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ABSTRACT

Estimating individualized potential outcomes (POs) under time-varying treat-
ments is central to fields like medicine, marketing, and public policy, where de-
cisions must account for uncertainty rather than just point forecasts. We intro-
duce a latent g-computation estimator for discrete-time, individualized PO dis-
tributions. Under standard longitudinal identification assumptions and a latent
factorization/context-sufficiency condition —essentially the usual expressivity as-
sumption for conditional VAEs—, we show that a rollout entirely in latent space
targets the same interventional distribution as the classical g-formula, while never
autoregressing covariates in data space. We further derive a total-variation er-
ror—propagation bound proving that, for a given one-step approximation error,
latent rollouts exhibit more favorable long-horizon behavior than data-space au-
toregressive g-computation. We instantiate this estimator as G-Latent, which re-
places G-Net’s residual pools (Li et al., [2021) with a conditional VAE that learns
history- and treatment-conditioned outcome distributions at each time. To enhance
expressivity, we adapt an infinite-mixture asymmetric Laplace (ALD) parameter-
ization (An & Jeonl 2023) to the time-series setting, and we decouple sequence
encoding (a transformer over the observed history) from a lightweight GRU latent
rollout with selective decoding, enabling fast Monte Carlo sampling over multiple
horizons. We evaluate G-Latent in semi-synthetic and real-world datasets, finding
that it yields better calibrated and more accurate predictive PO distributions than
strong baselines, while reducing inference-time cost.

1 INTRODUCTION

Estimating individualized potential outcomes under time-varying treatments is central to data-rich
domains such as precision medicine, marketing, education, and public policy, where longitudinal
records capture detailed sequences of covariates, interventions, and responses. While recent neu-
ral approaches address time-dependent confounding and long-range dependencies, most return only
point estimates—typically conditional means (Melnychuk et al., 2022; |Bouchattaoui et al., |2023))- or
consider only epistemic (model) uncertainty. Modeling epistemic uncertainty is valuable for flagging
low-confidence regions or detecting out-of-distribution inputs; however, it leaves aleatoric (data)
uncertainty unmodeled, so identical expected outcomes may conceal very different variances, skew-
ness, and tail risks. For risk-sensitive decisions—where clinicians care about adverse-event prob-
abilities, marketers about downside exposure, and policymakers about extreme impacts—ignoring
aleatoric uncertainty limits actionable guidance. We therefore advocate moving beyond mean ef-
fects and purely epistemic views to full, coherent distributional estimates of individualized potential
outcomes across time and variables, enabling transparent, risk-aware decision support.

We introduce G-Latent, a model for distributional individualized POs under time-varying treatments
that performs g-computation in latent space. The key idea is a latent rollout: during counterfactual
rollouts, we update the temporal representation using VAE latent variables rather than observed co-
variates, and decode only when needed. This avoids data-space autoregression—reducing accumu-
lation error and making g-computation practical with high-dimensional covariates—while enabling
efficient sampling for many treatment sequences and Monte Carlo (MC) draws. G-Latent learns
per-step conditional distributions non-parametrically via a conditional VAE on past representations.
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Figure 1: Training-time data flow in G-Latent for a given step t. A multi-input transformer encodes
history ry; at each step ¢’ within the projection horizon, a context c; . feeds a shared conditional
VAE. The GRU updates the state using latents z; ;» (not decoded observations). The decoder has
outcome (ALD) and covariate (Gaussian) heads.

Following (An & Jeon,2023) and extending to time series, we parameterize the decoder as an infinite
mixture of asymmetric Laplace distributions (ALDs) (Brando et al., 2019), increasing expressivity.
In contrast, g-computation baselines such as [Li et al.| (2021 approximate distributions via mean
predictions plus errors from a global residual pool, which can distort individualized distributions,
especially under heteroscedasticity. For efficiency, we decouple long-history encoding and short-
horizon rollout: a transformer encodes the long prefix once; a lightweight Gated Recurrent Unit
(GRU) updates representations across the projection horizon, avoiding repeated transformer passes
during sampling. Identifiability follows the g-computation formula under standard assumptions of
sequential ignorability, positivity, and consistency.

We summarize our contributions as follows: 1) We define a novel latent g-computation estimator for
individualized potential outcome distributions in discrete time under time-varying treatments. Un-
der standard longitudinal identification assumptions and a latent factorization / context-sufficiency
condition —essentially the usual expressivity assumption for conditional VAEs— we prove that a
rollout entirely in latent space targets the same interventional distribution as the classical g-formula
while never autoregressing covariates in data space (Thm. 5.1, Cor. 5.2). To our knowledge, fur-
thermore, ours is the first discrete-time method for individualized distributional POs without global
residual pools. 2) We analyze error propagation for latent vs. data-space implementations of g-
computation and derive a total-variation bound showing that, for any fixed one-step approximation
error, latent rollouts exhibit more favorable long-horizon behavior than standard autoregressive g-
computation (Prop. 5.3), theoretically explaining the improved stability we observe at longer hori-
zons. 3) We instantiate this estimator as G-Latent, a conditional VAE with a transformer history
network, a lightweight GRU latent rollout, and an ALD-mixture outcome head adapted from |An
& Jeon| (2023)), which together enable flexible individualized outcome distributions and fast Monte
Carlo sampling via selective decoding. 4) We provide an extensive empirical study on semi-synthetic
and real-world ICU data, including calibration metrics, runtime comparisons, and an analysis (and
correction) of the widely used semi-synthetic MIMIC-III (Melnychuk et al.| 2022) benchmark that
previously violated positivity. Across datasets, G-Latent improves the quality and calibration of
predictive PO distributions relative to strong baselines while reducing inference-time cost.

2 RELATED WORK

Potential outcomes estimation in static settings. In the static setting, there are several methods for
individualized PO estimation. Representative modern examples include Yoon et al.|(2018)); |Vanstee-
landt & Morzywolek! (2023); [Shalit et al.| (2017); [Kiinzel et al.| (2019). Although most static PO
methods provide only point estimates, some works estimate distributional POs. For instance, pa-
pers like Melnychuk et al.| (2023)); [Kennedy et al.| (2023)) target population-level distributional POs,
whereas Ma et al.| (2024)) learn individualized distributional POs using diffusion models (Yang et al.,
2023).
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Individualized potential outcomes estimation over time. Traditionally, causal inference has ad-
dressed time-varying confounders with Marginal Structural Models (MSMs) (Robins et al., |2000),
which rely on inverse probability of treatment weighting (IPTW) (Chesnaye et al.| 2022)), or G-
computation (Taubman et al.| 2009). Lim| (2018) improve MSMs by employing RNNSs in the mod-
eling of outcomes and propensities. Counterfactual Recurrent Network (CRN) (Bica et al.) in-
corporates adversarial domain training to establish a treatment-invariant representation space using
a gradient reversal layer (Ganin & Lempitsky, 2015). G-Net (Li et al., 2021) combines RNNs
with G-computation to adjust for confounders and estimate dynamic potential outcomes. Causal
Transformer (CT) (Melnychuk et al., [2022)) follows the treatment-invariant representation idea from
CRN and incorporates transformers to process time series and a Counterfactual Domain Confusion
(CDCQ) loss (Tzeng et al.,|2015)). Other works that also follow this idea are|Wang et al.|(2024), which
adopts a novel Temporal Integration Predicting strategy and focuses on continuous treatments, and
El Bouchattaoui et al.| (2024), which introduces an RNN backbone trained with Contrastive Predic-
tive Coding and an InfoMax objective. |Wang et al.[(2025) use a state-space architecture (Mamba)
(Gu & Daol|2024) that employs covariate-based decorrelation toward selective parameters to reduce
confounding bias. Huang et al.| (2024)) provide an empirical evaluation of balancing strategies. On
the other hand, Xiong et al.[(2024) use a similar approach to G-Net but processing data with trans-
formers instead of RNNs, and [Deng et al.| (2024) add model uncertainty to the same approach. [Hess
et al.| (2024) propose a pseudo-outcome regression based on g-formula to obtain individualized POs.
Finally, [Frauen et al.| propose a series of model-agnostic meta-learners for estimating heterogeneous
treatment effects over time.

In parallel to the previous works, another line of research has appeared in recent years that
models the effects of treatments in continuous-time with neural Ordinary Differential Equations
(ODEs). |De Brouwer et al.| (2022) couples neural ODEs with epistemic uncertainty quantification
for continuous-time predictions. |Seedat et al.| (2022) learn Controlled Differential Equation (CDE)
dynamics robust to irregular sampling. [Hess et al.| present Bayesian Neural CDE (BNCDE), which
provides posterior predictive distributions over POs. Finally, Hess & Feuerriegelemploy a stabilized
continuous-time IPTW formulation to address time-varying confounding.

All the previous works, like ours, assume sequential ignorability (Robins & Hernan, |2008). There
is another line of research that tackles violations of this assumption. Among them, papers like
Peng et al.; |Bouchattaoui et al.| (2023) are worth mentioning as, like this work, they use the latent
representations of VAEs. However, they do it to infer hidden confounders in settings where they
exist. In contrast, our work uses latent representations to adjust for observed confounders following
G-computation. Finally,|Wang et al.| present another VAE-based approach that aims at selecting best
treatment sequences by modeling the conditional likelihood of achieving target outcomes.

Uncertainty Quantification in potential outcomes estimation over time. Some of the afore-
mentioned time-varying methods include some form of uncertainty quantification. Within the
continuous-time works, |De Brouwer et al.| (2022)) handles epistemic uncertainty through variational
Bayesian inference . On the other hand, [Hess et al.| handles both epistemic uncertainty, with
Bayesian posterior distributions, and aleatoric uncertainty, with a Gaussian outcome head. How-
ever, it does not handle time-varying confounding. Very recently, a new paper appeared (Mu et al.,
2025) that employs diffusion models to model distributional potential outcomes with expert models.

As for discrete time models for individualized POs, uncertainty quantification has been mostly ig-
nored. Papers like Melnychuk et al.| (2022); Bica et al.| handle epistemic uncertainty only through
Monte Carlo (MC) dropout. As for aleatoric uncertainty, G-Net (Li et al.,|2021) and its transformer
extension (Xiong et al. [2024) are, to the best of our knowledge, the only models that handle it.
Like our model, G-Net builds on g-computation to generate sequential MC samples. However, its
capacity to properly model PO distributions is limited because it only handles homoscedastic data.
Furthermore, it tends to underperform in comparison with other methods due to an error compound-
ing problem. Deng et al.|(2024) enriches (Transformer) G-Net by adding epistemic uncertainty, but
it suffers from the same problems as (Transformer) G-Net. Finally, Wu et al.|(2024) combine VAEs
and diffusion models with IPTW to obtain distributional POs, and |Shirakawa et al.| (2024) couple
a temporal-difference heterogeneous Transformer with longitudinal Targeted Minimum Loss-based,
allowing to estimate POs confidence intervals, but these works handle only population-level POs, so
they do not fit our setting.
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3  PROBLEM FORMULATION

For the variables of our setting, uppercase bold letters (e.g., X, A,Y) denote random vectors; low-
ercase bold (e.g., x, a,y) their realizations, and plain letters denote scalars (e.g., x, y). For latent
vectors and learnable representation vectors, we use bold lowercase.

Problem Setting. We adopt the standard setting for estimating counterfactual outcomes over time
(Lim, 2018; |Bica et al.; Melnychuk et al., 2022; El Bouchattaoui et al., 2024). Let ¢ index patients
with trajectories observed at ¢ = 1,...,T(). At each t we observe time-varying covariates XEZ) €
R | treatments Aff), and outcomes Yt(l) € R%, as well as static covariates V() (e.g., sex, age,
risk factors). Unless needed, we omit the patient index (7). We assume i.i.d. observational data D =

{(XS)TU)’ agl:)T(i), yi’:)Tm, v N with xgl:)T(i) = (x(ll), . ,ngzi)) and analogously for a, y.

History and calendar. We use start-of-interval indexing: the treatment A, precedes the next mea-
surement (Y41, X;+1). Let the history available before choosing A, be H, = {X;, A;_1,Y, V}
with X; = (Xq,...,X:), Y =(Y1,...,Yy),and A, 1 = (A4,...,A;_1). For compactness we
sometimes group outcomes and covariates as L, = (Y, X;) € R4z,

Targets. Let 7 > 1 denote the projection horizon and a;.;1-—1 = (a¢,...,a;1,—1) a given (non-
random) treatment intervention. Most previous works in this setting aim to estimate the conditional
mean E[Y - [8s.¢4-—1] | Hy]. In contrast, we target the full conditional distribution, both at a fixed
horizon and jointly across horizons:

P(Yitr | hy), P (Yitri4r | D). (1)

Assumptions. We build upon the potential outcomes framework (Rubin), 2005) and its extension to
time-varying treatments (Robins et al.| 2000). We assume (1) consistency, (2) sequential ignorabil-
ity/exchangeability, and (3) sequential overlap/positivity (see App.[A).

Goal. We design a novel implementation of g-computation that learns flexible per-step conditionals
and generates coherent fast Monte Carlo samples from p?(- | h;), enabling distributional individu-
alized potential outcomes without data-space autoregression.

The g-Formula. Under the assumptions previously specified, for any non-random regime a;.;4,—1,

t+17—1
PRy tigr | ) = / H AYst1, %41 | D, ag) dxeq1iagr, (2)

Xt+1:t+7  g=¢

where hs+1 = (h87aS7YS+17XS+1)'

4 LATENT G-COMPUTATION

In this section, we first define a latent g-computation estimator that implements discrete-time g-
computation entirely in latent space (Sectiond.I)). Under a latent factorization / context-sufficiency
condition, we show in Section [4.7] that this estimator targets the same interventional distribution
as the classical g-formula, while never autoregressing covariates in data space. We then analyze
its error propagation and finally instantiate it as a neural model, G-Latent, based on a transformer
history network, a conditional VAE, and GRU updates in latent space.

4.1 THE LATENT G-COMPUTATION ESTIMATOR

Consider the g-formula (Eq. [2), which expresses the interventional law under a non-random treat-
ment plan as.;4,-—1 as an iterated integral over one-step conditionals

P (¥s+1,Xs+1 | hs,as), s=t,...,t+7—1. 3)
Standard implementations of g-computation approximate these kernels directly in data space and
then perform autoregressive rollouts, repeatedly sampling covariates and feeding them back into the
model. We instead ask whether g-computation can be implemented entirely in latent space, so that
we never autoregress observed covariates while still targeting the same interventional distribution.
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Algorithm 1 Latent g-computation estimator (Monte Carlo rollout)

1: Input: history hy, treatment plan &y.;,_1, horizon 7, samples M, scope€ {all,last}
2: ry < fw (ht)

3: form =1to M do > Monte Carlo paths
4: St,0 < 0

5: fort' =1to7 do

6: Cit/ < Hw(rtaSt,t’flyat+t’7latl)

7: zizl,) ~ po(+) >e.g., N(0,1)
8: if scope =all or ¢ = 7 then

9: decode yith)H (Xi?:t)/) ~ pe(- | Zizll)»ct,t’yat+t’—1)

10: St FW(ZEZL,), re,ai .y 1,t,Spp_1)

11: Return: {y7), M, if scope=all,else {y\T) }M_,

Fix a time ¢ and a prediction horizon 7 > 1. Let h; denote the observed history up to time ¢ and
ay:;4r—1 a treatment plan applied from ¢ to ¢ + 7 — 1. Our latent estimator uses four components: (i)
a history network f,, that maps the observed history to an embedding r; = f,(h;); (ii) a recurrent
latent state s, ;; summarizing the latent trajectory from ¢ to ¢ +', initialized as s, o = 0 and updated
as

st = Do(2ee v, appe 1,1 Sep—1) th=1,...,7; 4)
(iii) a context map ¢ y = H¢(I‘t7 Ster—1, A4y —1,1 ), which collects all information needed by the
one-step decoder at step t; and (iv) a conditional decoder pg with fixed latent prior pg defining
one-step kernels

p0(1t+t’ \ Zt,t’act,tHatth/fl)» Ly = (ym/,xtw), Zg g~ PO(‘)~ (5

Given these components, we implement g-computation by ancestral sampling of full latent paths.
For each Monte Carlo replicate, we sample a trajectory of latents z; 1, . . ., z; » under the treatment
plan, update the latent state forward in time, and decode outcomes (and optionally covariates) at
selected horizons. Crucially, decoded observations are never fed back into the state; all temporal
dependence flows through (r¢,s; ). In our concrete instantiation (Section , pe and pg arise
from a conditional VAE over (Y, X;).

With our estimator, one can decode at any subset S C {1,...,7} of relative steps. The latent
rollout and state updates are identical in all cases; only decoding is selective. We parameterize
this choice via an argument scope that specifies at which relative steps we decode outcomes. In
this work, we consider two options: scope=all corresponds to decoding at all ¢/ = 1,...,7,
while scope=1last corresponds to decoding only at ¢ = 7. This selective decoding is useful
computationally: when we are only interested in y;,, choosing scope=1last avoids decoding at
the intermediate 7 — 1 steps, reducing the decoder cost from O(7M) to O(M) for M Monte Carlo
paths. More generally, decoding at an arbitrary subset S scales the decoder cost linearly in |S| rather
than in 7.

Algorithm [1] defines our latent g-computation estimator: given a history h, and a treatment plan
ay.¢+r—1, it produces Monte Carlo samples from an interventional distribution induced by the one-
step conditionals pg(li+4 | Z¢, Co ey i1 —1). In Section we state conditions under which this
estimator is equivalent to the classical g-formula and analyze its error propagation. In Section [4.3]
we describe how we instantiate (f,,, kv, pg, ') as the neural model G-Latent.

4.2 THEORETICAL INSIGHTS

We now provide theoretical guarantees that the latent g-computation estimator implements the same
interventional law as the traditional data-space g-formula, and compare its error propagation to a
data-space autoregressive rollout. See full proofs and additional discussion in App. [E]

Assumption 4.1. (Latent factorization and context sufficiency). Fix ¢ and 7 > 1. Let r; = f,,(hy),
let the latent state s; ;» and context c; ;s be defined as in Section and consider the one-step
conditional over l; 1+ = (y¢+¢, Xt ). We assume that the true one-step conditional admits a latent
mixture factorization with a fixed prior pg:

p*(lt—&-t’ | Bt+t’—17at+t’—1) = fp9(1t+t' | Zt,t’aCt,t’7at+t’—1)p0(zt,t’)dZt,t“ (6)



Under review as a conference paper at ICLR 2026

(See App. [E-I]for the formal statement and further discussion.)

Intuitively, this says that once we condition on a sufficiently informative context
ctp(hepe 1,841 1), the decoder family pg(- | z,c,a) is rich enough to represent the true
one-step conditional as a mixture over a fixed prior py, as in a standard conditional VAE. This is the
standard conditional VAE modeling assumption and not an additional causal assumption.

Theorem 4.2 (Equivalence of latent and data-space g-computation). Under the identification as-
sumptions (App.[A) and the latent factorization in Eq.[6] for any treatment plan a.,,~_1 and history

h;, Algorithm|l\produces i.i.d. MC samples from the interventional laws identified by the g-formula
(Eq.[2):

(full path) pé(}’t—&-l:t—&-T | Bt) = / H pe(}’t+t' Zt,t'y Ct it/ (Zt,lzt'—l); at+t’—1) Hpo(zt,t’)dzt,t’a

t'=1 t'=1

(fixed horizon) p*(yi4- | hy) = / pa()’t+r

-
Zi T, Ct,T(Zt,liT—l)a at+7’—1> HpO(Zt,t/) dZt,t'-
t'=1

(7
Proof. App. [E.3)]
Corollary 4.3 (Selective decoding is coherent). Decoding only at t+7 (scope=1ast) returns
i.i.d. samples from p*(yi1, | hy); decoding at any subset SC{1, ..., 7} returns the corresponding

marginals {p?(yi+v | hy)}ves. Proof. App.

Error propagation: latent vs. data-space g-computation rollouts. Takeaway: the latent rollout
(Alg.[I) does not amplify local one-step errors, whereas data-space autoregressive (AR) rollouts can,
because they repeatedly decode and re-encode observations.

In latent g-computation, the learned one-step kernel is the decoder-induced latent mixture at context
cip, K- | hg,as) = [po(- | z,¢p,a5) po(z) dz with s = t+t'—1; ¢,y is defined in Sec.
and the state is updated through latents only. As a comparator, we use a data-space AR rollout that
decodes each step and re-feeds (or re-encodes), inducing a single-step Lipschitz AR tail operator
with factors {1 + A;}. Let K’ (- | h,,a,) denote the true one-step conditional and define ¢, :=
supg. o, TV(KZ (- | hy,a,), KS(- | hy,a,)), where TV (p, v) denotes the total variation distance
TV(p,v) = supaea [u(A) = v(A)].

Proposition 4.4 (Propagation-error bound and dominance). Assume that the single-step AR tail
operators are Lipschitz in total variation with factors (1 + \;) (see Assumption @) Let P* be the
interventional law of Yy+, and P'™, PAR the laws induced by latent and AR rollouts using { K¢}.
Then, taking total variation over the marginal of Y;4 ,,

t+7—1 t+7—1 t+7—1
* lat * AR .
TV(P*,P*) < Y e, TV(PL P < Y e T i+ ). (8)
s=t s=t j=s+1

Proof. App.

Our model inevitably makes small one-step errors in the conditional distributions. The key differ-
ence is how these local errors are propagated. In the latent g-computation rollout, once the factual
history is encoded, all future evolution happens in latent space and decoded predictions are never
fed back; mathematically, the subsequent latent transitions are Markov and non-expansive in total
variation, so each local error contributes at most additively to the final discrepancy. In a data-space
autoregressive rollout, every decoded prediction is fed back through a powerful encoder to form
the next context, and these encode—decode maps can enlarge discrepancies, so a small local error
at a given time step can be amplified at later steps. Proposition formalizes exactly this: both
approaches share the same local approximation errors, but only the data-space rollout has this addi-
tional error-amplification channel, which explains its worse long-horizon behavior.

4.3 NEURAL INSTANTIATION: THE G-LATENT MODEL

Architecture. We instantiate the abstract components ( f,,, I'y, kv, pg, po) With a history network, a
latent GRU, and a conditional VAE. The history network f,, is a multi-input transformer that maps
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the observed history h; to an embedding r; = f£,,(h;), following Melnychuk et al|(2022) (three
streams for X;, a;_1, y; with cross-attention; details in App.[B). The latent state update I', (Eq. 4| .
is implemented as a GRU, and the context map as ¢; ;+ = Ky (T, St ¢/ —1, Qg —1,1 "), so that future
contexts depend only on compact latent summaries rather than decoded observations. For the one-
step conditionals over 1,y = (y;44, X¢1¢ ) We use a single conditional VAE, shared across ¢, with
VAE encoder and decoder

%(Zt}t’ ‘ 1t+t’act,t’); p0(1t+t’ ‘ Zt,t’7ct,t’7at+t’71)7

and prior po(z¢ ) = N(0,I). Outcomes y; are modeled with the ALD-mixture parameterization
of |An & Jeon| (2023) (DistVAE), extended here to time series with sequential treatments, while
covariates x4 use Gaussian heads; see below.

Training objective and implementation. We share one conditional VAE across steps ¢’ €
{1,...,7} and optimize a joint per-step objective. Given the context c;,, the VAE encoder
outputs z; ;s ~ qp(zry | Li+v,cr ), and we update the latent state via Eq. The decoder
po(lirer | 2oy, oy, a4 —1) is parameterized by a shared trunk T, followed by two heads: an

outcome head Déy) and a covariate head D((f). Let Wy = Tp(Zt.1r, Cr 7, Ar+1/—1) and
a — pWw N ) _ p@
Aot = o (Wt’t’v 0‘)7 (”t,t/a Ut,t') = Dy (Wm'),

where o« € (0, 1)% collects per-outcome quantile levels We implement Déy) as d,, scalar branches

and draw K vectors {a®)}X_ with i.i.d. entries a ~ Unif(0, 1). The per-step reconstruction
loss is

y K
‘Crec(t7tl) = K § pa(k) yt+tl7j qa(.k) t,t/ J) + %
IR
j=1 k=1

N 2
Kppe/ —Hy ¢/
Ut,t’

+3 17log 6-?+t/7 )

where p,(u) = (o — 1{u < 0})u is the pinball loss and (llt,tu (A)'it/) are the Gaussian parameters
for x;44. The KL term is Lxp,(¢,t') = KL(gy(2s, | -) || N(0,1)). This corresponds to a condi-
tional VAE with an ALD-mixture outcome decoder (An & Jeon, 2023)); integrating over o recovers a
CRPS-type reconstruction term, which encourages well-calibrated, flexible predictive distributions
beyond Gaussian heads (see App. |C|for details). In our setting, using the ALD mixture for y im-
proves distributional performance but increases decoder complexity, so we use it only for outcomes
and keep a simpler Gaussian head for covariates x, where the additional expressivity does not off-
set the extra compute. Predictive uncertainty arises both from the sampled latent path (capturing
temporal and cross-outcome dependence) and from the outcome head, which plays the role of the
likelihood noise model, analogous to decoder noise in a Gaussian VAE.

The history network f,, is high-capacity, and the VAE objective alone can be minimized even if
r; carries little predictive signal (the decoder may partly ignore it). To avoid such degenerate con-
figurations, we add an auxiliary one-step prediction head y;11 = U, (r4, a;) with MSE loss L,x
(Eq.[10), used purely as a regularizer to make r; predictive of y; 1. The total loss over a mini-batch
Bis
TO_1 1
~HE [ m e + B + A L0 (0)

ieB t=1 t'=1

with masks m( ), = 1{t + ' < T}, In practice, we found it helpful to warm start the history
network by ﬁrst optimizing only L,y for a small number of epochs, and then training the full
objective in Eq.[I0] This implementation choice affects how the parameters are learned but does
not change the latent g-computation estimator of Section .1l We also reweight the two terms in
Eq.[9]to give more importance to outcome modeling. Hyperparameters are selected via lightweight
tuning on factual-validation sets, guided by distributional metrics and KL—capacity diagnostics; for
the transformer we adopt the architecture and base hyperparameters of Melnychuk et al.| (2022).

Inference and sampling cost. At test time, we apply Algorithm [I] with the learned parameters. For
a given anchor time ¢ and treatment plan a;.; 1,1, we compute the history embedding r; = f,, (ht)
once, then roll out the latent state and decoder as in Section .1} Because decoded observations
are never fed back, the inner loop consists only of GRU updates and decodes and vectorizes over
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M Monte Carlo paths with a shared r;. As discussed in Section #.1] and Corollary {.3] we can
decode at all steps (scope=all) or only at a subset S C {1,...,7} (e.g., scope=last for S =
{7}) without changing the underlying interventional law, so we pay decoder cost only at horizons

of interest. For M MC samples and horizon 7, the cost is O(cost(f.,) + M [7(cost(GRU®)) +
cost(ky)) + | 5] cost(Déy)) ]), where |S| < 7 is the number of decoded steps and cost( f.,) is paid
once. By contrast, a data-space rollout has cost O(cost(f.,) + Mr[cost(GRUP)) + cost(ky) +
cost(Dém’y)) ]) , since all steps and both X and Y must be decoded, and a full autoregressive model

with decoder scales as O(M7[cost(f.,) + cost(Déw’y)) ]) (G-Net is of this type, but uses a hold-
out error set instead of a decoder). Overall, our model reduces sample cost by (i) computing f,,
once and reusing it across M and all 7 steps, enabling a high-capacity transformer only for the
up-to-t sequence; (ii) decoding selectively so the Dy term scales with |S]| (e.g., |S|=1 for last);
(iii) decoding only Déy) and skipping Dé,x) at inference; and (iv) updating the GRU in latent space
(GRU®)) instead of data space (GRU™), which can yield gains when d, < d.

5 EVALUATION

Datasets. Following common practice in benchmarking for POs inference (Bica et al.; Melnychuk
et al.l [2022)), we make use of a semi-synthetic dataset for validating our approach, as it allows
to compute ground truth POs. Additionally, we also use a real-world dataset to demonstrate the
practical applicability of our approach. These datasets were selected because they have a consid-
erable number of covariates to adjust for, which is the type of setting for which our model can be
more useful. Semi-synthetic: from ICU data (Johnson et al.,|2016), we generate high-dimensional,
long-range trajectories with treatment effects and endogenous/exogenous dependencies following
Melnychuk et al.| (2022); |[Schulam & Sarial (2017); confounding is controllable and ground-truth
POs are known. We detected violations of the positivity assumption in the original form of this
dataset, presented in [Melnychuk et al.| (2022)). Despite having become a standard benchmark, the
aforementioned positivity violations make it unsuitable for evaluation of methods with the stan-
dard causal assumptions. For this reason, we make several modifications to avoid this problem.
We detail the detected problems in the original form of the dataset and the changes we make in [F]
Real-world: a fully observational benchmark from MIMIC-III using the same cohort definition and
preprocessing as the semi-synthetic setup (sampling grid, variable definitions, imputation, and dis-
crete action categories per Melnychuk et al.,|2022); lacking ground-truth counterfactuals, evaluation
targets predictive quality of observational next steps. Variables include standard ICU vitals/labs and
intervention-derived action indicators. We refer to App. [Ffor more details about both datasets.

Baselines. To evaluate our model, we use several baselines that handle aleatoric uncertainty and
deliver distributional estimates. We use G-Net (Li et al., |2021)) as an alternative implementation of
the g-formula and, for better comparability, its extension Transformer G-Net (Xiong et al., [2024),
which we implement with the same multi-input transformer architecture used in G-Latent. To the
best of our knowledge, these are the only previous works that estimate aleatoric uncertainty of indi-
vidualized POs in a discrete setting. We also compare with Causal Transformer (CT) (Melnychuk
et al.| 2022): in its original form for point estimate metrics, and with two distributional adaptations:
CT-Gaussian, with a Gaussian head, and CT-CRPS, with a CRPS head, analogous to G-Latent de-
coder. Among the non-distributional models for individualized POs, we chose to adapt CT as it is
a strong baseline and G-Latent shares its transformer-based processing of history data. As for our
model, we present three variants apart from the one described in G-Latent with a full Gaussian
reconstruction, and two variants that perform the rollout in the data space: one with CRPS decoder
and another one with full Gaussian decoder. We call these variants G-VAE, and D.S. accounts for
data space. We specify the details in App. In continuous settings, we are aware of two works
that estimate data distributions: [Hess et al.| and Mu et al.| (2025). We exclude the former because it
introduces a heavy machinery for epistemic uncertainty and continuous time processing that makes
it very expensive to train, while its way to handle aleatoric uncertainty is a Gaussian head, which
is already covered by CT-Gaussian. As for the latter, we exclude it because it addresses a slightly
different setting (expert models) and because it was released over one month before the submission
of this work, without available code.
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Table 1: Results at selected steps t' € {3,5,8,11} for the (new) semi-synthetic dataset. Metrics:
Energy Score (ES |) (per step and across steps), KDE-Loglikelihood (KDE-LL 1), RMSE |, Cali-
bration MAE].

=3 =5 =8 ¢ =11 Global

Model ES | KDE-LL T RMSE | ES | KDE-LL RMSE | ES | KDE-LL RMSE | ES| KDE-LL RMSE | ES| Cal. MAE |
G-Net 0.39£0.04 —127+0.17 0.64+0.07 051£0.05 —1.74+0.21 0.81£009 0.63+007 —2184+0.25 098+0.11 0.70+0.08 —2.45+0.28 1.09+£0.12 1.85+£020 6.29%1.35
Transformer G-Net 0.40£0.05 —1.35+021 0.66+0.08 0.50+0.07 —1.69+0.31 0.80+£0.13 058+0.11 —2.014+045 0924019 0.64+0.14 —2.24+0.56 1.00+£0.23 1.71+£0.11 6.97 + 2.06
CT (CRPS) 0.3240.07 —1.00+0.30 0.58+0.11 0.41£0.07 —1.40£0.34 0.71£0.10 0.50£0.07 —1.87+0.35 0.84+0.10 0.57:£0.07 —2.22+£0.36 0.9240.10 1.5240.23 13.14 £ 2.55
CT (Gaussian) 0.30£0.07 —0.91+031 054+0.13 0.37£0.08 —1.17£0.35 0.64£0.14 044%0.09 —1.444£0.38 0.74+0.14 049+0.09 —1.64:+0.38 0.81:£0.14 1.35+0.29 7.88+1.76
cr . . 0.43 £0.10 . . 0.53+0.12 . . 0.60 +0.13 . . 0.65+0.13 . .

D.S. G-VAE (Gaussian) 0.49 £0.04 —2.26 £ 0.12 0.54 £0.09 0.58£0.06 —2.56£0.16 0.66£0.11 0.64£0.07 —2.72£0.18 0.76£0.13 0.67+0.07 —2.78+£0.18 0.83:£0.13 2.01£0.20 14.99 +0.86
D.S.G-VAE (CRPS) ~ 0.28 +0.05 —0.89 +0.25 0.49+0.10 0.35+0.06 —1.14+0.29 0.59£0.12 0.42£0.07 —1.40%0.29 0.69+0.12 047+0.06 —1.58+£0.26 0.76£0.12 1.28£0.21 5.48 + 3.08
G-Latent (Gaussian) ~ 0.38+0.04 —1.70+0.14 0.53+0.09 0.42+0.05 —1.80%0.16 0.61+0.11 0.46+0.06 —1.90+0.18 0.69+0.12 0.48:+0.06 —1.95+0.18 0.73+0.12 151 +0.18 10.14 £ 1.36
G-Latent (CRPS) 0.20+0.05 —0.95+0.21 0.51+0.10 0.35+0.06 —1.18+0.26 0.60+0.12 0.40 +0.07 —1.37+0.29 0.68+0.13 0.43+0.08 —1.50£0.29 0.73+0.13 1.25+0.23 2.95 + 1.37

Table 2: Results at selected steps ¢’ € {2, 3,5,6} for the real-world dataset. Metrics: Energy Score
(ES |) (per step and across steps), KDE-Loglikelihood (KDE-LL 1), and RMSE |.

=2 t' =3 t'=5 t'=6 Global
Model ES| KDE-LL 1 RMSE | ES| KDE-LL T RMSE | ES| KDE-LL 1 RMSE | ES| KDE-LL RMSE | ES|
G-Net 5.32£0.08 —3.92+0.05 11.84+0.24 5.824£0.08 —4.11£0.05 12.83+0.29 —4.55£0.07 14.05£0.30 7.44£0.11 —4.83%£0.04 14.23£0.29 18.35£0.33
Transformer G-Net 5.2840.06 —3.8940.06 10.90+0.30 5.84+0.08 —4.06+0.08 11.67+0.26 6. —4.30+£0.06 12.96+0.32 6.904+0.08 —4.48+0.04 13.21+0.29 16.70+0.23
CT (CRPS) 4.9240.06 —3.81:£0.06 10.10£0.29 5.39£0.08 —3.94:£0.06 10.53:0.26 —4.08+0.04 10.75+0.29 5.86:£0.07 —4.19£0.06 10.914+0.28 14.61+0.27
CT (Gaussian) 5.25+£0.06 —3.92+0.06 10.41+0.29 5.71+0.08 —4.04+0.07 10.74+0.29 6. —4.18+£0.06 11.01£0.34 6.3440.08 —4.2440.07 11.2540.30 15.5540.23
cr . . 9.00+0.23 . . 9.5740.24 . 10.16+0.27 . . 10.35+0.31 .

D.S. G-VAE (Gaussian) 5.51£0.08 —3.90+0.06 9.5840.25 5.99+0.08 —3.98+0.06 10.29+0.22
D.S. G-VAE (CRPS) 4.89+£0.08 3.82+0.06 9.40£0.22 5.36£0.08 3.92£0.05 10.09%0.25
G-Latent (Gaussian) 5.27+0.06 —3.85+0.06 9.42+0.23 5.64+0.08 —3.89+0.06 10.09+0.23 5.
G-Latent (CRPS) 4.85+0.05 —3.79:+£0.06 9.23+0.20 5.25+0.08 —3.88+0.05 9.79+0.24 5.6/

0.06 —4.03+0.05 10.88+0.26 6.44+0.07 —4.04+0.05 11.04+0.29 15.98+0.23
7 3.99£0.06 10.63+0.29 5.82+0.06 4.04£0.06 10.7940.30 14.38%+0.19
.07 —3.94+0.04 10.64+0.19 6.074+0.07 —3.95+0.06 10.80+0.25 15.2140.26
0.09 —3.94:+0.05 10.36+0.29 5.7240.06 —3.96+0.06 10.55+0.28 14.23+0.23

Metrics. Our model produces MC samples at each prediction step. We evaluate with: RMSE of the
predictive mean, computed from the average of MC samples at each step (lower is better); Energy
Score (ES), a strictly proper multivariate scoring rule that reduces to CRPS in the univariate case
and assesses distributional fit. We report it per step and over the full trajectory to capture temporal
coherence (lower is better); and KDE log-likelihood (KDE-LL, the log-likelihood of the observed
outcome under a Gaussian kernel density estimate fit to the model’s samples, reflecting density fit
(higher is better). After trying over ten bandwidths for each dataset and baseline, we selected the one
with general better results to report here. For the semi-synthetic dataset, we report results for two ad-
ditional bandwidth (see App. [J). In general, the best bandwidths provided better results consistently
across models. For the semi-synthetic dataset, We also assess calibration via quantile coverage: for
g € {0.1,...,0.9} we compute, per step and per outcome dimension (and aggregated across steps),
the fraction of test outcomes below the MC-estimated g-quantile (ideal coverage equals g). As a
scalar summary we report Calibration MAE, the mean absolute gap between empirical and nominal
coverage averaged over quantiles, dimensions, and steps (lower is better). To obtain the metrics,
we used 50 and 40 MC samples for the semi-synthetic and the real-world dataset, respectively. See
App. [H]for more details on the metrics.

Results. We ran all experiments in AWS SageMaker on an ml.g5.4xlarge instance (A10G GPU,
24 GiB VRAM). We report selected steps in Table |I| (semi-synthetic, modified) and Table |Z| (real-
world), with full results—and the original semi-synthetic benchmark—in App. [} Semi-synthetic
runs use five random seeds; real-world runs use four; intervals denote standard deviations)'| Across
both datasets, G-Latent attains the strongest distributional performance, especially at larger hori-
zons. On semi-synthetic data, G-VAE-CRPS remains competitive with G-Latent—CRPS—showing
small ES gaps overall and occasional wins at short horizons—whereas among the Gaussian variants
the gap between G-Latent and G-VAE is pronounced: Gaussian heads are more error-prone, and
the latent rollout reduces accumulation error. KDE log-likelihood consistently favors G-Latent at
large steps (across all tested bandwidths). On the real-world cohort, G-Latent—CRPS is best at ev-
ery reported step and globally. For calibration on the semi-synthetic benchmark, G-Latent—CRPS
achieves the lowest Calibration MAE by a clear margin, while Gaussian variants fare markedly
worse. In App. [J]we show extensive quantile coverage tables. Regarding other baselines, CT with
Gaussian/CRPS heads trails the latent models on distributional metrics, while the point-estimate CT
attains the lowest RMSE (as expected for a point forecaster); G-Net and Transformer G-Net lag fur-
ther behind on ES and KDE-LL. Overall, G-Latent—CRPS provides the best distributional metrics
at long horizons while remaining competitive on point accuracy, and it clearly outperforms prior
g-computation—based models.

'See App. for complete tables and diagnostics.
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We measure end-to-end test-set inference time on the semi- Tabl_e 3 TeSt._ set inference time on the
semi-synthetic dataset (50 MC

synthetic dataset (50 MC samples; 11 projection—horizpn samples; 11 projection-horizon steps)
steps). Table [3] reports the results: decoding all steps with (hh:mm:ss).
G-Latent—CRPS takes 00:19:27 (1,167s + 125s), while de-
coding only the last step takes 00:07:11 (431s 4+ 5s)—an Method hh:mm:ss
~ 63% reduction that is valuable when only a few hori- g—Latem (gRPg) [?11] gg:(l)mZi (1)?
: -Latent (CRPS) [last 07:1 ,
zons are needed, since non-latent rollouts must decode every g en T 0090:16 = 158
step. For G-VAE-CRPS, inference time is 00:25:42 (1,542 s G-Latent (Gaussian) [last] ~00:07:26 + 08s

G-VAE (CRPS) 00:25:42 & 125

+ .12 s), about 32% slower than G-Latent—CRPS (all steps). G VAE (Gaussian) 00:20-05 & 115
This gap stems from our decoupled decoder, which allows G- (T}r?\r;sformer G-Net 83):8;:42‘; i 325
. . -Net HVAN Bh

Latent-CRPS to decode outcomes Wlthoqt covariates. In our CT,CCRPSA 00.59:25 £ 200
implementation, the outcome and covariate decoders share CT-Gaussian 00:53:08 £ 19s

three layers (App. [D)); further decoupling could yield addi-

tional gains. The Gaussian head yields similar wall-clock for G-Latent—00:20:16 (1,216s £ 155)
for all steps and 00:07:26 (446s + 8s) for last-step decoding—and 00:20:05 (1,205s + 11s) for
G-VAE (there is no covariate decoupling in the Gaussian head models). Among other baselines,
Transformer G-Net and CT-CRPS/CT—-Gaussian are substantially slower at 01:03:21 (3,801 s £
365s), 00:59:25 (3,565s £ 295), and 00:53:08 (3,188 s + 195), respectively, while G-Net is faster
at 00:05:45 (345s £ 5s). For all the baselines, we fully tensorize and cache recurrent state (e.g.,
Transformer hidden states in Transformer G-Net and CT-CRPS/Gaussian), so each step only pro-
cesses the last MC prediction rather than recomputing the entire history. In summary, all full trans-
former—based models exceed 50 minutes per test set, whereas G-Latent (and its variants) substan-
tially reduces inference time by using the transformer only to encode the history up-to-¢’, then up-
dating the representation during the MC rollout with a lightweight GRU. Our tensorized and cached
implementation of G-Net achieves very low inference times because it uses a lightweight RNN to
process data and, unlike G-Latent, has no decoder—it injects residual noise. However, this reduces
its expressivity and adaptability to particular data distributions.

6 CONCLUSIONS AND LIMITATIONS

In this work, we introduce G-Latent, a novel method for distributional estimation of individual-
ized POs under time-varying treatment effects for discrete settings, with identifiability guarantees
through g-computation in the latent space. We demonstrate the general efficacy of our approach,
both theoretically and experimentally. Also, we show that our method is efficient at sampling com-
pared with other variants that perform g-computation in the data-space. We identify two potential
limitations: the first is related to the latent factorization in eq. [6} fundamental for G-Latent. This
assumption would be violated, for example, under posterior collapse (Lucas et al., [2019), which is
relatively common in VAE training and prevents latent representations from properly representing
data. We did not observe this problem in the experiments, but it is important to be careful with
that. On the other hand, another potential limitation comes from the CRPS decoder; as|/An & Jeon
(2023) discuss, the ALD-decoder assumes that the different elements of Y4 (if multivariate) are
independent given z. If the assumption fails, cross-dimensional dependence may remain unmod-
eled. However, neither DistVAE nor us empirically observe this problem (G-Latent has strong ES
metrics). Finally, our focus in this work is aleatoric uncertainty; epistemic uncertainty is orthogonal
and can be added with MC dropout or deep ensembles, or more formally via Bayesian priors.

We restrict attention to g-computation—based estimators rather than IPTW/MSM-style generative
baselines (e.g.,|Wu et al.|[2024). In principle, IPTW could be adapted to our conditional, trajectory-
level estimands, but would require high-dimensional propensity models (or conditional treatment
densities for continuous treatments) and weighted conditional density estimation, which can lead to
unstable importance weights in long-horizon, high-dimensional settings. Designing and evaluating
IPTW/MSM-style generative models for individualized distributional potential outcomes remains
an interesting direction for future work.
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A ASSUMPTIONS FOR CAUSAL IDENTIFICATION

We work within the potential outcomes paradigm (Rubin, 2005) and its extension to temporal treat-
ments and outcomes (Robins et al.| 2000), a setup also adopted by prior sequence models for treat-
ment effect inference (e.g.,|Lim| 2018} [Bica et al.). In this framework, identification of counterfac-
tual distributions over time (and, in particular, the 7-step conditional mean from Eq. (1)) relies on
three standard conditions on the data-generating process.

Assumption A.1 (Consistency). For any fixed treatment history a, if the realized actions satisfy
At = ay, then
Yiii[a] = Y.

That is, under the actually received treatment sequence, the relevant potential outcome coincides
with the observed one.
Assumption A.2 (Sequential Overlap/Positivity). For any history value h; in the support of H,
each admissible action has positive probability:

0 < p(Ay =a; |H;=h;) < 1 whenever p(H; =h;) > 0.
Assumption A.3 (Sequential Ignorability / No Unmeasured Confounding). Conditioning on

the observed history renders the current action as-if randomized with respect to the next-step poten-
tial outcome:

VtandVag;y,—1: Ay 1L (f‘t+1:t+r[ét:t+r—1]a Yt+1:t+7—[ét:t+7'—1]) ‘I:Ir

Corollary A.4 (g-computation; Robins & Hernan,2008). Under A.1-A.3, the 7-step-ahead con-
ditional mean under a fixed intervention path a;.;,_; is identified by the longitudinal g-formula.

13
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B MULTI-INPUT TRANSFORMER

Scope. This appendix details the encoder we use to compute the history embedding r; = f,, (hy)
from the factual history hy = { X, A;_1,Y,;, V }. It follows the multi-input transformer design
of [Melnychuk et al.| (2022) (three streams with cross-attention and shared relative positional en-
codings), but we do not use their balancing loss and we never feed model predictions back into
the transformer. The output of this encoder is a single fused representation r; that our model uses
downstream (Sec. [4.3).

B.1 INPUTS AND TOKENIZATION

Let b = 1,..., B index transformer blocks and dj, the model width. For the first block, we map

each sequence to hidden states via time-shared linear layers:

AY,, = Linear4(A;_1), X9, = Linearx (X;), Y?!., = Lineary (Y), V = Lineary (V),

where A; 1 = (Ay,...,A;_1,0) is a left-shifted treatment stream aligned with our start-of-
interval indexing (decision A, precedes (Y;11,X,+1)). Subsequent blocks receive the previous
block’s outputs.

We denote the stream-specific hidden sequences at block b by A%, X%, and Y?, (€ Rt*dn),
B.2 MASKED SELF-ATTENTION WITH RELATIVE POSITIONAL ENCODINGS

Each stream applies masked multi-head self-attention (causal mask so a position ¢ only attends to
J < 1) with relative positional encodings (RPE). For head dimension d, attention at position i is

T K
Attn; (Q, K, V) Zoz” V + a” o = softmax; <Q(Jdﬂ)> 7 (an
qk
ayj = wxip(jfi_[mx), af? = wf{hp(jfi’emx), clip(z, fmax) = max{—Llmax, Min{fmax, 2} },
with trainable w%wf € R+ for ¢ € {—lmax; - --,0}. These Toeplitz-structured encodings

depend only on relative distance and are shared across blocks and streams. Layer normalization
and residual connections wrap the attention sublayer, and a position-wise feed-forward network
FF(h) = Linear(ReLU(Linear(h))) follows, again with residual+LN.

B.3 CROSS-ATTENTION BETWEEN STREAMS AND STATIC COVARIATES

To couple signals across modalities, each block augments self-attention with cross-attentions be-
tween the three streams. Using tildes for post-self-attention states and writing MHA (Q, K, V') for
multi-head attention,

AL = LN(MHA(Q(A ™), K (X", V(X"1) + A1), (12
Al :LN<MHA(Q(Ab D, K(Y ), v (YP 1)) + A ) (13)
<o :LN<MHA(Q(Xb D), K(AY), V(AP Y) + X b ) (14)
o _LN(MHA(Q(Xb Y, K(YP ), VY ) + X? 1) (15)
YT = LN(MHAQ(Y 1), K(X!1), V(X' ™1) + Y1), (10
Vi = LN(MHAQ(Y "), K (A1), V(AY1) + Y1), a7

We then pool the two cross-attended views per stream and inject static covariates at every time step:
AV AN AN 41V, X XU RS 41V, (18)
Yl =Y Y IV (19)

followed by parallel FF+residual+LN sublayers to yield A®, X®, Y?. Treatments remain left-shifted
throughout (so treatment token at index ¢ aligns with covariate/outcome tokens at i+1).

14
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B.4 FUSION TO A SINGLE HISTORY EMBEDDING r;

After the final block B, we fuse the three streams by element-wise averaging at each time ¢ < ¢,
then project with a linear layer and ELU:

b, = %(Aﬁl +XP+YP), ®; = ELU(Linear(®;)), r;:=®; € R™.

We use only the factual {X;.;, A1.+—1, Y1.¢} to build rs; predicted outcomes are never fed back into
the encoder.

Remarks. (i) All attention modules use the causal mask and the same RPE as in Eq. (i1) Static

covariates V are injected at every block/time step via V. (iii) Dropout is applied after linear layers
in attention and feed-forward sublayers.

C DISTVAE-STYLE LOSS: DERIVATION AND DISCUSSION
We adapt the continuous-variable objective of |[An & Jeon|(2023) to our setting (ignoring categorical

variables). Let ¢ = (z1,...,x,) denote continuous observations (here, z = y) and z the latent.
DistVAE assumes an ALD (asymmetric Laplace) decoder mixed over a quantile level « € (0, 1):

p
p(@:0,8) = [[ o] 2009 ple)dadz, (o | 20i0.5) = [ ] plas | 2,0303,9)

j=1
(20)

where, for each coordinate,

play | vty 0) = 20 o p (BRI ) ) = 0= Hu< o))
2n

Here D;(a, z;6;) is the conditional quantile function (ALD locationﬂ B > 0 is a scale constant,
and p,, is the pinball loss.

Assumption 1 (DistVAE). (i) {;vj} are conditionally independent given z; (ii) (discrete variables
independent of «; not used here); (iii) o L z. Item (i) is the usual VAE factorization; (iii) treats «
as a prior (no ¢(« | x)), which is key to the proper-scoring-rule objective below.

C.1 FINITE-K NEGATIVE ELBO (COMPOSITE QUANTILE)

Approximate the a-integral by a uniform grid oy, = %, kE=1,...,K, with p(ag) = %, and

introduce g4 (2 | ). A Jensen step yields, up to additive constants independent of (6, ¢),

1 &
—ELBOKk (0, ¢) = Eqg, (2 ]) i Z Zpak(xj — Dj(ak,20;)) | + BKL(ge(z | )| p(2)) + Ck,

k=1 j=1
(22)
so the reconstruction is a composite quantile (average ALD NLL across {ay }).
C.2 LimMIT K — oo: CRPS OBJECTIVE AND DISTVAE LOSS
Under mild integrability/continuity in o,
K 1
lim 1 Zpak(xj — Dj(ag, 2; Hj)) = pa(xj —Dj(e, 2; (‘)j)) da, (23)
K—oo K 1 0
1 & !
Klgnm?;logak(l—ak) :/0 loga(l — a) da. (24)

ZAn & Jeon|(2023) enforce D; (-, z) to be monotone in « (to avoid quantile crossing) via an isotonic-spline
parameterization. We do not impose this constraint: it adds architectural restrictions and, in our experiments,
occasional finite- K crossings had negligible effect on CRPS or downstream rollouts.

15
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Hence —ELBOx converges to

P 1
L:DistVAE(07¢) = Eq¢(z|r) ZA Pa(xj - Dj(avz;aj)) da| + 5KL(q¢(z | (E) Hp(z)> + C7
j=1

(25)

where |, 01 Pa(+) da equals the Continuous Ranked Probability Score (CRPS) for the model CDF. In
practice we estimate it by Monte Carlo over o ~ Unif(0, 1). Thus the “ALD NLL (MC-CRPS)”
reconstruction is the K — oo limit of a valid ELBO (not a heuristic).

C.3 WHY THIS HELPS VS. GAUSSIAN DECODING

Distributional capacity. Gaussian decoders impose symmetry and typically homoscedastic noise,
and in practice often compensate for mean misspecification by inflating the predicted variance,
yielding over-dispersed (underconfident) forecasts. ALD/quantile decoding directly captures skew-
ness and heteroscedasticity across o while preserving VAE advantages: (i) a likelihood-derived
proper scoring rule (CRPS) for reconstruction, (ii) simple sampling via inverse transform (u ~
Unif(0, 1) then z; = D;(u, 2)), (iii) a tractable latent KL.. By focusing the loss on quantile loca-
tions across «, the ALD/CRPS objective discourages variance inflation and typically yields sharper
predictive distributions under non-Gaussian data.

C.4 OUR OBJECTIVE (CONTINUOUS HEAD) IN DISTVAE FORM

Identifying x = y (continuous outcomes), our training loss for the outcome head is

K d
1 iid
Leon = Bqyet | 72 22 D pacolys = Di(a® . 230)) | + BKL(gs(= | ) [p()),  a® ¥
k=1j=1
(26)
This is exactly the ALD NLL (MC-CRPS) plus KL, i.e., the continuous-variable DistVAE objective
specialized to our architecture (temporal and cross-outcome dependence are mediated by the latent
path; the quantile head supplies the likelihood noise, analogous to a Gaussian decoder’s noise).

D G-LATENT ARCHITECTURE: ENCODER, TEMPORAL CORE, AND
DECODER

Scope. This appendix specifies the network architecture of G-Latent: the history network f,,, the
temporal core (k, and GRU,), and the shared conditional VAE (E,, Dy) reused at every relative
step. Training objectives and identification assumptions are described elsewhere.

D.1 NOTATION AND SHAPES

LetX; € R%, Y, € R%, and L, = (Y, X;) € R withdy, = d,+d,; treatments A; € R%; and
static covariates V € R% . The history network outputs r; € R%". At relative step ¢’ € {1,...,7},
the latent is z; ¢ € R4, the temporal state is s; ;€ R, and the step context is ¢,y € R,

D.2 HISTORY NETWORK f,
We use the multi-input transformer of Melnychuk et al.| (2022) (full details in App. [B)). Briefly:

* Inputs. Three factual streams up to anchor time ¢: X:, Y, and left—shifted A, ;
(start—of—interval indexing), plus static V. Each stream is linearly projected to the model
width; V is injected at every time step.

* Blocks. Each block applies masked multi-head self-attention with shared relative po-
sitional encodings per stream, cross—attentions between streams, and a positionwise
feed—forward network. All sublayers use residual connections, layer normalization, and
dropout.

16
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 Fusion. The final per—time states of the three streams are averaged and linearly projected
with ELU to yield r; = f,,(h;) € R% . No model predictions are fed back into the encoder.

D.3 TEMPORAL CORE: CONTEXT COMBINER AND LATENT-DRIVEN STATE UPDATE

Given ry, previous state s; 41, current action a,+, 1, and relative index ¢’, we form a dense context
and update the recurrent state.

Context combiner. We concatenate the inputs and project to d. with a single linear layer:

- / dptdetda+1 . (= de
Cop = [Tes Sppo1; a1 t' | € RUFtdatl Crp = ky(€rp) € R%. (27)

State update (latents only). A GRUCell updates the temporal state using the latent, the frozen
history embedding, the current action, and the step index:

St,t/ = GRUv([Zt,t’ 3T Qe -1 t/]7 St,t’fl) ) s¢0 = 0. (28)

GRU weights are orthogonally initialized and biases are zero—initialized. A data—space variant (not
used in our main model) replaces z; 4+ with L4/

D.4 SHARED CONDITIONAL VAE (Ey, Dy)

A single conditional VAE is reused across steps. Encoder E, outputs a Gaussian posterior over z; ;,
and decoder Dy maps [z, ,/; C;,/; 8,4+4/—1] to the reconstruction heads. The decoder uses dense skip
concatenation: after every hidden block, [z; c; a] is re—concatenated to the block output before the
next block.

D.4.1 ENCODER Ej

The encoder is an MLP applied to [l;44; ¢, /] with repeated blocks Linear — BatchNorm —
ReLU — Dropout, followed by two linear heads for mean and log—variance:

(peesr, log o-it/) = E¢([lt+f/; ctyt/]) € R% xR, Zey = Py +op O, € ~N(0,I). (29)
D.4.2 DECODER TRUNK 7y WITH DENSE SKIPS
Starting from hy = [2;4; ¢tv; 8+ —1], the trunk applies repeated blocks Linear — ReLU —
Dropout; after each block with output h, we set
h [h;z ;s ape—1 | (30)

before entering the next block. The trunk output w; ;+ feeds the heads below.

Gaussian (heteroscedastic) decoding path. When using a purely Gaussian decoder for all dj,
coordinates, two linear heads produce mean and positive scale (via softplus):
oy =Wyowypy + by, Oy = SOftpluS(Wa'wt.,t’ +bs), 3D

yielding a diagonal Gaussian on L, . Optional clamping can be applied to designated coordinates
(e.g., nonnegativity of specific outputs) by shifting the corresponding mean channels.

CRPS / random-quantile outcome path. When using the distributional outcome head, the de-
coder splits into:

1. Outcome quantile head (per outcome, per quantile). Let o € (0,1)% collect
per—outcome quantile levels and draw A i.i.d. samples per outcome. From w; ;. (option-
ally after a small shared sub—trunk), each outcome coordinate j € {1,...,d,} has a dedi-
cated MLP that re—concatenates [z ;€ a,41/—1; ¢4 at every hidden layer and outputs

a scalar quantile Zjaj’t,t/’ ;- Stacking across A samples yields Qt,t’ € Rdvx4,

2. Remaining coordinates (Gaussian head). If d; > d,, a separate trunk (fed by

(Wit et Crprs Qg —1]) OULPULS (flyem, log 62, ) for the remaining d, —d,, coordinates.

This realizes the outcome—specific a—aware branches while keeping non—outcome channels Gaus-
sian.
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D.5 PER-STEP FLOW (TRAINING AND INFERENCE INTERFACE)
At each step t':

1. Build the context:

Croy =ry([res sep—1s amp—1;t']). (32)
2. Training: encode [l;1; ¢, /] to obtain (g, 4/, log af}t,) and sample z,; /.
3. Decode with either the Gaussian head to obtain (fi; s, 6+ ) for all coordinates, or the

quantile outcome head to obtain Q; » (and Gaussian parameters for any remaining coordi-
nates).

4. Update the state:
st = GRU, ([ 2z 5 ve s agpp—1 3 t' ], sep—1). (33)

At inference, z;,» ~ N(0,I) is sampled independently across steps and Monte Carlo draws; by
default only outcomes Y are decoded, and decoding can be restricted to any subset of steps S C

{1,...,7}

D.6 DESIGN NOTES
» Treatment sensitivity. Actions enter both the context combiner and every decoder block
via dense re—concatenation, preserving a short path from treatment to outputs.

* Relative step embedding. The scalar index ¢’ (or a small positional code) is concatenated
in Ky and the GRU input to inform the horizon position without per—step parameters.

* Normalization and positivity. BatchNorm is used only in the VAE encoder. Decoder
scales are enforced positive with softplus.

* Parameter sharing. A single (Ey, Dy, ky, GRU,) instance is reused across all ¢/, im-
proving data efficiency and keeping semantics consistent across horizons.

D.7 MODULE I/O SUMMARY

Module Signature

History network f,, h; — r; € R

Context combiner iy, [r4;S¢4—1;840—1;t] > ¢ € R

Encoder E,, Lesrrscee] — (pee,log a'f’t/) € R4 x R4=
Decoder trunk Tjp [Z¢,47; Cp e Apper—1) — Wy o (dense skips)
Outcome head D((,y) (CRPS) [wy ¢; a] — Go € R (per outcome, per «)
Covariate head Déx) (Gaussian) ¢y +— (flrem, log 62,,,)

State update GRU»Y [Zt,t’ sTes Qe —15 tq, St.t/—1 F> St ¢/

E THEORETICAL INSIGHTS

E.1 EQUIVALENCE OF LATENT AND DATA-SPACE G-COMPUTATION

We first formalize when sampling only in latent space (Alg.[I) is sufficient to recover the interven-
tional laws identified by the sequential g-formula.

Standing causal assumptions. We assume the usual conditions for identification by the g-
formula: (i) consistency, (ii) sequential ignorability/exchangeability, and (iii) sequential over-
lap/positivity (cf. App. [A).

Assumption E.1 (Latent factorization and context sufficiency). Let po be a fixed prior density on
latents (e.g., M'(0,I)). Fix an anchor time ¢ and let r; = f,(h;) denote the history embedding
computed at ¢. For each relative step ¢’ € {1, ..., 7} define the latent-state update recursively from
st,0 = 0 by

sti = GRUy([2zep, 1, appp—1, U], see—1).
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Assume that for every ¢/ € {1,...,7} and every history hy,;_; the true one-step conditional
distribution of Ly4+ = (Y¢4+, Xt4+) admits the factorization

p*(1t+t' | flt+t'717at+t'71) = /P9(1t+t' | Ztt'y Ct!y at+t’71) pO(Zt,t’) dzt,t’7

where ¢; v = Ky (re,8e0—1, 840 -1,t"). Moreover, for each fixed (c,a) the map z — py(- |
z,c,a) is a probability-kernel in L measurable in (z, c, a).

Assumption m states that (ry, sm/_l) is a sufficient statistic of H;4, _, for predicting L, , and
that the true stepwise conditional factors through a latent with fixed prior density py.

Remark E.2 (Relation to training). Assumption [E.T]is a modeling/realizability statement: it pos-
tulates that the one-step conditionals factor through a latent with prior py given the context
(re,8e,0—1,ai44—1,t"). Our conditional-VAE training (Sec. is the estimation procedure we use
to realize this factorization in practice by maximizing the (conditional) ELBO, i.e., approximately
minimizing the negative log-likelihood of pg(Lyys | Z¢4r, Cre, 3r4—1) under po. All results that
require the assumption hold exactly; with finite data and imperfect training, they hold approximately
with the local errors {e; } used in Prop.

Remark E.3 (State update uses latent representations). The recurrent state is updated through latents
only (st,t/ = GRU, ([z¢,¢, r¢, @1407—1, 1], St,t/—1))- Thus all predictive information that propagates
forward from step ¢’ enters via z; ;- and the context ¢; p = Ko (T, St -1, Qpger—1, t'). When z; 4 is
a good representation of Ly, (e.g., the decoder pg(ly+y | 2447, €17, ai+—1) is highly expressive
and, ideally, injective in z; ;+ for a.e. (c; v, a;44—1)), the pair (r,,s; _1) approaches a sufficient
statistic of Hy_; for predicting L, . In VAEs the mapping is not exactly invertible, but training
to maximize the conditional ELBO encourages z; ;/ to retain information about L,/ that is relevant
for prediction; higher-fidelity decoders (e.g., with flows) make this approximation tighter.

Lemma E.4 (Representation sufficiency implies context sufficiency). Fix the embedding r; and
suppose Assumptionholds. Assume that for Lebesgue-a.e. (c, a) the mapping z — py(- | z,c, a)
is injective as a map into P(L) (i.e., distinct z induce distinct conditional laws). Assume also that
St,i'—1 is a deterministic, measurable function of (2¢1.¢/—1,¥, Q441 —2, 1:it' — 1). Then for almost
every (ry,S¢,p—1, 8+ —1,t") we have the conditional independence

3 !
Livy 1 Hyppq | (re,Se0—1,840-1,1),

i.e., (ry,8,0—1) is sufficient (with a;yy—1,t') for predicting Lty

Proof. Given (ry,S;/—1,a,41—1,1'), the next context c; 4 is fixed and z, ,; ~ po is independent
of H;,¢_1. The conditional density of L, factors as p(l;¢ | hyip 1,810 1) = fpg(lt+t/ |
Z,Ct ¢, Ay —1) Po(2) dz by Assumption Because s; 41 is a deterministic function of past
latents, any dependence on H,, 4 _; enters only through (r;,s;,—_1). Injectivity in z rules out
aliasing of predictive distributions conditioned on ¢, ;/, so conditioning on (r;, S —1, &41—1,1")
screens off the past.

Notation. When we write ¢,/ (2;,1.—1) we suppress fixed arguments (r;,a;14_1,t") and em-
phasize the indirect dependence via s, ;/_1; explicitly, ¢, ¢ = Ky (Te, St —1(Ze,1:00—1), A —1, ).

Theorem E.5 (Equivalence of latent and data-space g-computation). Fix a time t, a horizon 7 > 1,
a treatment plan a;..y._1, and a history h,. Under the standing causal assumptions and Assump-
tion the interventional law identified by the sequential g-formula equals the law induced by
latent rollout (Alg. [1):

(i) (Fixed-horizon marginal) For the last-step outcome,

P(yeer | he) = / pG(Yt-i—T

.
Zt r, Ctr(Zt1:0—1), at+‘r—1> HpO(Zt,t’) Az .
Pl

Here c; :(21.-—1) is the deterministic context produced by the latent-state recursion
driven by z; 1. 1.
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(ii) (Full-path law) For the joint path,

T T
pé(yt+1;t+r | flt) = / Hpe(}’t+t' Ztt'y Ct, ! (Zt,lztul), at+t’71) Hpo(zt,t’) dzt,t’ )

t'=1 t'=1

where, if desired, the covariates {X;.+ } are integrated out.

Consequently, the Monte Carlo samples produced by Alg. [I|(with scope=1ast or all) are ii.d.
draws from the respective interventional laws.

Proof. By identification, the last-step interventional density is

Pé(}’tﬂ | Bt) :/

Lipiittr—1

T7—1
[ H p(1t+t’ | Bt+t’1aat+t’1)‘| P(Yt+f | Bt+r—1, at+771) Alyy1:pq4r—1.
t'=1

Insert Assumption [E.T] at each step (including the last) to obtain

T—1 T
/ { / H p9(1t+t’ | Zt,t', Ct at+t'—1) d1t+1:t+7—1 } pe(yH-T | Zt T, Ct,‘rvat—&-r—l) H po(Zt,t') dZt,t'-
1

tlitdr—1 ¢/ —1 =1

Using Tonelli/Fubini (all integrands are nonnegative densities), we can swap integration order, and
since pg(lysy | Zi, Crer, Bipr—1) is @ normalized conditional density with ¢, independent of
decoded L, we have [pg(li | -)dliypy = 1fort’ = 1,...,7 — 1 (the remaining integrals are
over the latent path z;.,, and the terminal outcome, i.e., we are integrating out all intermediate
variables). This yields the first result (i).

For the full-path law, repeat the same steps but keep the outcome components y,;,, unintegrated
(integrate only the covariates X4 if desired). The product form in item (ii) follows because c; ;/
depends only on (r, ag.44—1,%¢1:¢/—1), never on decoded L. Finally, Alg. [I|draws {z; 4 } i.i.d.
from pg and applies the same deterministic maps and decoder conditional densities as above, so its
outputs are i.i.d. from these laws. O

Corollary E.6 (Selective decoding (scope) is coherent). Under the conditions of Thm. de-
coding only at t+7 (scope=1ast) returns i.i.d. samples from p*(yii. | hy). More generally,
decoding at any subset S C {1,...,7} returns i.i.d. samples from the corresponding marginal over
{Yire}ees.

Sketch / intuition. The sequential g-formula integrates over future observations. Assumption[E.T|
lets each one-step conditional be written as a mixture over a latent noise z; ;» whose context depends
only on (ry,s;—1,a;4¢—1,t). Because future contexts never use decoded L, all intermediate
integrals over L collapse to 1: only the latent-driven contexts matter. Thus, sampling latents and
decoding where desired reproduces the same interventional law.

E.2 PROPAGATION ERROR: LATENT VS. DATA-SPACE G-COMPUTATION ROLLOUT

We now provide theoretical justification for the empirical superiority of latent rollouts over autore-
gressive rollouts. Let { K} 17! denote the true one-step transition kernels and {K¢} 17" the
learned approximations. For each step s, define the local one-step approximation error

£, 1= sup TV(K;(~|i_zs,as),K§(~|7LS,as)>,
hs,as

where TV denotes total variation distance.

Tail operators. Fors € {t,...,t+7—1},letTs ;.. . denote the tail operator that maps a law on
L1 to the induced law of ;. obtained by propagating forward under rollout type @ € {lat, AR}.

It is standard that pushing forward measures by a fixed Markov kernel is nonexpansive in total
variation, hence
TV(Tliclzt—i-T[/J’]? Tsl'j-tl:t-&-'r[y]) < TV(U7 V)' (34)

S
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The property is a standard result for Markov kernels, often referred to as the Data Processing In-
equality. For autoregressive rollouts, the re-encoding step introduces sensitivity to the input measure.
We assume:

Assumption E.7 (Single-step AR operator Lipschitz property). Foreachindex j € {t +1,...,¢t+
T — 1} define the single-step AR tail operator

TAR 1 P(Ly) — P(Lj4a),

J

which maps a law on L; (the predicted/decoded quantity at time j) to the induced law of the next-
step quantity under the autoregressive re-encoding and decoding procedure. Assume there exist
constants \; > 0 such that, for all probability measures i, v on £},

TV(TAS il TAS ) < (14 X)) TV (i, v).

The assumption [E.7]is justified because the autoregressive operator, as a finite composition of linear
layers and Lipschitz-continuous activation functions, is itself guaranteed to be Lipschitz-continuous
on any bounded domain.

Lemma E.8 (Composmon amphﬁcatlon) Under Assumption|[E.7} the composed AR tail operator

Tg—l T T 7;-&-7' 1—t47 © 770 aI}FIli—>(9+2 satlsﬁes for any (i, v on ‘CS-‘rl’
t+7—1
A
’T\«jzﬁ§t+r[ ] ];£§t+7h4) S; II (14—AJ)TFV(MaV)
j=s+1

Proof. Apply the single-step bound (S) iteratively. For brevity write ps+1 = i, vsy1 = v and
define 11 = TR 4 (1], vjer = T [vs]. Then

TV (41, vi41) < 1+ X25) TV(py, v5).
Chaining these inequalities for j = s+ 1,...,t + 7 — 1 yields

t+7—1

TV (g7 Vigr) < ( H (1+ /\j)) TV (prss1,Vst1),
Jj=s+1

which is the claimed bound. O

Remark E.9 (A sufficient bound for A;). A convenient sufficient condition for Assumption is
obtained by decomposing the single-step AR operator into (i) a re-encoding map Z; : P(L;) —
C; that maps a predicted law on L; to a context in C;, and (ii) a decoder-induced kernel family
{K5}cec; that maps a context to a next-step kernel.

Concretely, suppose that for each j:

1. E; is Lz j-Lipschitz in total variation, i.e.

TV(E;[1],E;[v]) < Lz; TV(u,v) forall u,v € P(L;);
2. the decoder-induced kernel family is L ;-Lipschitz in context, i.e.
sup TV(K;,K;/) < Lglle={].
Then for any two input measures u, v on £; we have
TV(TAS 41 [, TS 11 V) < SCUFI)TV(K}K;/) < Lk [IEjlp] = E5V]I| < Lk L= TV (i, v).
Hence one may take
Aj < Lk,j L=z j,

and the product amplification in Proposition [E.T0] follows by composing these single-step bounds
(cf. Lemma [E.&).
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Main result. Let P* denote the true marginal law of Y;,,, P'** the law induced by the latent
rollout, and PAR the law induced by the autoregressive rollout. Then:

Proposition E.10 (Propagation-error bound and dominance). Let t, T, at.t4r—1, hs be fixed, and let
P* denote the true interventional law of Yy ;. Let P'** and PAR denote the learned laws produced
by the latent and autoregressive/data-space rollouts, respectively, when both use the same per-step

approximations {K¢S}: t+T L Under Assumption @ (single-step AR operator Lipschitz property)
we have
t4+7—1
TV(P*,P*) < > e, (35)
s=t

TV(P,PA) < Y e T (0 + ), (36)

where e, := supy,, TV(KZ(- | hs,as), KS(- | hs,as)). In particular, if some X; > O then the
bound equation (dominates equation[33] so the latent rollout attains a uniformly tlghter (or equal)
upper bound on the final-step discrepancy.

Proof. For the latent rollout, a standard telescoping decomposition across steps combined with the
non-expansive property of Markov kernels in Equation [34]yields the bound:

t+7—1
P* Plal Z £s.
For the autoregressive rollout, we define a sequence of hybrid distributions P for s =t¢,...,t + 7,

where Ps is the law generated by using the true kernels K™ up to step s — 1 and the learned kernels
K* from step s onwards. This gives P;,, = P* and P, = PAR,

By the triangle inequality, the total error is bounded by the sum of one-step differences:

t+7—1
TV(P*, P*®) =TV(Pyr, P,) < Y TV(Pay, Ps).

s=t

The difference between P, 1 and P; arises only from the kernel used at step s. The error introduced
at this step, at most ¢, is then propagated forward by the autoregressive tail operator T?fm e
Using the amplification bound from Lemma [E.§] the contribution from step s is:

t+r—1
TV(Par1, Po) <eo ] 1+ ).
j=s+1
Summing these terms from s = ¢ to t + 7 — 1 yields the bound in Equation[36] Since each factor

(1+X;) > 1, the bound in Equationis uniformly greater than or equal to the bound in Equation
completing the proof. O

F DATASETS

F.1 DETAILS ON EXPERIMENTS WITH SEMI-SYNTHETIC DATA (ORIGINAL SETTING)

Following Melnychuk et al.|(2022), we build on MIMIC-EXTRACT (Wang et al., |2020)—a stan-
dardized preprocessing pipeline for MIMIC-III (Johnson et al., 2016)—which provides ICU time
series aggregated at an hourly cadence. Missing values are imputed using forward and backward
filling, and all continuous time-varying variables are standardized.

From this resource we retain 25 vital signs as time-varying covariates and three static covariates
(gender, ethnicity, age). The complete feature list is provided in the accompanying code repository
for reproducibility. Static covariates are one-hot encoded and later reused to modulate noise terms.
In total, this yields a d,, = 44 dimensional covariate vector.
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High-level simulator design. Following the basic idea of |Schulam & Sarial (2017), we first syn-
thesize untreated outcome trajectories under endogenous and exogenous dependencies, and then
apply treatments sequentially. We assume sparsity: each outcome depends on only a small subset
of covariates and treatments; treatment assignment likewise depends on a limited subset of recent
outcomes and covariates.

Cohort selection. We sample 1,000 patients whose ICU stays last at least 20 hours. Stays longer
than 100 hours are clipped, so for patient i we have 7" € [20, 100].

Untreated outcomes. For each patient ¢ and each outcome dimension j =1, ..., d,, we construct

an untreated signal Z j(lt) by combining (i) a global trend, (ii) a patient-specific smooth component,

e ’ . . .
(iii) an exogenous effect of current covariates, and (iv) noise:

J

Z\") = af B-spline(t) + o ¢\ (t) + of fA(X) + e, e ~N(0,0.005%). (37)

endogenous exogenous noise

Here, B-spline(¢) is drawn from a mixture of three cubic splines (rapid decline, mild decline, stable)

over the ICU stay; gy) (t) is an independent Gaussian process with a Matérn kernel; and ij (+) is
sampled via a random Fourier features (RFF) approximation to a Gaussian process (?), which avoids
repeated Cholesky factorizations when sampling at many points in R%. The weights af o !

34
control the relative contributions.

Treatment assignment. We then generate d, binary treatments {Aé}fgl sequentially, introduc-
ing confounding through (a) a function of current covariates and (b) recent outcome history. For
treatment [ at time ¢ we define

pf}t =o(WV An(Yio1) + 5 £(Xe) + i), (38)
Ai ~ Bernoulli(pf}t), (39)

where o(-) is the logistic function; Az, (Y;_1) denotes the average over a selected subset of the
previous 7 treated outcomes using the history Y,_1; le(-) is sampled via an RFF GP (analogous
to ij ); and 7{4, fle together with bias b; govern the strength of confounding.

Treatment effects. We set Y;; = Z;; and endow each treatment / with a long-lasting additive
effect on outcome j that is maximal immediately after administration and decays as an inverse square
of elapsed time within a window of length w;. Effects are scaled by the assignment probability pf}i.
When multiple treatments are active, we aggregate their contributions conservatively by taking the
minimum at each elapsed time. Let ¢;(A) = (A +1)721{0 < A < w;}. Then

t
Byt =Y min {1{4l=1}p By ult i)}, (40)
i=1 e

where 3, is the maximum (immediate) effect size of treatment [ on outcome j (either a constant or
zero if treatment [ does not act on j).

Observed outcomes. The observed process adds treatment effects to the untreated signal:

Yite = Zje + E;(t). 41)

Dataset construction and evaluation. Unless stated otherwise, exact simulator hyperparameters
are provided in the code. In our main setting we use d, = 3 synthetic binary treatments and d,, = 2
outcomes. The 1,000 patients are split into train/validation/test using a 60%/20%/20% split. For
one-step-ahead evaluation we enumerate all 22 = 8 counterfactuals. For multi-step rollouts with
Tmax = 10, we sample 10 random treatment trajectories per patient and time step.
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F.1.1 VIOLATIONS OF THE POSITIVITY ASSUMPTION

We observed violations of the positivity (overlap) assumption in several instantiations of the
semi-synthetic dataset generated with the parameters proposed by Melnychuk et al. (2022) and
closely followed by several other works like (EI Bouchattaoui et al.l 2024; |Wang et all [2025).
Concretely, for some random initializations almost all realized treatments are 0; for others, the dis-
tribution is heavily skewed toward 1. Inspecting the individual (per-arm) propensities pét € (0,1)
defined by Eq.[38|reveals that a large fraction of values are effectively degenerate. For one seed, for
example, 95.6% of per-arm propensities are < 1%, 76.5% are < 0.1%, 42.9% are < 0.01%, 15.8%
are < 0.001%, and 2.9% are < 0.0001%; only 28 out of 101,031 valid treatment decisions have
propensity > 50%. For another seed, the mass concentrates near 1: 8.7% of propensities exceed
99% and 3.2% exceed 99.99%.

While the positivity assumption requires 0 < Pr(A; = a | H;) < 1 almost surely, in practice causal
estimators become unstable when a substantial mass of propensities lies outside [¢, 1 — €] for a small
€ (e.g., 1073). The extreme values above arise because the logit in Eq. [38|(a linear combination of
recent outcomes and covariate features) can be very large in magnitude for some seeds, pushing o (-)
close to 0 or 1. In the next subsection we describe a minimally invasive modification that ensures
overlap while preserving sequential confounding structure.

F.2 OUR VERSION OF THE SEMI-SYNTHETIC DATASET

Positivity via a monotone floor/ceiling. To guarantee per-arm overlap we apply a monotone
remapping to the final probability:

Py = q+ (1—2q) obe + 204), q € (0,0.5), (42)
which forces ﬁét € [¢,1 — q]. We use ¢ = 0.15.
Preserving confounding via logit normalization. A naive floor alone avoids practical violations
of positivity assumption but can still yield weak dependence on confounders if the logit distribution

collapses (e.g., is almost always very large or very small). We therefore re-scale the pre-bias logit
using train-set statistics so that the sigmoid operates on a stable range:

ree =7 Yie1 475 f§f)(Xt), 43)
sy =B s, (44)
oy +e¢€

where (p¢, 0¢) are the mean and standard deviation of 7, ; estimated on the training split only. The
final propensity is then given by Eq. This is an affine, monotone transformation of the original
logit and therefore preserves the ordering of ¢ ; with respect to the history H;.

Two-pass generation to avoid leakage. We use a standard two-pass protocol:

1. Pass 1 (train only, original policy). We run the generator once using Eq. [38| and record
¢4 from Eq. for every (¢,t) on the training split. We compute (11, 0¢) per arm via an
online (Welford) estimator. The trajectories from this pass are discarded; only (¢, o¢) are
kept.

2. Pass 2 (train/val/test, overlap-calibrated). We regenerate all splits from scratch. At each
step we recompute 74, from the current pass’s history, apply the z-score in Eq. then
compute f’ét via Eq. 42| and sample treatments. Thus, sequential dependence on past out-
comes/treatments remains intact; the first pass only provides (i, o), analogous to feature
normalization. The magnitude of the utilized bias term is sufficiently small to not make
logit magnitudes too large.

Pass 2 recomputes the logit from the realized past outcomes and treatments of the same pass; pass 1
probabilities are never used for sampling. Since z-scoring is affine and the final mapping is mono-
tone, the confounding signal (how H; shifts treatment odds) is preserved, while the floor prevents
near-degenerate propensities that destabilize estimation and calibration.
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For one random instantiation of our new dataset, we have that the minimal probability of an in-
dividual treatment is 15.7%, and the maximum probability is 84.6%: apart from avoiding values
too close to 0% or to 100%, the sigmoid does not get completely saturated, which would produce
minimal or maximal values exactly in the floor. Apart from that, 86.7% of per-arm propensities are
> 25%, 14.3% are > 50%, and 1.1% are > 75%. For another seed, we have that the minimum
per-arm propensity score is 15.8% and the highest one is 84.9%. Also, we have 89.1% of per-arm
propensities > 25%, 40.7% > 50%, and 5.2% > 75%.

F.3 DETAILS ON EXPERIMENTS WITH REAL-WORLD DATA

In line with the semi-synthetic setup (App. [FI)), we rely on MIMIC-EXTRACT (Wang et al, [2020),
a standardized preprocessing pipeline for ICU time series (hourly resolution). Missing values are
imputed using forward and backward filling, and all continuous time-varying variables are stan-
dardized. We use the same set of d, = 25 vital signs and the same three static attributes (gender,
ethnicity, age), one-hot encoded, yielding d,, = 44 static features. Both the time-varying covariates
and static features are treated as potential confounders.

We consider d, = 2 binary interventions: vasopressors and mechanical ventilation. The factual
outcome is diastolic blood pressure (d, = 1). Clinically, both interventions can increase or decrease
blood pressure depending on context, motivating counterfactual trajectory analysis under alternative
treatment choices.

Cohort and splits. We select 5,000 patients with ICU stays of at least 30 hours; stays are truncated
at 60 hours. The cohort is divided into train/validation/test sets with a 70%/15%/15% split.

G BASELINES

G.1 CAUSAL TRANSFORMER

G.1.1 BASE CAUSAL TRANSFORMER

We implement the Causal Transformer (CT) of Melnychuk et al.| (2022) as a strong baseline for
estimating

E[Y;H-T [C_Lt:t—i-r—l] | I:It] 45)
under a treatment plan a;.;1 1. To avoid duplication, we reuse the multi-input transformer encoder

in App.[B]and highlight only CT-specific pieces (projection inputs, balanced-representation learning,
and stabilizers).

Inputs and autoregressive conditioning. CT consumes three factual streams up to anchor time
t: covariates X;, outcomes Y;, and left-shifted treatments A;_1, plus static covariates V. For a
projection horizon 7, CT concatenates the factual histories with the (non-random) future intervention
sequence on the treatment stream and with autoregressively fed predictions on the outcome stream:

A q || Gpgr—1,s (46)

}_/;5 || thJrl:tJrTfl- (47)
Teacher forcing is used during training for multi-step prediction; at evaluation time, the model feeds
back its own predictions autoregressively. Static covariates V' are injected in all subnetworks.

Architecture (encoder blocks, cross-attention, pooling). CT follows the multi-input transformer
pattern in App.|B}f masked self-attention per stream, cross-attention between streams, position-wise
feed-forward layers, and LN+residual connections, with trainable relative positional encodings and
attentional dropout. After the last block, the three stream states are averaged and passed through a
Linear+ELU to obtain a balanced representation ®, € R%r:

®, = ELU(Linear(% (A, + X7 +Y/))). (48)

(Implementation note: CT omits the final output projection after concatenating attention heads to
reduce overfitting.)
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Balanced-representation training. CT trains ®; to be (i) predictive of the one-step factual out-
come while (ii) non-predictive of the current treatment with a Counterfactual Domain Confusion
(CDC) loss. Two light heads are attached to ®,: an outcome head Gy and a treatment classifier G 4.
Let d,, be the number of treatment categories. The losses are

da
Laa(0a,0r) = =Y 1{A; = a;} log (Ga(®:(0r); 04);), (49)
j=1

d
~1
Leont(0a,0r) = df g (Ga(®:(0R);04);), (50)

j=1

and the alternating min—min scheme is

(By,0r) = argemin Lay (Oy,0r) + aLeont(0a,0r), (5D
Oy = argnelin aLaa(0a,0r), (52)
A

with o > 0 the domain-confusion weight and Ly defined by the chosen outcome head (see below).

Training stabilizers and augmentation. We follow CT practice: (i) an exponential moving av-
erage (EMA) of parameters across trainable modules; (ii) attentional dropout; and (iii) mini-batch
augmentation that duplicates samples and randomly masks the last ¢ covariate steps in the duplicate
(to reflect unavailable future covariates for 7> 2).

Point-estimator CT (original). The original CT uses a point head Gy with squared error:
- 2
£g§}m)(9y,93) = Hyt"‘l - Gy(@t(HR),at;Hy) H2 . (53)

G.1.2 DISTRIBUTIONAL VARIANTS

We additionally evaluate two distributional adaptations of CT that replace the outcome head/loss,
keeping architecture and CDC unchanged.

CT-Gaussian head (heteroscedastlc NLL). The Gaussian head predicts per-dimension mean and
variance (fi;41, 075 +1) =G (<I>t, at) and minimizes the Gaussian negative log-likelihood (diago-
nal covariance):

N 2
Yit1 — Ht4+1

LYy (0y,0R) = -
Ot41

+ 31T logé?, ;. (54)

SIS

2

CT-CRPS / random-quantile head. The random-quantile head predicts outcome quantiles given
€ (0,1)%. Let Ga,; = dj(®¢,a,, ;) denote the predicted cvj-quantile of Yy, 1 ; for branch j.

Drawing K i.i.d. vectors {a*)}  with entries ag-k) ~ Unif (0, 1), we use the Monte Carlo CRPS
objective:

dy K
1 .
L«CRPS (0y,0R) Z Ez P k)<yt+17J qa?))j), (55)
j=1 k=1
with the pinball loss
palu) = (a—1{u<0})u. (56)

This is the same random-quantile reconstruction used for Y in G-Latent, providing a proper scoring
rule (CRPS) and capturing predictive uncertainty through the quantile function.
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G.2 G-NET

G-Net implements g-computation in two steps. First, it estimates the conditional expectations of
within-time components of L;11 = (Y41, X¢41) given history and action. Concretely, for an

ordered decomposition Lg Jr)h o ,Lgi_ll), we learn

E[LY), | Hy, Ay, LT Y] (57)
with a two-layer LSTM. Samples from the corresponding conditionals are obtained by adding resid-
uals drawn from an empirical error distribution built on a 10% holdout split (residual bootstrap).
Training uses teacher forcing and an MSE loss.

Second, counterfactual trajectories under a treatment plan a;.; .1 are generated by Monte Carlo,
rolling the learned conditionals forward across steps.

We follow the same architecture class reported alongside CT: one-two layered LSTMs, a linear
representation layer, and a small feed-forward head on top. At evaluation, we simulate under a with
start-of-interval indexing (action A precedes (Y11, Xs+1)), using the residual-bootstrap sampler.

G.3 TRANSFORMER G-NET

Transformer G-Net follows the same two-step pipeline but replaces the recurrent modules with the
multi-input transformer encoder of App.|B| The transformer encodes the factual history before action
into a fused state r; (respecting start-of-interval indexing). For an ordered within-time decomposi-
tion Lgﬂ)r)l, . Lgill) each conditional expectation is predicted by a small MLP head conditioned
on ry, Ay, and previously generated groups; training uses teacher forcing and an MSE objective.
During rollout we inject residual noise via the same 10% holdout bootstrap and obtain the distri-
bution at horizon t+7 as the empirical measure over M Monte Carlo trajectories (again M =>50),
without any balanced-representation objective.

H METRICS

Our model outputs i.i.d. Monte Carlo (MC) samples {y,ETS’i) M_. from the interventional law

pé(st | Bg”) ateachrelative step s € {1, ..., 7}, given history EE” and a treatment plan a;.; 1.
All metrics are computed per step and averaged over n test patients; when relevant we also report a
trajectory-level score aggregating all steps.

RMSE of the predictive mean (point accuracy). Let the per-step predictive mean for patient ¢
be

t+s . (58)

S

ﬁM:

For a d,-dimensional outcome we report

2

RMSE, = — v

; (59)

which summarizes point accuracy of the posterlor mean implied by the predictive distribution (lower
is better).

KDE log-likelihood (density fit). We estimate the patient-specific predictive density at relative
step t’ with an isotropic Gaussian KDE using a single global bandwidth i > 0:

Py = MZN v yTD, W), (60)

where I, is the d, x d, identity matrix and / is fixed across all ¢’ and all patients. The metric is
the average log-likelihood:

KDE-LL, = fZlog i), 1)
i=1
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Energy score (multivariate proper scoring rule). For d, > 1, the energy score (ES) for a predic-
tive distribution F and realization y;4 ¢ is

ES; ( 57Yt+5) = E[”X_Yt+8”2] - %E[”X_X/Hﬂv (62)
with X, X’ ~ F} i.i.d. Using MC samples, we estimate
1 : 1 al (m,i) (m,i)
= gz M Z |yt+s yt+s“2 Z Hyt+s yt+s Hz , (63)
=1 m=1 m#m

which is strictly proper and sensitive to cross-dimensional dependence (lower is better). In the
univariate case (d,=1) ES equals the continuous ranked probability score (CRPS).

Global (pathwise) energy score (temporal coherence). To assess coherence across all output
dimensions and steps, we compute ES on the concatenated outcome vector ¥4 144+ € R7% | where

yi(tflli)5+7 [ygfll)v ey yt(iilq-l)} andy yt+1 e [yi?l; cee ;yEQT]:

n

1
GES = Z Z ’ §T122+r Yt+1 t+TH2 Z Hyt+1 it yt+1 t+rH2

m;ém’
(64)
This whole-trajectory ES rewards correct temporal correlations and cross-step consistency of the
joint predictive law (lower is better).

Quantile coverage (calibration). For quantile levels @ = {0.1,0.2,...,0.9}, we compare each
realized outcome component to the MC-estimated predictive quantile of that component. Let (-);
denote the j-th component. Define

QU () = auantile,({ (v11"); 1himh)- (65)
Per step and per dimension, the empirical g-coverage is

_— 1 &

Coveila) = > i1 < QW (0) }. (66)

i=1
which should match the nominal level ¢ for a calibrated model (higher/lower than ¢ indicates over-

/under-coverage). We use “<” to break ties; quantiles are computed from MC samples per (i, s, j)
with a fixed interpolation rule.

We also use aggregations across steps:

T n

G-O;steps an Z Z ]I{ i< Q ( ) }’ ©7)

s=1 =1

Calibration summary (MAE). A scalar summary is the mean absolute calibration error, averaged
over quantiles, dimensions, and steps:

CalMAE = |Q|d TZZZ]COVSJ q9) —ql- (68)

qgeQ j=1s=1

Lower is better; per-dimension or per-step variants follow by omitting the corresponding averages.

I HYPERPARAMETERS

1.1 MULTI-INPUT TRANSFORMER

For better comparability, we used the same multi-input transformer hyperparameters for all the mod-
els that use transformer processing (CT, CT-CRPS, Transformer G-Net, CT-Gaussian and G-Latent).
We used the same hyperparameters as Melnychuk et al.| (2022), as additional tuning on our specific
models did not provide significant improvements. We list these hyperparameters in table [4] and
define them next:
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Table 4: Architectural hyperparameters for the multi-input transformer.

Hyperparameter Semi-synthetic Real-world
Transformer units 24 24
Representation size 44 22
Fully connected hidden units 22 22
Dropout rate 0.1 0.2
Transformer blocks 1 2
Attention heads 2 3

Max relative position 20 30

Transformer units: model width per stream (token and attention projection size; per-head dimension
roughly Transformer units divided by Attention heads).

Representation size: fused history embedding dimension used downstream.

Fully connected hidden units: inner width of the position-wise feed-forward sublayer.
Dropout rate: probability used after linear layers in attention and feed-forward sublayers.
Transformer blocks: number of stacked encoder blocks.

Attention heads: number of heads in multi-head attention.

Max relative position: clipping radius for relative positional encodings shared across blocks and
streams.

1.2 CAUSAL TRANSFORMER

We report the specific training hyperparameters of CT in table[5]

Table 5: Training hyperparameters for the multi-input transformer.

Hyperparameter Semi-synthetic Real-world

Learning rate 0.01 0.0001
Batch size 64 64
Max epochs 400 300

For the distributional versions of CT, we used the same hyperparameters. For CT-CRPS, we used a number of
« quantile MC samples K = 5 for both semi-synthetic and real-world dataset. This value is the same we used
for G-Latent.

1.3 G-NET

For G-Net, we used the hyperparameters configuration from the implementation in Melnychuk et al.| (2022).
We report it in table[f] and define them as:

Recurrent layers: number of stacked recurrent layers.

Sequence hidden units: hidden size per recurrent layer.

Fully connected hidden units: width of the feed-forward head.
Dropout rate: dropout probability in recurrent/feed-forward parts.
Representation size: size of the intermediate representation.
Learning rate: optimizer step size.

Batch size: examples per minibatch.

Max epochs: maximum training epochs.

1.4 G-LATENT

As previously mentioned, the multi-input transformer we used in G-Latent has the hyperparameters shared with
other baselines and defined in[[.I] As for the rest of hyperparameters, after an optimization process based on
factual validation datasets, we selected the ones shown in table[7] We defined next:
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Table 6: Architectural and training hyperparameters for G-Net.

Hyperparameter Semi-synthetic Real-world
Recurrent layers 1 2
Sequence hidden units 148 144
Fully connected hidden units 74 72
Dropout rate 0.1 0.1
Representation size 74 72
Learning rate 0.01 0.001
Batch size 256 256
Max epochs 200 200

* Learning rate: optimizer step size.

* KL weight: coefficient on the KL divergence term in the ELBO.

» Latent dimension: dimensionality of the VAE latent variable z.

* Auxiliar loss weight (Aaux ): weight on the auxiliary one-step prediction loss.
¢ Max epochs: maximum number of training epochs.

* Reconstruction weights (outcome, covariates): multipliers for outcome and covariate reconstruction
terms. The fact that, in both datasets, covariates have much higher coefficients than outcomes makes
the model give balanced weight to both of them. Weights are selected in such a way that the sum of
products of each weight with each dimensionality gives one.

* MC « samples (K ): number of quantile levels sampled per step for the CRPS/quantile head.
* Batch size: number of examples per minibatch.

¢ Context dimension: size of the context vector fed to the VAE.

Encoder hidden sizes: layer widths of the encoder MLP ¢4(z | , ¢).

Decoder hidden sizes: layer widths of the shared decoder trunk 7.

Quantile-branch hidden sizes: layer widths in the per-outcome, ci-aware branches.

* Shared decoder layers: count of initial decoder layers shared by the a-aware and mean/log-variance
branches.

¢ Warm-up epochs (auxiliar loss only): epochs optimizing only the auxiliary loss before enabling VAE
terms.

* GRU hidden size: hidden width of the temporal GRU cell used in latent rollouts.

Table 7: Architectural and training hyperparameters for the RNN+Conditional VAE (G-Latent)
stack.

Hyperparameter Semi-synthetic Real-world
Learning rate 0.0001 0.0003

KL weight 1.0 1.0

Latent dimension 6 6

Auxiliar loss weight (Agy2) 0.1 0.1

Max epochs 70 110
Reconstruction weights (outcome, covariates) [6.67, 0.32] [18.0, 0.32]

MC « samples (K) 5 5

Batch size 8 8

Context dimension 256 256

Encoder hidden sizes [256, 256, 256, 256, 256]  [256, 256, 256, 256, 256]
Decoder hidden sizes [256, 256, 256, 256, 256]  [256, 256, 256, 256, 256]
Quantile-branch hidden sizes [64, 64] [128, 128]
Shared decoder layers 3 3

Warm-up epochs (auxiliar loss only) 20 30

GRU hidden size 64 64
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J  ADDITIONAL RESULTS

J.1 SEMI-SYNTHETIC DATASET (OUR NEW VERSION)

In table 8] we show the Energy Scores for our new modified semi-synthetic dataset. In tables 0] [T0] and [TT]
we show the KDE-LL for bandwidths 0.2, 0.3 and 0.4, respectively. In table [T2] we show the RMSE metrics.
Finally, in tables @and@we show the empirical quantile coverage for all the steps (1 to 6 in the first table, 7
to 11 in the second one, plus across step coverage), the dimensions, and several quantiles from 0.1 to 0.9, The
bolded results are the ones closest to the expected coverage percentage, i.e., for quantile 0.1, 10%, for quantile
0.2, 20%, etc.

Table 8: Energy Score per step ¢’ on semi-synthetic dataset (corrected benchmark). Rightmost
column reports the Global Energy Score across steps. Best per column in bold.

Model t'=1 t'=2 t'=3 t'=1 t'=5 =7 t'=8 t'=9 t'=10 t'=11 Global
G-Net 0174000  030£003  039+0.04 0454004  0.51+0.05 0.59+£006  0.63+£007  0.65+0.07  0.68+£007  0.70£0.08  1.85+0.20
Transformer G-Net 0.37+0.04 04 040£005  046+006  0.50+0.07 056010  058+£011  0.60+£012 0624013  0.64+£014 3
CT-CRPS 0.09+£0.01 0.2 06 0.32£007 0374007  0.4140.07 £008  048+£0.07  0.50£0.07 0534007  055+£0.07 0574007 1524023
CT-Gaussian 0.09+£0.01  025+006 030£007 034+£008  037+£008 0404009 042£0.09  044£0.09  046+009 0484009 049009  1.35+0.20
DS.G-VAE (Gaussian)  0.28£0.01 040002 049004  054£005  058£006 060+£006  062£007  0.64+007 0654007  0.66+£007  0.67+0.07

D.S. G-VAE (CRPS) 0.13+£000 0.23+£0.04 0.28+0.05 0.324+0.06 0.35+£0.06 038+£006 040£007 042£007  044£0.06  045+006 047 +0.06

G-Latent (Gaussian) 0314002 0354003  038£0.04  040+£0.05  042:£005 044£006  045+0.06  046+0.06  047£006 0484006 0484006  1.51+0.18
G-Latent (CRPS) 0194002 025004 0294005 0334006 0.35+£0.06 0.37+0.07 0.39+0.07 0.40+0.07 0.42+0.07 0.42+0.08 0.43+0.08 1.25:+0.23

Table 9: KDE Loglikelihood per step ¢’ on semi-synthetic dataset with bandwidth 0.2. Best per
column in bold.

Model t'=1 t'=2 t'=3 t'=4 t'=5 t'=6 t'=8 =9 =11
G-Net 0.30+£0.05  —085+020  —148+025  -1.91+£0.28  -221+0.31 +0.33 ~2.89+039  —3.0440.42 —3.29 +0.48
Transformer G-Net 1344020 —1.07+0.24 —1.52+£0.27 —1.86 £ 0.38 —2.12+0.49 33 4 0.59 —2.70+0.79 —2.86 + 0.90 —3.14 £ 1.06
0.99+0.07  —0.88+0.71 —156+£078  —216+£082  —2.68+0.79 17+ 0.81 —4.06+0.79  —4.43+0.81 —5.08+0.86
1.00 £ 0.05 —0.40 £ 0.49 —0.73 £ 0.54 —0.99 £ 0.57 —1.20 £ 0.57 —1.39 £ 0.57 . —1.72£0.57 —1.86 £ 0.57 —2.14£0.57
D.S. G-VAE (Gaussian) —1.214+0.08  —1.87+0.10 —2.25+0.14 —2.45+0.17 —2.57+£0.18 —2.65+0.19 —2.70 £ 0.20 .74 +£0.20 —2.76 + 0.20 —2.80 +0.20
D.S. G-VAE (CRPS) 045+0.07 —0.32+£0.33 —0.66+0.37 —0.89+0.39 —1.06+0.39 —1.224+0.40 —1.34+0.39 —1.45+0.38 —1.54 +0.36 —1.69 £+ 0.31
-Latent (Gaussian) —1.36 £ 0.11 —1.52 £ 0.16 —1.62+0.18 —1.69 +0.20 -1.74+0.21 —1.79+£0.22 —1.83+£0.23 —1.86 +0.23 —1.884£0.23 ! —1.9240.23
G-Latent (CRPS) 0.01£0.17 0.50 = 0.30 0.78 £ 0.35 0.98 £ 0.39 1.12 £0.41 1.24 +0.42 —1.344+0.44 —1.424+0.44 —1.484+0.44 —1.53+0.43 —1.59+0.44

Table 10: KDE Loglikelihood per step ¢’ on semi-synthetic dataset with bandwidth 0.3. Best per
column in bold.

Model =1 t'=2 t'=3 t'=4 t'=5 t'=6 =7 t'=9

G-Net —0.02£0.02 —079£015 -126£020 —159+023  —181+024  —204£026 2224027 —2.48 £ 0.30

Transformer G-Net ~109£019  ~1.00£022  —134£023  -158+030 —177+£036  -1.93+042  —206+£049  -218+0.54 29+ 0.60

CT-CRPS 0.384£0.04 —0.63£040 —102£046  —135£049  —1.64£048  —1.90£049  —215£048  —2384£048  —257+0.48 2 4 0.49

CT-Gaussian 0.37 +0.03 0.51+0.35 0.75 £ 0.40 0.94+0.43 1.09 +0.44 1.2340.45 1.34 £ 0.46 145 £ 0.46 1.55 4 0.46 1.73 + 0.46

DS.G-VAE (Gaussian) —1.2040.07 —188+008  —223+£012 —243+£015 254017 2624018 267018 —271+0.19 734019 —2.77+0.19

D.S. G-VAE (CR 0.084£0.04  —0.47+£0.27 —0.72+0.31 g . ~1.04£0.34 —1.16+£0.34 -127+£034  -135+033  —1.43+0.32 —1.56 £ 0.29

G-Latent (Gaussian) —1414£0.09 -154£013  —163£015  —1.69+017 —174+018 —179+£019  —182£020 —1854£020 —187+0.20 —189+020  —191£020

G-Latent (CRPS) —0.24+£012  —059£022  —080+£027  —096+0.30 —1.08+0.32 —118+033 —1.26+0.34 -1.32+0.34 —1.38+0.34 —1.42+0.34 —1.47+0.34
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Table 11: KDE Loglikelihood per

column in bold.

step ¢’ on semi-synthetic dataset with bandwidth 0.4. Best per

Model t'=1 t'=2 t' =5 t'=6 ' =8 t'=9 =11
G-Net —0.37 £ 0.01 —0.91+0.12 -1.27+£0.17 —1.74+0.21 —1.91+0.22 .06 +0.24 —2.18+0.25 —2.28£0.26 —2.45+0.28
Transformer G-Net -1.12£0.17 —1.10+0.19 5+ 0.21 - —1.69 +0.31 —1.81£0.36 —1.92+0.41 —2.01+0.45 —2.10£0.49 72 17i0.)3 -2.24 %
CT-CRPS —0.12 £ 0.02 —0.75 £ 0.26 —1.00 £ 0.30 —1.224£0.33 —1.40 £ 0.34 —1.57 £ 0.35 —1.73£0.35 —1.87£0.35 —2.00 £ 0.35 —2.11£0. —2.22+0.36
CT-Gaussian —0.13£0.02 —0.73+0.26 —0.91+0.31 —1.05+0.34 —1.17+0.35 -1.27+0.37 —1.36 £ 0.37 —1.44+0.38 —1.51+0.38 71.58i0,38 —1.64+0.38
D.S. G-VAE (Gaussian) ~ —1.40 + 0.06 —1.93 +0.07 —2.26 +0.12 —2.45+0.14 —2.56 +0.16 —2.63+0.17 —2.68£0.17 —2.72+0.18 —2.74+0.18 —2.76 £ 0.18 —2.78 +£0.18
D.S. G-VAE (CRPS) —0.304£0.03 —0.70+0.21 —0.89+0.25 —1.03+0.27 —1.14+0.29 —1.24+0.29 —1.33+0.29 —1.40+0.29 —1.46 +£0.28 —1.52+0.27 —1.58 +£0.26
G-Latent (Gaussian) ~1.51 £0.08 —1.62£0.11 ~1.70£0.14 ~1L76 £0.15 ~1.80 £0.16 ~1.84£0.17 ~1.87£0.18 —1.90 £0.18 —1.9240.18 ~1.94£0.18 —1.95£0.18
G-Latent (CRPS) —0.53 £ 0.09 —0.78 £ 0.17 —0.95 +0.21 —1.08£0.24 —1.18 +£0.26 ~126+027 —1.324+0.28 -1.37+0.29 —1.4240.29 -1.46+0.29 —1.50+0.29

Table 12: RMSE per step ¢’ on semi-synthetic dataset (corrected benchmark). Best per column in

bold.

Model =1 t'=2 t'=3 t'=4 t'=6 =7 t'=8 t'=9 t'=10 t'=11
G-Net 0.28 £0.01 0.51 +0.05 0.64 £0.07 0.74+0.08 0.81£0.09 0.88 +0.09 0.94 £+ 0.10 0.98 +0.11 1.02+0.11 1.06 £0.12 1.09 £0.12
Transformer G-Net 0.60 £ 0.06 0.56 + 0.06 0.66 +0.08 0.74 +0.10 0.80+£0.13 0.84 +£0.15 0.89 4+ 0.17 0.92 +0.19 0.95 4 0.21 0.98 +£0.22 1.00 £0.23
CT-Gaussian 0.17 £0.02 0.46 +£0.11 0.54+0.13 0.60 +0.14 0.64 £0.14 0.68 +0.14 0.714+0.14 0.74+0.14 0.76 £ 0.14 0.79+0.14 0.81 4 0.14
CT-CRPS 0.16 £ 0.02 0.48 +£0.10 0.58 £0.11 0.65 +0.11 0.71£0.10 0.76 £ 0.10 0.80 £+ 0.10 0.84 +£0.10 0.87 4+ 0.10 0.89 £ 0.10 0.92 4+ 0.10
CT 0.14+£0.01 0.34+0.07 0.43+0.10 0.49+0.11 0.53+£0.12 0.56+0.13 0.58+0.13 0.60+0.13 0.62+£0.13 0.64+0.13 0.65+0.13
D.S. G-VAE (Gaussian) ~ 0.26 +0.01 0.44 +0.06 0.54 £ 0.09 0.61+0.10 0.66 £0.11 0.70 £0.12 0.734+0.12 0.76 £0.13 0.79+0.13 0.81+0.13 0.83+0.13
D.S. G-VAE (CRPS) 0.2340.01 040£0.07  049+£0.10  0.55+0.11 0.59 4 0.12 0.63 £ 0.12 0.66 +0.12 0.69 £ 0.12 0.72+0.12 0.74 £ 0.12 0.76 £ 0.12
G-Latent (Gaussian) 0.35£0.03 0.46 = 0.06 0.53 £0.09 0.58 +£0.10 0.61+£0.11 0.64+0.12 0.674+0.12 0.69 +0.12 0.714+0.12 0.72+0.12 0.73+0.12
G-Latent (CRPS) 0.33 4 0.04 044£0.07  051£0.10  0.56+0.11 0.60 4 0.12 0.63 £ 0.12 0.66 +0.13 0.68 £ 0.13 0.70£0.13  0.71+0.13 0.73£0.13

Table 13: Empirical coverage (%) by step and dimension for each quantile ¢. Steps t' € {1,...,6},
two outcome dimensions.

Step ¢’
Model 1 3 4 5 6
Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2
Quantile g = 0.1
G-Net 1154 £361 12614320 14041353 15334463 17324486 16194538  1838%5.14  1686+£573  19.17£529 1733597 19824532
Transformer G-Net 2352991 24.92 £ 5.6 1L87+7.14  1883+485 1250+7.51  20.60+4.51  1321£7.90 2226+ 1388 +8.18  2355+4.20
CT-CRPS 8784277 154346.74 17944202 25144893 19284247 284240975 20304260  30.79 4 10. 2L08+£277 329241152
CT-Gaussian 13.91+6.81  1531+5.09 13014240  11.08+3.35  16.60+356 1244+419  19.45+415  1345+£4.95  21.59+436  1409+£550  23.30+ 457
D.S.G-VAE (Gaussian) ~ 0.19£0.03 007 £0.05 019£019  071£040  016£0.17  0.67+£0.38 0.1440.15 0664040 0134014 0684041 0144014
D.S. G-VAE (CRPS) 6874235  507+1.70 T00£162 10974477 8704172 1262+£449  1010£220  1389+£411 1096 £277 14794384  1154+3.19
-Latent (Gaussian) 047£007  011£010 138051  041£042  199£082  064£0.61  240+1.00 0.82+0.75 270+ 1.13 1.00 4 0.88 2.97+1.23 1.1340.95
G-Latent (CRPS) 889+189 9484375 9884177 10234293 1037+188 10864297 10.79+£194 1146£335 1117+£195 1196370 11454204 1264£388
Quantile g = 0.2
G-Net 2030 £430 21 89i467 2266£4.04  2436+£521 23724500 2589 £5.56 2784577 25254582 27 51 i: 5 2563607  28.08+6.03
Transformer G-Net 3.95 & 9.60 20214678 25214547 20.03+7.62 2073+£458  2133+£857 2208 +8. 32.68 4 4.41
CT-CRPS 15.22 £ 4.00 2321 £1.82 29471016 24311221 25584266 36.14+1225 2662+ 2.80 3533i13 10 27464306 4018 +13.70
CT-Gaussian 23.29 +9.12 1684+ 4.60 2256 + 3.60 2027+621 2884+£476 201304692  3093£485  2214+756  32.63+£4.84
D.S. G-VAE (Gaussian)  0.76 % 0.15 2214£0.75 070061 0694062  251+£0.88 0734063 2.65+0.92 0 75+ 0.63 2814 0.99 0.80  0.66
DS.G-VAE(CRPS) 12874362 9. 16855639 1461260 2008+602 1099308 2247+541  1S.73£3.70  2008+496 19.83£4.57 25224480  20.38+5.22
G-Latent (Gaussian) 1.98+043 0694041 4284106  168£121  563+£140  2414£159 662+ 1.66 308+190 740184 364206 809+ 1.97 23+ 2.20
G-Latent (CRPS) 17694288 17.16£517  1863+£275 1870+3.85 19.03+278 19.5443.65 19454291 20.38+3.91 19.80£299 2098+£4.09 2022+£316  21.66+4.31
Quantile g = 0.3
G-Net 2049£464 3087+£544 3103+405 32744534  3183E480  33T8E5T6 3244530 34 31603 3279£558  34.99+£6.12  3310£582 35394613
Transformer G-Net 42264868 4250 £471  29.37+£6.17 2868722 35884454 28.95+7.90 20544834  30.11+439  30.19£869 4030+ 469
CT-CRPS 2356 £4.87 342541332 30.1341.90 30.70 £ 2.32 3975i1325 31.64+2.85 4236i1393 3245£277  4447T£1482 33224308  46.00+15.33
CT-Gaussian 31981051 3165+629  25.03+6.30 26.86 + 6.79 2840772 3TST£550 20524836 3035+£553  3023+£9.01 4089 +5.62
D.S.G-VAE (Gaussian) ~ 3.76 118 2.64£0.99  6.90+ 151 7.4341.49 7.98 4+ 1.62 3.9441.81 8.53 4 1.71 4244184 897+ 181 453+ 2.06
DS.G-VAE(CRPS) 22964469 18364297 27.09+£7.03 2462£4.17 3046615 26.69+460 3277557 28194551 31204512 20094640 35354503  29.55+7.24
~Latent (Gaussian) 737145 4114118 11294196  654£234  1344+£199 8214276 1500£216  9.67£301  1613£224  1093£314  17.07£228 12234324

G-Latent (CRPS) 28144358 26524623  2871£342 28721476  2897+3.39 20514449 2009+£349 3030461 20244373  3084+£467 2050+400 3137471
Quantile g = 0.4
G-Net 39.30+£4.56 39.96+565 39.36+3.81 40 98 £5. 39.75+£4.48 4153+£558 40.05+£483 41.90+£577 40.08+516 4223596 40.25+545 4247+
Transformer G-Net 19426743 49154391 3883£524 42164420 3704649 43564407  BT60£725  ALOIE41T  3TS6LTTY 4619458 3836L816 47164512
CT-CRPS 33404500 453341641 37104193 44141320 37074227 462241448 37T58+£281 484241522 38194268 4988 +£16.13 38814296 5104+ 16.60
CT-Gaussian 40471136 44104651  3461+728 42024543 36024771 44154619 37.24+859 45924650  3819+£010  ATA0OL6.68  38T2L£9.68  48.63£6.80
D.S.G-VAE (Gaussian)  16.97 +:4.62  16.07+£4.34  2070£4.03  1698+3.41 21274399 17.06£3.17  22.054+4.26 4 2262£437  18.10£3.13  2321+£461 18634341
DS.G-VAE(CRPS) 37244525 31724378 3928+£634 3633+570 41534529 37.27+£6.26 43.15+482 38114705 4432+488  3869+800 45204499 38.91+8.96
G-Latent (Gaussian) 22094315 17474178 25.714£268 21074286 27.68:£206 22934307 2894+£181 24614327 29924185  26.05+356  30.64+£1.96 27424354
G-Latent (CRPS) 39.69£384 37544702 3971+£367 3973+£564 39504341 4030+£523 3937355 4076+517  39.20+£390 41264514  39.31+£435 4153 +£4.98
Quantile g = 0.5
G-Net 49.05+4.66 49.09+£5.64 4781+351  4936+£4.60 47714399 49.25+5.01 4941+524  A737+£470 49544527  A741+£487  49.59+531
Transformer G-Net 56.04 % 6.10 4831£4.37 5045+343 46954574 51064373 51.99+£427 46484708 52834 91 4667758 53.60 £ 5.48
CT-CRPS 4436 £1.99 51151387 4381215 524541523 53.92£16.09 4401 +250 4445275 55.73+17.49
CT-Gaussian 9 45.63+£7.09 5216+6.32 46.06+£7.75  53.13+£7.08 54.13+£768  4743+9.05 £9.52 5599 £8.29
D.S. G-VAE (Gaussian) 49.69 £6.91 4699 £ 687  48.96+458  4634£682  4T.74+3.90 4740 £3.49 45804735 4591 £TAT  46.66 £ 3.64
DS.G-VAE(CRPS)  53.98+508 48.64+445 5231489 49.09+6.81 52914383 4823 +£7.47 48.14£8.39 54394397 5.05+£4.41  48.18 +10.11
G-Latent (Gaussian) 47.85£3.78 45754281  AT.79£2.33  4T.09£362 47T81£150 47314357 47 704097  AT55+355 47654091 4758 £1.11  48.144357
G-Latent (CRPS) 51.93+423  49.44+747 51214354 5136+6.28 50.55+3.01 5147+581 50.01+3.08 5151+5.44  49.66 +3.57 49.39+399  51.83+5.15
Quantile g = 0.6
G-Net 58.50£4.92 57064513 5638+3.19 57894302 55674346 57.24+410 55214383  57.07+425 5484417 5463425 56.85 +£4.34
Transformer G-Net 6236+4.68 61.25+291 57871391 58714307 56415532 5870£381 55434618 59.00+£448 55184660 5 3 55.104£7.05  60.03 4581
CT-CRPS 55.38+4.16  66.33+17.93 5211+205 58.22+13.95 50.72+1.92 585841548 50.07+2.44 59.27+16.52 50.06+2.28 59.78+17.48 50.24+248  60.20 = 15.00
CT-Gaussian 5T.63+£11.87 6293+ ST70+£6.10  6224£696 57024697 6212+£791  5693+£786 62194870 57104823 62624904 57154866 63114957
DS.G-VAE (Gaussian) 79.084+3.99 ~ 83.38+£4.12  7480£5.67 S1.31£4.08 73.20£582  7954£3.97 71.92£625  78194£400  7081+£675  77.05£399  70.09+694  75.9143.98
DS.G-VAE(CRPS) ~ 69.9344.47 65.60+£462 6518342 6L74=7.18 64132211 59244827 63.82£213 58264005 64144274  57.68+991  6450+355  57.24+10.77

atent (Gaussian) 97 76174306 7089235 T439+406 6858£204 72324420 6697174 T0.90£399  65.80£169  69.99£371 65114174
G-Latent (CRPS) 64.07+£4.57  61.35+7.07  6269+£3.00 6299+6.41 61.62+2.49 6244+576 60.70+2.50 62.09+535 60.15+2.90 6201+505 59.73+3.28
Quantile g = 0.7
G-Net 67.66+4.61  67.06+£4.23 65194277  66.61£281 6386+£299 65.57+£296 63.02+£332  65.03+£299 62644358 62.19 & 3.62
Transformer G-Net 68.92£321 67594249 6748£369 67194294 65914503 66414403 64745580 44478 64.16£6.13 E 63.92 £ 6.59
CT-CRPS 66.21+£3.47 750541602 60.32+£2.02 65.44+13.29 5802+ 158 64.62+1515 56.84+£2.00 64.61+16.45 5644196 64 721174 5634200 64.85+18.15
CT-Gaussian 66.36£11.30 72.26+£6.10 69.74+£492 7190+£701 6810+£579 70694836 67314639 7015+9.30 67.04:686 70031988 70 1241051
D.S. G-VAE (Gaussian)  94.8241.20  97.07 4 0.98 9574196 90.17+£3.18  94.89£240 89.14+£348 9404276  8831+368  9333+295
DS.G-VAE(CRPS) ~ 8224£3.60 79.56+£388 76.71+£246 7345688 747T1£125 69.89+£827 73.69+£097 67994902  7355+163  66.99=9.70

atent (Gaussian) 9077155 93204166 ST00£207 91134226 84204221  89.05£276  8230£228 87314278 SOSTL222  S60TL271 79794223  85.00+2.60
G-Latent (CRPS) T5.16+462 7244607  73.58£259  T360£5.58 72254208 T277£486 71.20+£1.99 7209+£449 7052+£223 TL65£431 69.84+£248 T142£4.10
Quantile g = 0.8
G-Net 76.99£333 76634286 74314224 75614159 72504249 74434169 524272 73654169  T0.9143.00 164176 7041+£3.07 7278+ 170
Transformer G-Net THITE276 74564234 7700£352 75894295 75454473 74534408 74194532 73824478 7344561 TR6TL£5.34  T3.09£6.09  73.74+5.89
CT-CRPS 75.91+£293 8219+ 1312 10183 72811182 65.98+£121 T0.88+1418 64.35+£151 70.28=1560 6354+149  69.91 £ 16. £ 167 69.66 % 17.57
CT-Gaussian 7546 £1017 8147+£526 8043+£361 B0T8+627 7844+433 78934803 7741486  T7.8040. 76.96£526  TTA3E£1011 7650 +£5.66  77.15+10.84
DS.G-VAE (Gaussian) 98.8540.42  99.57+0.20 97.32+£1.27  99.15+£0.64 97.02+ 142  9896£0.91  96.69+£150 9876+ 117 9646+ 154 9856+ 137 96214159  98.364 1.57
DS.G-VAE(CRPS) ~ 90.14£269 88914253 8593+196 S$343+£573 83.874149 79.69+£7.18 8261+096 7746784  8235+114  T616£866 82234174  T516+£9.54

atent (Gaussian) 97.22£052 98624050 95094120 97.62+090 9341+£159  96.68+120 9206+£1.80  9576+1.41  91.01+£1.93 9497149  90.14+£1.98  94.3241.56
G-Latent (CRPS) $467+£3.98 82214459  8317£201 8296+400 81.91+£146 81.95+339 8085+1.50 81.16+308 8016+1.61 8059+302 7953180 80.20+2.80
Quantile g = 0.9
G-Net 86334184  86.56+£125 8413+£1.60 8537094 8238+£208 8415122  S128+£225 83284134 80634231 8260+130  80.10+236 82044131
Transformer G-Net 8313279  8218+£241 8647301  8523+£264 85155403  8349£3.69 84.05+£432 82414432 8336455  SLOSEA6T  8209+497  SLTTE5IT
CT-CRPS 84042249 8789£991  TR2BE150  80.56+£9.36 T4.99+£0.86 T77.9241201 7322082 7670+ 1388 72094089 75911511 7L42+115 7534+ 16.09
CT-Gaussian 8516778 9035+374 89364194 89.02+£470 8T8I£261 STO0£GTS  86.95+£3.04 85624821 8657+340  8491+917  S6.06+367 84404994
D.S. G-VAE (Gaussian) ~99.67 % 0.16 9917+0.54 9983016  99.18+0.59 9982021  99.19+0.62  99.77+032  99.18+0.62 14044 99.15+0.62  99.65 4 0.56
D.S. G-VAE (CRPS) ~ 94.58 4 1.80 : 92954122 91334356 91434135 8847488 9046+£1.23 86561555 90224124  8536+644 90.13+£1.44 84444730
G-Latent (Gaussian) 99242018 99774014 9837068 9946036 9775090  9920£049 9724£1.07  9898+£058 9680+ 114 9876067  96.41+123  98.5440.76
G-Latent (CRPS) 9232+262 9052£277 91.21+1.00 90.80+£1.91 90.25+0.70 90.01+1.51 §9.52+0.68 89.32+1.46 88.97+087 88794153 S863+1.14 88.38+1.52
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Table 14: Empirical coverage (%) by step and dimension for each quantile ¢. Steps t’ € {7,...,11}
and calibration across steps, two outcome dimensions.

Step t' & Across Steps (Cal.)
Model 7 8 9 10 11 Across Steps (Cal.)
Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2

Quantile g = 0.1
-Net

17 62i607 20.20 = 5.19 17.90£630 2053 £5.11 17.95 £6.32 20.51 + 4.96 18.03 +6.28 18.11 £ 6. 2044+£475  16.94+5.62  19.24£4.93

Transformer G-Net 24.71+4.14 1512£875  25.69+4.24 15.76 £ 8.98 26.30 + 4.23 16.26 +9.25 8: 5 16.65+ 27.32+426  1413+814  23.24+£4.10
CT-CRPS 3441+1222 22 357041281 22794347 367341325 23294364 377041358 23734387 385041405 20894268 321541134
CT-Gaussian 24.59 + 4.66 25.93+4.95 16.19 £7.25 27.03+5.11 16.95+7.80  28.034+546  17.54+8.18 2884+£5.66 14174560  22.86+4.32
D.S. G-VAE (Gaussian) 0.13 £0.14 0.1340.14 0.79 £ 0.48 0.1340.14 0.84 +0.49 0.12£0.15 0.90 £ 0. 0.14£0.15 0.74 4042 0.14£0.15
D.S. G-VAE (CRPS) 11.89 +3.53 1208+388  1601+395  11.97+4.07 16244427 11.80+4.19 1651+4.56  11.65+4.32 1410+£379  10.77+2.98

G-Latent (Gaussian)
G-Latent (CRPS)

128+ 1.04 140+ 1.05 3.57 £ 1.45 3714154 1644 111 3.85 £ 1.66 1774 111 2,92+ 1.19 1.16 + 0.90
13194405 11894220 13604414 12094236 13804420 1223+245 14004414 12404257 14154413 11404205 12594372

Quantile g = 0.2
-Net

28.45+ 5.88 20001041 28674570 2619+ 6.64 28.61 4 5.60
3

28514+ 5.54 6.36 + 6.84 28514543 25254585  27.54 +£5.60
33.83 + 4.60 34.83 4 4.82 24.17+9.57 5+ 4.97 2

2
35844504 251341011  36.32£5.19 A4+ 865 32294436

Transformer G-Net

CT-CRPS 41.52 £ 14.34 63 + 15.00 29.07 £ 3.79 3.52 + 15.38 44.40 £15.68  29.96 + 4.26 08 + 16.01 27.264+298  39.42413.63
CT-Gaussian 23 06 +8.24 33.78 £ 4.86 23.76 £ 8.72 34.97 £ 5.01 24.54 £9.22 35.91 4 5.29 36.80£5.68  25.96 £ 10.26 37.67 £5.92 2218 £ 7.63 32.04 £ 4.75
D.S. G-VAE (Gaussian) ~ 2.99 + 0.99 0.87 £0.70 3.17+1.03 0.93 +0.74 3.35 +1.05 1.02 4 0.82 1.06 +0.82 3.69 £ 1.08 1.11 4 0.86 2.92+0.94 0.87 +0.70
D.S. G-VAE (CRPS) 2601490 2077 £5. ss 2649+4.98  21.01+£642 2678539  20.77+6.69 2054+6.93 27194627  20.25+£7.08 24.22+£491  19.39+4.99
G-Latent (Gaussian) 57+2.05 9.05+2.14 5+ 2.46 9.36 +2.24 5.74 £ 2.57 9.87 245 6.48 + 2.67 7.85+ 1.89 4.35 +2.16
G-Latent (CRPS) 20.49 +3.34 2073+358 22834440 2082357 2283446 22924446 2006+3.77  2291+445 20124312 2151+ 412

Quantile g = 0.3

Transformer G-Net

33.30+6.13  35.89£5.84 33.55 = 6.41 3577+5.72  33.65+£651  35.62+5.65
3154+9.18 42,19 +5.48 42,67 + 5.7 32,63+ 9.67
CT-CRPS A0S 1598  3A15E381  48.01 1656 48781697 34.96+£4.17 500641762 33.09+4308 4532+ 15.32
CT-Gaussian 41.88+558  31.74+£10.04 4287 +£594 43.70+£6.20  33.27 +10.97 33 45.17+6.83  3027+899 40344554
D.S. G-VAE (Gaussian) ~ 9.38 % 1.90 4.85 £2.16 9.86 + 1.93 5.20 +2.29 1018 2.06 5.48 +2.52 10584200 5674262 10.98 £2.13 5.93 +£2.84 9.08+1.74 4.69 +2.15
D.S. G-VAE (CRPS) 36.16+540 2984801  36.69+590  29.99+£868  36.93+635  20.51£899  ITI3E6ST 2905936 3724742 28624957 3441£536  285247.00
G-Latent (Gaussian) g . 13.20 +3.36 18.25 + 2.4 14.22 4 3.49 18.60 £ 2. 14.78 £ 3.56 1889 £255  152943.60 19214271 6.55+£227  12.09+3.19
G-Latent (CRPS) 29.63+428 31.95+466  29.86+£4.41 32494456 20914452 32294463  29.96 £4.54 224472 29.93+456 32074476 2948+£385 3118+456

3287+5.62  35.00£5.75
30.70+£8.37  39.96+4.63

Quantile g = 0.4

G-Net 40.31£557  4266+£580  4044+£576 4281456 40.53 + 6.01 42.64+5.51 40624623 42444537 4067648 4233+537  40.20+£5.24 42204553
Transformer G-Net 38964849  AT98+560 3954 £877 48784616  40.11+£9.01 49194649 40432930 49564678 40854957 5000710  39.02+£782  46.95+5.03
CT-CRPS 39194348 519441716 39.50£381 527241772 39784390 532641814 40124410 5386+ 1851 40.38+£4.37 5431 +£1878 38784303 5058+ 1655

CT-Gaussian 395641015 49434699  40.09£10.54  50.21:£729  40.78+10.83 50814 7.57 413541131  51.53£7.91 419841164 51994810 38854963 4821 £6.73
D.S. G-VAE (Gaussian) ~ 23.60 +4.66  18.98 +3.63 24.04 4 4.92 19.51 4 3.85 24.43 4+ 5.04 19644410 24884513 19744441 25.27+5.21 1989 £4.86  23.21+£444 18614367
D.S. G-VAE (CRPS) 45954550  38.91+£9.77 4642615 3882+ 1051  46.62+6.79 3819+£11.00 46724739 3755+ 1133 4680+ 780 368641159  44.61+ 37.96 + 8.79
G-Latent (Gaussian) 31.04 £ 2.06 28.42 £ 3.67 3 +£211 29.33 & 4 31.65 £ 2.14 29.59 £ 3.74 31.81 4 2.32 29.90 £ 3.88 31.88 £ 2.41 30.20 + 3.90 30.07 £ 1.94 26.95 4 3.49
G-Latent (CRPS) 3924+ 448 41.99+4.90 +4.64 3926+ 475  4206+4.72  39.22+487 41.73+486 39.07+495  41.47 £4.96

3+4.02 41314491

Quantile g = 0.5
G-Net 47434513 49.674£520  ATA2£537 4973514 47425555 49 52+4.94 4, 48581 4928483  ATH0EG0S 4908 AT8  ATSLEATS 49455496
Transformer G-Net AT62+824  55.05+6.76  48.11+8.61 30 356898 55 4870+ ATATETS 5361 £5.47

CT-CRPS A484+3.65  57.00+18.49  44.99+3.70  57.3 96 -l 20 £ 3.8 45.43 + 55.48 £ 17.39
CT-Gaussian X 487541028 ST.US£S881 49271061  57.62+9.03  49.71+£10.99 58 50.22 +11.30 55.85 % 8.06
D.S. G-VAE (Gaussian) 46.44 % 3. 18 45.79 + 7.7 46.14 + 3.99 83797  45.38+4.28 15.824£820  44.81£459 4581 +8.29 46.49 + 3.91

D.S. G-VAE (CRPS) AT81£10.99 5580580  47.62+11.81  56.04+6.44  46.74+£12.39  56.02+ 45.97 +12.83 9 £ 451341317 5477443 4751+10.16
G-Latent (Gaussian) 48.42+3.72  ATA8+ 146  48.76+3.76 47.33 + 1.61 48.33+3.71 ATATE182 48114358 4691+ 188  ATSAE36L  ATA0L105  A7.93+3.58
G-Latent (CRPS) 49 235420 52004491 4918 +443 5221+ 481 49.01+4.53 51.81 % 4.81 48.66+£4.63 51204486 4848+ 481 50.93+£5.01 49.54+3.69 51.62+5.12

Quantile g = 0.6
G

et 54.67+4.55  56.87 £4.28 54.54 +4.81 56.80 +4.18 54.50 = 5.10 36.58+£402  5446£539 56324394 5448+561 56.16+3.86 54914425  56.89+4.02

Transformer G-Net 55474741 6053 £6.41 5581 £7.77 61081712 56.11+827 61344762 56, JQiS 57 5 b 1:591 GL71£8.30  5604+£686  60.2245.86
PS 50264293 60.74£18.67  50.35+3.34 5031 +341 612741947 50, 57 64 % 3.8 6L7342007  50.52+2.60

CT-Gaussian 5755+ 9.08  63.41+9.86 57.75 4 9.38 58.10 + 9.6: 640341036 58 z +9.93 58 65 +10, 13 64.59 4+ 10.83 .
D.S. G-VAE (Gaussian)  69.55+7.03  74.91+£3.94  69.01 £ 7.30 68.47 + 7.5° 72.84 4 3.91 68.15 + 7.8 67.74 4+ 8.21 70.77 + 4.08 7u021579
D.S. G-VAE (CRPS) 64754419 56.71+£11.50  64.95+£4.98 5 65.08+5.55 5524 £13.11  64.98:£6.23 64.80+6.69  53.40+14.12 57.00 4 10.92
G-Latent (Gaussian) 64484180 68444346  6387£184  67.9943.53 63484194  6T.0T+£317 62914201 62434205  65.65+2.88 69.21 4+ 3.47
G-Latent (CRPS) 59.38+357 61854463  59.15+3.75  61.85+459 58854393 61.23:+467 58534413 6066&476 58.13+4.33  60.16 +4.92 61.72 4+ 4.96
Quanllle q=0T7
5} 62.08 £ 3.83 64.38 £ 3.04 61%1:423 61.80 £ 4.56 64.00 £ 2.90 63.68 £ 2.85 61.71 £ 4.98 634ut27.) 64.64 +2.79
Tmn\fnm\:r G-Net 994695 66.99 + 6.68 6439+ 787 6TA5+T7.71 6750+ 805  64.75+8.57 66.99 + 6.07

7
64.99 + 17.79

CT-CRPS 214253 64.99+18.75 ﬁ) 00+19.16  55.91+3.05  65.10 £ 19.56 65.23 £ 19.90 k& 2
CT-Gaussian 6(‘ 95+7.68 70.14+10.80 X 7026+11.22  67.12+811  70.25+11.41 70.39 + 11.72 705241199 67474708  70.45+1011
D.S. G-VAE (Gaussian) ~ 86.93 + 4 9 0 86.44+419  91.2143.28 86.06+4.46  90.44+322 89.70 + 3.23 88.9T+3.17 8770386  92.28+2.86

7
6186+ 1426  T1.06+2.32  66.32+10.85

73794388 64.90+12.23 +440  63.74+13.01 62.70 = 13.70

D.S. G-VAE (CRPS) 73.69 +3.24

Gluent (Gussian) 70005221  RLODE25  TRO3L220  MI2IEaky 701402 MORE082  7707E292  SLATE208 50+231  80.83+201  S0.28+£208  85.05+2.41

G-Latent (CRPS) 6940281 7L15£392 69104302 7092380 68734323  7033+£391  68.34+352 69.77+413 6804376  (9.19+436 7010+£240 T7120+£420

Quantile g = 0.8

G-Net 70014312 72514172 69.94+338  T234+174  6981+374  TLOAELTT 60754400  TL62+£192  69.73£4.00  7L34£199  7091£299 72944 150

Transformer G-Net 7297637 T386+647  T303£6.76 T307T£726  7393£740  T3ULETSS  T3O1E7.66 7314798 73954793 73854603  7414+593
08 69441820  62.35+2.36 62203264 692241926 6224+267  69.20£1966  6236%2, 69.194+19.93 63814175 69.99+17.17

CT-CRPS 62.81 + 2 .
CT-Gaussian 76.45 % 5 T6.88+11.24  T6.30£6.16  76.70 £ 11 GO 76.38+620  76.53+£11.97  76.36 £6.34
D.S. G-VAE (Gaussian) G509E 164  OSIIELTI  ORTSE162  O7T8SE 18 95.64+1.66 97614193 9548+ 1T
D.S. G-VAE (CRPS) 8216+235  74.36+£10.33 82164279  T3.67+1116  82.11+3.23

76.42 6. 764741262  77.07+£538  77.53 £ 10.36
g 95354182 97114200  9619+£154 98194149
82,044+ 3.53 71 5841266 81.89+3.89  70.67+13.29 S274+£173 75474979

7253+ 11.93

G-Latent (Gaussian) 89.49 4 1.92 93.71 £ 1.54 88.92 + 1.97 93.15 4 1.58 88.51 £ 2.03 92.59 + 1.51 88.14 4 2.01 91.98 4 1.46 87.79 4+ 2.01 91.53 + 1.40 90.46 + 1.76 94.23 + 1.37
G-Latent (CRPS) 79.11+2.08 79.81+2.78 T8.75 + 2.26 79.52 + 2.76 78.42 + 2.55 78.98 + 2.85 78.11+2.83 7850+ 3.07 T7.81 £ 3.06 78.00+ 343 T79.78+1.79 80.17+295
Quantile g = 0.9

-Net T79.76 4 2.44 81.61 4 1.44 79.49 £ 2.51 81.35 4 1.57 79.39 £ 2.66 80.93 4 1.63 79.38 4+ 2.73 80.65 4 1.80 79.31 4+ 2.91 80.38 + 2.03 80.59 4 2.21 822-1i121
Transformer G-Net 82.78 £ 5.22 81.74 £ 5.55 82.65 4 5.61 81.71 4 5.95 82.55 £ 5.97 81.49 £ 6.27 82.50 4 6.28 81.38 £ 6.57 2.50 + 6.56 81.33 + 6.80 83.50 4 4.98 4 5.15

“CRPS TONIL13  TISOE1001 TOS0LIR0  TRMLIIE  T0N3io  TAMEISI0 70004511 TAMOLISSI 00014030 TARSEINN TALLIT  Ta704 1501
CT-Gaussian BROLIH  DBELI4E  E0:i0) WHIIE  BBLLN  BBLLKD  BRIAE WU BULL2 REIRL W00 LI
D.S.G-VAE (Gaussian)  99.15+0.60  99.60=0.66  99.16+0.55 9954 +£0.75  99.17 +0.54 0011054 00.46+0.84  99.07+0.55  00.43+£0.89  99.15+ 0.5 99.63 % 0.56

DS.G-VAE(CRPS) = 90.05+1.70 8374+805 90.084+1.99 8304886  90.09 +218
G-Latent (Gaussian) 96.12+1.23  98.35+0.78 9591122 98144081 95.68 + 1.27
G-Latent (CRPS) 8831+ 127  88.04+£1.59  88.02+149  8T.8L+157  87.85%1

90.06+236 8126+ 1038 89.94+£257  80.54+£11.03 9054+ 150 84684 7.54
9553+ 1.26  97.72+0.84 9TAT+0.84 9651107  98.45+0.69
87344181  ST.66+192 8693+ 200 86.57+£229 S8.79+108 88.40+1.56
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J.2  SEMI-SYNTHETIC DATASET (ORIGINAL VERSION)

In table[T5]} we show a summary of results for selected steps for the original semi-synthetic dataset with issues
regarding the positivity assumption. In table[T6] we show the Energy Scores. In tables[[7} [I8|and [T we show
the KDE-LL for bandwidths 0.2, 0.3 and 0.4, respectively. In table@, we show the RMSE metrics.

Table 15: Results at selected steps t' € {3,5, 8,11} for the semi-synthetic dataset. Metrics: Energy
Score (ES |) (per step and across steps), KDE-Loglikelihood (KDE-LL 1), and RMSE |.

t t =8 =11 Global
Model ES| KDE-LLT RMSE | ES| KDE-LLT RMSE | ES| KDE-LLT RMSE | ES| KDE-LL T RMSE | ES|
G-Net 0.65+£0.08 -222+£039 082£004 099+011 -3.54+043 1.02£005 127011 ~465+044 1.22+£0.06 141+£014 ~515+047 1.35+£0.06 3.57+0.43
Transformer G-Net 0.49+0.08 ~1.49+032 0.66+004 074+011 -242+043 080+0.04 110+0.11 -3.69+039 1.00+0.06 1314014 —414+035 117+0.06 2924038
CT (CRPS) 041£0.06 —1.4040.20 0.67+£0.06 053+£0.06 —1.86+025 0.80£0.05 0.65+0.06 —2.294024 094£0.06 073+£0.05 —2.60+022 1.05+0.06 1.85+0.22
CT (Gaussian) 052£0.07  —1.56+£0.32 0.64£006 0.65£0.06 —181+030 078£005 082007 —219+029 091£0.05 093+£0.07 —252+028 1.03=£0.06 2.40%0.28
cr . - 0.46 £ 0.01 0.51 4 0.02 . - 0.55 % 0.02 - 0.61 £ 0.02 .
DS.G-VAE 049£0.05 —230+030 0.69£005 0.60£0.05 —2.66+032 088£007 072+0.06 —291+£035 1I8£0.08 078+0.07 —3.02+032 1.35+0.08 2214024
D.S. G-VAE 044£0.06 —1.57+£0.25 0.68£006 051£005 —1.80£022 085+£0.06 058+£0.07 —204+£024 1.10£0.07 065+£0.08 —224+021 1.26£009 1.85+0.21
G-Latent (Gaussian) 040 £0.04  —1.48+0.31  0.62+0.05 0.46£0.04 -1.66+0.26 0.70+0.05 0.51£0.05 —1.81+£0.24 0.78+£0.05 0.54£0.05 —1.91+0.24 0.83+0.07 1.64%0.13
G-Latent (CRPS) 0.39£0.06 —1.32+0.15 0.65+0.06 0.46+0.06 —1.59£0.16 0.77+£0.06 0.5340.06 —1.82+0.15 088+0.04 0.56+0.05 —1.95+0.14 0.94+0.03 1.67+0.20

Table 16: Energy Score per step ¢’ on semi-synthetic dataset. Rightmost column reports the Global
Energy Score across steps. Best per column in bold.

Model t'=2 t'=3 t'=4 t'=5 t'=6 =7 t'=9 t'=10 t'=11 Global
G-Net 0.44 = 0.06 0.65 £ 0.08 0.84 +0.09 0.99 +£0.11 1.11+£0.11 1.20+£0.13 1.27+0.11 1.33£0.13 1.38 £0.13 1.41+0.14 3.57+0.43
Transformer G-Net 0.39 = 0.06 0.49 +£0.08 0.62 £ 0.09 0.74£0.11 0.90 £0.11 1.03+£0.13 1.10£0.11 1.19+£0.13 1.25+0.13 1.31+0.14 2.92+0.38
CT-CRPS 0.35+0.05 0.41 £ 0.06 0.49 £ 0.06 0.5 . 0.58 & 0.06 0.62 £ 0.06 0.65 & 0.06 0.68 = 0.06 0.71 = 0.06 0.73 £0.05 1.85 £0.22
CT-Gaussian 0.42+0.05 0.52 £ 0.07 0.58 £+ 0.07 0.65 & 0.06 0.72 4+ 0.06 0.75 4+ 0.07 0.82+0.07 0.88 £ 0.08 0.91+0.07 0.93 £ 0.07 2.40£0.28
D.S. G-VAE (Gaussian)  0.40 = 0.05 0.49 £ 0.05 0.54 £+ 0.04 0.60 & 0.05 0.67 &+ 0.06 0.70 + 0.06 0.72 £ 0.06 0.74+0.05 0.76 = 0.07 0.78 £ 0.07 2214024
D.S. G-VAE (CRPS) 0.38 £0.05 0.44 £ 0.06 0.48 £ 0.06 0.51 4 0.05 0.54 & 0.06 0.56 & 0.06 0.58 +0.07 0.61 +0.06 0.63 = 0.07 0.65 +0.08 1.85+£0.21
G-Latent (Gaussian) 0.36 = 0.04 0.40 £ 0.04 0.43+0.04 0.46 +£0.04 0.48+0.04 0.49+0.05 0.51+0.05 0.52+0.05 0.53+0.05 0.54+0.05 1.64+0.13
G-Latent (CRPS) 0.34 +£0.05 0.39+0.06 0.43+0.06 0.46 £ 0.06 0.49 & 0.06 0.5140.06 0.53 + 0.06 0.54 = 0.06 0.55 = 0.06 0.56 £ 0.05 1.67 £0.20
Table 17: KDE Loglikelihood per step ¢’ on semi-synthetic dataset with bandwidth 0.2. Best per
column in bold.

Model t'=2 t'=3 4 t'=6 =T t'=9 t'=10 t'=11
G-Net —1.68 £ 0.38 —3.09 £+ 0.45 +0.41 83 £ 0.56 —7.724£0.40 —8.414+0.73 —8.99 + 0.60 —9.38 £ 0.69 —9.69 £0.71
Transformer G-Net —=1.24 £0.31 —2.0140.39 —2.68 +0.32 80 + 0.50 —4.79£0.73 —5.63 & 0.56 —6.41 + 0.68 —=7.12+£0.81 —7.884£0.70
CT-CRPS —1.13£0.20 —1.44£0.23 —1.69 £ 0.32 01 £0.37 —2.38 £ 0.39 — +0.45 —2.67£0.31 —2.80£0.29
CT-Gaussian —1.25+0.22 —1.67+0.27 —1.81+0.33 10 +0.29 —2.52+0.25 —2.72+0.30 .89 £ 0.36 —3.02+0.41
D.S. G-VAE (Gaussian) —1.90 + 0.34 —2.27+0.31 —2.51 4045 —2.67+0.39 —2.79+£0.31 —2.87 +0.44 —2.94 +0.41 —2.99 +0.48 —3.04 £0.51 —3.07 £ 0.43
D.S. G-VAE (CRPS) —1.26 £ 0.25 —1.51 £0.32 —1.70 £ 0.21 —1.824+0.27 —1.95 +0.31 —2.06 +0.30 —2.16 +0.39 —2.25+0.35 33 +0.42 —2.40+£0.29
G-Latent (Gaussian) —1.30 £ 0.29 —1.53 £0.18 —1.71+0.13 —1.83+0.11 —1.93 £ 0.14 —2.02+0.19 —2.09 +0.25 —2.15+0.30 —2.20 +£0.36 —2.26 £ 0.41
G-Latent (CRPS) —0.97+0.24 —1.314+0.27 -1.55+0.29 —1.72+0.30 —1.87+0.31 —1.98+0.31 —2.07+0.31 —2.14+0.30 —2.19+0.30 —2.25+0.29
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Table 18: KDE Loglikelihood per step ¢’ on semi-synthetic dataset with bandwidth 0.3 Best per
column in bold.

Model t'=2 t'=4 t'=5 t'=6 =T =8 t'=9 t'=10 =11
G-Net —1.41+0.32 —2.47+0.39 —3.37+0.34 —4.1540.46 —4.80+0.49 —5.29 +0.54 —5.68 +0.40 —5.99 4+ 0.46 —6.21 +0.41 —6.37£0.51
Transformer G-Net —1.23+0.30 —1.83+0.39 —2.374+0.39 —3.1240.41 —3.81+0.37 —4.43 £0.41 —4.68 +0.38 —5.254+0.32 =5.77+0.34
CT-CRPS —1.02+0.22 —1.29+0.18 —1.524+0.24 —1.714+0.25 —1.88+0.24 —2.01+£0.21 —2.2240.24 —2.30+0.23
CT-Gaussian —1.29+0.31 —1.49+0.38 —1.774+0.32 —1.984+0.39 —2.17+0.30 —2.30£0.37 —2.5940.29 2.72+£0.28 —2.85£0.31
D.S. G-VAE (Gaussian) ~ —1.92 +0.29 —2.65 +0.31 —2.76 £ 0.37 —2.91+0.32 —2.96 4+ 0.34 —3.00 £ 0.35

D.S. G-VAE (CRPS) —1.29+0.20 A —1.77+£0.29 —1.87 £0.22 —2.0540.25 —2.124+0.31 —2.19+£0.27

G-Latent (Gaussian) —1.25 £ 0.37 —1.43 £0.30 —1.56 +0.25 —1.65+0.22 —=1.73+£0.21 —1.8540.20 —1.89+0.20 —1.93 +£0.21

G-Latent (CRPS) —0.98+0.18 —1.25+0.20 —1.44+0.21 —1.58+0.21 —1.69+0.21 —1.78+0.21 —1.85+0.20 —1.91+0.20 —1.96+0.19 —2.00=+0.19

Table 19: KDE Loglikelihood per step ¢’ on semi-synthetic dataset with bandwidth 0.4. Best per
column in bold.

Model t'=2 t'=3 t'=4 t'=5 t'=6 =T =8 t'=9 t'=10 =11
G-Net —1.37+0.32 —2.224+0.39 —2.9440.39 —3.5440.43 —4.01+0.44 —4.38 £0.42 —4.65 +0.44 —4.884+0.45 —5.04+0.40 —5.15 £ 0.47
Transformer G-Net —1.21+0.30 —1.49+0.32 —1.894+0.40 —24240.43 —2.91 £ 0. .45 —3.69 4+ 0.39 —3.85 4+ 0.37 —4.14 £0.35
CT-CRPS —1.15+0.19 —1.40£0.20 —1.624+0.24 —1.86+0.25 —1.99+0.26 —2.14+0.24 —2.294+0.24 5 +0.22 —2.60 +0.22
CT-Gaussian —1.41+0.31 —1.56 +0.32 —1.684+0.34 —1.814+0.30 —1.95+0.29 —2.06 £+ 0.31 —2.1940.29 .33 £ 0.28 —2.52+0.28
D.S. G-VAE (Gaussian) ~ —1.97 +0.28 —2.30 £0.30 —2.5140.28 —2.66 + 0.32 5 £ 0.31 —2.9140.35 —2.96 +0.33 —2.99 +£0.32

D.S. G-VAE (CRPS) —1.39 £ 0.22 —1.57+£0.25 —1.70 £ 0.22 —1.80 +£0.22 +0.25 140.24 11 £0.22 18 £0.21

G-Latent (Gaussian) —1.34 £ 0.36 —1.48 £0.31 —1.59 4+ 0.28 —1.66 + 0.26 —1.77+£0.24 —1.8140.24 —1.854+0.24 —1.88+0.24 .
G-Latent (CRPS) —1.10+0.14 —1.32+0.15 —1.48+0.16 —1.59+0.16 —1.69+0.16 —1.76+0.16 —1.82+0.15 —1.87+0.15 —1.91+0.14 —1.95+0.14

Table 20: RMSE per step ¢’ on semi-synthetic dataset. Best per column in bold.

Model V=2 V=3 V=4 t'=5 t'=6 =T t'=8 t'=9 t'=10 t'=11

G-Net 0.67 £0.03 0.82£0.04 0.96 = 0.04 1.02£0.05 1.09 £ 0.05 1.18 £ 0.05 1.22 +0.06 1.25 +0.06 1.29 +0.06 1.35 4 0.06
Transformer G-Net 0.59 £0.03 0.66 £ 0.04 0.73 +£0.04 0.80 +0.04 0.86 + 0.05 0.92 +0.05 1.00 £ 0.06 1.06 = 0.06 1.11 £ 0.06 1.17 £ 0.06
CT-Gaussian 0.54 £0.05 0.64 £ 0.06 0.72 +0.06 0.78 +0.05 0.84 +0.05 0.88 +0.06 0.91 +£0.05 0.95 £ 0.05 0.99 £ 0.06 1.03 £0.06
CT-CRPS 0.55 £ 0.05 0.67 £ 0.06 0.76 + 0.06 0.80 + 0.05 0.85 + 0.05 0.91 +0.06 0.94 + 0.06 0.97 £ 0.06 1.02 +0.05 1.05 4+ 0.06
CT 0.37£0.01 0.46+0.01 0.49+0.01 0.51+0.02 0.53+0.02 0.54+0.02 0.55+0.02 0.58+0.02 0.60+0.02 0.61+0.02

D.S. G-VAE (Gaussian)  0.56 & 0.06 0.69 £ 0.05 0.79 +0.06 0.88 +0.07 0.97 +£0.07 1.09 £ 0.06 1.18 £0.08 1.24 +0.09 1.30 +0.08 1.354+0.08
D.S. G-VAE (CRPS) 0.57 £0.05 0.68 £ 0.06 0.77 + 0.06 0.85 4 0.06 0.93 +0.08 1.02 £ 0.06 1.10 £ 0.07 1.16 £ 0.09 1.22 £0.08 1.26 £0.09
G-Latent (Gaussian) 0.54 £0.05 0.62 £0.05 0.67 +0.05 0.70 + 0.05 0.73 £ 0.05 0.76 = 0.05 0.78 £ 0.05 0.79 £ 0.06 0.81 £0.07 0.83 £0.07
G-Latent (CRPS) 0.56 + 0.06 0.65 £ 0.06 0.72 +0.06 0.77 £ 0.06 0.81 +0.05 0.85 + 0.05 0.88 +0.04 0.90 £ 0.04 0.92 +£0.03 0.94+0.03
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J.3 REAL WORLD DATASET

In table 21| we show the Energy Scores. In table we show the KDE-LL metric for bandwidth 3.6. In table
[23] we show the RMSE metrics.

Table 21: Energy Score per step ¢’ on real-world dataset. Rightmost column reports the Global
Energy Score across steps. Best per column in bold.

Model t'=2 t'=3 t'=4 t'=5 t'=6 Global
G-Net 5.32 £+ 0.08 5.82 £ 0.08 6.29 + 0.08 6.98 £ 0.09 7.44+0.11 18.35 £ 0.33
Transformer G-Net 5.28 + 0.06 5.84 £ 0.08 6.17 + 0.09 6.47 + 0.08 6.90 £ 0.08 16.70 £ 0.23
CT-CRPS 4.92 £ 0.06 5.39 £+ 0.08 5.60 £ 0.07 5.77 £ 0.08 5.86 £+ 0.07 14.61 + 0.27
CT-Gaussian 5.25 + 0.06 5.71 £0.08 5.99 + 0.08 6.15 £ 0.07 6.34 £+ 0.08 15.55 + 0.23
D.S. G-VAE (Gaussian) 5.51 +0.08 5.99 £+ 0.08 6.21 +0.10 6.34 £+ 0.06 6.44 £+ 0.07 15.98 £ 0.23
D.S. G-VAE (CRPS) 4.89 £+ 0.08 5.36 £ 0.08 5.56 £ 0.09 5.70 + 0.07 5.82 £+ 0.06 14.38 +0.19
G-Latent (Gaussian) 5.27 £+ 0.06 5.64 £ 0.08 5.84 £+ 0.09 5.96 + 0.07 6.07 £ 0.07 15.21 + 0.26
G-Latent (CRPS) 4.85+0.05 5.25+0.08 5.47+0.06 5.60+0.09 5.72+0.06 14.23 £+ 0.23

Table 22: KDE Loglikelihood per step ¢’ on real-world dataset with bandwidth 3.6. Best per column
in bold.

Model t'=2 t'=3 t'=4 t'=5 t'=6
G-Net —3.92£0.05 —4.11 £0.05 —4.29 £ 0.06 —4.55 £ 0.07 —4.83 £0.04
Transformer G-Net —3.89 £ 0.06 —4.06 £ 0.08 —4.16 £ 0.06 —4.30 £ 0.06 —4.48 £0.04
CT-CRPS —3.81 £0.06 —3.94 £0.06 —3.99 £0.07 —4.08 £0.04 —4.19 £ 0.06
CT-Gaussian —3.92 £ 0.06 —4.04 £0.07 —4.09 £ 0.06 —4.18 £ 0.06 —4.24 £0.07
D.S. G-VAE (Gaussian)  —3.90 £ 0.06 —3.98 £0.06 —4.01 £0.05 —4.03 £0.05 —4.04 £0.05
D.S. G-VAE (CRPS) —3.82+0.06 —3.92 £0.05 —-3.94 £ 0.05 —3.99 + 0.06 —4.04 £ 0.06
G-Latent (Gaussian) —3.85+0.06 —3.89 £0.06 —3.92 £ 0.05 —3.944+0.04 —3.95+0.06
G-Latent (CRPS) —3.79+0.06 —3.88+0.05 —3.914+0.05 —3.94+0.05 —3.96 £ 0.06
Table 23: RMSE per step ¢’ on real-world dataset. Best per column in bold.

Model t'=2 t'=3 t'=4 t'=5 t'=6
G-Net 11.84 £0.24 12.83+0.29 13.54£0.33 14.05 £ 0.30 14.23 £0.29
Transformer G-Net 10.90£0.30 11.67+0.26  12.39 £0.38 12.96 + 0.32 13.21£0.29
CT-CRPS 9.34 £0.25 10.10+£0.29  10.53 £0.26 10.75 £ 0.29 10.91 £0.28
CT-Gaussian 9.63 £0.25 10.41£0.29 10.744+0.29 11.01 £0.34 11.25+£0.30
CT 9.00 +0.23 9.57+0.24 9.90+0.25 10.16 £0.27 10.35+0.31
D.S. G-VAE (Gaussian)  9.58 +0.25 10.29+£0.22  10.66 +0.29 10.88 +0.26 11.04 £ 0.29
D.S. G-VAE (CRPS) 9.40 £0.22 10.09+£0.25 10.41 +£0.23 10.63 £ 0.29 10.79 £ 0.30
G-Latent (Gaussian) 9.42 £0.23 10.09+0.23  10.43£0.25 10.64 £+ 0.19 10.80 £ 0.25
G-Latent (CRPS) 9.23£0.20 9.79+0.24 10.14 £ 0.23 10.36 £+ 0.29 10.55 £ 0.28

K LLMs USAGE

We used LLMs for diverse tasks in the production of this work. Mainly, for text and math reviewing and
correction. To a lesser extent, for discussing ideas.
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