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ABSTRACT

This paper investigates the relationship between model capacity and the emergence
of in-context learning under a simplified statistical framework in the transformer
model. When model capacity is restricted enough, transformers shift from learning
the Bayes optimal estimator for the training task distribution to an estimator that
is suitable for out-of-distribution tasks. This shift is attributed to the restricted
model’s inability to fully memorize the training task distribution. Further exper-
iments examine how the transformer’s hyper-parameters impact its capacity for
memorization.

1 INTRODUCTION

In recent years, transformers [15] have emerged as a foundational architecture in deep learning by
demonstrating remarkable performance across many domains [5, 11, 16, 18]. A notable capability
of these models is in-context learning [4], whereby trained transformers learn new decision rules at
inference time when presented with a concatenation of labeled training samples and unlabeled test
samples as each sequential input.

To better understand the mechanics of in-context learning, a substantial body of research observes
the ability of transformers to perform linear regression in-context by training models to solve a
synthetic task where inputs are labeled using a randomly drawn linear predictor [1, 6, 17]. Further
work [12] considers a particular multi-task setting where the weight vectors of the planted linear
predictor are randomly sampled from a finite set of size k. The authors observe a phase transition
as k increases from a Bayes estimator (which performs optimally on the planted tasks) to a ridge
regression estimator (which sacrifices performance on the k planted tasks for better out-of-distribution
performance). They hypothesize that this contrast between Bayesian and “non-Bayesian” in-context
learning is related to the limited memorization capabilities of transformers that may not be resolved
by increasing model capacity.

Here, we examine in-context learning using a simpler statistical estimation problem—the normal
means problem—and study the effect of model capacity in greater detail. The normal means problem
captures fixed design linear regression in a Gaussian model under an orthonormal design, which
avoids the extra variability that comes from a random design. We empirically analyze the analogous
phase transition between the Bayesian “memorization” regime and the non-Bayesian regime, where
the learned estimator resembles a shrinkage estimator in the latter. This analysis reveals that the
location of this phase transition of the learned in-context learning algorithm is a function of multiple
notions of model capacity, including depth, width, and number of training epochs.

Related work on memorization. Beyond the relevance of our experiments to in-context learning,
we complement existing literature on the memorization capabilities of neural networks [3, 10, 14, 13,
19] by focusing our analysis on transformer architectures. While recent work [8] evaluates transformer
memorization abilities as a function of width, we consider a wider range of model parameterizations.
We also study a different sense of memorization in which observations are noisy, and the inference
task is one of denoising with connections to in-context learning.
∗Equal contribution.
†Equal advising.
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2 PRELIMINARIES

2.1 NORMAL MEANS PROBLEM

In the normal means problem, the observation is a random vector x ∈ Rn sampled from a multivariate
normal distribution x ∼ N (µ, σ2In), where σ2 > 0 is the known variance of each coordinate of
x, and µ ∈ Rn is the unknown mean of x.1 The statistician’s goal is to construct an estimator
µ̂ = µ̂(x) for µ based on the observation x. We evaluate µ̂ with the squared Euclidean distance loss:
L(µ̂,µ) = ∥µ̂ −µ∥22. We regard the pair (x,µ) as an instance of the normal means problem.

The normal means problem captures a fixed design linear regression problem with orthonormal
design. Namely, let A ∈ Rm×n be the design matrix with orthonormal columns, and let y = Aβ + ϵ be
the response vector, where β is a vector of regression coefficients and ϵ ∼ N (0, σ2Im) is a vector of
normally distributed errors. Then x ∶= ATy = β+ϵ′, where ϵ′ = ATϵ ∼ N (0, σ2In) is the observation
in an instance of the normal means problem with mean µ ∶= β.

2.2 TRAINING AND BAYES ESTIMATORS

We investigate how transformers can be trained to produce estimates in the normal means problem.
During training, the weights W of a transformer fW ∶Rn → Rn are updated iteratively with a
gradient-based optimization algorithm that aims to minimize the empirical risk

1

T

T

∑
t=1

L(fW (xt),µt) (1)

on several instances (x1,µ1), . . . , (xT ,µT ) of the normal means problem. The planted means
µ1, . . . ,µT are sampled i.i.d. from a training distribution π. Conditioned on each µt, each corre-
sponding xt is sampled independently as xt ∼ N (µt, σ

2In) according to the normal means problem
above. Since an instance of the normal means problem corresponds to a fixed design linear regression
problem, the evaluation of the transformer fW on x can be regarded as performing (an assisted form
of) in-context linear regression.

In our experiments, we train with a discrete distribution π = πS that is uniform on a finite set S ⊂ Rn

of cardinality k ∶= ∣S∣. The set S consists of k vectors drawn (once and for all) independently from
N (0, In); this way of generating the vectors is used to avoid unusual coincidences among the vectors.

We regard the transformer fW trained to minimize Eq. (1) as an estimator of the planted mean,
µ̂(x) = fW (x). Our experiments investigate the abilities of trained transformers of different model
capacities to solve the normal means problem and perform memorization by measuring the similarity
of µ̂ to two fixed estimators that depend on the distribution π.

The training setup described above is reminiscent of the Bayesian problem in which π is regarded as
a prior distribution for µ, and an estimator µ̂ is evaluated according to its Bayes risk [9]

EµEx∣µL(µ̂(x),µ), (2)
and the empirical risk in Eq. (1) is a finite-sample estimate of the Bayes risk. Due to our choice of
the squared Euclidean distance as the loss function, the estimator that minimizes the Bayes risk is the
posterior mean function x↦ Eµ[µ ∣ x].
When π = πS , the posterior mean function is the memorization estimator µ̂mem, which makes the
maximally informed guess of µ ∈ S based on x:

µ̂mem(x) = Eµ∼πS
[µ ∣ x] = ∑

µ∈S

ϕµ,σ2In(x)
∑µ′∈S ϕµ′,σ2In(x)

µ, (3)

where ϕµ,σ2In is the density function for N (µ, σ2In).
When π = πN ∶= N (0, In), the posterior mean function is the shrinkage estimator µ̂shr, which does
not have access to the set S:

µ̂shr(x) = Eµ∼πN [µ ∣ x] =
1

1 + σ2
x. (4)

This estimator shrinks x towards the origin as a function of the fixed variance σ2.
1In Appendix C, we also consider a setting in which σ2 is unknown.
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Figure 1: Effect of varying hidden dimension size, depth, and number of training epochs on the
learned estimator. Models are evaluated on both in-distribution (top) and out-of-distribution (bottom)
tasks. By default, we use (m, l, t) = (16,4,100000).

3 EXPERIMENTS

We train transformers using instances sampled from the training distribution based on πS . Trans-
formers are subsequently evaluated in-distribution according to their Bayes risk based on π = πS , as
well as out-of-distribution according to their Bayes risk based on π = πN . We examine the effects of
individually increasing the size of the hidden dimension m, number of layers l, and the number of
training epochs t (equivalent to the amount of training data) on the estimators learned by transformers.
Experimental details are included in Appendix B.

Evaluation with In-Distribution Tasks. Observe that increasing the model’s capacity across all
dimensions leads to an increase in the task diversity where the transformer’s risk aligns with the
memorization estimator (Figures 1a, 1b). However, it is noteworthy that for fixed model depth and
training time, the benefits of scaling the hidden dimension diminishes.

Our results are in line with previous findings of Raventós et al. [12], who reported a similar shift in
the type of estimator learned by transformers based on task diversity. Furthermore, with sufficient
model capacity, increasing the amount of training data also enables the transformer to match the
memorization estimator for a larger task diversity (Figure 1c).

Properties of Intermediate Representations. While many of the transformer estimators with risks
plotted in Figure 1 coincide almost exactly with µ̂mem or µ̂shr, other risk curves indicate a lack of
convergence to either estimator.

To understand how the transformer memorizes the tasks S, we examine the geometric transition of
the transformer’s estimates across training steps. In Figure 2, we visualize the principal component
analysis (PCA) projections of the transformer’s estimates µ̂(x) relative to their planted means.

These plots enable an analysis of the behavior of “in-between” estimators µ̂ (cf. Figure 2b) that
converge to neither the shrinkage estimator µ̂shr nor the memorization estimator µ̂mem. In some
(but not all) cases, rather than memorizing a small subset of µ vectors, these estimators interpolate
between the two extremes by being simultaneously biased towards their corresponding µ vectors and
shrunk towards the origin (Figure 2c).

When the transformer has sufficient model capacity to converge to the memorization estimator, the
tasks µ ∈ S are not memorized one by one. Instead, the transformer first learns an in-between estima-
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(a) Loss Curves for k = 8, (m, l, h) = (16,2,2) and projections at training steps 2,000, 10,000, and 36,000.
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(b) Loss Curves for k = 8, (m, l, h) = (4,1,1) and projections at training steps 0, 8,000, and 80,000.
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(c) Loss Curves for k = 32, (m, l, h) = (4,1,1) and projections at training steps 0, 20,000, and 90,000.

Figure 2: PCA projections of transformer estimates for various task diversities and model capacities.
Each µ ∈ S vector is represented with a colored cross. Transformer estimates for each µ are colored
accordingly.
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Figure 3: PCA projections of estimator predictions for an out-of-distribution sample x with µ ∼ πN .
The red cross represents the closest in-distribution mean vector µ ∈ S to x. Here, we use the
transformer model with parameters (m, l, h) = (16,2,2) trained on k = 8 tasks.

tor (Figure 2a) and transitions towards uniformly producing tight estimates around the corresponding
µ vectors.2

Furthermore, we note an observation where transformers that align with µ̂mem in-distribution (cf.
Figure 2a) behave differently on out-of-distribution tasks. Figure 3 plots the predictions for an
out-of-distribution test sample x. Observe that the transformer’s prediction µ̂(x) resides in an
intermediate position relative to µ̂mem(x) and µ̂shr(x). This suggests that the transformer learns a
robust estimator that performs optimally in-distribution and moderately on out-of-distribution tasks.

2For a comprehensive transition of the projections, see Appendix D.2.
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A APPENDIX

A.1 TRANSFORMER ARCHITECTURE

Denote the input dimension as d, the output dimension as d′, the internal dimension as m, and the
feed-forward dimension as m′ (we follow convention and use m′ = 4m). The number of heads
and layers in the transformer are denoted h and l respectively. The query, key, value, and weight
matrices for the ith attention head and jth layer are denoted Qi,j , Ki,j , Vi,j ∈ Rd× d

h , and Oj ∈ Rd×d

respectively.

For all experiments, we consider a non-causal transformer model. Namely, given the input sequence
x ∈ Rn×d, the model first applies the following transformations:

H0 = LayerNorm(ϕ(X)),

where ϕ(X) ∈ Rn×m denotes the tokenizer followed by layer normalization [2] with parameters γ, β:

x −E[x]√
Var(x)

γ + β,

and dropout in the self-attention layers with a dropout probability of p1, as well as in the feed-forward
network with a dropout probability of p2.3

The jth layer applies self-attention and a feed-forward transformation:

H ′j = LayerNorm
⎛
⎝
((

h

⊕
i=1

softmax(Hj−1Qi,jK
⊺
i,jH

⊺
j−1)Hj−1Vi,j)Oj)

⊺⎞
⎠
+Hj−1,

Hj = (W1,jGeLU(W2,j(H ′j)⊺))
⊺ +Hj−1,

where⊕h
i=1 denotes matrix concatenation, W1,j ,W2,j ∈ Rm′×m are the feed-forward weights, and

GeLU(⋅) is the Gaussian Error Linear Unit [7]. Following the L-th layer, we apply a linear transfor-
mation to the output which will be the transformer’s prediction:

ftrans(X) =HL ⋅ Tanh(W ⊺
L+1),

where WL+1 ∈ Rd′×m and Tanh(⋅) denotes the hyperbolic tangent activation function. Note that
d = d′ = 1 for the normal means problem.

B EXPERIMENTAL DETAILS

For all experiments, we use input sequences of length n = 64 with batch sizes of 4, early stopping,
and no curriculum learning. During evaluation, models are tested on 512 samples drawn from both
πS and πN . To stabilize training, models with a hidden dimension of size m = 256 are trained for
at most 500,000 epochs with a learning rate of 0.0001 and weight decay of 0.0001. Models with
m = 4,16,64 are trained for at most 100,000 epochs with a learning rate of 0.001.

3Across all experiments, we set γ = 1, β = 1, p1 = p2 = 0, as we did not observe a noticeable difference in
the results with different values.
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C VARIABLE NOISE SETTING

In addition to assessing the memorization capacity of the transformer on the set of training tasks
S, we also vary the noise rate σ2 and draw µ from πN to examine whether transformers learn
predictors that perform well across different noise rates. Analogous to Section 2.1, the observables
x are drawn from N (µ, σ2In), where σ2 is chosen randomly from a predefined set of noise rates
σ2

noises = {σ2
1 , . . . , σ

2
k}.4

In this setting, the risk of an estimator f ∶ Rn → Rn for a fixed observation (x,µ) is defined as:

E
x,µ
[∥f(x) −µ∥22 ∣ σ = σ].

Empirically, we consider the σ2-normalized conditional empirical risk over T samples:

1

Tσ2

T

∑
i=1
∥f(xi) −µi∥22.

During test time, the Bayes estimator that has access to the true noise rate (which is not necessarily in
σnoises) corresponds to the posterior mean function with known σ2:

fσ(x) = E[µ ∣ x,σ = σ] =
1

σ2 + 1x. (5)

fσ is admissible, and we will refer to Eq. (5) as the oracle estimator.

Contrastingly, when the noise rate is unknown, a natural approach would be to make an informed
guess of the noise rate:

fB(x) = ∑
σ2
i ∈σ

2
noises

ϕµ,σ2In(x)
∑σ′2∈σ2

noises
ϕµ′,σ′2In(x)

⋅ 1

σ2
i + 1

x.

Additionally, an empirical Bayes estimate of µ using an unbiased estimate for the shrinkage factor
1

σ2+1 , also known as the James-Stein estimator, can be employed:

fJS(x) = (1 −
n − 2
∥x∥22

)x.

It is noteworthy that the James-Stein estimator roughly corresponds to the shrinkage estimator in
Section 2.1.

C.1 EXPERIMENTS

All models are trained on samples with noise rates σnoises = {0.2,0.8}with squared Euclidean distance
loss. Results are shown in Figure 4.

For smaller transformers, observe that the risk curves align with fJS across all noise rates (Figure 4a).
As the James-Stein estimator is agnostic to the noise rate and always employs a fixed shrinkage, the
alignment indicates the inability of smaller models to meaningfully adapt to variations in the noise
rate. In larger models, we observe a notable transition from the models matching the James-Stein
estimator to the Bayes estimator as training progresses (Figure 4b).

D SUPPLEMENTARY EXPERIMENTS

Here, we include results for additional experiments for the normal means problem.

D.1 VARYING HEADS

In addition to varying the hidden dimension, number of layers, and training steps of the transformers,
we consider varying the number of heads in the transformer (Figure 5). As changing the number of
attention heads does not alter the number of parameters (Appendix A.1), it is perhaps unsurprising
that the effect of the number of attention heads is minimal.

4For notational convenience, we use σnoises to refer to the standard deviations (σnoises = {σ1, . . . , σk}).
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(a) First Result (Small models)
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(b) Second Result (Large models)

Figure 4: Normalized empirical risk curves for various noise rates. For transformer models, m/l/h
respectively denote the hidden dimension size, the number of layers, and the number of heads. All
transformer models are trained for 250,001 steps. In Figure 4b, the left plot shows risk curves after
137500 steps for 16/2/1 and 24500 steps for 64/4/1, while the right plot shows risk curves of last
iteration. Additionally, the oracle estimator is omitted for clarity.

1 2 4 8 16 32 64 128 256

0

0.1

0.2

0.3

0.4

0.5

TF (h=1)
TF (h=2)
TF (h=4)
TF (h=8)
Shrinkage
Memorization

Number of Training Tasks
1 2 4 8 16 32 64 128 256

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

TF (h=1)
TF (h=2)
TF (h=4)
TF (h=8)
Shrinkage
Memorization

Number of Training Tasks

Figure 5: Relationship between the number of attention heads and the learned estimator. We use
parameters (m, l, t) = (16,4,100,000) by default.

D.2 SUPPLEMENTARY PCA PROJECTIONS

Below, we include additional projections of the transformer’s estimates (Figure 6 ∼ 42). We use the
same configuration as in Figure 2, with (m, l, h) = (16,2,2) trained on k = 8 training tasks.
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Figure 6: Epoch 0
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Figure 7: Epoch 1000
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Figure 8: Epoch 2000
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Figure 9: Epoch 3000
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Figure 10: Epoch 4000
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Figure 11: Epoch 5000
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Figure 12: Epoch 6000
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Figure 13: Epoch 7000
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Figure 14: Epoch 8000
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Figure 15: Epoch 9000
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Figure 16: Epoch 10000
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Figure 17: Epoch 11000
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Figure 18: Epoch 12000
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Figure 19: Epoch 13000

22



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

−6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

PC1

P
C
2

Figure 20: Epoch 14000
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Figure 21: Epoch 15000
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Figure 22: Epoch 16000
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Figure 23: Epoch 17000
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Figure 24: Epoch 18000
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Figure 25: Epoch 19000
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Figure 26: Epoch 20000
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Figure 27: Epoch 21000
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Figure 28: Epoch 22000
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Figure 29: Epoch 23000
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Figure 30: Epoch 24000
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Figure 31: Epoch 25000
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Figure 32: Epoch 26000
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Figure 33: Epoch 27000
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Figure 34: Epoch 28000
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Figure 35: Epoch 29000
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Figure 36: Epoch 30000
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Figure 37: Epoch 31000
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Figure 38: Epoch 32000
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Figure 39: Epoch 33000
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Figure 40: Epoch 34000
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Figure 41: Epoch 35000
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Figure 42: Epoch 36000
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