such as on the beige
couch (see the zoomed-in segments of Figure 2). The other images are bereft of such regions and thus have
negligible visible change. Moreover, the attack predominantly perturbs semantically meaningful pixels in
the images.

For untargeted attacks, we present examples from all competing attack methods in Figure 3. We ease the
magnitude constraint to allow all baselines to achieve some successful attacks at the same level of sparsity.
It can be observed that all competing methods produce highly conspicuous perturbations around the face
of the leopard and on the outlines of the forklift and the albatross. PGD ℓ∞ + ℓ0, in particular, adds the
most noticeable distortions to images. In contrast, SAIF attack produces adversarial examples that appear
virtually identical to the clean input images.
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Attack Loc. ↑
SparseFool 0.006
GreedyFool 0.001
TSAA 0.006
SAIF (untargeted) 0.126
SAIF (targeted) 0.118

Table 3: Quantitative evaluation of interpretability w.r.t. overlap with GT bounding boxes of ImageNet val
set. We use ϵ = 255, k = 200 for all untargeted attacks unless indicated otherwise.

6.3 Perturbations and Interpretability

The sparse nature of perturbations allows us to study the interpretability of each attack (i.e. their corre-
spondence with discriminative image regions). A similar evaluation is carried out in Xu et al. (2019), but
they treat the saliency maps obtained from CAM (Zhou et al., 2016) as the ground truth. The saliency
maps from CAM (and other existing methods) incur several failure cases. Therefore, we use the ImageNet
bounding box annotations as a reliable baseline to analyze attack understandability.

We use ResNet50 as the target model and set ϵ = 255 and k = 2000 for all attacks. The results are reported
in Table 3. SAIF achieves the highest Loc. score among competing methods in both the targeted and
untargeted attack setting. Note that SAIF performs better on this metric in the untargeted attack setting
versus the targeted attack. This is intuitive since the untargeted objective only diminishes features of the
true class. Whereas, targeted attacks introduce features to convince a DNN to predict the target class.

6.4 Comparison against non-sparse methods

To demonstrate the importance of sparsity in adversarial attacks, we present a quantitative and qualitative
comparison against non-sparse attack methods.

Percentage of pixels perturbed: To emphasize the significance of an explicit sparsity constraint for
adversarial attacks, we report the percentage of pixels perturbed by three non-sparse attacks against SAIF.
Comprehensive results are in table 4. SAIF achieves perfect ASR by modifying ≤1% of pixels. The same
ASR is achieved by non-sparse baselines by modifying ∼ 99% pixels for all constraints on perturbation
magnitude.

ϵ FGSM PGD AutoAttack SAIF
255 99.28 99.87 98.85 0.04
100 99.29 99.98 98.99 0.07
10 99.28 99.98 99.93 1.12

Table 4: Percentage of pixels attacked for 100% ASR on ResNet50. ϵ is the constraint on perturbation
magnitude.

Visual imperceptibility: We evaluate all methods for ϵ = 2/255, which is an extremely low perturbation
magnitude, and present the qualitative results in Figure 4. Despite the very small ϵ, non-sparse attacks are
more noticeable than SAIF due to a lack of sparsity in the perturbations.

6.5 Speed Comparison

Table 5 reports running times of all baselines. PGD ℓ0 + ℓ∞ (Croce & Hein, 2019) runs the fastest but
produces the most noticeable perturbations. Note that, although the inference time for GreedyFool (Dong
et al., 2020) and TSAA (He et al., 2022) is ≤ 2 seconds, these generator-based attacks require pre-training a
generator for each target model (as well as each ϵ and target class for TSAA (He et al., 2022)). This incurs a
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SAIF (Ours)Input image FGSM PGD
Figure 4: Attacks with ϵ = 2/255 on ResNet-50. (Best viewed at higher brightness levels).

Attack Time (sec)

SparseFool 20
GreedyFool 1.7
TSAA 1.8
SAPF 1142
Homotopy-Attack 1500
PGD ℓ0 + ℓ∞ 1.46
SA-MOO 56.07
SAIF (ours) 15

Table 5: Average running time (per image) on ImageNet

significant computational overhead (>7 days on a single GPU), which offsets their faster optimization times.
SAIF attack relies solely on pre-trained classifiers, and is significantly faster than the existing state-of-the-art
Homotopy-Attack (Zhu et al., 2021). Moreover, more efficient implementations of the FW LMO can further
shorten running times, which we leave for future work.

7 Ablation Studies

We perform two sets of ablative experiments to highlight the significance of our design choices.

Attack Sparsity. To illustrate the importance of limiting the sparsity of attack using s, we reformulate
the problem to one constrained only over the perturbation magnitude. That is, we use the following objective
for the untargeted attack:

D(p)adv = Φ(x + p, c) (8)

max
p

D(p)adv, s.t. ∥p∥∞ ≤ ϵ (9)

Similarly, we reframe the targeted attack by optimizing for the objective D(p)adv where,

D(p)t,adv = Φ(x + p, t) (10)

min
p

D(p)t,adv, s.t. ∥p∥∞ ≤ ϵ (11)

This is similar to Chen et al. (2020)’s attack method that uses Frank-Wolfe for optimization.

Following Table 1-2, we test the attack for various ϵ and report the results in Table 6. In the absence of a
sparsity constraint, the attack distorts all image pixels regardless of the constraint on magnitude. Moreover,
such spatially ‘contiguous’ perturbations are visible even at magnitudes as low as ϵ = 10 (see Figure 4). By
constraining the sparsity for SAIF attack, we ensure the adversarial perturbations stay imperceptible even
at ϵ = 255, at which the non-sparse attack completely obfuscates the image.

10
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ϵ=100, k=4000ϵ = 100 (only)

ϵ=10, k=4000ϵ = 10 (only)

Input image

ϵ=255, k=600ϵ = 255 (only)
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Figure 5: Exploring the significance of sparsity of the adversarial attack. When the sparsity is not constrained
(middle column), perturbations of very small magnitude (ϵ = 10) are noticeable and completely distort the
image for larger ϵ. On the contrary, SAIF (third column) stays imperceptible at higher magnitudes as well.

Attack Type Dataset ASR ↑ ||p||0/m ↓

untargeted
ϵ = 255 100.0 1.0
ϵ = 100 100.0 1.0
ϵ = 10 100.0 1.0

targeted
ϵ = 255 100.0 1.0
ϵ = 100 100.0 1.0
ϵ = 10 100.0 1.0

Table 6: Quantitative evaluation of optimizing SAIF without a sparsity constraint for Inception-v3 on
ImageNet. For each perturbation magnitude, the attack distorts all m pixels in the image, leading to high
perceptibility.

Constraints ASR
ϵ = 255, k = 600 97.78%
ϵ = 100, k = 600 98.30%
ϵ = 10, k = 3000 88.97%

Table 7: ASR for targeted attacks on Inception-v3 when cross-entropy is replaced with ℓ2-attack loss (Carlini
& Wagner, 2017).
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Loss formulation. We also experiment with different losses, mainly the ℓ2-attack proposed by Carlini &
Wagner (2017), but observe a decline in attack success (see Table 7 - we choose ϵ and k for which SAIF
achieves 100% ASR in Table 1.). A possible explanation for this behavior is that the loss formulation tries
to increase the target class probability too aggressively, which makes the simultaneous optimization of s and
p difficult. We observe that this yields solutions closer to the constraint boundaries, increasing the attack
visibility.

8 Conclusion

In this work, we propose a novel adversarial attack, ‘SAIF’, by jointly minimizing the magnitude and sparsity
of perturbations. By constraining the attack sparsity, we not only conceal the attacks but also identify the
most vulnerable pixels in natural images. We use the Frank-Wolfe algorithm to optimize our objective and
achieve effective convergence, with reasonable efficiency, for large natural images. We perform comprehensive
experiments against state-of-the-art attack methods and demonstrate the remarkably superior performance
of SAIF under tight magnitude and sparsity budgets. Our method also outperforms existing methods on a
quantitative metric for interpretability and provides transparency to visualize the vulnerabilities of DNNs.

Ethical Statement

Adversarial attacks expose the fragility of DNNs. Our work aims at demonstrating that a highly imper-
ceptible adversarial attack can be generated for natural images. This provides a new benchmark for the
research community to test the robustness of the learning algorithms. A straightforward defense strategy
can be using the adversarial examples generated by SAIF for adversarial training. We leave more advanced
solutions for future exploration.
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Appendix

A Frank Wolfe Algorithm

The Frank-Wolfe algorithm (FW) (Frank et al., 1956) is a first-order, projection-free algorithm for optimizing
a convex function f(x) over a convex set X (Algorithm 2).

The set X may be described as the convex hull of a (possibly infinite) set of atoms A. In the case of the ℓ1 ball
(X = {x ∈ Rn | ∥x∥1 ≤ τ}), these atoms may be chosen as the 2n unit vectors, i.e., A = {±ej , j = 1 . . . n}.

Algorithm 2: Frank-Wolfe Algorithm
Input: Objective f , convex set X , Maximum iterations T , stepsize rule ηt

Output: Final iterate xT
1 x0 = 0
2 for t = 0 . . . T − 1 do
3 at = arg mina∈X ⟨∇f(xt), a⟩
4 xt+1 = xt + ηt(at − xt)
5 end

FW is a projection-free method since it solves a linear approximation of the objective over X (see step 3
in Algorithm 2), known as the Linear Minimization Oracle (LMO). For convex optimization, the optimality
gap f(xt) − f(x∗) is upper bounded by the duality gap g(xt) = mina∈A ⟨∇f(xt), a⟩, which measures the
instantaneous expected decrease in the objective and converges at a sub-linear rate of O(1/T ) for Algorithm
2 (Jaggi, 2013). FW can locally solve non-convex objectives over convex regions with O(1/

√
T ) convergence

(Lacoste-Julien, 2016).

B Results on Vision Transformers

We also evaluate SAIF and GreedyFool (the best performing/reasonably efficient baseline) on a pre-trained
ViT-B/16 (Dosovitskiy et al., 2021) (see Table 8). Although GreedyFool performs similarly, SAIF produces
more visually imperceptible perturbations.

C Results on additional dataset

For a comprehensive evaluation of our attacks, we also test our approach on a smaller dataset:

ϵ Attack Sparsity ‘k’
100 200 600 1000 2000

255 GreedyFool [11] 5.7 29.1 87.4 99.2 99.8
SAIF 28.3 54.4 89.4 93.5 100.0

100 GreedyFool [11] 1.7 14.3 54.5 82.0 92.4
SAIF 4.5 26.7 76.8 80.7 100.0

1000 2000 3000 4000 5000

10 GreedyFool [11] 25.34 66.7 83.2 91.8 95.7
SAIF 2.9 22.4 34.9 42.0 52.3

Table 8: Targeted ASR (higher is better) on ViT-B/16 (Imagenet).
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Figure 6: Impact of choice of target class on adversarial perturbations. We run targeted attacks for two
target classes (t1 and t2) for each input. The perturbations are enhanced for visualization.

C.1 Dataset and model

We test SAIF and the existing sparse attack algorithms on the CIFAR-10 dataset (Krizhevsky et al., 2009).
The dataset comprises [32 × 32] RGB images belonging to 10 classes. We evaluate all algorithms on 10,000
samples from the test set.

We attack VGG-16 (Geifman, 2019) trained on CIFAR-10, having an accuracy of 92.32% on clean images.

C.2 Quantitative Results

We run all attacks for a range of ϵ and k, and report the results in Tables 9,10.

The ASR for untargeted attack is reported in Table 9. SAIF consistently outperforms SparseFool (Modas
et al., 2019) and GreedyFool (Dong et al., 2020) on all sparsity and magnitude constraints. Similar results
are obtained for targeted attacks, reported in Table 10. The target classes are randomly chosen in all
experiments.

C.3 Qualitative Results

We provide several examples of adversarial examples produced by SAIF and competing algorithms. Figure
7 shows samples obtained by untargeted attacks on VGG-16 trained on CIFAR-10. It is observed that SAIF
consistently produces the most imperceptible perturbations.

D Visual interpretability of SAIF

From visual inspection (see Figure 6) it is observed that the nature of the target class also determines the
sparse distortion pattern. In particular, attacking input images of an animate class towards another animate
class (t2) results in perturbations focused predominantly on the facial region in the image. The reverse is
observed when attacking animate towards inanimate object classes (t1), which typically modify the body of
the subject in the image.
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Figure 7: Untargeted adversarial examples obtained from SAIF and competing attack algorithms on CIFAR-
10. The attacked classifier is VGG-16
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∥p∥∞ ≤ ϵ Attacks VGG-16
Sparsity ‘k’

1 2 5 10 20

ϵ = 255
SparseFool 10.78 18.56 38.32 63.67 85.23
GreedyFool 0.00 0.00 24.75 69.26 85.83
SAIF (Ours) 91.20 92.87 94.46 96.35 100.0

5 10 15 20 30

ϵ = 100
SparseFool 30.54 51.50 65.47 74.45 86.43
GreedyFool 25.95 55.09 67.26 73.65 86.43
SAIF (Ours) 91.89 92.84 93.57 96.74 97.80

30 40 50 60 100

ϵ = 10
SparseFool 19.36 24.75 27.94 31.94 44.51
GreedyFool 33.93 39.92 45.91 51.10 66.27
SAIF (Ours) 90.32 91.57 92.14 92.65 94.14

Table 9: Quantitative evaluation of untargeted attack on CIFAR-10. We report the ASR for varying
constraints on sparsity ‘k’ and ℓ∞-norm of the magnitude of perturbation ‘ϵ’.

∥p∥∞ ≤ ϵ Attacks VGG-16
Sparsity ‘k’

1 2 5 10 20

ϵ = 255 GreedyFool 0.00 0.00 2.79 13.17 29.94
SAIF (Ours) 12.36 12.83 27.02 44.05 61.10

5 10 15 20 30

ϵ = 100 GreedyFool 2.20 9.58 14.97 16.97 30.74
SAIF (Ours) 13.37 21.03 26.27 36.18 51.43

30 40 50 60 100

ϵ = 10 GreedyFool 3.99 5.19 6.99 8.98 16.17
SAIF (Ours) 5.46 13.35 18.13 22.25 29.26

Table 10: Quantitative evaluation of targeted attack on CIFAR-10. We report the ASR for varying con-
straints on sparsity ‘k’ and ℓ∞-norm of the magnitude of perturbation ‘ϵ’.
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