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ABSTRACT

Estimating individualized potential outcomes (POs) under time-varying treat-
ments is central to fields like medicine, marketing, and public policy, where de-
cisions must account for uncertainty rather than just point forecasts. We intro-
duce a latent g-computation estimator for discrete-time, individualized PO dis-
tributions. Under standard longitudinal identification assumptions and a latent
factorization/context-sufficiency condition —essentially the usual expressivity as-
sumption for conditional VAEs—, we show that a rollout entirely in latent space
targets the same interventional distribution as the classical g-formula, while never
autoregressing covariates in data space. We further derive a total-variation er-
ror–propagation bound proving that, for a given one-step approximation error,
latent rollouts exhibit more favorable long-horizon behavior than data-space au-
toregressive g-computation. We instantiate this estimator as G-Latent, which re-
places G-Net’s residual pools (Li et al., 2021) with a conditional VAE that learns
history- and treatment-conditioned outcome distributions at each time. To enhance
expressivity, we adapt an infinite-mixture asymmetric Laplace (ALD) parameter-
ization (An & Jeon, 2023) to the time-series setting, and we decouple sequence
encoding (a transformer over the observed history) from a lightweight GRU latent
rollout with selective decoding, enabling fast Monte Carlo sampling over multiple
horizons. We evaluate G-Latent in semi-synthetic and real-world datasets, finding
that it yields better calibrated and more accurate predictive PO distributions than
strong baselines, while reducing inference-time cost.

1 INTRODUCTION

Estimating individualized potential outcomes under time-varying treatments is central to data-rich
domains such as precision medicine, marketing, education, and public policy, where longitudinal
records capture detailed sequences of covariates, interventions, and responses. While recent neu-
ral approaches address time-dependent confounding and long-range dependencies, most return only
point estimates—typically conditional means (Melnychuk et al., 2022; Bouchattaoui et al., 2023)- or
consider only epistemic (model) uncertainty. Modeling epistemic uncertainty is valuable for flagging
low-confidence regions or detecting out-of-distribution inputs; however, it leaves aleatoric (data)
uncertainty unmodeled, so identical expected outcomes may conceal very different variances, skew-
ness, and tail risks. For risk-sensitive decisions—where clinicians care about adverse-event prob-
abilities, marketers about downside exposure, and policymakers about extreme impacts—ignoring
aleatoric uncertainty limits actionable guidance. We therefore advocate moving beyond mean ef-
fects and purely epistemic views to full, coherent distributional estimates of individualized potential
outcomes across time and variables, enabling transparent, risk-aware decision support.

We introduce G-Latent, a model for distributional individualized POs under time-varying treatments
that performs g-computation in latent space. The key idea is a latent rollout: during counterfactual
rollouts, we update the temporal representation using VAE latent variables rather than observed co-
variates, and decode only when needed. This avoids data-space autoregression—reducing accumu-
lation error and making g-computation practical with high-dimensional covariates—while enabling
efficient sampling for many treatment sequences and Monte Carlo (MC) draws. G-Latent learns
per-step conditional distributions non-parametrically via a conditional VAE on past representations.
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Figure 1: Training-time data flow in G-Latent for a given step t. A multi-input transformer encodes
history rt; at each step t′ within the projection horizon, a context ct,t′ feeds a shared conditional
VAE. The GRU updates the state using latents zt,t′ (not decoded observations). The decoder has
outcome (ALD) and covariate (Gaussian) heads.

Following (An & Jeon, 2023) and extending to time series, we parameterize the decoder as an infinite
mixture of asymmetric Laplace distributions (ALDs) (Brando et al., 2019), increasing expressivity.
In contrast, g-computation baselines such as Li et al. (2021) approximate distributions via mean
predictions plus errors from a global residual pool, which can distort individualized distributions,
especially under heteroscedasticity. For efficiency, we decouple long-history encoding and short-
horizon rollout: a transformer encodes the long prefix once; a lightweight Gated Recurrent Unit
(GRU) updates representations across the projection horizon, avoiding repeated transformer passes
during sampling. Identifiability follows the g-computation formula under standard assumptions of
sequential ignorability, positivity, and consistency.

We summarize our contributions as follows: 1) We define a novel latent g-computation estimator for
individualized potential outcome distributions in discrete time under time-varying treatments. Un-
der standard longitudinal identification assumptions and a latent factorization / context-sufficiency
condition —essentially the usual expressivity assumption for conditional VAEs— we prove that a
rollout entirely in latent space targets the same interventional distribution as the classical g-formula
while never autoregressing covariates in data space (Thm. 5.1, Cor. 5.2). To our knowledge, fur-
thermore, ours is the first discrete-time method for individualized distributional POs without global
residual pools. 2) We analyze error propagation for latent vs. data-space implementations of g-
computation and derive a total-variation bound showing that, for any fixed one-step approximation
error, latent rollouts exhibit more favorable long-horizon behavior than standard autoregressive g-
computation (Prop. 5.3), theoretically explaining the improved stability we observe at longer hori-
zons. 3) We instantiate this estimator as G-Latent, a conditional VAE with a transformer history
network, a lightweight GRU latent rollout, and an ALD-mixture outcome head adapted from An
& Jeon (2023), which together enable flexible individualized outcome distributions and fast Monte
Carlo sampling via selective decoding. 4) We provide an extensive empirical study on semi-synthetic
and real-world ICU data, including calibration metrics, runtime comparisons, and an analysis (and
correction) of the widely used semi-synthetic MIMIC-III (Melnychuk et al., 2022) benchmark that
previously violated positivity. Across datasets, G-Latent improves the quality and calibration of
predictive PO distributions relative to strong baselines while reducing inference-time cost.

2 RELATED WORK

Potential outcomes estimation in static settings. In the static setting, there are several methods for
individualized PO estimation. Representative modern examples include Yoon et al. (2018); Vanstee-
landt & Morzywolek (2023); Shalit et al. (2017); Künzel et al. (2019). Although most static PO
methods provide only point estimates, some works estimate distributional POs. For instance, pa-
pers like Melnychuk et al. (2023); Kennedy et al. (2023) target population-level distributional POs,
whereas Ma et al. (2024) learn individualized distributional POs using diffusion models (Yang et al.,
2023).
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Individualized potential outcomes estimation over time. Traditionally, causal inference has ad-
dressed time-varying confounders with Marginal Structural Models (MSMs) (Robins et al., 2000),
which rely on inverse probability of treatment weighting (IPTW) (Chesnaye et al., 2022), or G-
computation (Taubman et al., 2009). Lim (2018) improve MSMs by employing RNNs in the mod-
eling of outcomes and propensities. Counterfactual Recurrent Network (CRN) (Bica et al.) in-
corporates adversarial domain training to establish a treatment-invariant representation space using
a gradient reversal layer (Ganin & Lempitsky, 2015). G-Net (Li et al., 2021) combines RNNs
with G-computation to adjust for confounders and estimate dynamic potential outcomes. Causal
Transformer (CT) (Melnychuk et al., 2022) follows the treatment-invariant representation idea from
CRN and incorporates transformers to process time series and a Counterfactual Domain Confusion
(CDC) loss (Tzeng et al., 2015). Other works that also follow this idea are Wang et al. (2024), which
adopts a novel Temporal Integration Predicting strategy and focuses on continuous treatments, and
El Bouchattaoui et al. (2024), which introduces an RNN backbone trained with Contrastive Predic-
tive Coding and an InfoMax objective. Wang et al. (2025) use a state-space architecture (Mamba)
(Gu & Dao, 2024) that employs covariate-based decorrelation toward selective parameters to reduce
confounding bias. Huang et al. (2024) provide an empirical evaluation of balancing strategies. On
the other hand, Xiong et al. (2024) use a similar approach to G-Net but processing data with trans-
formers instead of RNNs, and Deng et al. (2024) add model uncertainty to the same approach. Hess
et al. (2024) propose a pseudo-outcome regression based on g-formula to obtain individualized POs.
Finally, Frauen et al. propose a series of model-agnostic meta-learners for estimating heterogeneous
treatment effects over time.

In parallel to the previous works, another line of research has appeared in recent years that
models the effects of treatments in continuous-time with neural Ordinary Differential Equations
(ODEs). De Brouwer et al. (2022) couples neural ODEs with epistemic uncertainty quantification
for continuous-time predictions. Seedat et al. (2022) learn Controlled Differential Equation (CDE)
dynamics robust to irregular sampling. Hess et al. present Bayesian Neural CDE (BNCDE), which
provides posterior predictive distributions over POs. Finally, Hess & Feuerriegel employ a stabilized
continuous-time IPTW formulation to address time-varying confounding.

All the previous works, like ours, assume sequential ignorability (Robins & Hernan, 2008). There
is another line of research that tackles violations of this assumption. Among them, papers like
Peng et al.; Bouchattaoui et al. (2023) are worth mentioning as, like this work, they use the latent
representations of VAEs. However, they do it to infer hidden confounders in settings where they
exist. In contrast, our work uses latent representations to adjust for observed confounders following
G-computation. Finally, Wang et al. present another VAE-based approach that aims at selecting best
treatment sequences by modeling the conditional likelihood of achieving target outcomes.

Uncertainty Quantification in potential outcomes estimation over time. Some of the afore-
mentioned time-varying methods include some form of uncertainty quantification. Within the
continuous-time works, De Brouwer et al. (2022) handles epistemic uncertainty through variational
Bayesian inference . On the other hand, Hess et al. handles both epistemic uncertainty, with
Bayesian posterior distributions, and aleatoric uncertainty, with a Gaussian outcome head. How-
ever, it does not handle time-varying confounding. Very recently, a new paper appeared (Mu et al.,
2025) that employs diffusion models to model distributional potential outcomes with expert models.

As for discrete time models for individualized POs, uncertainty quantification has been mostly ig-
nored. Papers like Melnychuk et al. (2022); Bica et al. handle epistemic uncertainty only through
Monte Carlo (MC) dropout. As for aleatoric uncertainty, G-Net (Li et al., 2021) and its transformer
extension (Xiong et al., 2024) are, to the best of our knowledge, the only models that handle it.
Like our model, G-Net builds on g-computation to generate sequential MC samples. However, its
capacity to properly model PO distributions is limited because it only handles homoscedastic data.
Furthermore, it tends to underperform in comparison with other methods due to an error compound-
ing problem. Deng et al. (2024) enriches (Transformer) G-Net by adding epistemic uncertainty, but
it suffers from the same problems as (Transformer) G-Net. Finally, Wu et al. (2024) combine VAEs
and diffusion models with IPTW to obtain distributional POs, and Shirakawa et al. (2024) couple
a temporal-difference heterogeneous Transformer with longitudinal Targeted Minimum Loss-based,
allowing to estimate POs confidence intervals, but these works handle only population-level POs, so
they do not fit our setting.
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3 PROBLEM FORMULATION

For the variables of our setting, uppercase bold letters (e.g., X,A,Y) denote random vectors; low-
ercase bold (e.g., x,a,y) their realizations, and plain letters denote scalars (e.g., x, y). For latent
vectors and learnable representation vectors, we use bold lowercase.

Problem Setting. We adopt the standard setting for estimating counterfactual outcomes over time
(Lim, 2018; Bica et al.; Melnychuk et al., 2022; El Bouchattaoui et al., 2024). Let i index patients
with trajectories observed at t = 1, . . . , T (i). At each t we observe time-varying covariates X(i)

t ∈
Rdx , treatments A

(i)
t , and outcomes Y

(i)
t ∈ Rdy , as well as static covariates V(i) (e.g., sex, age,

risk factors). Unless needed, we omit the patient index (i). We assume i.i.d. observational data D =

{(x(i)

1:T (i) , a
(i)

1:T (i) , y
(i)

1:T (i) , v
(i))}Ni=1, with x

(i)

1:T (i) = (x
(i)
1 , . . . ,x

(i)

T (i)) and analogously for a,y.

History and calendar. We use start-of-interval indexing: the treatment At precedes the next mea-
surement (Yt+1,Xt+1). Let the history available before choosing At be H̄t = {X̄t, Āt−1, Ȳt,V}
with X̄t = (X1, . . . ,Xt), Ȳt = (Y1, . . . ,Yt), and Āt−1 = (A1, . . . ,At−1). For compactness we
sometimes group outcomes and covariates as Lt = (Yt,Xt) ∈ RdL .

Targets. Let τ ≥ 1 denote the projection horizon and āt:t+τ−1 = (at, . . . ,at+τ−1) a given (non-
random) treatment intervention. Most previous works in this setting aim to estimate the conditional
mean E

[
Yt+τ [āt:t+τ−1]

∣∣ H̄t

]
. In contrast, we target the full conditional distribution, both at a fixed

horizon and jointly across horizons:

pā
(
yt+τ | h̄t

)
, pā

(
yt+1:t+τ | h̄t

)
. (1)

Assumptions. We build upon the potential outcomes framework (Rubin, 2005) and its extension to
time-varying treatments (Robins et al., 2000). We assume (1) consistency, (2) sequential ignorabil-
ity/exchangeability, and (3) sequential overlap/positivity (see App. A).

Goal. We design a novel implementation of g-computation that learns flexible per-step conditionals
and generates coherent fast Monte Carlo samples from pā(· | h̄t), enabling distributional individu-
alized potential outcomes without data-space autoregression.

The g-Formula. Under the assumptions previously specified, for any non-random regime āt:t+τ−1,

pāt:t+τ−1
(
yt+1:t+τ | h̄t

)
=

∫
xt+1:t+τ

t+τ−1∏
s=t

p
(
ys+1,xs+1 | h̄s, as

)
dxt+1:t+τ , (2)

where h̄s+1 :=
(
h̄s,as,ys+1,xs+1

)
.

4 LATENT G-COMPUTATION

In this section, we first define a latent g-computation estimator that implements discrete-time g-
computation entirely in latent space (Section 4.1). Under a latent factorization / context-sufficiency
condition, we show in Section 4.2 that this estimator targets the same interventional distribution
as the classical g-formula, while never autoregressing covariates in data space. We then analyze
its error propagation and finally instantiate it as a neural model, G-Latent, based on a transformer
history network, a conditional VAE, and GRU updates in latent space.

4.1 THE LATENT G-COMPUTATION ESTIMATOR

Consider the g-formula (Eq. 2), which expresses the interventional law under a non-random treat-
ment plan āt:t+τ−1 as an iterated integral over one-step conditionals

p⋆(ys+1,xs+1 | h̄s,as), s = t, . . . , t+ τ − 1. (3)
Standard implementations of g-computation approximate these kernels directly in data space and
then perform autoregressive rollouts, repeatedly sampling covariates and feeding them back into the
model. We instead ask whether g-computation can be implemented entirely in latent space, so that
we never autoregress observed covariates while still targeting the same interventional distribution.

4
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Algorithm 1 Latent g-computation estimator (Monte Carlo rollout)

1: Input: history h̄t, treatment plan āt:t+τ−1, horizon τ , samples M , scope∈ {all,last}
2: rt ← fω(h̄t)
3: for m = 1 to M do ▷ Monte Carlo paths
4: st,0 ← 0
5: for t′ = 1 to τ do
6: ct,t′ ← κψ

(
rt, st,t′−1,at+t′−1, t

′)
7: z

(m)

t,t′ ∼ p0(·) ▷ e.g.,N (0, I)

8: if scope = all or t′ = τ then
9: decode y

(m)

t+t′ , (x
(m)

t+t′) ∼ pθ
(
· | z(m)

t,t′ , ct,t′ ,at+t′−1

)
10: st,t′ ← Γγ

(
z
(m)

t,t′ , rt,at+t′−1, t
′, st,t′−1

)
11: Return: {y(m)

t+1:t+τ }Mm=1 if scope=all, else {y(m)
t+τ }Mm=1

Fix a time t and a prediction horizon τ ≥ 1. Let h̄t denote the observed history up to time t and
āt:t+τ−1 a treatment plan applied from t to t+ τ −1. Our latent estimator uses four components: (i)
a history network fω that maps the observed history to an embedding rt = fω(h̄t); (ii) a recurrent
latent state st,t′ summarizing the latent trajectory from t to t+ t′, initialized as st,0 = 0 and updated
as

st,t′ = Γγ
(
zt,t′ , rt,at+t′−1, t

′, st,t′−1

)
t′ = 1, . . . , τ ; (4)

(iii) a context map ct,t′ = κψ
(
rt, st,t′−1,at+t′−1, t

′), which collects all information needed by the
one-step decoder at step t′; and (iv) a conditional decoder pθ with fixed latent prior p0 defining
one-step kernels

pθ
(
lt+t′ | zt,t′ , ct,t′ ,at+t′−1

)
, lt+t′ = (yt+t′ ,xt+t′), zt,t′ ∼ p0(·). (5)

Given these components, we implement g-computation by ancestral sampling of full latent paths.
For each Monte Carlo replicate, we sample a trajectory of latents zt,1, . . . , zt,τ under the treatment
plan, update the latent state forward in time, and decode outcomes (and optionally covariates) at
selected horizons. Crucially, decoded observations are never fed back into the state; all temporal
dependence flows through (rt, st,t′). In our concrete instantiation (Section 4.3), pθ and p0 arise
from a conditional VAE over (Yt,Xt).

With our estimator, one can decode at any subset S ⊆ {1, . . . , τ} of relative steps. The latent
rollout and state updates are identical in all cases; only decoding is selective. We parameterize
this choice via an argument scope that specifies at which relative steps we decode outcomes. In
this work, we consider two options: scope=all corresponds to decoding at all t′ = 1, . . . , τ ,
while scope=last corresponds to decoding only at t′ = τ . This selective decoding is useful
computationally: when we are only interested in yt+τ , choosing scope=last avoids decoding at
the intermediate τ − 1 steps, reducing the decoder cost from O(τM) to O(M) for M Monte Carlo
paths. More generally, decoding at an arbitrary subset S scales the decoder cost linearly in |S| rather
than in τ .

Algorithm 1 defines our latent g-computation estimator: given a history h̄t and a treatment plan
āt:t+τ−1, it produces Monte Carlo samples from an interventional distribution induced by the one-
step conditionals pθ(lt+t′ | zt,t′ , ct,t′ ,at+t′−1). In Section 4.2, we state conditions under which this
estimator is equivalent to the classical g-formula and analyze its error propagation. In Section 4.3,
we describe how we instantiate (fω, κψ, pθ,Γγ) as the neural model G-Latent.

4.2 THEORETICAL INSIGHTS

We now provide theoretical guarantees that the latent g-computation estimator implements the same
interventional law as the traditional data-space g-formula, and compare its error propagation to a
data-space autoregressive rollout. See full proofs and additional discussion in App. E.
Assumption 4.1. (Latent factorization and context sufficiency). Fix t and τ ≥ 1. Let rt = fω(h̄t),
let the latent state st,t′ and context ct,t′ be defined as in Section 4.1, and consider the one-step
conditional over lt+t′ = (yt+t′ ,xt+t′). We assume that the true one-step conditional admits a latent
mixture factorization with a fixed prior p0:

p⋆(lt+t′ | h̄t+t′−1,at+t′−1) =
∫
pθ(lt+t′ | zt,t′ , ct,t′ ,at+t′−1) p0(zt,t′) dzt,t′ . (6)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(See App. E.1 for the formal statement and further discussion.)

Intuitively, this says that once we condition on a sufficiently informative context
ct,t′(h̄t+t′−1,at+t′−1), the decoder family pθ(· | z, c,a) is rich enough to represent the true
one-step conditional as a mixture over a fixed prior p0, as in a standard conditional VAE. This is the
standard conditional VAE modeling assumption and not an additional causal assumption.
Theorem 4.2 (Equivalence of latent and data-space g-computation). Under the identification as-
sumptions (App. A) and the latent factorization in Eq. 6, for any treatment plan āt:t+τ−1 and history
h̄t, Algorithm 1 produces i.i.d. MC samples from the interventional laws identified by the g-formula
(Eq. 2):

(full path) pā
(
yt+1:t+τ | h̄t

)
=

∫ τ∏
t′=1

pθ

(
yt+t′

∣∣∣ zt,t′ , ct,t′(zt,1:t′−1), at+t′−1

) τ∏
t′=1

p0(zt,t′) dzt,t′ ,

(fixed horizon) pā
(
yt+τ | h̄t

)
=

∫
pθ

(
yt+τ

∣∣∣ zt,τ , ct,τ (zt,1:τ−1), at+τ−1

) τ∏
t′=1

p0(zt,t′) dzt,t′ .

(7)
Proof. App. E.5.
Corollary 4.3 (Selective decoding is coherent). Decoding only at t+τ (scope=last) returns
i.i.d. samples from pā(yt+τ | h̄t); decoding at any subset S⊆{1, . . . , τ} returns the corresponding
marginals {pā(yt+t′ | h̄t)}t′∈S . Proof. App. E.5.

Error propagation: latent vs. data-space g-computation rollouts. Takeaway: the latent rollout
(Alg. 1) does not amplify local one-step errors, whereas data-space autoregressive (AR) rollouts can,
because they repeatedly decode and re-encode observations.

In latent g-computation, the learned one-step kernel is the decoder-induced latent mixture at context
ct,t′ , Ke

s(· | h̄s,as) =
∫
pθ(· | z, ct,t′ ,as) p0(z) dz with s = t+t′−1; ct,t′ is defined in Sec. 4.1

and the state is updated through latents only. As a comparator, we use a data-space AR rollout that
decodes each step and re-feeds (or re-encodes), inducing a single-step Lipschitz AR tail operator
with factors {1 + λj}. Let K⋆

s (· | h̄s,as) denote the true one-step conditional and define εs :=
suph̄s,as

TV
(
K⋆
s (· | h̄s,as),Ke

s(· | h̄s,as)
)
, where TV(µ, ν) denotes the total variation distance

TV(µ, ν) := supA∈A |µ(A)− ν(A)|.
Proposition 4.4 (Propagation-error bound and dominance). Assume that the single-step AR tail
operators are Lipschitz in total variation with factors (1 + λj) (see Assumption E.7). Let P ⋆ be the
interventional law of Yt+τ and P lat, PAR the laws induced by latent and AR rollouts using {Ke

s}.
Then, taking total variation over the marginal of Yt+τ ,

TV(P ⋆, P lat) ≤
t+τ−1∑
s=t

εs, TV(P ⋆, PAR) ≤
t+τ−1∑
s=t

εs

t+τ−1∏
j=s+1

(1 + λj). (8)

Proof. App. E.10.

Our model inevitably makes small one-step errors in the conditional distributions. The key differ-
ence is how these local errors are propagated. In the latent g-computation rollout, once the factual
history is encoded, all future evolution happens in latent space and decoded predictions are never
fed back; mathematically, the subsequent latent transitions are Markov and non-expansive in total
variation, so each local error contributes at most additively to the final discrepancy. In a data-space
autoregressive rollout, every decoded prediction is fed back through a powerful encoder to form
the next context, and these encode–decode maps can enlarge discrepancies, so a small local error
at a given time step can be amplified at later steps. Proposition 4.4 formalizes exactly this: both
approaches share the same local approximation errors, but only the data-space rollout has this addi-
tional error-amplification channel, which explains its worse long-horizon behavior.

4.3 NEURAL INSTANTIATION: THE G-LATENT MODEL

Architecture. We instantiate the abstract components (fω,Γγ , κψ, pθ, p0) with a history network, a
latent GRU, and a conditional VAE. The history network fω is a multi-input transformer that maps

6
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the observed history h̄t to an embedding rt = fω(h̄t), following Melnychuk et al. (2022) (three
streams for x̄t, āt−1, ȳt with cross-attention; details in App. B). The latent state update Γγ (Eq. 4)
is implemented as a GRU, and the context map as ct,t′ = κψ(rt, st,t′−1,at+t′−1, t

′), so that future
contexts depend only on compact latent summaries rather than decoded observations. For the one-
step conditionals over lt+t′ = (yt+t′ ,xt+t′) we use a single conditional VAE, shared across t′, with
VAE encoder and decoder

qϕ
(
zt,t′ | lt+t′ , ct,t′

)
, pθ

(
lt+t′ | zt,t′ , ct,t′ ,at+t′−1

)
,

and prior p0(zt,t′) = N (0, I). Outcomes yt+t′ are modeled with the ALD-mixture parameterization
of An & Jeon (2023) (DistVAE), extended here to time series with sequential treatments, while
covariates xt+t′ use Gaussian heads; see below.

Training objective and implementation. We share one conditional VAE across steps t′ ∈
{1, . . . , τ} and optimize a joint per-step objective. Given the context ct,t′ , the VAE encoder
outputs zt,t′ ∼ qϕ(zt,t′ | lt+t′ , ct,t′), and we update the latent state via Eq. 4. The decoder
pθ(lt+t′ | zt,t′ , ct,t′ ,at+t′−1) is parameterized by a shared trunk Tθ followed by two heads: an
outcome head D

(y)
θ and a covariate head D

(x)
θ . Let wt,t′ = Tθ(zt,t′ , ct,t′ ,at+t′−1) and

q̂α,t,t′ = D
(y)
θ

(
wt,t′ , α

)
, (µ̂t,t′ , σ̂

2
t,t′) = D

(x)
θ

(
wt,t′

)
,

where α ∈ (0, 1)dy collects per-outcome quantile levels. We implement D(y)
θ as dy scalar branches

and draw K vectors {α(k)}Kk=1 with i.i.d. entries α
(k)
j ∼ Unif(0, 1). The per-step reconstruction

loss is

Lrec(t, t
′) =

dy∑
j=1

1

K

K∑
k=1

ρ
α

(k)
j

(
yt+t′,j − q̂

α
(k)
j ,t,t′,j

)
+ 1

2

∥∥∥xt+t′−µ̂t,t′

σ̂t,t′

∥∥∥2
2
+ 1

2 1
⊤log σ̂

2
t+t′ , (9)

where ρα(u) = (α − 1{u < 0})u is the pinball loss and (µ̂t,t′ , σ̂
2
t,t′) are the Gaussian parameters

for xt+t′ . The KL term is LKL(t, t
′) = KL

(
qϕ(zt,t′ | ·) ∥N (0, I)

)
. This corresponds to a condi-

tional VAE with an ALD-mixture outcome decoder (An & Jeon, 2023); integrating over α recovers a
CRPS-type reconstruction term, which encourages well-calibrated, flexible predictive distributions
beyond Gaussian heads (see App. C for details). In our setting, using the ALD mixture for y im-
proves distributional performance but increases decoder complexity, so we use it only for outcomes
and keep a simpler Gaussian head for covariates x, where the additional expressivity does not off-
set the extra compute. Predictive uncertainty arises both from the sampled latent path (capturing
temporal and cross-outcome dependence) and from the outcome head, which plays the role of the
likelihood noise model, analogous to decoder noise in a Gaussian VAE.

The history network fω is high-capacity, and the VAE objective alone can be minimized even if
rt carries little predictive signal (the decoder may partly ignore it). To avoid such degenerate con-
figurations, we add an auxiliary one-step prediction head ŷt+1 = Uη(rt,at) with MSE loss Laux

(Eq. 10), used purely as a regularizer to make rt predictive of yt+1. The total loss over a mini-batch
B is

L =
1

|B|
∑
i∈B

T (i)−1∑
t=1

[ τ∑
t′=1

m
(i)
t,t′

(
L(i)
rec(t, t

′) + β L(i)
KL(t, t

′)
)
+ λaux m

(i)
t,1 L(i)

aux(t)
]
, (10)

with masks m
(i)
t,t′ = 1{t + t′ ≤ T (i)}. In practice, we found it helpful to warm start the history

network by first optimizing only Laux for a small number of epochs, and then training the full
objective in Eq. 10. This implementation choice affects how the parameters are learned but does
not change the latent g-computation estimator of Section 4.1. We also reweight the two terms in
Eq. 9 to give more importance to outcome modeling. Hyperparameters are selected via lightweight
tuning on factual-validation sets, guided by distributional metrics and KL–capacity diagnostics; for
the transformer we adopt the architecture and base hyperparameters of Melnychuk et al. (2022).

Inference and sampling cost. At test time, we apply Algorithm 1 with the learned parameters. For
a given anchor time t and treatment plan āt:t+τ−1, we compute the history embedding rt = fω(h̄t)
once, then roll out the latent state and decoder as in Section 4.1. Because decoded observations
are never fed back, the inner loop consists only of GRU updates and decodes and vectorizes over
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M Monte Carlo paths with a shared rt. As discussed in Section 4.1 and Corollary 4.3, we can
decode at all steps (scope=all) or only at a subset S ⊆ {1, . . . , τ} (e.g., scope=last for S =
{τ}) without changing the underlying interventional law, so we pay decoder cost only at horizons
of interest. For M MC samples and horizon τ , the cost is O

(
cost(fω) + M [ τ(cost(GRU(z)) +

cost(κψ)) + |S| cost(D(y)
θ ) ]

)
, where |S| ≤ τ is the number of decoded steps and cost(fω) is paid

once. By contrast, a data-space rollout has cost O
(
cost(fω) + Mτ [ cost(GRU(L)) + cost(κψ) +

cost(D(x,y)
θ ) ]

)
, since all steps and both X and Y must be decoded, and a full autoregressive model

with decoder scales as O
(
Mτ [ cost(fω) + cost(D(x,y)

θ ) ]
)

(G-Net is of this type, but uses a hold-
out error set instead of a decoder). Overall, our model reduces sample cost by (i) computing fω
once and reusing it across M and all τ steps, enabling a high-capacity transformer only for the
up-to-t sequence; (ii) decoding selectively so the Dθ term scales with |S| (e.g., |S|=1 for last);
(iii) decoding only D

(y)
θ and skipping D

(x)
θ at inference; and (iv) updating the GRU in latent space

(GRU(z)) instead of data space (GRU(L)), which can yield gains when dz ≪ dL.

5 EVALUATION

Datasets. Following common practice in benchmarking for POs inference (Bica et al.; Melnychuk
et al., 2022), we make use of a semi-synthetic dataset for validating our approach, as it allows
to compute ground truth POs. Additionally, we also use a real-world dataset to demonstrate the
practical applicability of our approach. These datasets were selected because they have a consid-
erable number of covariates to adjust for, which is the type of setting for which our model can be
more useful. Semi-synthetic: from ICU data (Johnson et al., 2016), we generate high-dimensional,
long-range trajectories with treatment effects and endogenous/exogenous dependencies following
Melnychuk et al. (2022); Schulam & Saria (2017); confounding is controllable and ground-truth
POs are known. We detected violations of the positivity assumption in the original form of this
dataset, presented in Melnychuk et al. (2022). Despite having become a standard benchmark, the
aforementioned positivity violations make it unsuitable for evaluation of methods with the stan-
dard causal assumptions. For this reason, we make several modifications to avoid this problem.
We detail the detected problems in the original form of the dataset and the changes we make in F.
Real-world: a fully observational benchmark from MIMIC-III using the same cohort definition and
preprocessing as the semi-synthetic setup (sampling grid, variable definitions, imputation, and dis-
crete action categories per Melnychuk et al., 2022); lacking ground-truth counterfactuals, evaluation
targets predictive quality of observational next steps. Variables include standard ICU vitals/labs and
intervention-derived action indicators. We refer to App. F for more details about both datasets.

Baselines. To evaluate our model, we use several baselines that handle aleatoric uncertainty and
deliver distributional estimates. We use G-Net (Li et al., 2021) as an alternative implementation of
the g-formula and, for better comparability, its extension Transformer G-Net (Xiong et al., 2024),
which we implement with the same multi-input transformer architecture used in G-Latent. To the
best of our knowledge, these are the only previous works that estimate aleatoric uncertainty of indi-
vidualized POs in a discrete setting. We also compare with Causal Transformer (CT) (Melnychuk
et al., 2022): in its original form for point estimate metrics, and with two distributional adaptations:
CT-Gaussian, with a Gaussian head, and CT-CRPS, with a CRPS head, analogous to G-Latent de-
coder. Among the non-distributional models for individualized POs, we chose to adapt CT as it is
a strong baseline and G-Latent shares its transformer-based processing of history data. As for our
model, we present three variants apart from the one described in 4.3: G-Latent with a full Gaussian
reconstruction, and two variants that perform the rollout in the data space: one with CRPS decoder
and another one with full Gaussian decoder. We call these variants G-VAE, and D.S. accounts for
data space. We specify the details in App. G. In continuous settings, we are aware of two works
that estimate data distributions: Hess et al. and Mu et al. (2025). We exclude the former because it
introduces a heavy machinery for epistemic uncertainty and continuous time processing that makes
it very expensive to train, while its way to handle aleatoric uncertainty is a Gaussian head, which
is already covered by CT-Gaussian. As for the latter, we exclude it because it addresses a slightly
different setting (expert models) and because it was released over one month before the submission
of this work, without available code.
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Table 1: Results at selected steps t′ ∈ {3, 5, 8, 11} for the (new) semi-synthetic dataset. Metrics:
Energy Score (ES ↓) (per step and across steps), KDE-Loglikelihood (KDE-LL ↑), RMSE ↓, Cali-
bration MAE↓.

t′ = 3 t′ = 5 t′ = 8 t′ = 11 Global

Model ES ↓ KDE-LL ↑ RMSE ↓ ES ↓ KDE-LL ↑ RMSE ↓ ES ↓ KDE-LL ↑ RMSE ↓ ES ↓ KDE-LL ↑ RMSE ↓ ES ↓ Cal. MAE ↓

G-Net 0.39 ± 0.04 −1.27 ± 0.17 0.64 ± 0.07 0.51 ± 0.05 −1.74 ± 0.21 0.81 ± 0.09 0.63 ± 0.07 −2.18 ± 0.25 0.98 ± 0.11 0.70 ± 0.08 −2.45 ± 0.28 1.09 ± 0.12 1.85 ± 0.20 6.29 ± 1.35
Transformer G-Net 0.40 ± 0.05 −1.35 ± 0.21 0.66 ± 0.08 0.50 ± 0.07 −1.69 ± 0.31 0.80 ± 0.13 0.58 ± 0.11 −2.01 ± 0.45 0.92 ± 0.19 0.64 ± 0.14 −2.24 ± 0.56 1.00 ± 0.23 1.71 ± 0.11 6.97 ± 2.06
CT (CRPS) 0.32 ± 0.07 −1.00 ± 0.30 0.58 ± 0.11 0.41 ± 0.07 −1.40 ± 0.34 0.71 ± 0.10 0.50 ± 0.07 −1.87 ± 0.35 0.84 ± 0.10 0.57 ± 0.07 −2.22 ± 0.36 0.92 ± 0.10 1.52 ± 0.23 13.14 ± 2.55
CT (Gaussian) 0.30 ± 0.07 −0.91 ± 0.31 0.54 ± 0.13 0.37 ± 0.08 −1.17 ± 0.35 0.64 ± 0.14 0.44 ± 0.09 −1.44 ± 0.38 0.74 ± 0.14 0.49 ± 0.09 −1.64 ± 0.38 0.81 ± 0.14 1.35 ± 0.29 7.88 ± 1.76
CT . . . . . . 0.43 ± 0.10 . . . . . . 0.53 ± 0.12 . . . . . . 0.60 ± 0.13 . . . . . . 0.65 ± 0.13 . . . . . .

D.S. G-VAE (Gaussian) 0.49 ± 0.04 −2.26 ± 0.12 0.54 ± 0.09 0.58 ± 0.06 −2.56 ± 0.16 0.66 ± 0.11 0.64 ± 0.07 −2.72 ± 0.18 0.76 ± 0.13 0.67 ± 0.07 −2.78 ± 0.18 0.83 ± 0.13 2.01 ± 0.20 14.99 ± 0.86
D.S. G-VAE (CRPS) 0.28 ± 0.05 −0.89 ± 0.25 0.49 ± 0.10 0.35 ± 0.06 −1.14 ± 0.29 0.59 ± 0.12 0.42 ± 0.07 −1.40 ± 0.29 0.69 ± 0.12 0.47 ± 0.06 −1.58 ± 0.26 0.76 ± 0.12 1.28 ± 0.21 5.48 ± 3.08
G-Latent (Gaussian) 0.38 ± 0.04 −1.70 ± 0.14 0.53 ± 0.09 0.42 ± 0.05 −1.80 ± 0.16 0.61 ± 0.11 0.46 ± 0.06 −1.90 ± 0.18 0.69 ± 0.12 0.48 ± 0.06 −1.95 ± 0.18 0.73 ± 0.12 1.51 ± 0.18 10.14 ± 1.36
G-Latent (CRPS) 0.29 ± 0.05 −0.95 ± 0.21 0.51 ± 0.10 0.35 ± 0.06 −1.18 ± 0.26 0.60 ± 0.12 0.40 ± 0.07 −1.37 ± 0.29 0.68 ± 0.13 0.43 ± 0.08 −1.50 ± 0.29 0.73 ± 0.13 1.25 ± 0.23 2.95 ± 1.37

Table 2: Results at selected steps t′ ∈ {2, 3, 5, 6} for the real-world dataset. Metrics: Energy Score
(ES ↓) (per step and across steps), KDE-Loglikelihood (KDE-LL ↑), and RMSE ↓.

t′ = 2 t′ = 3 t′ = 5 t′ = 6 Global

Model ES↓ KDE-LL↑ RMSE↓ ES↓ KDE-LL↑ RMSE↓ ES↓ KDE-LL↑ RMSE↓ ES↓ KDE-LL↑ RMSE↓ ES↓

G-Net 5.32±0.08 −3.92±0.05 11.84±0.24 5.82±0.08 −4.11±0.05 12.83±0.29 6.98±0.09 −4.55±0.07 14.05±0.30 7.44±0.11 −4.83±0.04 14.23±0.29 18.35±0.33
Transformer G-Net 5.28±0.06 −3.89±0.06 10.90±0.30 5.84±0.08 −4.06±0.08 11.67±0.26 6.47±0.08 −4.30±0.06 12.96±0.32 6.90±0.08 −4.48±0.04 13.21±0.29 16.70±0.23
CT (CRPS) 4.92±0.06 −3.81±0.06 10.10±0.29 5.39±0.08 −3.94±0.06 10.53±0.26 5.77±0.08 −4.08±0.04 10.75±0.29 5.86±0.07 −4.19±0.06 10.91±0.28 14.61±0.27
CT (Gaussian) 5.25±0.06 −3.92±0.06 10.41±0.29 5.71±0.08 −4.04±0.07 10.74±0.29 6.15±0.07 −4.18±0.06 11.01±0.34 6.34±0.08 −4.24±0.07 11.25±0.30 15.55±0.23
CT . . . . . . 9.00±0.23 . . . . . . 9.57±0.24 . . . . . . 10.16±0.27 . . . . . . 10.35±0.31 . . .

D.S. G-VAE (Gaussian) 5.51±0.08 −3.90±0.06 9.58±0.25 5.99±0.08 −3.98±0.06 10.29±0.22 6.34±0.06 −4.03±0.05 10.88±0.26 6.44±0.07 −4.04±0.05 11.04±0.29 15.98±0.23
D.S. G-VAE (CRPS) 4.89±0.08 −3.82±0.06 9.40±0.22 5.36±0.08 −3.92±0.05 10.09±0.25 5.70±0.07 −3.99±0.06 10.63±0.29 5.82±0.06 −4.04±0.06 10.79±0.30 14.38±0.19
G-Latent (Gaussian) 5.27±0.06 −3.85±0.06 9.42±0.23 5.64±0.08 −3.89±0.06 10.09±0.23 5.96±0.07 −3.94±0.04 10.64±0.19 6.07±0.07 −3.95±0.06 10.80±0.25 15.21±0.26
G-Latent (CRPS) 4.85±0.05 −3.79±0.06 9.23±0.20 5.25±0.08 −3.88±0.05 9.79±0.24 5.60±0.09 −3.94±0.05 10.36±0.29 5.72±0.06 −3.96±0.06 10.55±0.28 14.23±0.23

Metrics. Our model produces MC samples at each prediction step. We evaluate with: RMSE of the
predictive mean, computed from the average of MC samples at each step (lower is better); Energy
Score (ES), a strictly proper multivariate scoring rule that reduces to CRPS in the univariate case
and assesses distributional fit. We report it per step and over the full trajectory to capture temporal
coherence (lower is better); and KDE log-likelihood (KDE-LL, the log-likelihood of the observed
outcome under a Gaussian kernel density estimate fit to the model’s samples, reflecting density fit
(higher is better). After trying over ten bandwidths for each dataset and baseline, we selected the one
with general better results to report here. For the semi-synthetic dataset, we report results for two ad-
ditional bandwidth (see App. J). In general, the best bandwidths provided better results consistently
across models. For the semi-synthetic dataset, We also assess calibration via quantile coverage: for
q ∈ {0.1, . . . , 0.9} we compute, per step and per outcome dimension (and aggregated across steps),
the fraction of test outcomes below the MC-estimated q-quantile (ideal coverage equals q). As a
scalar summary we report Calibration MAE, the mean absolute gap between empirical and nominal
coverage averaged over quantiles, dimensions, and steps (lower is better). To obtain the metrics,
we used 50 and 40 MC samples for the semi-synthetic and the real-world dataset, respectively. See
App. H for more details on the metrics.

Results. We ran all experiments in AWS SageMaker on an ml.g5.4xlarge instance (A10G GPU,
24 GiB VRAM). We report selected steps in Table 1 (semi-synthetic, modified) and Table 2 (real-
world), with full results—and the original semi-synthetic benchmark—in App. J. Semi-synthetic
runs use five random seeds; real-world runs use four; intervals denote standard deviations.1 Across
both datasets, G-Latent attains the strongest distributional performance, especially at larger hori-
zons. On semi-synthetic data, G-VAE–CRPS remains competitive with G-Latent–CRPS—showing
small ES gaps overall and occasional wins at short horizons—whereas among the Gaussian variants
the gap between G-Latent and G-VAE is pronounced: Gaussian heads are more error-prone, and
the latent rollout reduces accumulation error. KDE log-likelihood consistently favors G-Latent at
large steps (across all tested bandwidths). On the real-world cohort, G-Latent–CRPS is best at ev-
ery reported step and globally. For calibration on the semi-synthetic benchmark, G-Latent–CRPS
achieves the lowest Calibration MAE by a clear margin, while Gaussian variants fare markedly
worse. In App. J we show extensive quantile coverage tables. Regarding other baselines, CT with
Gaussian/CRPS heads trails the latent models on distributional metrics, while the point-estimate CT
attains the lowest RMSE (as expected for a point forecaster); G-Net and Transformer G-Net lag fur-
ther behind on ES and KDE-LL. Overall, G-Latent–CRPS provides the best distributional metrics
at long horizons while remaining competitive on point accuracy, and it clearly outperforms prior
g-computation–based models.

1See App. J for complete tables and diagnostics.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Test-set inference time on the
semi-synthetic dataset (50 MC
samples; 11 projection-horizon steps)
(hh:mm:ss).

Method hh:mm:ss

G-Latent (CRPS) [all] 00:19:27 ± 12s
G-Latent (CRPS) [last] 00:07:11 ± 05s
G-Latent (Gaussian) [all] 00:20:16 ± 15s
G-Latent (Gaussian) [last] 00:07:26 ± 08s
G-VAE (CRPS) 00:25:42 ± 12s
G-VAE (Gaussian) 00:20:05 ± 11s
Transformer G-Net 01:03:21 ± 36s
G-Net 00:05:45 ± 05s
CT–CRPS 00:59:25 ± 29s
CT–Gaussian 00:53:08 ± 19s

We measure end-to-end test-set inference time on the semi-
synthetic dataset (50 MC samples; 11 projection-horizon
steps). Table 3 reports the results: decoding all steps with
G-Latent–CRPS takes 00:19:27 (1,167 s ± 12 s), while de-
coding only the last step takes 00:07:11 (431 s ± 5 s)—an
≈ 63% reduction that is valuable when only a few hori-
zons are needed, since non-latent rollouts must decode every
step. For G-VAE–CRPS, inference time is 00:25:42 (1,542 s
± 12 s), about 32% slower than G-Latent–CRPS (all steps).
This gap stems from our decoupled decoder, which allows G-
Latent-CRPS to decode outcomes without covariates. In our
implementation, the outcome and covariate decoders share
three layers (App. D); further decoupling could yield addi-
tional gains. The Gaussian head yields similar wall-clock for G-Latent—00:20:16 (1,216 s ± 15 s)
for all steps and 00:07:26 (446 s ± 8 s) for last-step decoding—and 00:20:05 (1,205 s ± 11 s) for
G-VAE (there is no covariate decoupling in the Gaussian head models). Among other baselines,
Transformer G-Net and CT–CRPS/CT–Gaussian are substantially slower at 01:03:21 (3,801 s ±
36 s), 00:59:25 (3,565 s ± 29 s), and 00:53:08 (3,188 s ± 19 s), respectively, while G-Net is faster
at 00:05:45 (345 s ± 5 s). For all the baselines, we fully tensorize and cache recurrent state (e.g.,
Transformer hidden states in Transformer G-Net and CT–CRPS/Gaussian), so each step only pro-
cesses the last MC prediction rather than recomputing the entire history. In summary, all full trans-
former–based models exceed 50 minutes per test set, whereas G-Latent (and its variants) substan-
tially reduces inference time by using the transformer only to encode the history up-to-t′, then up-
dating the representation during the MC rollout with a lightweight GRU. Our tensorized and cached
implementation of G-Net achieves very low inference times because it uses a lightweight RNN to
process data and, unlike G-Latent, has no decoder—it injects residual noise. However, this reduces
its expressivity and adaptability to particular data distributions.

6 CONCLUSIONS AND LIMITATIONS

In this work, we introduce G-Latent, a novel method for distributional estimation of individual-
ized POs under time-varying treatment effects for discrete settings, with identifiability guarantees
through g-computation in the latent space. We demonstrate the general efficacy of our approach,
both theoretically and experimentally. Also, we show that our method is efficient at sampling com-
pared with other variants that perform g-computation in the data-space. We identify two potential
limitations: the first is related to the latent factorization in eq. 6, fundamental for G-Latent. This
assumption would be violated, for example, under posterior collapse (Lucas et al., 2019), which is
relatively common in VAE training and prevents latent representations from properly representing
data. We did not observe this problem in the experiments, but it is important to be careful with
that. On the other hand, another potential limitation comes from the CRPS decoder; as An & Jeon
(2023) discuss, the ALD-decoder assumes that the different elements of Yt+t′ (if multivariate) are
independent given z. If the assumption fails, cross-dimensional dependence may remain unmod-
eled. However, neither DistVAE nor us empirically observe this problem (G-Latent has strong ES
metrics). Finally, our focus in this work is aleatoric uncertainty; epistemic uncertainty is orthogonal
and can be added with MC dropout or deep ensembles, or more formally via Bayesian priors.

We restrict attention to g-computation–based estimators rather than IPTW/MSM-style generative
baselines (e.g., Wu et al., 2024). In principle, IPTW could be adapted to our conditional, trajectory-
level estimands, but would require high-dimensional propensity models (or conditional treatment
densities for continuous treatments) and weighted conditional density estimation, which can lead to
unstable importance weights in long-horizon, high-dimensional settings. Designing and evaluating
IPTW/MSM-style generative models for individualized distributional potential outcomes remains
an interesting direction for future work.
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A ASSUMPTIONS FOR CAUSAL IDENTIFICATION

We work within the potential outcomes paradigm (Rubin, 2005) and its extension to temporal treat-
ments and outcomes (Robins et al., 2000), a setup also adopted by prior sequence models for treat-
ment effect inference (e.g., Lim, 2018; Bica et al.). In this framework, identification of counterfac-
tual distributions over time (and, in particular, the τ -step conditional mean from Eq. (1)) relies on
three standard conditions on the data-generating process.

Assumption A.1 (Consistency). For any fixed treatment history āt, if the realized actions satisfy
Āt = āt, then

Yt+1[āt] = Yt+1.

That is, under the actually received treatment sequence, the relevant potential outcome coincides
with the observed one.

Assumption A.2 (Sequential Overlap/Positivity). For any history value h̄t in the support of H̄t,
each admissible action has positive probability:

0 < p(At = at | H̄t = h̄t) < 1 whenever p(H̄t = h̄t) > 0.

Assumption A.3 (Sequential Ignorability / No Unmeasured Confounding). Conditioning on
the observed history renders the current action as-if randomized with respect to the next-step poten-
tial outcome:

∀ t and ∀ āt:t+τ−1 : At ⊥⊥
(
L̄t+1:t+τ [āt:t+τ−1], Ȳt+1:t+τ [āt:t+τ−1]

) ∣∣ H̄t.

Corollary A.4 (g-computation; Robins & Hernan, 2008). Under A.1–A.3, the τ -step-ahead con-
ditional mean under a fixed intervention path āt:t+τ−1 is identified by the longitudinal g-formula.
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B MULTI-INPUT TRANSFORMER

Scope. This appendix details the encoder we use to compute the history embedding rt = fω(h̄t)
from the factual history h̄t = { X̄t, Āt−1, Ȳt,V }. It follows the multi-input transformer design
of Melnychuk et al. (2022) (three streams with cross-attention and shared relative positional en-
codings), but we do not use their balancing loss and we never feed model predictions back into
the transformer. The output of this encoder is a single fused representation rt that our model uses
downstream (Sec. 4.3).

B.1 INPUTS AND TOKENIZATION

Let b = 1, . . . , B index transformer blocks and dh the model width. For the first block, we map
each sequence to hidden states via time-shared linear layers:

A0
1:t = LinearA(Āt−1), X0

1:t = LinearX(X̄t), Y0
1:t = LinearY (Ȳt), Ṽ = LinearV (V),

where Āt−1 = (A1, . . . ,At−1,0) is a left-shifted treatment stream aligned with our start-of-
interval indexing (decision Aj precedes (Yj+1,Xj+1)). Subsequent blocks receive the previous
block’s outputs.

We denote the stream-specific hidden sequences at block b by Ab
1:t, X

b
1:t, and Yb

1:t (∈ Rt×dh ).

B.2 MASKED SELF-ATTENTION WITH RELATIVE POSITIONAL ENCODINGS

Each stream applies masked multi-head self-attention (causal mask so a position i only attends to
j ≤ i) with relative positional encodings (RPE). For head dimension dqk, attention at position i is

Attni(Q,K, V ) =

t∑
j=1

αij
(
Vj + aVij

)
, αij = softmaxj

(
Q⊤
i

(
Kj + aKij

)√
dqk

)
, (11)

aVij = wVclip(j−i,ℓmax)
, aKij = wKclip(j−i,ℓmax)

, clip(x, ℓmax) = max{−ℓmax,min{ℓmax, x}},

with trainable wVℓ , w
K
ℓ ∈ Rdqk for ℓ ∈ {−ℓmax, . . . , 0}. These Toeplitz-structured encodings

depend only on relative distance and are shared across blocks and streams. Layer normalization
and residual connections wrap the attention sublayer, and a position-wise feed-forward network
FF(h) = Linear(ReLU(Linear(h))) follows, again with residual+LN.

B.3 CROSS-ATTENTION BETWEEN STREAMS AND STATIC COVARIATES

To couple signals across modalities, each block augments self-attention with cross-attentions be-
tween the three streams. Using tildes for post-self-attention states and writing MHA(Q,K, V ) for
multi-head attention,

Ã b−1
X = LN

(
MHA

(
Q(Ã b−1),K(Xb−1), V (Xb−1)

)
+ Ã b−1

)
, (12)

Ã b−1
Y = LN

(
MHA

(
Q(Ã b−1),K(Yb−1), V (Yb−1)

)
+ Ã b−1

)
, (13)

X̃ b−1
A = LN

(
MHA

(
Q(X̃ b−1),K(Ab−1), V (Ab−1)

)
+ X̃ b−1

)
, (14)

X̃ b−1
Y = LN

(
MHA

(
Q(X̃ b−1),K(Yb−1), V (Yb−1)

)
+ X̃ b−1

)
, (15)

Ỹ b−1
X = LN

(
MHA

(
Q(Ỹ b−1),K(Xb−1), V (Xb−1)

)
+ Ỹ b−1

)
, (16)

Ỹ b−1
A = LN

(
MHA

(
Q(Ỹ b−1),K(Ab−1), V (Ab−1)

)
+ Ỹ b−1

)
. (17)

We then pool the two cross-attended views per stream and inject static covariates at every time step:

Ă b−1 = Ã b−1
X + Ã b−1

Y + 1Ṽ⊤, X̆ b−1 = X̃ b−1
A + X̃ b−1

Y + 1Ṽ⊤, (18)

Y̆ b−1 = Ỹ b−1
X + Ỹ b−1

A + 1Ṽ⊤, (19)

followed by parallel FF+residual+LN sublayers to yield Ab,Xb,Yb. Treatments remain left-shifted
throughout (so treatment token at index i aligns with covariate/outcome tokens at i+1).
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B.4 FUSION TO A SINGLE HISTORY EMBEDDING rt

After the final block B, we fuse the three streams by element-wise averaging at each time i ≤ t,
then project with a linear layer and ELU:

Φ̃i =
1

3

(
AB
i−1 +XB

i +YB
i

)
, Φi = ELU

(
Linear(Φ̃i)

)
, rt := Φt ∈ Rdr .

We use only the factual {X1:t,A1:t−1,Y1:t} to build rt; predicted outcomes are never fed back into
the encoder.

Remarks. (i) All attention modules use the causal mask and the same RPE as in Eq. 11. (ii) Static
covariates V are injected at every block/time step via Ṽ. (iii) Dropout is applied after linear layers
in attention and feed-forward sublayers.

C DISTVAE-STYLE LOSS: DERIVATION AND DISCUSSION

We adapt the continuous-variable objective of An & Jeon (2023) to our setting (ignoring categorical
variables). Let x = (x1, . . . , xp) denote continuous observations (here, x ≡ y) and z the latent.
DistVAE assumes an ALD (asymmetric Laplace) decoder mixed over a quantile level α ∈ (0, 1):

p(x; θ, β) =

∫∫
p(x | z, α; θ, β) p(z) p(α) dα dz, p(x | z, α; θ, β) =

p∏
j=1

p(xj | z, α; θj , β),

(20)
where, for each coordinate,

p(xj | z, α; θj , β) =
α(1− α)

β
exp

(
− ρα

(xj −Dj(α, z; θj)

β

))
, ρα(u) = (α− I{u < 0})u.

(21)

Here Dj(α, z; θj) is the conditional quantile function (ALD location)2, β > 0 is a scale constant,
and ρα is the pinball loss.

Assumption 1 (DistVAE). (i) {xj} are conditionally independent given z; (ii) (discrete variables
independent of α; not used here); (iii) α ⊥ z. Item (i) is the usual VAE factorization; (iii) treats α
as a prior (no q(α | x)), which is key to the proper-scoring-rule objective below.

C.1 FINITE-K NEGATIVE ELBO (COMPOSITE QUANTILE)

Approximate the α-integral by a uniform grid αk = k
K , k = 1, . . . ,K, with p(αk) = 1

K , and
introduce qϕ(z | x). A Jensen step yields, up to additive constants independent of (θ, ϕ),

−ELBOK(θ, ϕ) = Eqϕ(z|x)

 1

K

K∑
k=1

p∑
j=1

ραk

(
xj −Dj(αk, z; θj)

) + βKL
(
qϕ(z | x) ∥ p(z)

)
+ CK ,

(22)
so the reconstruction is a composite quantile (average ALD NLL across {αk}).

C.2 LIMIT K →∞: CRPS OBJECTIVE AND DISTVAE LOSS

Under mild integrability/continuity in α,

lim
K→∞

1

K

K∑
k=1

ραk

(
xj −Dj(αk, z; θj)

)
=

∫ 1

0

ρα
(
xj −Dj(α, z; θj)

)
dα, (23)

lim
K→∞

1

K

K∑
k=1

logαk(1− αk) =

∫ 1

0

logα(1− α) dα. (24)

2An & Jeon (2023) enforce Dj(·, z) to be monotone in α (to avoid quantile crossing) via an isotonic-spline
parameterization. We do not impose this constraint: it adds architectural restrictions and, in our experiments,
occasional finite-K crossings had negligible effect on CRPS or downstream rollouts.
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Hence −ELBOK converges to

LDistVAE(θ, ϕ) = Eqϕ(z|x)

 p∑
j=1

∫ 1

0

ρα
(
xj −Dj(α, z; θj)

)
dα

 + βKL
(
qϕ(z | x) ∥ p(z)

)
+ C,

(25)

where
∫ 1

0
ρα(·) dα equals the Continuous Ranked Probability Score (CRPS) for the model CDF. In

practice we estimate it by Monte Carlo over α ∼ Unif(0, 1). Thus the “ALD NLL (MC–CRPS)”
reconstruction is the K→∞ limit of a valid ELBO (not a heuristic).

C.3 WHY THIS HELPS VS. GAUSSIAN DECODING

Distributional capacity. Gaussian decoders impose symmetry and typically homoscedastic noise,
and in practice often compensate for mean misspecification by inflating the predicted variance,
yielding over-dispersed (underconfident) forecasts. ALD/quantile decoding directly captures skew-
ness and heteroscedasticity across α while preserving VAE advantages: (i) a likelihood-derived
proper scoring rule (CRPS) for reconstruction, (ii) simple sampling via inverse transform (u ∼
Unif(0, 1) then xj = Dj(u, z)), (iii) a tractable latent KL. By focusing the loss on quantile loca-
tions across α, the ALD/CRPS objective discourages variance inflation and typically yields sharper
predictive distributions under non-Gaussian data.

C.4 OUR OBJECTIVE (CONTINUOUS HEAD) IN DISTVAE FORM

Identifying x ≡ y (continuous outcomes), our training loss for the outcome head is

Lcont = Eqϕ(z|·)

 1

K

K∑
k=1

dy∑
j=1

ρα(k)

(
yj −Dj(α

(k), z; θj)
) + βKL

(
qϕ(z | ·) ∥ p(z)

)
, α(k) i.i.d.∼ Unif(0, 1).

(26)

This is exactly the ALD NLL (MC–CRPS) plus KL, i.e., the continuous-variable DistVAE objective
specialized to our architecture (temporal and cross-outcome dependence are mediated by the latent
path; the quantile head supplies the likelihood noise, analogous to a Gaussian decoder’s noise).

D G-LATENT ARCHITECTURE: ENCODER, TEMPORAL CORE, AND
DECODER

Scope. This appendix specifies the network architecture of G-Latent: the history network fω , the
temporal core (κψ and GRUγ), and the shared conditional VAE (Eϕ, Dθ) reused at every relative
step. Training objectives and identification assumptions are described elsewhere.

D.1 NOTATION AND SHAPES

Let Xt ∈ Rdx , Yt ∈ Rdy , and Lt = (Yt,Xt) ∈ RdL with dL = dx+dy; treatments At ∈ Rda ; and
static covariates V ∈ Rdv . The history network outputs rt ∈ Rdr . At relative step t′ ∈ {1, . . . , τ},
the latent is zt,t′ ∈ Rdz , the temporal state is st,t′ ∈ Rds , and the step context is ct,t′ ∈ Rdc .

D.2 HISTORY NETWORK fω

We use the multi–input transformer of Melnychuk et al. (2022) (full details in App. B). Briefly:

• Inputs. Three factual streams up to anchor time t: X̄t, Ȳt, and left–shifted Āt−1

(start–of–interval indexing), plus static V. Each stream is linearly projected to the model
width; V is injected at every time step.

• Blocks. Each block applies masked multi–head self–attention with shared relative po-
sitional encodings per stream, cross–attentions between streams, and a positionwise
feed–forward network. All sublayers use residual connections, layer normalization, and
dropout.
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• Fusion. The final per–time states of the three streams are averaged and linearly projected
with ELU to yield rt = fω(h̄t) ∈ Rdr . No model predictions are fed back into the encoder.

D.3 TEMPORAL CORE: CONTEXT COMBINER AND LATENT–DRIVEN STATE UPDATE

Given rt, previous state st,t′−1, current action at+t′−1, and relative index t′, we form a dense context
and update the recurrent state.

Context combiner. We concatenate the inputs and project to dc with a single linear layer:

c̃t,t′ =
[
rt ; st,t′−1 ; at+t′−1 ; t

′ ] ∈ Rdr+ds+da+1, ct,t′ = κψ
(
c̃t,t′

)
∈ Rdc . (27)

State update (latents only). A GRUCell updates the temporal state using the latent, the frozen
history embedding, the current action, and the step index:

st,t′ = GRUγ
([

zt,t′ ; rt ; at+t′−1 ; t
′ ], st,t′−1

)
, st,0 = 0. (28)

GRU weights are orthogonally initialized and biases are zero–initialized. A data–space variant (not
used in our main model) replaces zt,t′ with lt+t′ .

D.4 SHARED CONDITIONAL VAE (Eϕ, Dθ)

A single conditional VAE is reused across steps. Encoder Eϕ outputs a Gaussian posterior over zt,t′ ,
and decoder Dθ maps [zt,t′ ; ct,t′ ;at+t′−1] to the reconstruction heads. The decoder uses dense skip
concatenation: after every hidden block, [z; c;a] is re–concatenated to the block output before the
next block.

D.4.1 ENCODER Eϕ

The encoder is an MLP applied to [lt+t′ ; ct,t′ ] with repeated blocks Linear → BatchNorm →
ReLU→ Dropout, followed by two linear heads for mean and log–variance:

(µt,t′ , logσ
2
t,t′) = Eϕ

(
[lt+t′ ; ct,t′ ]

)
∈ Rdz×Rdz , zt,t′ = µt,t′+σt,t′⊙ϵ, ϵ ∼ N (0, I). (29)

D.4.2 DECODER TRUNK Tθ WITH DENSE SKIPS

Starting from h0 = [zt,t′ ; ct,t′ ;at+t′−1], the trunk applies repeated blocks Linear → ReLU →
Dropout; after each block with output h, we set

h←
[
h ; zt,t′ ; ct,t′ ; at+t′−1

]
(30)

before entering the next block. The trunk output wt,t′ feeds the heads below.

Gaussian (heteroscedastic) decoding path. When using a purely Gaussian decoder for all dL
coordinates, two linear heads produce mean and positive scale (via softplus):

µ̂t,t′ = Wµwt,t′ + bµ, σ̂t,t′ = softplus(Wσwt,t′ + bσ) , (31)
yielding a diagonal Gaussian on Lt+t′ . Optional clamping can be applied to designated coordinates
(e.g., nonnegativity of specific outputs) by shifting the corresponding mean channels.

CRPS / random–quantile outcome path. When using the distributional outcome head, the de-
coder splits into:

1. Outcome quantile head (per outcome, per quantile). Let α ∈ (0, 1)dy collect
per–outcome quantile levels and draw A i.i.d. samples per outcome. From wt,t′ (option-
ally after a small shared sub–trunk), each outcome coordinate j ∈ {1, . . . , dy} has a dedi-
cated MLP that re–concatenates [zt,t′ ; ct,t′ ;at+t′−1;αj ] at every hidden layer and outputs
a scalar quantile q̂αj ,t,t′,j . Stacking across A samples yields Q̂t,t′ ∈ Rdy×A.

2. Remaining coordinates (Gaussian head). If dL > dy , a separate trunk (fed by
[wt,t′ ; zt,t′ ; ct,t′ ;at+t′−1]) outputs (µ̂rem, log σ̂

2
rem) for the remaining dL−dy coordinates.

This realizes the outcome–specific α–aware branches while keeping non–outcome channels Gaus-
sian.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.5 PER–STEP FLOW (TRAINING AND INFERENCE INTERFACE)

At each step t′:

1. Build the context:
ct,t′ = κψ

([
rt ; st,t′−1 ; at+t′−1 ; t

′ ]) . (32)

2. Training: encode [lt+t′ ; ct,t′ ] to obtain (µt,t′ , logσ
2
t,t′) and sample zt,t′ .

3. Decode with either the Gaussian head to obtain (µ̂t,t′ , σ̂t,t′) for all coordinates, or the
quantile outcome head to obtain Q̂t,t′ (and Gaussian parameters for any remaining coordi-
nates).

4. Update the state:

st,t′ = GRUγ
([

zt,t′ ; rt ; at+t′−1 ; t
′ ], st,t′−1

)
. (33)

At inference, zt,t′ ∼ N (0, I) is sampled independently across steps and Monte Carlo draws; by
default only outcomes Y are decoded, and decoding can be restricted to any subset of steps S ⊆
{1, . . . , τ}.

D.6 DESIGN NOTES

• Treatment sensitivity. Actions enter both the context combiner and every decoder block
via dense re–concatenation, preserving a short path from treatment to outputs.

• Relative step embedding. The scalar index t′ (or a small positional code) is concatenated
in κψ and the GRU input to inform the horizon position without per–step parameters.

• Normalization and positivity. BatchNorm is used only in the VAE encoder. Decoder
scales are enforced positive with softplus.

• Parameter sharing. A single (Eϕ, Dθ, κψ,GRUγ) instance is reused across all t′, im-
proving data efficiency and keeping semantics consistent across horizons.

D.7 MODULE I/O SUMMARY

Module Signature

History network fω h̄t 7→ rt ∈ Rdr
Context combiner κψ [rt; st,t′−1;at+t′−1; t

′] 7→ ct,t′ ∈ Rdc
Encoder Eϕ [lt+t′ ; ct,t′ ] 7→ (µt,t′ , logσ

2
t,t′) ∈ Rdz × Rdz

Decoder trunk Tθ [zt,t′ ; ct,t′ ;at+t′−1] 7→ wt,t′ (dense skips)
Outcome head D

(y)
θ (CRPS) [wt,t′ ;α] 7→ q̂α ∈ R (per outcome, per α)

Covariate head D
(x)
θ (Gaussian) wt,t′ 7→ (µ̂rem, log σ̂

2
rem)

State update GRUγ [zt,t′ ; rt;at+t′−1; t
′], st,t′−1 7→ st,t′

E THEORETICAL INSIGHTS

E.1 EQUIVALENCE OF LATENT AND DATA-SPACE G-COMPUTATION

We first formalize when sampling only in latent space (Alg. 1) is sufficient to recover the interven-
tional laws identified by the sequential g-formula.

Standing causal assumptions. We assume the usual conditions for identification by the g-
formula: (i) consistency, (ii) sequential ignorability/exchangeability, and (iii) sequential over-
lap/positivity (cf. App. A).
Assumption E.1 (Latent factorization and context sufficiency). Let p0 be a fixed prior density on
latents (e.g., N (0, I)). Fix an anchor time t and let rt = fω(h̄t) denote the history embedding
computed at t. For each relative step t′ ∈ {1, . . . , τ} define the latent-state update recursively from
st,0 = 0 by

st,t′ = GRUγ
(
[ zt,t′ , rt, at+t′−1, t

′ ], st,t′−1

)
.
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Assume that for every t′ ∈ {1, . . . , τ} and every history h̄t+t′−1 the true one-step conditional
distribution of Lt+t′ = (Yt+t′ ,Xt+t′) admits the factorization

p⋆(lt+t′ | h̄t+t′−1,at+t′−1) =

∫
pθ
(
lt+t′ | zt,t′ , ct,t′ , at+t′−1

)
p0(zt,t′) dzt,t′ ,

where ct,t′ = κψ(rt, st,t′−1,at+t′−1, t
′). Moreover, for each fixed (c,a) the map z 7→ pθ(· |

z, c,a) is a probability-kernel in L measurable in (z, c,a).

Assumption E.1 states that (rt, st,t′−1) is a sufficient statistic of H̄t+t′−1 for predicting Lt+t′ , and
that the true stepwise conditional factors through a latent with fixed prior density p0.
Remark E.2 (Relation to training). Assumption E.1 is a modeling/realizability statement: it pos-
tulates that the one-step conditionals factor through a latent with prior p0 given the context
(rt, st,t′−1,at+t′−1, t

′). Our conditional-VAE training (Sec. 4.3) is the estimation procedure we use
to realize this factorization in practice by maximizing the (conditional) ELBO, i.e., approximately
minimizing the negative log-likelihood of pθ(Lt+t′ | zt,t′ , ct,t′ ,at+t′−1) under p0. All results that
require the assumption hold exactly; with finite data and imperfect training, they hold approximately
with the local errors {εt′} used in Prop. E.10.
Remark E.3 (State update uses latent representations). The recurrent state is updated through latents
only

(
st,t′ = GRUγ([zt,t′ , rt,at+t′−1, t

′], st,t′−1)
)
. Thus all predictive information that propagates

forward from step t′ enters via zt,t′ and the context ct,t′ = κψ(rt, st,t′−1,at+t′−1, t
′). When zt,t′ is

a good representation of Lt+t′ (e.g., the decoder pθ(lt+t′ | zt,t′ , ct,t′ ,at+t′−1) is highly expressive
and, ideally, injective in zt,t′ for a.e. (ct,t′ ,at+t′−1)), the pair (rt, st,t′−1) approaches a sufficient
statistic of H̄t+t′−1 for predicting Lt+t′ . In VAEs the mapping is not exactly invertible, but training
to maximize the conditional ELBO encourages zt,t′ to retain information about Lt+t′ that is relevant
for prediction; higher-fidelity decoders (e.g., with flows) make this approximation tighter.

Lemma E.4 (Representation sufficiency implies context sufficiency). Fix the embedding rt and
suppose Assumption E.1 holds. Assume that for Lebesgue-a.e. (c,a) the mapping z 7→ pθ(· | z, c,a)
is injective as a map into P(L) (i.e., distinct z induce distinct conditional laws). Assume also that
st,t′−1 is a deterministic, measurable function of (zt,1:t′−1, rt,at:t+t′−2, 1:t

′ − 1). Then for almost
every (rt, st,t′−1,at+t′−1, t

′) we have the conditional independence

Lt+t′ ⊥⊥ H̄t+t′−1 | (rt, st,t′−1,at+t′−1, t
′),

i.e., (rt, st,t′−1) is sufficient (with at+t′−1, t
′) for predicting Lt+t′ .

Proof. Given (rt, st,t′−1,at+t′−1, t
′), the next context ct,t′ is fixed and zt,t′ ∼ p0 is independent

of H̄t+t′−1. The conditional density of Lt+t′ factors as p(lt+t′ | h̄t+t′−1,at+t′−1) =
∫
pθ(lt+t′ |

z, ct,t′ ,at+t′−1) p0(z) dz by Assumption E.1. Because st,t′−1 is a deterministic function of past
latents, any dependence on H̄t+t′−1 enters only through (rt, st,t′−1). Injectivity in z rules out
aliasing of predictive distributions conditioned on ct,t′ , so conditioning on (rt, st,t′−1,at+t′−1, t

′)
screens off the past.

Notation. When we write ct,t′(zt,1:t′−1) we suppress fixed arguments (rt,at+t′−1, t
′) and em-

phasize the indirect dependence via st,t′−1; explicitly, ct,t′ = κψ(rt, st,t′−1(zt,1:t′−1),at+t′−1, t
′).

Theorem E.5 (Equivalence of latent and data-space g-computation). Fix a time t, a horizon τ ≥ 1,
a treatment plan āt:t+τ−1, and a history h̄t. Under the standing causal assumptions and Assump-
tion E.1, the interventional law identified by the sequential g-formula equals the law induced by
latent rollout (Alg. 1):

(i) (Fixed-horizon marginal) For the last-step outcome,

pā
(
yt+τ | h̄t

)
=

∫
pθ

(
yt+τ

∣∣∣ zt,τ , ct,τ (zt,1:τ−1), at+τ−1

) τ∏
t′=1

p0(zt,t′) dzt,t′ .

Here ct,τ (zt,1:τ−1) is the deterministic context produced by the latent-state recursion
driven by zt,1:τ−1.
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(ii) (Full-path law) For the joint path,

pā
(
yt+1:t+τ | h̄t

)
=

∫ τ∏
t′=1

pθ

(
yt+t′

∣∣∣ zt,t′ , ct,t′(zt,1:t′−1), at+t′−1

) τ∏
t′=1

p0(zt,t′) dzt,t′ ,

where, if desired, the covariates {xt+t′} are integrated out.

Consequently, the Monte Carlo samples produced by Alg. 1 (with scope=last or all) are i.i.d.
draws from the respective interventional laws.

Proof. By identification, the last-step interventional density is

pā
(
yt+τ | h̄t

)
=

∫
lt+1:t+τ−1

[
τ−1∏
t′=1

p(lt+t′ | h̄t+t′−1,at+t′−1)

]
p(yt+τ | h̄t+τ−1,at+τ−1) dlt+1:t+τ−1.

Insert Assumption E.1 at each step (including the last) to obtain∫ {∫
lt+1:t+τ−1

τ−1∏
t′=1

pθ(lt+t′ | zt,t′ , ct,t′ ,at+t′−1) dlt+1:t+τ−1

}
pθ(yt+τ | zt,τ , ct,τ ,at+τ−1)

τ∏
t′=1

p0(zt,t′) dzt,t′ .

Using Tonelli/Fubini (all integrands are nonnegative densities), we can swap integration order, and
since pθ(lt+t′ | zt,t′ , ct,t′ ,at+t′−1) is a normalized conditional density with ct,t′ independent of
decoded L, we have

∫
pθ(lt+t′ | ·) dlt+t′ = 1 for t′ = 1, . . . , τ − 1 (the remaining integrals are

over the latent path zt:t+τ and the terminal outcome, i.e., we are integrating out all intermediate
variables). This yields the first result (i).

For the full-path law, repeat the same steps but keep the outcome components yt+t′ unintegrated
(integrate only the covariates xt+t′ if desired). The product form in item (ii) follows because ct,t′
depends only on (rt,at:t+t′−1, zt,1:t′−1), never on decoded L. Finally, Alg. 1 draws {zt,t′} i.i.d.
from p0 and applies the same deterministic maps and decoder conditional densities as above, so its
outputs are i.i.d. from these laws.

Corollary E.6 (Selective decoding (scope) is coherent). Under the conditions of Thm. E.5, de-
coding only at t+τ (scope=last) returns i.i.d. samples from pā(yt+τ | h̄t). More generally,
decoding at any subset S ⊆ {1, . . . , τ} returns i.i.d. samples from the corresponding marginal over
{Yt+t′}t′∈S .

Sketch / intuition. The sequential g-formula integrates over future observations. Assumption E.1
lets each one-step conditional be written as a mixture over a latent noise zt,t′ whose context depends
only on (rt, st,t′−1,at+t′−1, t

′). Because future contexts never use decoded L, all intermediate
integrals over L collapse to 1: only the latent-driven contexts matter. Thus, sampling latents and
decoding where desired reproduces the same interventional law.

E.2 PROPAGATION ERROR: LATENT VS. DATA-SPACE G-COMPUTATION ROLLOUT

We now provide theoretical justification for the empirical superiority of latent rollouts over autore-
gressive rollouts. Let {K⋆

s }t+τ−1
s=t denote the true one-step transition kernels and {Ke

s}t+τ−1
s=t the

learned approximations. For each step s, define the local one-step approximation error

εs := sup
h̄s,as

TV
(
K⋆
s (· | h̄s, as), Ke

s(· | h̄s, as)
)
,

where TV denotes total variation distance.

Tail operators. For s ∈ {t, . . . , t+τ−1}, let T •
s+1:t+τ denote the tail operator that maps a law on

Ls+1 to the induced law of Yt+τ obtained by propagating forward under rollout type • ∈ {lat,AR}.
It is standard that pushing forward measures by a fixed Markov kernel is nonexpansive in total
variation, hence

TV
(
T lat
s+1:t+τ [µ], T

lat
s+1:t+τ [ν]

)
≤ TV(µ, ν). (34)
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The property is a standard result for Markov kernels, often referred to as the Data Processing In-
equality. For autoregressive rollouts, the re-encoding step introduces sensitivity to the input measure.
We assume:
Assumption E.7 (Single-step AR operator Lipschitz property). For each index j ∈ {t+ 1, . . . , t+
τ − 1} define the single-step AR tail operator

T AR
j→j+1 : P(Lj) −→ P(Lj+1),

which maps a law on Lj (the predicted/decoded quantity at time j) to the induced law of the next-
step quantity under the autoregressive re-encoding and decoding procedure. Assume there exist
constants λj ≥ 0 such that, for all probability measures µ, ν on Lj ,

TV
(
T AR
j→j+1[µ], T AR

j→j+1[ν]
)
≤ (1 + λj) TV(µ, ν).

The assumption E.7 is justified because the autoregressive operator, as a finite composition of linear
layers and Lipschitz-continuous activation functions, is itself guaranteed to be Lipschitz-continuous
on any bounded domain.
Lemma E.8 (Composition amplification). Under Assumption E.7, the composed AR tail operator
TAR
s+1:t+τ = T AR

t+τ−1→t+τ ◦ · · · ◦ T AR
s+1→s+2 satisfies, for any µ, ν on Ls+1,

TV
(
TAR
s+1:t+τ [µ], T

AR
s+1:t+τ [ν]

)
≤

t+τ−1∏
j=s+1

(1 + λj) TV(µ, ν).

Proof. Apply the single-step bound (S) iteratively. For brevity write µs+1 = µ, νs+1 = ν and
define µj+1 = T AR

j→j+1[µj ], νj+1 = T AR
j→j+1[νj ]. Then

TV(µj+1, νj+1) ≤ (1 + λj) TV(µj , νj).

Chaining these inequalities for j = s+ 1, . . . , t+ τ − 1 yields

TV(µt+τ , νt+τ ) ≤
( t+τ−1∏
j=s+1

(1 + λj)
)
TV(µs+1, νs+1),

which is the claimed bound.

Remark E.9 (A sufficient bound for λj). A convenient sufficient condition for Assumption E.7 is
obtained by decomposing the single-step AR operator into (i) a re-encoding map Ξj : P(Lj) →
Cj that maps a predicted law on Lj to a context in Cj , and (ii) a decoder-induced kernel family
{Kc

j}c∈Cj that maps a context to a next-step kernel.

Concretely, suppose that for each j:

1. Ξj is LΞ,j-Lipschitz in total variation, i.e.

TV
(
Ξj [µ],Ξj [ν]

)
≤ LΞ,j TV(µ, ν) for all µ, ν ∈ P(Lj);

2. the decoder-induced kernel family is LK,j-Lipschitz in context, i.e.

sup
c,c′

TV
(
Kc
j ,K

c′

j

)
≤ LK,j ∥c− c′∥.

Then for any two input measures µ, ν on Lj we have

TV
(
T AR
j→j+1[µ], T AR

j→j+1[ν]
)
≤ sup

c,c′
TV(Kc

j ,K
c′

j ) ≤ LK,j ∥Ξj [µ]− Ξj [ν]∥ ≤ LK,jLΞ,j TV(µ, ν).

Hence one may take
λj ≤ LK,j LΞ,j ,

and the product amplification in Proposition E.10 follows by composing these single-step bounds
(cf. Lemma E.8).
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Main result. Let P ⋆ denote the true marginal law of Yt+τ , P lat the law induced by the latent
rollout, and PAR the law induced by the autoregressive rollout. Then:

Proposition E.10 (Propagation-error bound and dominance). Let t, τ, at:t+τ−1, h̄t be fixed, and let
P ⋆ denote the true interventional law of Yt+τ . Let P lat and PAR denote the learned laws produced
by the latent and autoregressive/data-space rollouts, respectively, when both use the same per-step
approximations {Ke

s}t+τ−1
s=t . Under Assumption E.7 (single-step AR operator Lipschitz property)

we have

TV(P ⋆, P lat) ≤
t+τ−1∑
s=t

εs, (35)

TV(P ⋆, PAR) ≤
t+τ−1∑
s=t

εs

t+τ−1∏
j=s+1

(1 + λj), (36)

where εs := suph̄s,as TV
(
K⋆
s (· | h̄s, as),Ke

s(· | h̄s, as)
)
. In particular, if some λj > 0 then the

bound equation 36 dominates equation 35, so the latent rollout attains a uniformly tighter (or equal)
upper bound on the final-step discrepancy.

Proof. For the latent rollout, a standard telescoping decomposition across steps combined with the
non-expansive property of Markov kernels in Equation 34 yields the bound:

TV(P ⋆, P lat) ≤
t+τ−1∑
s=t

εs.

For the autoregressive rollout, we define a sequence of hybrid distributions Ps for s = t, . . . , t+ τ ,
where Ps is the law generated by using the true kernels K⋆ up to step s− 1 and the learned kernels
Ke from step s onwards. This gives Pt+τ = P ⋆ and Pt = PAR.

By the triangle inequality, the total error is bounded by the sum of one-step differences:

TV(P ⋆, PAR) = TV(Pt+τ , Pt) ≤
t+τ−1∑
s=t

TV(Ps+1, Ps).

The difference between Ps+1 and Ps arises only from the kernel used at step s. The error introduced
at this step, at most εs, is then propagated forward by the autoregressive tail operator TAR

s+1:t+τ .
Using the amplification bound from Lemma E.8, the contribution from step s is:

TV(Ps+1, Ps) ≤ εs

t+τ−1∏
j=s+1

(1 + λj).

Summing these terms from s = t to t + τ − 1 yields the bound in Equation 36. Since each factor
(1 + λj) ≥ 1, the bound in Equation 36 is uniformly greater than or equal to the bound in Equation
35, completing the proof.

F DATASETS

F.1 DETAILS ON EXPERIMENTS WITH SEMI-SYNTHETIC DATA (ORIGINAL SETTING)

Following Melnychuk et al. (2022), we build on MIMIC-EXTRACT (Wang et al., 2020)—a stan-
dardized preprocessing pipeline for MIMIC-III (Johnson et al., 2016)—which provides ICU time
series aggregated at an hourly cadence. Missing values are imputed using forward and backward
filling, and all continuous time-varying variables are standardized.

From this resource we retain 25 vital signs as time-varying covariates and three static covariates
(gender, ethnicity, age). The complete feature list is provided in the accompanying code repository
for reproducibility. Static covariates are one-hot encoded and later reused to modulate noise terms.
In total, this yields a dv = 44 dimensional covariate vector.
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High-level simulator design. Following the basic idea of Schulam & Saria (2017), we first syn-
thesize untreated outcome trajectories under endogenous and exogenous dependencies, and then
apply treatments sequentially. We assume sparsity: each outcome depends on only a small subset
of covariates and treatments; treatment assignment likewise depends on a limited subset of recent
outcomes and covariates.

Cohort selection. We sample 1,000 patients whose ICU stays last at least 20 hours. Stays longer
than 100 hours are clipped, so for patient i we have T (i) ∈ [20, 100].

Untreated outcomes. For each patient i and each outcome dimension j = 1, . . . , dy , we construct
an untreated signal Z(i)

j,t by combining (i) a global trend, (ii) a patient-specific smooth component,
(iii) an exogenous effect of current covariates, and (iv) noise:

Z
(i)
j,t = αSj B-spline(t) + αgj g

(i)
j (t)︸ ︷︷ ︸

endogenous

+ αfj f
Z
j

(
X

(i)
t

)︸ ︷︷ ︸
exogenous

+ εt︸︷︷︸
noise

, εt ∼ N (0, 0.0052). (37)

Here, B-spline(t) is drawn from a mixture of three cubic splines (rapid decline, mild decline, stable)
over the ICU stay; g(i)j (t) is an independent Gaussian process with a Matérn kernel; and fZj (·) is
sampled via a random Fourier features (RFF) approximation to a Gaussian process (?), which avoids
repeated Cholesky factorizations when sampling at many points in Rdx . The weights αSj , α

g
j , α

f
j

control the relative contributions.

Treatment assignment. We then generate da binary treatments {Alt}
da
l=1 sequentially, introduc-

ing confounding through (a) a function of current covariates and (b) recent outcome history. For
treatment l at time t we define

pAl,t = σ
(
γAl ATl

(
Y t−1

)
+ γXl fYl

(
Xt

)
+ bl

)
, (38)

Alt ∼ Bernoulli
(
pAl,t
)
, (39)

where σ(·) is the logistic function; ATl
(Y t−1) denotes the average over a selected subset of the

previous Tl treated outcomes using the history Y t−1; fYl (·) is sampled via an RFF GP (analogous
to fZj ); and γAl , γ

X
l together with bias bl govern the strength of confounding.

Treatment effects. We set Yj,1 = Zj,1 and endow each treatment l with a long-lasting additive
effect on outcome j that is maximal immediately after administration and decays as an inverse square
of elapsed time within a window of length wl. Effects are scaled by the assignment probability pAl,i.
When multiple treatments are active, we aggregate their contributions conservatively by taking the
minimum at each elapsed time. Let φl(∆) = (∆ + 1)−2 1{0 ≤ ∆ ≤ wl}. Then

Ej(t) =

t∑
i=1

min
l=1,...,da

{
1{Ali = 1} pAl,i βlj φl(t− i)

}
, (40)

where βlj is the maximum (immediate) effect size of treatment l on outcome j (either a constant or
zero if treatment l does not act on j).

Observed outcomes. The observed process adds treatment effects to the untreated signal:

Yj,t = Zj,t + Ej(t). (41)

Dataset construction and evaluation. Unless stated otherwise, exact simulator hyperparameters
are provided in the code. In our main setting we use da = 3 synthetic binary treatments and dy = 2
outcomes. The 1,000 patients are split into train/validation/test using a 60%/20%/20% split. For
one-step-ahead evaluation we enumerate all 23 = 8 counterfactuals. For multi-step rollouts with
τmax = 10, we sample 10 random treatment trajectories per patient and time step.
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F.1.1 VIOLATIONS OF THE POSITIVITY ASSUMPTION

We observed violations of the positivity (overlap) assumption in several instantiations of the
semi-synthetic dataset generated with the parameters proposed by Melnychuk et al. (2022) and
closely followed by several other works like (El Bouchattaoui et al., 2024; Wang et al., 2025).
Concretely, for some random initializations almost all realized treatments are 0; for others, the dis-
tribution is heavily skewed toward 1. Inspecting the individual (per-arm) propensities pAℓ,t ∈ (0, 1)
defined by Eq. 38 reveals that a large fraction of values are effectively degenerate. For one seed, for
example, 95.6% of per-arm propensities are < 1%, 76.5% are < 0.1%, 42.9% are < 0.01%, 15.8%
are < 0.001%, and 2.9% are < 0.0001%; only 28 out of 101,031 valid treatment decisions have
propensity > 50%. For another seed, the mass concentrates near 1: 8.7% of propensities exceed
99% and 3.2% exceed 99.99%.

While the positivity assumption requires 0 < Pr(At = a | Ht) < 1 almost surely, in practice causal
estimators become unstable when a substantial mass of propensities lies outside [ϵ, 1− ϵ] for a small
ϵ (e.g., 10−3). The extreme values above arise because the logit in Eq. 38 (a linear combination of
recent outcomes and covariate features) can be very large in magnitude for some seeds, pushing σ(·)
close to 0 or 1. In the next subsection we describe a minimally invasive modification that ensures
overlap while preserving sequential confounding structure.

F.2 OUR VERSION OF THE SEMI-SYNTHETIC DATASET

Positivity via a monotone floor/ceiling. To guarantee per-arm overlap we apply a monotone
remapping to the final probability:

p̃Aℓ,t = q + (1− 2q)σ
(
bℓ + zℓ,t

)
, q ∈ (0, 0.5), (42)

which forces p̃Aℓ,t ∈ [q, 1− q]. We use q = 0.15.

Preserving confounding via logit normalization. A naive floor alone avoids practical violations
of positivity assumption but can still yield weak dependence on confounders if the logit distribution
collapses (e.g., is almost always very large or very small). We therefore re-scale the pre-bias logit
using train-set statistics so that the sigmoid operates on a stable range:

rℓ,t = γYℓ Y t−1 + γXℓ f
(ℓ)
X (Xt), (43)

zℓ,t =
rℓ,t − µℓ
σℓ + ε

, ε > 0, (44)

where (µℓ, σℓ) are the mean and standard deviation of rℓ,t estimated on the training split only. The
final propensity is then given by Eq. 42. This is an affine, monotone transformation of the original
logit and therefore preserves the ordering of rℓ,t with respect to the history Ht.

Two-pass generation to avoid leakage. We use a standard two-pass protocol:

1. Pass 1 (train only, original policy). We run the generator once using Eq. 38 and record
rℓ,t from Eq. 43 for every (ℓ, t) on the training split. We compute (µℓ, σℓ) per arm via an
online (Welford) estimator. The trajectories from this pass are discarded; only (µℓ, σℓ) are
kept.

2. Pass 2 (train/val/test, overlap-calibrated). We regenerate all splits from scratch. At each
step we recompute rℓ,t from the current pass’s history, apply the z-score in Eq. 44, then
compute p̃Aℓ,t via Eq. 42 and sample treatments. Thus, sequential dependence on past out-
comes/treatments remains intact; the first pass only provides (µℓ, σℓ), analogous to feature
normalization. The magnitude of the utilized bias term is sufficiently small to not make
logit magnitudes too large.

Pass 2 recomputes the logit from the realized past outcomes and treatments of the same pass; pass 1
probabilities are never used for sampling. Since z-scoring is affine and the final mapping is mono-
tone, the confounding signal (how Ht shifts treatment odds) is preserved, while the floor prevents
near-degenerate propensities that destabilize estimation and calibration.
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For one random instantiation of our new dataset, we have that the minimal probability of an in-
dividual treatment is 15.7%, and the maximum probability is 84.6%: apart from avoiding values
too close to 0% or to 100%, the sigmoid does not get completely saturated, which would produce
minimal or maximal values exactly in the floor. Apart from that, 86.7% of per-arm propensities are
> 25%, 14.3% are > 50%, and 1.1% are > 75%. For another seed, we have that the minimum
per-arm propensity score is 15.8% and the highest one is 84.9%. Also, we have 89.1% of per-arm
propensities > 25%, 40.7% > 50%, and 5.2% > 75%.

F.3 DETAILS ON EXPERIMENTS WITH REAL-WORLD DATA

In line with the semi-synthetic setup (App. F.1), we rely on MIMIC-EXTRACT (Wang et al., 2020),
a standardized preprocessing pipeline for ICU time series (hourly resolution). Missing values are
imputed using forward and backward filling, and all continuous time-varying variables are stan-
dardized. We use the same set of dx = 25 vital signs and the same three static attributes (gender,
ethnicity, age), one-hot encoded, yielding dv = 44 static features. Both the time-varying covariates
and static features are treated as potential confounders.

We consider da = 2 binary interventions: vasopressors and mechanical ventilation. The factual
outcome is diastolic blood pressure (dy = 1). Clinically, both interventions can increase or decrease
blood pressure depending on context, motivating counterfactual trajectory analysis under alternative
treatment choices.

Cohort and splits. We select 5,000 patients with ICU stays of at least 30 hours; stays are truncated
at 60 hours. The cohort is divided into train/validation/test sets with a 70%/15%/15% split.

G BASELINES

G.1 CAUSAL TRANSFORMER

G.1.1 BASE CAUSAL TRANSFORMER

We implement the Causal Transformer (CT) of Melnychuk et al. (2022) as a strong baseline for
estimating

E
[
Yt+τ

[
āt:t+τ−1

] ∣∣ H̄t

]
(45)

under a treatment plan āt:t+τ−1. To avoid duplication, we reuse the multi-input transformer encoder
in App. B and highlight only CT-specific pieces (projection inputs, balanced-representation learning,
and stabilizers).

Inputs and autoregressive conditioning. CT consumes three factual streams up to anchor time
t: covariates X̄t, outcomes Ȳt, and left-shifted treatments Āt−1, plus static covariates V . For a
projection horizon τ , CT concatenates the factual histories with the (non-random) future intervention
sequence on the treatment stream and with autoregressively fed predictions on the outcome stream:

Āt−1 ∥ āt:t+τ−1, (46)

Ȳt ∥ ¯̂
Yt+1:t+τ−1. (47)

Teacher forcing is used during training for multi-step prediction; at evaluation time, the model feeds
back its own predictions autoregressively. Static covariates V are injected in all subnetworks.

Architecture (encoder blocks, cross-attention, pooling). CT follows the multi-input transformer
pattern in App. B: masked self-attention per stream, cross-attention between streams, position-wise
feed-forward layers, and LN+residual connections, with trainable relative positional encodings and
attentional dropout. After the last block, the three stream states are averaged and passed through a
Linear+ELU to obtain a balanced representation Φt ∈ Rdr :

Φt = ELU
(
Linear

(
1
3

(
AB
t−1 +XB

t +YB
t

)))
. (48)

(Implementation note: CT omits the final output projection after concatenating attention heads to
reduce overfitting.)
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Balanced-representation training. CT trains Φt to be (i) predictive of the one-step factual out-
come while (ii) non-predictive of the current treatment with a Counterfactual Domain Confusion
(CDC) loss. Two light heads are attached to Φt: an outcome head GY and a treatment classifier GA.
Let da be the number of treatment categories. The losses are

LGA(θA, θR) = −
da∑
j=1

1{At = aj} log
(
GA(Φt(θR); θA)j

)
, (49)

Lconf(θA, θR) = −
da∑
j=1

1

da
log
(
GA(Φt(θR); θA)j

)
, (50)

and the alternating min–min scheme is

(θ̂Y , θ̂R) = arg min
θY ,θR

LGY (θY , θR) + αLconf(θ̂A, θR), (51)

θ̂A = argmin
θA

αLGA(θA, θ̂R), (52)

with α > 0 the domain-confusion weight and LGY defined by the chosen outcome head (see below).

Training stabilizers and augmentation. We follow CT practice: (i) an exponential moving av-
erage (EMA) of parameters across trainable modules; (ii) attentional dropout; and (iii) mini-batch
augmentation that duplicates samples and randomly masks the last ts covariate steps in the duplicate
(to reflect unavailable future covariates for τ≥2).

Point-estimator CT (original). The original CT uses a point head GY with squared error:

L(point)
GY (θY , θR) =

∥∥yt+1 −GY

(
Φt(θR),at; θY

) ∥∥2
2
. (53)

G.1.2 DISTRIBUTIONAL VARIANTS

We additionally evaluate two distributional adaptations of CT that replace the outcome head/loss,
keeping architecture and CDC unchanged.

CT–Gaussian head (heteroscedastic NLL). The Gaussian head predicts per-dimension mean and
variance (µ̂t+1, σ̂

2
t+1) = GN

Y

(
Φt,at

)
, and minimizes the Gaussian negative log-likelihood (diago-

nal covariance):

LN
GY (θY , θR) = 1

2

∥∥∥∥yt+1 − µ̂t+1

σ̂t+1

∥∥∥∥2
2

+ 1
2 1

⊤ log σ̂2
t+1. (54)

CT–CRPS / random-quantile head. The random-quantile head predicts outcome quantiles given
α ∈ (0, 1)dy . Let q̂α,j = dj

(
Φt,at, αj

)
denote the predicted αj-quantile of Yt+1,j for branch j.

Drawing K i.i.d. vectors {α(k)}Kk=1 with entries α(k)
j ∼ Unif(0, 1), we use the Monte Carlo CRPS

objective:

LCRPS
GY (θY , θR) =

dy∑
j=1

1

K

K∑
k=1

ρ
α

(k)
j

(
yt+1,j − q̂

α
(k)
j ,j

)
, (55)

with the pinball loss

ρα(u) = (α− 1{u < 0})u. (56)

This is the same random-quantile reconstruction used for Y in G-Latent, providing a proper scoring
rule (CRPS) and capturing predictive uncertainty through the quantile function.
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G.2 G-NET

G-Net implements g-computation in two steps. First, it estimates the conditional expectations of
within-time components of Lt+1 = (Yt+1,Xt+1) given history and action. Concretely, for an
ordered decomposition L

(0)
t+1, . . . ,L

(p−1)
t+1 , we learn

E
[
L
(j)
t+1 | H̄t,At,L

(0:j−1)
t+1

]
(57)

with a two-layer LSTM. Samples from the corresponding conditionals are obtained by adding resid-
uals drawn from an empirical error distribution built on a 10% holdout split (residual bootstrap).
Training uses teacher forcing and an MSE loss.

Second, counterfactual trajectories under a treatment plan āt:t+τ−1 are generated by Monte Carlo,
rolling the learned conditionals forward across steps.

We follow the same architecture class reported alongside CT: one–two layered LSTMs, a linear
representation layer, and a small feed-forward head on top. At evaluation, we simulate under ā with
start-of-interval indexing (action As precedes (Ys+1,Xs+1)), using the residual-bootstrap sampler.

G.3 TRANSFORMER G-NET

Transformer G-Net follows the same two-step pipeline but replaces the recurrent modules with the
multi-input transformer encoder of App. B. The transformer encodes the factual history before action
into a fused state rt (respecting start-of-interval indexing). For an ordered within-time decomposi-
tion L

(0)
t+1, . . . ,L

(p−1)
t+1 , each conditional expectation is predicted by a small MLP head conditioned

on rt, At, and previously generated groups; training uses teacher forcing and an MSE objective.
During rollout we inject residual noise via the same 10% holdout bootstrap and obtain the distri-
bution at horizon t+τ as the empirical measure over M Monte Carlo trajectories (again M=50),
without any balanced-representation objective.

H METRICS

Our model outputs i.i.d. Monte Carlo (MC) samples {y(m,i)
t+s }Mm=1 from the interventional law

pā
(
yt+s | h̄(i)

t

)
at each relative step s ∈ {1, . . . , τ}, given history h̄

(i)
t and a treatment plan āt:t+τ−1.

All metrics are computed per step and averaged over n test patients; when relevant we also report a
trajectory-level score aggregating all steps.

RMSE of the predictive mean (point accuracy). Let the per-step predictive mean for patient i
be

µ̂
(i)
t+s =

1

M

M∑
m=1

y
(m,i)
t+s . (58)

For a dy-dimensional outcome we report

RMSEs =

√√√√ 1

ndy

n∑
i=1

∥∥ µ̂(i)
t+s − y

(i)
t+s

∥∥2
2
, (59)

which summarizes point accuracy of the posterior mean implied by the predictive distribution (lower
is better).

KDE log-likelihood (density fit). We estimate the patient-specific predictive density at relative
step t′ with an isotropic Gaussian KDE using a single global bandwidth h > 0:

f̂
(i)
t′ (y) =

1

M

M∑
m=1

N
(
y; y

(m,i)
t+t′ , h2Idy

)
, (60)

where Idy is the dy × dy identity matrix and h is fixed across all t′ and all patients. The metric is
the average log-likelihood:

KDE-LLt′ =
1

n

n∑
i=1

log f̂
(i)
t′

(
y
(i)
t+t′

)
. (61)
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Energy score (multivariate proper scoring rule). For dy≥1, the energy score (ES) for a predic-
tive distribution Fs and realization yt+s is

ESs(Fs,yt+s) = E
[
∥X− yt+s∥2

]
− 1

2 E
[
∥X−X′∥2

]
, (62)

with X,X′∼Fs i.i.d. Using MC samples, we estimate

ÊSs =
1

n

n∑
i=1

 1

M

M∑
m=1

∥∥y(m,i)
t+s − y

(i)
t+s

∥∥
2
− 1

2M(M − 1)

∑
m̸=m′

∥∥y(m,i)
t+s − y

(m′,i)
t+s

∥∥
2

 , (63)

which is strictly proper and sensitive to cross-dimensional dependence (lower is better). In the
univariate case (dy=1) ES equals the continuous ranked probability score (CRPS).

Global (pathwise) energy score (temporal coherence). To assess coherence across all output
dimensions and steps, we compute ES on the concatenated outcome vector ỹt+1:t+τ ∈Rτdy , where
ỹ
(m,i)
t+1:t+τ :=[y

(m,i)
t+1 ; . . . ;y

(m,i)
t+τ ] and ỹ

(i)
t+1:t+τ :=[y

(i)
t+1; . . . ;y

(i)
t+τ ]:

GES =
1

n

n∑
i=1

 1

M

M∑
m=1

∥∥ỹ(m,i)
t+1:t+τ − ỹ

(i)
t+1:t+τ

∥∥
2
− 1

2M(M − 1)

∑
m̸=m′

∥∥ỹ(m,i)
t+1:t+τ − ỹ

(m′,i)
t+1:t+τ

∥∥
2

 .

(64)
This whole-trajectory ES rewards correct temporal correlations and cross-step consistency of the
joint predictive law (lower is better).

Quantile coverage (calibration). For quantile levels Q = {0.1, 0.2, . . . , 0.9}, we compare each
realized outcome component to the MC-estimated predictive quantile of that component. Let (·)j
denote the j-th component. Define

Q̂
(i)
s,j(q) := quantileq

(
{ (y(m,i)

t+s )j }Mm=1

)
. (65)

Per step and per dimension, the empirical q-coverage is

Ĉovs,j(q) =
1

n

n∑
i=1

I
{
(y

(i)
t+s)j ≤ Q̂

(i)
s,j(q)

}
, (66)

which should match the nominal level q for a calibrated model (higher/lower than q indicates over-
/under-coverage). We use “≤” to break ties; quantiles are computed from MC samples per (i, s, j)
with a fixed interpolation rule.

We also use aggregations across steps:

Ĉov
steps

j (q) =
1

n τ

τ∑
s=1

n∑
i=1

I
{
(y

(i)
t+s)j ≤ Q̂

(i)
s,j(q)

}
, (67)

Calibration summary (MAE). A scalar summary is the mean absolute calibration error, averaged
over quantiles, dimensions, and steps:

CalMAE =
1

|Q| dy τ
∑
q∈Q

dy∑
j=1

τ∑
s=1

∣∣ Ĉovs,j(q)− q
∣∣. (68)

Lower is better; per-dimension or per-step variants follow by omitting the corresponding averages.

I HYPERPARAMETERS

I.1 MULTI-INPUT TRANSFORMER

For better comparability, we used the same multi-input transformer hyperparameters for all the mod-
els that use transformer processing (CT, CT-CRPS, Transformer G-Net, CT-Gaussian and G-Latent).
We used the same hyperparameters as Melnychuk et al. (2022), as additional tuning on our specific
models did not provide significant improvements. We list these hyperparameters in table 4, and
define them next:
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Table 4: Architectural hyperparameters for the multi-input transformer.

Hyperparameter Semi-synthetic Real-world
Transformer units 24 24
Representation size 44 22
Fully connected hidden units 22 22
Dropout rate 0.1 0.2
Transformer blocks 1 2
Attention heads 2 3
Max relative position 20 30

• Transformer units: model width per stream (token and attention projection size; per-head dimension
roughly Transformer units divided by Attention heads).

• Representation size: fused history embedding dimension used downstream.

• Fully connected hidden units: inner width of the position-wise feed-forward sublayer.

• Dropout rate: probability used after linear layers in attention and feed-forward sublayers.

• Transformer blocks: number of stacked encoder blocks.

• Attention heads: number of heads in multi-head attention.

• Max relative position: clipping radius for relative positional encodings shared across blocks and
streams.

I.2 CAUSAL TRANSFORMER

We report the specific training hyperparameters of CT in table 5.

Table 5: Training hyperparameters for the multi-input transformer.

Hyperparameter Semi-synthetic Real-world
Learning rate 0.01 0.0001
Batch size 64 64
Max epochs 400 300

For the distributional versions of CT, we used the same hyperparameters. For CT-CRPS, we used a number of
α quantile MC samples K = 5 for both semi-synthetic and real-world dataset. This value is the same we used
for G-Latent.

I.3 G-NET

For G-Net, we used the hyperparameters configuration from the implementation in Melnychuk et al. (2022).
We report it in table 6, and define them as:

• Recurrent layers: number of stacked recurrent layers.

• Sequence hidden units: hidden size per recurrent layer.

• Fully connected hidden units: width of the feed-forward head.

• Dropout rate: dropout probability in recurrent/feed-forward parts.

• Representation size: size of the intermediate representation.

• Learning rate: optimizer step size.

• Batch size: examples per minibatch.

• Max epochs: maximum training epochs.

I.4 G-LATENT

As previously mentioned, the multi-input transformer we used in G-Latent has the hyperparameters shared with
other baselines and defined in I.1. As for the rest of hyperparameters, after an optimization process based on
factual validation datasets, we selected the ones shown in table 7. We defined next:
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Table 6: Architectural and training hyperparameters for G-Net.

Hyperparameter Semi-synthetic Real-world
Recurrent layers 1 2
Sequence hidden units 148 144
Fully connected hidden units 74 72
Dropout rate 0.1 0.1
Representation size 74 72
Learning rate 0.01 0.001
Batch size 256 256
Max epochs 200 200

• Learning rate: optimizer step size.

• KL weight: coefficient on the KL divergence term in the ELBO.

• Latent dimension: dimensionality of the VAE latent variable z.

• Auxiliar loss weight (λaux): weight on the auxiliary one-step prediction loss.

• Max epochs: maximum number of training epochs.

• Reconstruction weights (outcome, covariates): multipliers for outcome and covariate reconstruction
terms. The fact that, in both datasets, covariates have much higher coefficients than outcomes makes
the model give balanced weight to both of them. Weights are selected in such a way that the sum of
products of each weight with each dimensionality gives one.

• MC α samples (K): number of quantile levels sampled per step for the CRPS/quantile head.

• Batch size: number of examples per minibatch.

• Context dimension: size of the context vector fed to the VAE.

• Encoder hidden sizes: layer widths of the encoder MLP qϕ(z | x, c).

• Decoder hidden sizes: layer widths of the shared decoder trunk Tθ .

• Quantile-branch hidden sizes: layer widths in the per-outcome, α-aware branches.

• Shared decoder layers: count of initial decoder layers shared by the α-aware and mean/log-variance
branches.

• Warm-up epochs (auxiliar loss only): epochs optimizing only the auxiliary loss before enabling VAE
terms.

• GRU hidden size: hidden width of the temporal GRU cell used in latent rollouts.

Table 7: Architectural and training hyperparameters for the RNN+Conditional VAE (G-Latent)
stack.

Hyperparameter Semi-synthetic Real-world
Learning rate 0.0001 0.0003
KL weight 1.0 1.0
Latent dimension 6 6
Auxiliar loss weight (λaux) 0.1 0.1
Max epochs 70 110
Reconstruction weights (outcome, covariates) [6.67, 0.32] [18.0, 0.32]
MC α samples (K) 5 5
Batch size 8 8
Context dimension 256 256
Encoder hidden sizes [256, 256, 256, 256, 256] [256, 256, 256, 256, 256]
Decoder hidden sizes [256, 256, 256, 256, 256] [256, 256, 256, 256, 256]
Quantile-branch hidden sizes [64, 64] [128, 128]
Shared decoder layers 3 3
Warm-up epochs (auxiliar loss only) 20 30
GRU hidden size 64 64
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J ADDITIONAL RESULTS

J.1 SEMI-SYNTHETIC DATASET (OUR NEW VERSION)

In table 8, we show the Energy Scores for our new modified semi-synthetic dataset. In tables 9, 10 and 11
we show the KDE-LL for bandwidths 0.2, 0.3 and 0.4, respectively. In table 12, we show the RMSE metrics.
Finally, in tables 13 and 14 we show the empirical quantile coverage for all the steps (1 to 6 in the first table, 7
to 11 in the second one, plus across step coverage), the dimensions, and several quantiles from 0.1 to 0.9, The
bolded results are the ones closest to the expected coverage percentage, i.e., for quantile 0.1, 10%, for quantile
0.2, 20%, etc.

Table 8: Energy Score per step t′ on semi-synthetic dataset (corrected benchmark). Rightmost
column reports the Global Energy Score across steps. Best per column in bold.
Model t′=1 t′=2 t′=3 t′=4 t′=5 t′=6 t′=7 t′=8 t′=9 t′=10 t′=11 Global

G-Net 0.17± 0.00 0.30± 0.03 0.39± 0.04 0.45± 0.04 0.51± 0.05 0.55± 0.06 0.59± 0.06 0.63± 0.07 0.65± 0.07 0.68± 0.07 0.70± 0.08 1.85± 0.20
Transformer G-Net 0.37± 0.04 0.34± 0.04 0.40± 0.05 0.46± 0.06 0.50± 0.07 0.53± 0.08 0.56± 0.10 0.58± 0.11 0.60± 0.12 0.62± 0.13 0.64± 0.14 1.71± 0.11
CT-CRPS 0.09 ± 0.01 0.26± 0.06 0.32± 0.07 0.37± 0.07 0.41± 0.07 0.45± 0.08 0.48± 0.07 0.50± 0.07 0.53± 0.07 0.55± 0.07 0.57± 0.07 1.52± 0.23
CT-Gaussian 0.09 ± 0.01 0.25± 0.06 0.30± 0.07 0.34± 0.08 0.37± 0.08 0.40± 0.09 0.42± 0.09 0.44± 0.09 0.46± 0.09 0.48± 0.09 0.49± 0.09 1.35± 0.29

D.S. G-VAE (Gaussian) 0.28± 0.01 0.40± 0.02 0.49± 0.04 0.54± 0.05 0.58± 0.06 0.60± 0.06 0.62± 0.07 0.64± 0.07 0.65± 0.07 0.66± 0.07 0.67± 0.07 2.01± 0.20
D.S. G-VAE (CRPS) 0.13± 0.00 0.23 ± 0.04 0.28 ± 0.05 0.32 ± 0.06 0.35 ± 0.06 0.38± 0.06 0.40± 0.07 0.42± 0.07 0.44± 0.06 0.45± 0.06 0.47± 0.06 1.28± 0.21
G-Latent (Gaussian) 0.31± 0.02 0.35± 0.03 0.38± 0.04 0.40± 0.05 0.42± 0.05 0.44± 0.06 0.45± 0.06 0.46± 0.06 0.47± 0.06 0.48± 0.06 0.48± 0.06 1.51± 0.18
G-Latent (CRPS) 0.19± 0.02 0.25± 0.04 0.29± 0.05 0.33± 0.06 0.35 ± 0.06 0.37 ± 0.07 0.39 ± 0.07 0.40 ± 0.07 0.42 ± 0.07 0.42 ± 0.08 0.43 ± 0.08 1.25 ± 0.23

Table 9: KDE Loglikelihood per step t′ on semi-synthetic dataset with bandwidth 0.2. Best per
column in bold.
Model t′=1 t′=2 t′=3 t′=4 t′=5 t′=6 t′=7 t′=8 t′=9 t′=10 t′=11

G-Net 0.30± 0.05 −0.85± 0.20 −1.48± 0.25 −1.91± 0.28 −2.21± 0.31 −2.47± 0.33 −2.70± 0.36 −2.89± 0.39 −3.04± 0.42 −3.17± 0.45 −3.29± 0.48
Transformer G-Net −1.34± 0.20 −1.07± 0.24 −1.52± 0.27 −1.86± 0.38 −2.12± 0.49 −2.33± 0.59 −2.52± 0.69 −2.70± 0.79 −2.86± 0.90 −3.00± 0.98 −3.14± 1.06
CT-CRPS 0.99± 0.07 −0.88± 0.71 −1.56± 0.78 −2.16± 0.82 −2.68± 0.79 −3.17± 0.81 −3.63± 0.81 −4.06± 0.79 −4.43± 0.81 −4.78± 0.83 −5.08± 0.86
CT-Gaussian 1.00 ± 0.05 −0.40± 0.49 −0.73± 0.54 −0.99± 0.57 −1.20± 0.57 −1.39± 0.57 −1.56± 0.57 −1.72± 0.57 −1.86± 0.57 −2.01± 0.57 −2.14± 0.57

D.S. G-VAE (Gaussian) −1.21± 0.08 −1.87± 0.10 −2.25± 0.14 −2.45± 0.17 −2.57± 0.18 −2.65± 0.19 −2.70± 0.20 −2.74± 0.20 −2.76± 0.20 −2.79± 0.20 −2.80± 0.20
D.S. G-VAE (CRPS) 0.45± 0.07 −0.32 ± 0.33 −0.66 ± 0.37 −0.89 ± 0.39 −1.06 ± 0.39 −1.22 ± 0.40 −1.34 ± 0.39 −1.45± 0.38 −1.54± 0.36 −1.62± 0.33 −1.69± 0.31
G-Latent (Gaussian) −1.36± 0.11 −1.52± 0.16 −1.62± 0.18 −1.69± 0.20 −1.74± 0.21 −1.79± 0.22 −1.83± 0.23 −1.86± 0.23 −1.88± 0.23 −1.90± 0.23 −1.92± 0.23
G-Latent (CRPS) −0.01± 0.17 −0.50± 0.30 −0.78± 0.35 −0.98± 0.39 −1.12± 0.41 −1.24± 0.42 −1.34 ± 0.44 −1.42 ± 0.44 −1.48 ± 0.44 −1.53 ± 0.43 −1.59 ± 0.44

Table 10: KDE Loglikelihood per step t′ on semi-synthetic dataset with bandwidth 0.3. Best per
column in bold.
Model t′=1 t′=2 t′=3 t′=4 t′=5 t′=6 t′=7 t′=8 t′=9 t′=10 t′=11

G-Net −0.02± 0.02 −0.79± 0.15 −1.26± 0.20 −1.59± 0.23 −1.84± 0.24 −2.04± 0.26 −2.22± 0.27 −2.36± 0.29 −2.48± 0.30 −2.58± 0.31 −2.67± 0.33
Transformer G-Net −1.09± 0.19 −1.00± 0.22 −1.34± 0.23 −1.58± 0.30 −1.77± 0.36 −1.93± 0.42 −2.06± 0.49 −2.18± 0.54 −2.29± 0.60 −2.38± 0.65 −2.47± 0.69
CT-CRPS 0.38 ± 0.04 −0.63± 0.40 −1.02± 0.46 −1.35± 0.49 −1.64± 0.48 −1.90± 0.49 −2.15± 0.48 −2.38± 0.48 −2.57± 0.48 −2.76± 0.49 −2.92± 0.49
CT-Gaussian 0.37± 0.03 −0.51± 0.35 −0.75± 0.40 −0.94± 0.43 −1.09± 0.44 −1.23± 0.45 −1.34± 0.46 −1.45± 0.46 −1.55± 0.46 −1.64± 0.46 −1.73± 0.46

D.S. G-VAE (Gaussian) −1.29± 0.07 −1.88± 0.08 −2.23± 0.12 −2.43± 0.15 −2.54± 0.17 −2.62± 0.18 −2.67± 0.18 −2.71± 0.19 −2.73± 0.19 −2.75± 0.19 −2.77± 0.19
D.S. G-VAE (CRPS) 0.08± 0.04 −0.47 ± 0.27 −0.72 ± 0.31 −0.90 ± 0.33 −1.04 ± 0.34 −1.16 ± 0.34 −1.27± 0.34 −1.35± 0.33 −1.43± 0.32 −1.50± 0.30 −1.56± 0.29
G-Latent (Gaussian) −1.41± 0.09 −1.54± 0.13 −1.63± 0.15 −1.69± 0.17 −1.74± 0.18 −1.79± 0.19 −1.82± 0.20 −1.85± 0.20 −1.87± 0.20 −1.89± 0.20 −1.91± 0.20
G-Latent (CRPS) −0.24± 0.12 −0.59± 0.22 −0.80± 0.27 −0.96± 0.30 −1.08± 0.32 −1.18± 0.33 −1.26 ± 0.34 −1.32 ± 0.34 −1.38 ± 0.34 −1.42 ± 0.34 −1.47 ± 0.34
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Table 11: KDE Loglikelihood per step t′ on semi-synthetic dataset with bandwidth 0.4. Best per
column in bold.
Model t′=1 t′=2 t′=3 t′=4 t′=5 t′=6 t′=7 t′=8 t′=9 t′=10 t′=11

G-Net −0.37± 0.01 −0.91± 0.12 −1.27± 0.17 −1.53± 0.19 −1.74± 0.21 −1.91± 0.22 −2.06± 0.24 −2.18± 0.25 −2.28± 0.26 −2.37± 0.27 −2.45± 0.28
Transformer G-Net −1.12± 0.17 −1.10± 0.19 −1.35± 0.21 −1.54± 0.26 −1.69± 0.31 −1.81± 0.36 −1.92± 0.41 −2.01± 0.45 −2.10± 0.49 −2.17± 0.53 −2.24± 0.56
CT-CRPS −0.12 ± 0.02 −0.75± 0.26 −1.00± 0.30 −1.22± 0.33 −1.40± 0.34 −1.57± 0.35 −1.73± 0.35 −1.87± 0.35 −2.00± 0.35 −2.11± 0.36 −2.22± 0.36
CT-Gaussian −0.13± 0.02 −0.73± 0.26 −0.91± 0.31 −1.05± 0.34 −1.17± 0.35 −1.27± 0.37 −1.36± 0.37 −1.44± 0.38 −1.51± 0.38 −1.58± 0.38 −1.64± 0.38

D.S. G-VAE (Gaussian) −1.40± 0.06 −1.93± 0.07 −2.26± 0.12 −2.45± 0.14 −2.56± 0.16 −2.63± 0.17 −2.68± 0.17 −2.72± 0.18 −2.74± 0.18 −2.76± 0.18 −2.78± 0.18
D.S. G-VAE (CRPS) −0.30± 0.03 −0.70 ± 0.21 −0.89 ± 0.25 −1.03 ± 0.27 −1.14 ± 0.29 −1.24 ± 0.29 −1.33± 0.29 −1.40± 0.29 −1.46± 0.28 −1.52± 0.27 −1.58± 0.26
G-Latent (Gaussian) −1.51± 0.08 −1.62± 0.11 −1.70± 0.14 −1.76± 0.15 −1.80± 0.16 −1.84± 0.17 −1.87± 0.18 −1.90± 0.18 −1.92± 0.18 −1.94± 0.18 −1.95± 0.18
G-Latent (CRPS) −0.53± 0.09 −0.78± 0.17 −0.95± 0.21 −1.08± 0.24 −1.18± 0.26 −1.26± 0.27 −1.32 ± 0.28 −1.37 ± 0.29 −1.42 ± 0.29 −1.46 ± 0.29 −1.50 ± 0.29

Table 12: RMSE per step t′ on semi-synthetic dataset (corrected benchmark). Best per column in
bold.
Model t′=1 t′=2 t′=3 t′=4 t′=5 t′=6 t′=7 t′=8 t′=9 t′=10 t′=11

G-Net 0.28± 0.01 0.51± 0.05 0.64± 0.07 0.74± 0.08 0.81± 0.09 0.88± 0.09 0.94± 0.10 0.98± 0.11 1.02± 0.11 1.06± 0.12 1.09± 0.12
Transformer G-Net 0.60± 0.06 0.56± 0.06 0.66± 0.08 0.74± 0.10 0.80± 0.13 0.84± 0.15 0.89± 0.17 0.92± 0.19 0.95± 0.21 0.98± 0.22 1.00± 0.23
CT-Gaussian 0.17± 0.02 0.46± 0.11 0.54± 0.13 0.60± 0.14 0.64± 0.14 0.68± 0.14 0.71± 0.14 0.74± 0.14 0.76± 0.14 0.79± 0.14 0.81± 0.14
CT-CRPS 0.16± 0.02 0.48± 0.10 0.58± 0.11 0.65± 0.11 0.71± 0.10 0.76± 0.10 0.80± 0.10 0.84± 0.10 0.87± 0.10 0.89± 0.10 0.92± 0.10
CT 0.14 ± 0.01 0.34 ± 0.07 0.43 ± 0.10 0.49 ± 0.11 0.53 ± 0.12 0.56 ± 0.13 0.58 ± 0.13 0.60 ± 0.13 0.62 ± 0.13 0.64 ± 0.13 0.65 ± 0.13

D.S. G-VAE (Gaussian) 0.26± 0.01 0.44± 0.06 0.54± 0.09 0.61± 0.10 0.66± 0.11 0.70± 0.12 0.73± 0.12 0.76± 0.13 0.79± 0.13 0.81± 0.13 0.83± 0.13
D.S. G-VAE (CRPS) 0.23± 0.01 0.40± 0.07 0.49± 0.10 0.55± 0.11 0.59± 0.12 0.63± 0.12 0.66± 0.12 0.69± 0.12 0.72± 0.12 0.74± 0.12 0.76± 0.12
G-Latent (Gaussian) 0.35± 0.03 0.46± 0.06 0.53± 0.09 0.58± 0.10 0.61± 0.11 0.64± 0.12 0.67± 0.12 0.69± 0.12 0.71± 0.12 0.72± 0.12 0.73± 0.12
G-Latent (CRPS) 0.33± 0.04 0.44± 0.07 0.51± 0.10 0.56± 0.11 0.60± 0.12 0.63± 0.12 0.66± 0.13 0.68± 0.13 0.70± 0.13 0.71± 0.13 0.73± 0.13

Table 13: Empirical coverage (%) by step and dimension for each quantile q. Steps t′ ∈ {1, . . . , 6},
two outcome dimensions.

Step t′

Model 1 2 3 4 5 6

Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2

Quantile q = 0.1
G-Net 11.54± 3.61 12.61± 3.20 14.04± 3.53 15.62± 4.43 15.33± 4.63 17.32± 4.86 16.19± 5.38 18.38± 5.14 16.86± 5.73 19.17± 5.29 17.33± 5.97 19.82± 5.32
Transformer G-Net 23.52± 9.91 24.92± 5.68 11.51± 6.44 16.22± 4.97 11.87± 7.14 18.83± 4.85 12.50± 7.51 20.69± 4.54 13.21± 7.90 22.26± 4.31 13.88± 8.18 23.55± 4.20
CT-CRPS 8.78± 2.77 15.43± 6.74 16.47± 1.73 21.24± 7.52 17.94± 2.02 25.14± 8.93 19.28± 2.47 28.42± 9.75 20.30± 2.60 30.79± 10.73 21.08± 2.77 32.92± 11.52
CT-Gaussian 13.91± 6.81 15.34± 5.09 9.59± 2.86 13.11± 2.40 11.08± 3.35 16.69± 3.56 12.44± 4.19 19.45± 4.15 13.45± 4.95 21.59± 4.36 14.09± 5.50 23.30± 4.57
D.S. G-VAE (Gaussian) 0.19± 0.03 0.07± 0.05 0.72± 0.38 0.19± 0.19 0.71± 0.40 0.16± 0.17 0.67± 0.38 0.14± 0.15 0.66± 0.40 0.13± 0.14 0.68± 0.41 0.14± 0.14
D.S. G-VAE (CRPS) 6.87± 2.35 5.07± 1.70 8.77± 4.42 7.00± 1.62 10.97± 4.77 8.70± 1.72 12.62± 4.49 10.10± 2.20 13.89± 4.11 10.96± 2.77 14.79± 3.84 11.54± 3.19
G-Latent (Gaussian) 0.47± 0.07 0.11± 0.10 1.38± 0.51 0.41± 0.42 1.99± 0.82 0.64± 0.61 2.40± 1.00 0.82± 0.75 2.70± 1.13 1.00± 0.88 2.97± 1.23 1.13± 0.95
G-Latent (CRPS) 8.89± 1.89 9.48± 3.75 9.88± 1.77 10.23± 2.93 10.37± 1.88 10.86± 2.97 10.79± 1.94 11.46± 3.35 11.17± 1.95 11.96± 3.70 11.45± 2.04 12.64± 3.88

Quantile q = 0.2
G-Net 20.30± 4.30 21.89± 4.67 22.66± 4.04 24.36± 5.21 23.72± 5.00 25.89± 5.56 24.55± 5.55 26.78± 5.77 25.25± 5.82 27.51± 5.98 25.63± 6.07 28.08± 6.03
Transformer G-Net 33.95± 9.60 34.79± 5.36 20.21± 6.78 25.21± 5.47 20.03± 7.62 27.75± 4.93 20.55± 8.18 29.73± 4.58 21.33± 8.57 31.35± 4.33 22.08± 8.83 32.68± 4.41
CT-CRPS 15.22± 4.00 23.94± 9.75 23.21± 1.82 29.47± 10.16 24.37± 2.21 32.93± 11.42 25.58± 2.66 36.14± 12.25 26.62± 2.80 38.33± 13.10 27.46± 3.06 40.18± 13.70
CT-Gaussian 23.29± 9.12 25.21± 5.91 16.84± 4.69 22.56± 3.60 18.65± 5.30 26.19± 4.67 20.27± 6.21 28.84± 4.76 21.30± 6.92 30.93± 4.85 22.14± 7.56 32.63± 4.84
D.S. G-VAE (Gaussian) 0.76± 0.15 0.34± 0.18 2.21± 0.75 0.70± 0.61 2.33± 0.83 0.69± 0.62 2.51± 0.88 0.73± 0.63 2.65± 0.92 0.75± 0.63 2.81± 0.99 0.80± 0.66
D.S. G-VAE (CRPS) 12.87± 3.62 9.69± 2.25 16.85± 6.39 14.61± 2.69 20.08± 6.02 16.99± 3.08 22.47± 5.44 18.73± 3.79 24.08± 4.96 19.83± 4.57 25.22± 4.80 20.38± 5.22
G-Latent (Gaussian) 1.98± 0.43 0.69± 0.41 4.28± 1.06 1.68± 1.21 5.63± 1.40 2.41± 1.59 6.62± 1.66 3.08± 1.90 7.40± 1.84 3.64± 2.06 8.09± 1.97 4.23± 2.20
G-Latent (CRPS) 17.69± 2.88 17.16± 5.17 18.63± 2.75 18.70± 3.85 19.03± 2.78 19.54± 3.65 19.45± 2.94 20.38± 3.91 19.80± 2.99 20.98± 4.09 20.22± 3.16 21.66± 4.31

Quantile q = 0.3
G-Net 29.49± 4.64 30.87± 5.44 31.03± 4.05 32.74± 5.34 31.83± 4.80 33.78± 5.76 32.44± 5.30 34.53± 6.03 32.79± 5.58 34.99± 6.12 33.10± 5.82 35.39± 6.13
Transformer G-Net 42.26± 8.68 42.59± 4.71 29.37± 6.17 33.79± 4.98 28.68± 7.22 35.88± 4.54 28.95± 7.90 37.62± 4.32 29.54± 8.34 39.11± 4.39 30.19± 8.69 40.30± 4.69
CT-CRPS 23.56± 4.87 34.25± 13.32 30.13± 1.90 36.98± 11.97 30.70± 2.32 39.75± 13.28 31.64± 2.85 42.56± 13.93 32.45± 2.77 44.47± 14.82 33.22± 3.08 46.00± 15.33
CT-Gaussian 31.98± 10.51 34.65± 6.29 25.03± 6.30 32.23± 4.57 26.86± 6.79 35.19± 5.31 28.40± 7.72 37.57± 5.50 29.52± 8.36 39.35± 5.53 30.23± 9.01 40.89± 5.62
D.S. G-VAE (Gaussian) 3.76± 1.18 2.64± 0.99 6.90± 1.51 3.47± 1.64 7.43± 1.49 3.63± 1.75 7.98± 1.62 3.94± 1.81 8.53± 1.71 4.24± 1.84 8.97± 1.81 4.53± 2.06
D.S. G-VAE (CRPS) 22.96± 4.69 18.36± 2.97 27.09± 7.03 24.62± 4.17 30.46± 6.15 26.69± 4.69 32.77± 5.57 28.19± 5.54 34.29± 5.12 29.09± 6.40 35.35± 5.03 29.55± 7.24
G-Latent (Gaussian) 7.37± 1.45 4.11± 1.18 11.29± 1.96 6.54± 2.34 13.44± 1.99 8.21± 2.76 15.00± 2.16 9.67± 3.01 16.13± 2.24 10.93± 3.14 17.07± 2.28 12.23± 3.24
G-Latent (CRPS) 28.14± 3.58 26.52± 6.23 28.71± 3.42 28.72± 4.76 28.97± 3.39 29.51± 4.49 29.09± 3.49 30.30± 4.61 29.24± 3.73 30.84± 4.67 29.50± 4.00 31.37± 4.71

Quantile q = 0.4
G-Net 39.30± 4.56 39.96± 5.65 39.36± 3.81 40.98± 5.16 39.75± 4.48 41.53± 5.58 40.05± 4.83 41.90± 5.77 40.08± 5.16 42.23± 5.96 40.25± 5.45 42.47± 5.87
Transformer G-Net 49.42± 7.43 49.15± 3.94 38.83± 5.24 42.16± 4.20 37.70± 6.49 43.56± 4.07 37.60± 7.25 44.91± 4.17 37.86± 7.79 46.19± 4.58 38.36± 8.16 47.16± 5.12
CT-CRPS 33.40± 5.09 45.33± 16.41 37.10± 1.93 44.14± 13.20 37.17± 2.27 46.22± 14.48 37.58± 2.81 48.42± 15.22 38.19± 2.68 49.88± 16.13 38.81± 2.96 51.04± 16.60
CT-Gaussian 40.47± 11.36 44.10± 6.51 34.61± 7.28 42.02± 5.43 36.02± 7.71 44.15± 6.19 37.24± 8.59 45.92± 6.50 38.19± 9.10 47.40± 6.68 38.72± 9.68 48.63± 6.89
D.S. G-VAE (Gaussian) 16.97± 4.62 16.07± 4.34 20.70± 4.03 16.98± 3.41 21.27± 3.99 17.06± 3.17 22.05± 4.26 17.60± 3.00 22.62± 4.37 18.10± 3.13 23.21± 4.61 18.63± 3.41
D.S. G-VAE (CRPS) 37.24± 5.25 31.72± 3.78 39.28± 6.34 36.33± 5.70 41.53± 5.29 37.27± 6.26 43.15± 4.82 38.11± 7.05 44.32± 4.88 38.69± 8.00 45.29± 4.99 38.91± 8.96
G-Latent (Gaussian) 22.09± 3.15 17.47± 1.78 25.71± 2.68 21.07± 2.86 27.68± 2.06 22.93± 3.07 28.94± 1.81 24.61± 3.27 29.92± 1.85 26.05± 3.56 30.64± 1.96 27.42± 3.54
G-Latent (CRPS) 39.69± 3.84 37.54± 7.02 39.71± 3.67 39.73± 5.64 39.50± 3.41 40.30± 5.23 39.37± 3.55 40.76± 5.17 39.29± 3.90 41.26± 5.14 39.31± 4.35 41.53± 4.98

Quantile q = 0.5
G-Net 49.05± 4.66 49.09± 5.64 47.81± 3.51 49.36± 4.69 47.71± 3.99 49.25± 5.01 47.59± 4.32 49.41± 5.24 47.37± 4.70 49.54± 5.27 47.41± 4.87 49.59± 5.31
Transformer G-Net 56.04± 6.10 55.32± 3.34 48.31± 4.37 50.45± 3.43 46.95± 5.74 51.06± 3.73 46.42± 6.71 51.99± 4.27 46.48± 7.08 52.83± 4.91 46.67± 7.58 53.60± 5.48
CT-CRPS 44.20± 4.79 56.28± 18.16 44.36± 1.99 51.15± 13.87 43.81± 2.15 52.45± 15.23 43.75± 2.68 53.92± 16.09 44.01± 2.50 54.91± 17.03 44.45± 2.75 55.73± 17.49
CT-Gaussian 48.97± 11.83 53.52± 6.59 45.63± 7.09 52.16± 6.32 46.06± 7.75 53.13± 7.08 46.74± 8.68 54.13± 7.68 47.43± 9.05 55.10± 7.93 47.73± 9.52 55.99± 8.29
D.S. G-VAE (Gaussian) 47.05± 6.83 49.69± 6.91 46.99± 6.87 48.96± 4.58 46.34± 6.82 47.74± 3.90 46.19± 7.08 47.40± 3.49 45.89± 7.35 47.05± 3.54 45.91± 7.47 46.66± 3.64
D.S. G-VAE (CRPS) 53.98± 5.08 48.64± 4.45 52.34± 4.89 49.09± 6.81 52.94± 3.83 48.23± 7.47 53.57± 3.61 48.14± 8.39 54.39± 3.97 48.22± 9.23 55.05± 4.41 48.18± 10.11
G-Latent (Gaussian) 47.85± 3.78 45.75± 2.81 47.79± 2.33 47.09± 3.62 47.81± 1.50 47.31± 3.57 47.70± 0.97 47.55± 3.55 47.65± 0.91 47.79± 3.73 47.58± 1.11 48.14± 3.57
G-Latent (CRPS) 51.93± 4.23 49.44± 7.47 51.21± 3.54 51.36± 6.28 50.55± 3.01 51.47± 5.84 50.01± 3.08 51.51± 5.44 49.66± 3.57 51.74± 5.34 49.39± 3.99 51.83± 5.15

Quantile q = 0.6
G-Net 58.50± 4.92 57.96± 5.13 56.38± 3.19 57.89± 3.92 55.67± 3.46 57.24± 4.10 55.21± 3.83 57.07± 4.25 54.84± 4.17 56.99± 4.37 54.63± 4.25 56.85± 4.34
Transformer G-Net 62.36± 4.68 61.25± 2.91 57.87± 3.91 58.71± 3.07 56.41± 5.32 58.70± 3.81 55.48± 6.18 59.00± 4.48 55.18± 6.60 59.53± 5.13 55.10± 7.05 60.03± 5.81
CT-CRPS 55.38± 4.16 66.33± 17.93 52.11± 2.05 58.22± 13.95 50.72± 1.92 58.58± 15.48 50.07± 2.44 59.27± 16.52 50.06± 2.28 59.78± 17.48 50.24± 2.48 60.29± 18.09
CT-Gaussian 57.63± 11.87 62.93± 6.43 57.70± 6.10 62.24± 6.96 57.02± 6.97 62.12± 7.91 56.93± 7.86 62.19± 8.70 57.10± 8.23 62.62± 9.04 57.15± 8.66 63.11± 9.57
D.S. G-VAE (Gaussian) 79.08± 3.99 83.38± 4.12 74.80± 5.67 81.31± 4.08 73.20± 5.82 79.54± 3.97 71.92± 6.25 78.19± 4.00 70.81± 6.75 77.05± 3.99 70.09± 6.94 75.91± 3.98
D.S. G-VAE (CRPS) 69.93± 4.47 65.69± 4.62 65.18± 3.42 61.74± 7.18 64.13± 2.11 59.24± 8.27 63.82± 2.13 58.26± 9.15 64.14± 2.74 57.68± 9.91 64.50± 3.55 57.24± 10.77
G-Latent (Gaussian) 74.39± 2.97 76.17± 3.06 70.89± 2.35 74.39± 4.06 68.58± 2.04 72.32± 4.20 66.97± 1.74 70.90± 3.99 65.89± 1.69 69.99± 3.71 65.11± 1.74 69.05± 3.49
G-Latent (CRPS) 64.07± 4.57 61.35± 7.07 62.69± 3.09 62.99± 6.41 61.62± 2.49 62.44± 5.76 60.70± 2.50 62.09± 5.35 60.15± 2.90 62.01± 5.05 59.73± 3.28 61.94± 4.84

Quantile q = 0.7
G-Net 67.66± 4.61 67.06± 4.23 65.19± 2.77 66.61± 2.84 63.86± 2.99 65.57± 2.96 63.02± 3.32 65.03± 2.99 62.64± 3.58 64.78± 3.15 62.19± 3.62 64.58± 3.04
Transformer G-Net 68.92± 3.21 67.59± 2.49 67.48± 3.69 67.19± 2.94 65.91± 5.03 66.41± 4.03 64.74± 5.80 66.24± 4.78 64.16± 6.13 66.33± 5.34 63.92± 6.59 66.74± 6.05
CT-CRPS 66.21± 3.47 75.05± 16.02 60.32± 2.02 65.44± 13.29 58.02± 1.58 64.62± 15.15 56.84± 2.09 64.61± 16.45 56.44± 1.96 64.72± 17.45 56.34± 2.09 64.85± 18.15
CT-Gaussian 66.36± 11.39 72.26± 6.10 69.74± 4.92 71.90± 7.01 68.10± 5.79 70.69± 8.36 67.31± 6.39 70.15± 9.30 67.04± 6.86 70.03± 9.88 66.82± 7.26 70.12± 10.51
D.S. G-VAE (Gaussian) 94.82± 1.20 97.07± 0.98 91.28± 2.46 95.74± 1.96 90.17± 3.18 94.89± 2.40 89.14± 3.48 94.04± 2.76 88.31± 3.68 93.33± 2.95 87.64± 3.89 92.61± 3.13
D.S. G-VAE (CRPS) 82.24± 3.60 79.56± 3.88 76.71± 2.46 73.45± 6.88 74.71± 1.25 69.89± 8.27 73.69± 0.97 67.99± 9.02 73.55± 1.63 66.99± 9.70 73.61± 2.51 66.20± 10.62
G-Latent (Gaussian) 90.77± 1.55 93.29± 1.66 87.00± 2.07 91.13± 2.26 84.29± 2.21 89.05± 2.76 82.30± 2.28 87.31± 2.78 80.87± 2.22 86.07± 2.71 79.79± 2.23 85.00± 2.69
G-Latent (CRPS) 75.16± 4.62 72.44± 6.07 73.58± 2.59 73.60± 5.58 72.25± 2.08 72.77± 4.86 71.20± 1.99 72.09± 4.49 70.52± 2.23 71.65± 4.31 69.84± 2.48 71.42± 4.10

Quantile q = 0.8
G-Net 76.99± 3.33 76.63± 2.86 74.31± 2.24 75.61± 1.59 72.59± 2.49 74.43± 1.69 71.52± 2.72 73.65± 1.69 70.91± 3.00 73.16± 1.76 70.41± 3.07 72.78± 1.70
Transformer G-Net 75.77± 2.76 74.56± 2.34 77.00± 3.52 75.89± 2.95 75.45± 4.73 74.53± 4.08 74.19± 5.32 73.82± 4.78 73.44± 5.61 73.67± 5.34 73.09± 6.09 73.74± 5.89
CT-CRPS 75.94± 2.93 82.19± 13.12 69.10± 1.83 72.84± 11.82 65.98± 1.21 70.88± 14.18 64.35± 1.51 70.28± 15.69 63.54± 1.49 69.91± 16.72 63.13± 1.67 69.66± 17.57
CT-Gaussian 75.46± 10.17 81.47± 5.26 80.43± 3.61 80.78± 6.27 78.44± 4.33 78.93± 8.03 77.41± 4.86 77.89± 9.30 76.96± 5.26 77.43± 10.11 76.50± 5.66 77.15± 10.84
D.S. G-VAE (Gaussian) 98.85± 0.42 99.57± 0.20 97.32± 1.27 99.15± 0.64 97.02± 1.42 98.96± 0.91 96.69± 1.50 98.76± 1.17 96.46± 1.54 98.56± 1.37 96.21± 1.59 98.36± 1.57
D.S. G-VAE (CRPS) 90.14± 2.69 88.91± 2.53 85.93± 1.96 83.43± 5.73 83.87± 1.49 79.69± 7.18 82.61± 0.96 77.46± 7.84 82.35± 1.14 76.16± 8.66 82.23± 1.74 75.16± 9.54
G-Latent (Gaussian) 97.22± 0.52 98.62± 0.50 95.09± 1.20 97.62± 0.90 93.41± 1.59 96.68± 1.20 92.06± 1.80 95.76± 1.41 91.01± 1.93 94.97± 1.49 90.14± 1.98 94.32± 1.56
G-Latent (CRPS) 84.67± 3.98 82.21± 4.59 83.17± 2.01 82.96± 4.00 81.91± 1.46 81.98± 3.39 80.85± 1.50 81.16± 3.08 80.16± 1.61 80.59± 3.02 79.53± 1.80 80.20± 2.80

Quantile q = 0.9
G-Net 86.33± 1.84 86.56± 1.25 84.13± 1.69 85.37± 0.94 82.38± 2.08 84.15± 1.22 81.28± 2.25 83.28± 1.34 80.63± 2.31 82.60± 1.30 80.10± 2.36 82.04± 1.31
Transformer G-Net 83.13± 2.79 82.18± 2.41 86.47± 3.01 85.23± 2.64 85.15± 4.03 83.49± 3.69 84.05± 4.32 82.41± 4.32 83.36± 4.55 81.98± 4.67 82.99± 4.97 81.77± 5.17
CT-CRPS 84.04± 2.49 87.89± 9.91 78.28± 1.50 80.56± 9.36 74.99± 0.86 77.92± 12.01 73.22± 0.82 76.70± 13.88 72.09± 0.89 75.91± 15.11 71.42± 1.15 75.34± 16.09
CT-Gaussian 85.16± 7.78 90.35± 3.74 89.36± 1.94 89.02± 4.70 87.84± 2.61 87.00± 6.78 86.95± 3.04 85.62± 8.21 86.57± 3.40 84.91± 9.17 86.06± 3.67 84.40± 9.94
D.S. G-VAE (Gaussian) 99.67± 0.16 99.91± 0.06 99.17± 0.54 99.83± 0.16 99.18± 0.59 99.82± 0.21 99.19± 0.62 99.77± 0.32 99.18± 0.62 99.71± 0.44 99.15± 0.62 99.65± 0.56
D.S. G-VAE (CRPS) 94.58± 1.80 94.24± 1.35 92.95± 1.22 91.33± 3.56 91.43± 1.35 88.47± 4.88 90.46± 1.23 86.56± 5.55 90.22± 1.24 85.36± 6.44 90.13± 1.44 84.44± 7.30
G-Latent (Gaussian) 99.24± 0.18 99.77± 0.14 98.37± 0.68 99.46± 0.36 97.75± 0.90 99.20± 0.49 97.24± 1.07 98.98± 0.58 96.80± 1.14 98.76± 0.67 96.41± 1.23 98.54± 0.76
G-Latent (CRPS) 92.32± 2.62 90.52± 2.77 91.21± 1.00 90.80± 1.91 90.25± 0.70 90.01± 1.51 89.52± 0.68 89.32± 1.46 88.97± 0.87 88.79± 1.53 88.63± 1.14 88.38± 1.52
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Table 14: Empirical coverage (%) by step and dimension for each quantile q. Steps t′ ∈ {7, . . . , 11}
and calibration across steps, two outcome dimensions.

Step t′ & Across Steps (Cal.)

Model 7 8 9 10 11 Across Steps (Cal.)

Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2

Quantile q = 0.1
G-Net 17.62± 6.07 20.20± 5.19 17.90± 6.30 20.53± 5.11 17.95± 6.32 20.51± 4.96 18.03± 6.28 20.46± 4.85 18.11± 6.38 20.44± 4.75 16.94± 5.62 19.24± 4.93
Transformer G-Net 14.53± 8.45 24.71± 4.14 15.12± 8.75 25.69± 4.24 15.76± 8.98 26.30± 4.23 16.26± 9.25 26.83± 4.25 16.65± 9.55 27.32± 4.26 14.13± 8.14 23.24± 4.10
CT-CRPS 21.73± 3.11 34.41± 12.22 22.30± 3.31 35.70± 12.81 22.79± 3.47 36.73± 13.25 23.29± 3.64 37.70± 13.58 23.73± 3.87 38.50± 14.05 20.89± 2.68 32.15± 11.34
CT-Gaussian 14.86± 6.16 24.59± 4.66 15.51± 6.63 25.93± 4.95 16.19± 7.25 27.03± 5.11 16.95± 7.80 28.03± 5.46 17.54± 8.18 28.84± 5.66 14.17± 5.60 22.86± 4.32
D.S. G-VAE (Gaussian) 0.71± 0.43 0.13± 0.14 0.75± 0.43 0.13± 0.14 0.79± 0.48 0.13± 0.14 0.84± 0.49 0.12± 0.15 0.90± 0.53 0.14± 0.15 0.74± 0.42 0.14± 0.15
D.S. G-VAE (CRPS) 15.37± 3.71 11.89± 3.53 15.79± 3.81 12.08± 3.88 16.01± 3.95 11.97± 4.07 16.24± 4.27 11.80± 4.19 16.51± 4.56 11.65± 4.32 14.10± 3.79 10.77± 2.98
G-Latent (Gaussian) 3.21± 1.30 1.28± 1.04 3.41± 1.40 1.40± 1.05 3.57± 1.45 1.55± 1.14 3.71± 1.54 1.64± 1.11 3.85± 1.66 1.77± 1.11 2.92± 1.19 1.16± 0.90
G-Latent (CRPS) 11.69± 2.11 13.19± 4.05 11.89± 2.20 13.60± 4.14 12.09± 2.36 13.80± 4.20 12.23± 2.45 14.00± 4.14 12.40± 2.57 14.15± 4.13 11.40± 2.05 12.59± 3.72

Quantile q = 0.2
G-Net 25.81± 6.25 28.45± 5.88 26.06± 6.41 28.67± 5.70 26.19± 6.64 28.61± 5.60 26.27± 6.68 28.51± 5.54 26.36± 6.84 28.51± 5.43 25.25± 5.85 27.54± 5.60
Transformer G-Net 22.77± 9.13 33.83± 4.60 23.47± 9.34 34.83± 4.82 24.17± 9.57 35.35± 4.97 24.62± 9.82 35.84± 5.04 25.13± 10.11 36.32± 5.19 22.44± 8.65 32.29± 4.36
CT-CRPS 28.09± 3.41 41.52± 14.34 28.62± 3.69 42.63± 15.00 29.07± 3.79 43.52± 15.38 29.56± 4.02 44.40± 15.68 29.96± 4.26 45.08± 16.01 27.26± 2.98 39.42± 13.63
CT-Gaussian 23.06± 8.24 33.78± 4.86 23.76± 8.72 34.97± 5.01 24.54± 9.22 35.91± 5.29 25.25± 9.86 36.89± 5.68 25.96± 10.26 37.67± 5.92 22.18± 7.63 32.04± 4.75
D.S. G-VAE (Gaussian) 2.99± 0.99 0.87± 0.70 3.17± 1.03 0.93± 0.74 3.35± 1.05 1.02± 0.82 3.54± 1.08 1.06± 0.82 3.69± 1.08 1.11± 0.86 2.92± 0.94 0.87± 0.70
D.S. G-VAE (CRPS) 26.01± 4.90 20.77± 5.83 26.49± 4.98 21.01± 6.42 26.78± 5.39 20.77± 6.69 27.01± 5.84 20.54± 6.93 27.19± 6.27 20.25± 7.08 24.22± 4.91 19.39± 4.99
G-Latent (Gaussian) 8.57± 2.05 4.77± 2.38 9.05± 2.14 5.35± 2.46 9.36± 2.24 5.74± 2.57 9.60± 2.30 6.11± 2.61 9.87± 2.45 6.48± 2.67 7.85± 1.89 4.35± 2.16
G-Latent (CRPS) 20.49± 3.34 22.31± 4.32 20.73± 3.58 22.83± 4.40 20.82± 3.57 22.83± 4.46 20.94± 3.72 22.92± 4.46 21.06± 3.77 22.94± 4.45 20.12± 3.12 21.51± 4.12

Quantile q = 0.3
G-Net 33.22± 5.95 35.69± 6.01 33.39± 6.13 35.89± 5.84 33.55± 6.41 35.77± 5.72 33.65± 6.54 35.62± 5.65 33.71± 6.71 35.57± 5.61 32.87± 5.62 35.00± 5.75
Transformer G-Net 30.85± 8.99 41.31± 5.12 31.54± 9.18 42.19± 5.48 32.15± 9.40 42.67± 5.70 32.63± 9.67 43.10± 5.92 33.11± 9.91 43.59± 6.16 30.70± 8.37 39.96± 4.63
CT-CRPS 33.73± 3.51 47.08± 15.98 34.15± 3.84 48.01± 16.56 34.56± 3.93 48.78± 16.97 34.96± 4.17 49.48± 17.26 35.34± 4.37 50.06± 17.62 33.09± 3.08 45.32± 15.32
CT-Gaussian 31.16± 9.58 41.88± 5.58 31.74± 10.04 42.87± 5.94 32.55± 10.46 43.70± 6.20 33.27± 10.97 44.50± 6.56 33.90± 11.31 45.17± 6.83 30.27± 8.99 40.34± 5.54
D.S. G-VAE (Gaussian) 9.38± 1.90 4.85± 2.16 9.86± 1.93 5.20± 2.29 10.18± 2.06 5.48± 2.52 10.58± 2.09 5.67± 2.62 10.98± 2.13 5.93± 2.84 9.08± 1.74 4.69± 2.15
D.S. G-VAE (CRPS) 36.16± 5.40 29.84± 8.01 36.69± 5.90 29.99± 8.68 36.93± 6.38 29.51± 8.99 37.13± 6.87 29.05± 9.36 37.24± 7.42 28.62± 9.57 34.41± 5.36 28.52± 7.00
G-Latent (Gaussian) 17.66± 2.38 13.29± 3.36 18.25± 2.44 14.22± 3.49 18.60± 2.52 14.78± 3.56 18.89± 2.55 15.29± 3.60 19.21± 2.71 15.78± 3.59 16.55± 2.27 12.09± 3.19
G-Latent (CRPS) 29.63± 4.28 31.95± 4.66 29.86± 4.41 32.49± 4.56 29.91± 4.52 32.29± 4.63 29.96± 4.54 32.22± 4.72 29.93± 4.56 32.07± 4.76 29.48± 3.85 31.18± 4.56

Quantile q = 0.4
G-Net 40.31± 5.57 42.66± 5.80 40.44± 5.76 42.81± 5.64 40.53± 6.01 42.64± 5.51 40.62± 6.23 42.44± 5.37 40.67± 6.48 42.33± 5.37 40.20± 5.24 42.20± 5.53
Transformer G-Net 38.96± 8.49 47.98± 5.60 39.54± 8.77 48.78± 6.16 40.11± 9.01 49.19± 6.49 40.43± 9.30 49.56± 6.78 40.85± 9.57 50.00± 7.10 39.02± 7.82 46.95± 5.03
CT-CRPS 39.19± 3.48 51.94± 17.16 39.50± 3.81 52.72± 17.72 39.78± 3.90 53.26± 18.14 40.12± 4.10 53.86± 18.51 40.38± 4.37 54.31± 18.78 38.78± 3.03 50.58± 16.55
CT-Gaussian 39.56± 10.15 49.43± 6.99 40.09± 10.54 50.21± 7.29 40.78± 10.83 50.81± 7.57 41.35± 11.31 51.53± 7.91 41.98± 11.64 51.99± 8.10 38.85± 9.63 48.21± 6.73
D.S. G-VAE (Gaussian) 23.60± 4.66 18.98± 3.63 24.04± 4.92 19.51± 3.85 24.43± 5.04 19.64± 4.10 24.88± 5.13 19.74± 4.41 25.27± 5.21 19.89± 4.86 23.21± 4.44 18.61± 3.67
D.S. G-VAE (CRPS) 45.95± 5.50 38.91± 9.77 46.42± 6.15 38.82± 10.51 46.62± 6.79 38.19± 11.00 46.72± 7.39 37.55± 11.33 46.80± 7.80 36.86± 11.59 44.61± 5.20 37.96± 8.79
G-Latent (Gaussian) 31.04± 2.06 28.42± 3.67 31.46± 2.11 29.33± 3.79 31.65± 2.14 29.59± 3.74 31.81± 2.32 29.90± 3.88 31.88± 2.41 30.20± 3.90 30.07± 1.94 26.95± 3.49
G-Latent (CRPS) 39.24± 4.48 41.99± 4.90 39.33± 4.64 42.32± 4.71 39.26± 4.75 42.06± 4.72 39.22± 4.87 41.73± 4.86 39.07± 4.95 41.47± 4.96 39.33± 4.02 41.31± 4.91

Quantile q = 0.5
G-Net 47.43± 5.13 49.67± 5.29 47.42± 5.37 49.73± 5.14 47.42± 5.55 49.52± 4.94 47.48± 5.84 49.28± 4.83 47.50± 6.08 49.13± 4.78 47.51± 4.78 49.45± 4.96
Transformer G-Net 47.14± 7.96 54.30± 6.02 47.62± 8.24 55.05± 6.76 48.11± 8.61 55.30± 7.18 48.35± 8.98 55.59± 7.49 48.70± 9.26 55.92± 7.77 47.47± 7.28 53.61± 5.47
CT-CRPS 44.65± 3.33 56.37± 18.10 44.84± 3.65 57.00± 18.49 44.99± 3.70 57.39± 18.99 45.20± 3.89 57.80± 19.33 45.43± 4.20 58.11± 19.61 44.55± 2.87 55.48± 17.39
CT-Gaussian 48.39± 9.99 56.62± 8.55 48.75± 10.28 57.18± 8.84 49.27± 10.61 57.62± 9.03 49.71± 10.99 58.09± 9.32 50.22± 11.30 58.45± 9.49 47.99± 9.48 55.85± 8.06
D.S. G-VAE (Gaussian) 45.81± 7.60 46.44± 3.78 45.79± 7.70 46.14± 3.99 45.83± 7.97 45.38± 4.28 45.82± 8.20 44.84± 4.59 45.81± 8.29 44.32± 4.96 46.04± 7.29 46.49± 3.91
D.S. G-VAE (CRPS) 55.53± 5.05 47.81± 10.99 55.80± 5.80 47.62± 11.81 56.04± 6.44 46.74± 12.39 56.02± 7.05 45.97± 12.83 55.99± 7.54 45.13± 13.17 54.77± 4.43 47.51± 10.16
G-Latent (Gaussian) 47.55± 1.36 48.42± 3.72 47.48± 1.46 48.76± 3.76 47.33± 1.61 48.33± 3.71 47.17± 1.82 48.11± 3.58 46.91± 1.88 47.84± 3.61 47.50± 1.05 47.93± 3.58
G-Latent (CRPS) 49.23± 4.20 52.00± 4.94 49.18± 4.43 52.21± 4.84 49.01± 4.53 51.81± 4.81 48.66± 4.63 51.29± 4.86 48.48± 4.81 50.93± 5.01 49.54± 3.69 51.62± 5.12

Quantile q = 0.6
G-Net 54.67± 4.55 56.87± 4.28 54.54± 4.81 56.89± 4.18 54.50± 5.10 56.58± 4.02 54.46± 5.39 56.32± 3.94 54.48± 5.61 56.16± 3.86 54.94± 4.25 56.89± 4.02
Transformer G-Net 55.47± 7.41 60.53± 6.41 55.81± 7.77 61.08± 7.12 56.11± 8.27 61.34± 7.62 56.32± 8.57 61.55± 7.97 56.63± 8.91 61.71± 8.30 56.04± 6.86 60.22± 5.86
CT-CRPS 50.26± 2.93 60.74± 18.67 50.35± 3.34 61.01± 19.00 50.31± 3.41 61.27± 19.47 50.41± 3.57 61.54± 19.79 50.64± 3.86 61.73± 20.07 50.52± 2.60 60.24± 17.83
CT-Gaussian 57.55± 9.08 63.41± 9.86 57.75± 9.38 63.81± 10.17 58.10± 9.63 64.03± 10.36 58.32± 9.93 64.38± 10.69 58.65± 10.13 64.59± 10.83 57.63± 8.55 63.25± 9.26
D.S. G-VAE (Gaussian) 69.55± 7.03 74.91± 3.94 69.01± 7.30 73.94± 3.91 68.47± 7.57 72.84± 3.91 68.15± 7.88 71.74± 3.98 67.74± 8.21 70.77± 4.08 70.37± 6.78 75.62± 3.79
D.S. G-VAE (CRPS) 64.75± 4.19 56.71± 11.59 64.95± 4.98 56.26± 12.40 65.08± 5.55 55.24± 13.11 64.98± 6.23 54.22± 13.70 64.80± 6.69 53.40± 14.12 64.63± 3.34 57.00± 10.92
G-Latent (Gaussian) 64.48± 1.80 68.44± 3.46 63.87± 1.84 67.99± 3.53 63.48± 1.94 67.07± 3.17 62.91± 2.01 66.31± 3.03 62.43± 2.05 65.65± 2.88 65.46± 1.61 69.21± 3.47
G-Latent (CRPS) 59.38± 3.57 61.85± 4.63 59.15± 3.75 61.85± 4.59 58.85± 3.93 61.23± 4.67 58.53± 4.13 60.66± 4.76 58.13± 4.33 60.16± 4.92 59.89± 3.06 61.72± 4.96

Quantile q = 0.7
G-Net 62.08± 3.83 64.38± 3.04 61.95± 4.23 64.30± 2.94 61.80± 4.56 64.00± 2.90 61.78± 4.83 63.68± 2.85 61.71± 4.98 63.45± 2.79 62.62± 3.68 64.64± 2.79
Transformer G-Net 63.99± 6.95 66.99± 6.68 64.22± 7.30 67.39± 7.24 64.39± 7.87 67.45± 7.71 64.50± 8.19 67.50± 8.05 64.75± 8.57 67.63± 8.35 64.81± 6.50 66.99± 6.07
CT-CRPS 56.21± 2.53 64.99± 18.75 55.99± 2.91 65.00± 19.16 55.91± 3.05 65.10± 19.56 56.00± 3.20 65.23± 19.90 56.15± 3.39 65.33± 20.22 56.82± 2.23 64.99± 17.79
CT-Gaussian 66.95± 7.68 70.14± 10.80 66.93± 7.90 70.26± 11.22 67.12± 8.11 70.25± 11.41 67.22± 8.26 70.39± 11.72 67.44± 8.42 70.52± 11.99 67.47± 7.08 70.45± 10.11
D.S. G-VAE (Gaussian) 86.93± 4.06 91.90± 3.20 86.44± 4.19 91.21± 3.28 86.06± 4.46 90.44± 3.22 85.68± 4.68 89.70± 3.23 85.36± 4.91 88.97± 3.17 87.70± 3.86 92.28± 2.86
D.S. G-VAE (CRPS) 73.69± 3.24 65.51± 11.42 73.79± 3.88 64.90± 12.23 73.73± 4.40 63.74± 13.01 73.68± 4.89 62.70± 13.70 73.49± 5.29 61.86± 14.26 74.06± 2.32 66.32± 10.85
G-Latent (Gaussian) 79.00± 2.21 84.00± 2.58 78.23± 2.29 83.24± 2.52 77.61± 2.26 82.38± 2.32 77.07± 2.22 81.47± 2.08 76.59± 2.31 80.83± 2.01 80.28± 2.08 85.05± 2.41
G-Latent (CRPS) 69.40± 2.81 71.15± 3.92 69.10± 3.02 70.92± 3.89 68.73± 3.23 70.33± 3.94 68.34± 3.52 69.77± 4.13 68.04± 3.76 69.19± 4.36 70.10± 2.40 71.29± 4.20

Quantile q = 0.8
G-Net 70.11± 3.12 72.51± 1.72 69.94± 3.38 72.34± 1.74 69.81± 3.74 71.94± 1.77 69.75± 4.00 71.62± 1.92 69.73± 4.09 71.34± 1.99 70.91± 2.99 72.94± 1.50
Transformer G-Net 72.97± 6.37 73.86± 6.47 73.03± 6.76 74.07± 6.91 73.07± 7.26 73.93± 7.40 73.11± 7.58 73.91± 7.66 73.14± 7.98 73.95± 7.93 73.85± 6.03 74.14± 5.93
CT-CRPS 62.81± 2.08 69.44± 18.29 62.35± 2.36 69.26± 18.71 62.24± 2.64 69.22± 19.26 62.24± 2.67 69.20± 19.66 62.36± 2.82 69.19± 19.93 63.81± 1.75 69.99± 17.17
CT-Gaussian 76.45± 5.86 76.88± 11.24 76.30± 6.16 76.70± 11.69 76.38± 6.20 76.53± 11.97 76.36± 6.34 76.50± 12.28 76.42± 6.44 76.47± 12.62 77.17± 5.38 77.53± 10.36
D.S. G-VAE (Gaussian) 95.99± 1.64 98.11± 1.74 95.75± 1.62 97.88± 1.85 95.64± 1.66 97.61± 1.93 95.48± 1.73 97.37± 1.98 95.35± 1.82 97.11± 2.00 96.19± 1.54 98.19± 1.49
D.S. G-VAE (CRPS) 82.16± 2.35 74.36± 10.33 82.16± 2.79 73.67± 11.16 82.11± 3.23 72.53± 11.93 82.04± 3.53 71.58± 12.66 81.89± 3.89 70.67± 13.29 82.74± 1.73 75.47± 9.79
G-Latent (Gaussian) 89.49± 1.92 93.71± 1.54 88.92± 1.97 93.15± 1.58 88.51± 2.03 92.59± 1.51 88.14± 2.01 91.98± 1.46 87.79± 2.01 91.53± 1.40 90.46± 1.76 94.23± 1.37
G-Latent (CRPS) 79.11± 2.08 79.81± 2.78 78.75± 2.26 79.52± 2.76 78.42± 2.55 78.98± 2.85 78.11± 2.83 78.50± 3.07 77.81± 3.06 78.00± 3.43 79.78± 1.79 80.17± 2.95

Quantile q = 0.9
G-Net 79.76± 2.44 81.61± 1.44 79.49± 2.51 81.35± 1.57 79.39± 2.66 80.93± 1.63 79.38± 2.73 80.65± 1.80 79.31± 2.91 80.38± 2.03 80.59± 2.21 82.24± 1.21
Transformer G-Net 82.78± 5.22 81.74± 5.55 82.65± 5.61 81.71± 5.95 82.55± 5.97 81.49± 6.27 82.50± 6.28 81.38± 6.57 82.50± 6.56 81.33± 6.80 83.50± 4.98 82.25± 5.15
CT-CRPS 70.83± 1.59 74.86± 16.94 70.30± 1.80 74.44± 17.55 70.13± 2.02 74.14± 18.19 70.06± 2.11 73.96± 18.54 69.94± 2.25 73.82± 18.92 72.12± 1.17 75.76± 15.64
CT-Gaussian 85.96± 3.83 83.92± 10.48 85.80± 4.03 83.63± 11.06 85.89± 4.09 83.28± 11.50 85.80± 4.08 83.01± 11.87 85.74± 4.12 82.87± 12.17 86.60± 3.40 84.77± 9.54
D.S. G-VAE (Gaussian) 99.15± 0.60 99.60± 0.66 99.16± 0.55 99.54± 0.75 99.17± 0.54 99.50± 0.82 99.11± 0.54 99.46± 0.84 99.07± 0.55 99.43± 0.89 99.15± 0.57 99.63± 0.56
D.S. G-VAE (CRPS) 90.05± 1.70 83.74± 8.05 90.08± 1.99 83.04± 8.86 90.09± 2.18 82.08± 9.64 90.06± 2.36 81.26± 10.38 89.94± 2.57 80.54± 11.03 90.54± 1.50 84.68± 7.54
G-Latent (Gaussian) 96.12± 1.23 98.35± 0.78 95.91± 1.22 98.14± 0.81 95.68± 1.27 97.90± 0.86 95.53± 1.26 97.72± 0.84 95.32± 1.25 97.47± 0.84 96.51± 1.07 98.45± 0.69
G-Latent (CRPS) 88.34± 1.27 88.04± 1.59 88.02± 1.49 87.81± 1.57 87.85± 1.73 87.34± 1.81 87.66± 1.92 86.93± 2.09 87.43± 2.11 86.57± 2.29 88.79± 1.08 88.40± 1.56
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J.2 SEMI-SYNTHETIC DATASET (ORIGINAL VERSION)

In table 15, we show a summary of results for selected steps for the original semi-synthetic dataset with issues
regarding the positivity assumption. In table 16, we show the Energy Scores. In tables 17, 18 and 19 we show
the KDE-LL for bandwidths 0.2, 0.3 and 0.4, respectively. In table 20, we show the RMSE metrics.

Table 15: Results at selected steps t′ ∈ {3, 5, 8, 11} for the semi-synthetic dataset. Metrics: Energy
Score (ES ↓) (per step and across steps), KDE-Loglikelihood (KDE-LL ↑), and RMSE ↓.

t′ = 3 t′ = 5 t′ = 8 t′ = 11 Global

Model ES↓ KDE-LL↑ RMSE↓ ES↓ KDE-LL↑ RMSE↓ ES↓ KDE-LL↑ RMSE↓ ES↓ KDE-LL↑ RMSE↓ ES↓

G-Net 0.65 ± 0.08 −2.22 ± 0.39 0.82 ± 0.04 0.99 ± 0.11 −3.54 ± 0.43 1.02 ± 0.05 1.27 ± 0.11 −4.65 ± 0.44 1.22 ± 0.06 1.41 ± 0.14 −5.15 ± 0.47 1.35 ± 0.06 3.57 ± 0.43
Transformer G-Net 0.49 ± 0.08 −1.49 ± 0.32 0.66 ± 0.04 0.74 ± 0.11 −2.42 ± 0.43 0.80 ± 0.04 1.10 ± 0.11 −3.69 ± 0.39 1.00 ± 0.06 1.31 ± 0.14 −4.14 ± 0.35 1.17 ± 0.06 2.92 ± 0.38
CT (CRPS) 0.41 ± 0.06 −1.40 ± 0.20 0.67 ± 0.06 0.53 ± 0.06 −1.86 ± 0.25 0.80 ± 0.05 0.65 ± 0.06 −2.29 ± 0.24 0.94 ± 0.06 0.73 ± 0.05 −2.60 ± 0.22 1.05 ± 0.06 1.85 ± 0.22
CT (Gaussian) 0.52 ± 0.07 −1.56 ± 0.32 0.64 ± 0.06 0.65 ± 0.06 −1.81 ± 0.30 0.78 ± 0.05 0.82 ± 0.07 −2.19 ± 0.29 0.91 ± 0.05 0.93 ± 0.07 −2.52 ± 0.28 1.03 ± 0.06 2.40 ± 0.28
CT ... ... 0.46 ± 0.01 ... ... 0.51 ± 0.02 ... ... 0.55 ± 0.02 ... ... 0.61 ± 0.02 ...

D.S. G-VAE (Gaussian) 0.49 ± 0.05 −2.30 ± 0.30 0.69 ± 0.05 0.60 ± 0.05 −2.66 ± 0.32 0.88 ± 0.07 0.72 ± 0.06 −2.91 ± 0.35 1.18 ± 0.08 0.78 ± 0.07 −3.02 ± 0.32 1.35 ± 0.08 2.21 ± 0.24
D.S. G-VAE (CRPS) 0.44 ± 0.06 −1.57 ± 0.25 0.68 ± 0.06 0.51 ± 0.05 −1.80 ± 0.22 0.85 ± 0.06 0.58 ± 0.07 −2.04 ± 0.24 1.10 ± 0.07 0.65 ± 0.08 −2.24 ± 0.21 1.26 ± 0.09 1.85 ± 0.21
G-Latent (Gaussian) 0.40 ± 0.04 −1.48 ± 0.31 0.62 ± 0.05 0.46 ± 0.04 −1.66 ± 0.26 0.70 ± 0.05 0.51 ± 0.05 −1.81 ± 0.24 0.78 ± 0.05 0.54 ± 0.05 −1.91 ± 0.24 0.83 ± 0.07 1.64 ± 0.13
G-Latent (CRPS) 0.39 ± 0.06 −1.32 ± 0.15 0.65 ± 0.06 0.46 ± 0.06 −1.59 ± 0.16 0.77 ± 0.06 0.53 ± 0.06 −1.82 ± 0.15 0.88 ± 0.04 0.56 ± 0.05 −1.95 ± 0.14 0.94 ± 0.03 1.67 ± 0.20

Table 16: Energy Score per step t′ on semi-synthetic dataset. Rightmost column reports the Global
Energy Score across steps. Best per column in bold.
Model t′=2 t′=3 t′=4 t′=5 t′=6 t′=7 t′=8 t′=9 t′=10 t′=11 Global

G-Net 0.44± 0.06 0.65± 0.08 0.84± 0.09 0.99± 0.11 1.11± 0.11 1.20± 0.13 1.27± 0.11 1.33± 0.13 1.38± 0.13 1.41± 0.14 3.57± 0.43
Transformer G-Net 0.39± 0.06 0.49± 0.08 0.62± 0.09 0.74± 0.11 0.90± 0.11 1.03± 0.13 1.10± 0.11 1.19± 0.13 1.25± 0.13 1.31± 0.14 2.92± 0.38
CT-CRPS 0.35± 0.05 0.41± 0.06 0.49± 0.06 0.53± 0.06 0.58± 0.06 0.62± 0.06 0.65± 0.06 0.68± 0.06 0.71± 0.06 0.73± 0.05 1.85± 0.22
CT-Gaussian 0.42± 0.05 0.52± 0.07 0.58± 0.07 0.65± 0.06 0.72± 0.06 0.75± 0.07 0.82± 0.07 0.88± 0.08 0.91± 0.07 0.93± 0.07 2.40± 0.28

D.S. G-VAE (Gaussian) 0.40± 0.05 0.49± 0.05 0.54± 0.04 0.60± 0.05 0.67± 0.06 0.70± 0.06 0.72± 0.06 0.74± 0.05 0.76± 0.07 0.78± 0.07 2.21± 0.24
D.S. G-VAE (CRPS) 0.38± 0.05 0.44± 0.06 0.48± 0.06 0.51± 0.05 0.54± 0.06 0.56± 0.06 0.58± 0.07 0.61± 0.06 0.63± 0.07 0.65± 0.08 1.85± 0.21
G-Latent (Gaussian) 0.36± 0.04 0.40± 0.04 0.43 ± 0.04 0.46 ± 0.04 0.48 ± 0.04 0.49 ± 0.05 0.51 ± 0.05 0.52 ± 0.05 0.53 ± 0.05 0.54 ± 0.05 1.64 ± 0.13
G-Latent (CRPS) 0.34 ± 0.05 0.39 ± 0.06 0.43 ± 0.06 0.46 ± 0.06 0.49± 0.06 0.51± 0.06 0.53± 0.06 0.54± 0.06 0.55± 0.06 0.56± 0.05 1.67± 0.20

Table 17: KDE Loglikelihood per step t′ on semi-synthetic dataset with bandwidth 0.2. Best per
column in bold.
Model t′=2 t′=3 t′=4 t′=5 t′=6 t′=7 t′=8 t′=9 t′=10 t′=11

G-Net −1.68± 0.38 −3.09± 0.45 −4.43± 0.41 −5.71± 0.61 −6.83± 0.56 −7.72± 0.40 −8.41± 0.73 −8.99± 0.60 −9.38± 0.69 −9.69± 0.71
Transformer G-Net −1.24± 0.31 −2.01± 0.39 −2.68± 0.32 −3.31± 0.43 −3.80± 0.50 −4.79± 0.73 −5.63± 0.56 −6.41± 0.68 −7.12± 0.81 −7.88± 0.70
CT-CRPS −1.13± 0.20 −1.44± 0.23 −1.69± 0.32 −1.86± 0.30 −2.01± 0.37 −2.21± 0.35 −2.38± 0.39 −2.53± 0.45 −2.67± 0.31 −2.80± 0.29
CT-Gaussian −1.25± 0.22 −1.67± 0.27 −1.81± 0.33 −1.95± 0.37 −2.10± 0.29 −2.29± 0.33 −2.52± 0.25 −2.72± 0.30 −2.89± 0.36 −3.02± 0.41

D.S. G-VAE (Gaussian) −1.90± 0.34 −2.27± 0.31 −2.51± 0.45 −2.67± 0.39 −2.79± 0.31 −2.87± 0.44 −2.94± 0.41 −2.99± 0.48 −3.04± 0.51 −3.07± 0.43
D.S. G-VAE (CRPS) −1.26± 0.25 −1.51± 0.32 −1.70± 0.21 −1.82± 0.27 −1.95± 0.31 −2.06± 0.30 −2.16± 0.39 −2.25± 0.35 −2.33± 0.42 −2.40± 0.29
G-Latent (Gaussian) −1.30± 0.29 −1.53± 0.18 −1.71± 0.13 −1.83± 0.11 −1.93± 0.14 −2.02± 0.19 −2.09± 0.25 −2.15± 0.30 −2.20± 0.36 −2.26± 0.41
G-Latent (CRPS) −0.97 ± 0.24 −1.31 ± 0.27 −1.55 ± 0.29 −1.72 ± 0.30 −1.87 ± 0.31 −1.98 ± 0.31 −2.07 ± 0.31 −2.14 ± 0.30 −2.19 ± 0.30 −2.25 ± 0.29
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Table 18: KDE Loglikelihood per step t′ on semi-synthetic dataset with bandwidth 0.3 Best per
column in bold.
Model t′=2 t′=3 t′=4 t′=5 t′=6 t′=7 t′=8 t′=9 t′=10 t′=11

G-Net −1.41± 0.32 −2.47± 0.39 −3.37± 0.34 −4.15± 0.46 −4.80± 0.49 −5.29± 0.54 −5.68± 0.40 −5.99± 0.46 −6.21± 0.41 −6.37± 0.51
Transformer G-Net −1.23± 0.30 −1.83± 0.39 −2.37± 0.39 −3.12± 0.41 −3.81± 0.37 −4.43± 0.41 −4.44± 0.39 −4.68± 0.38 −5.25± 0.32 −5.77± 0.34
CT-CRPS −1.02± 0.22 −1.29± 0.18 −1.52± 0.24 −1.71± 0.25 −1.88± 0.24 −2.01± 0.21 −2.14± 0.22 −2.22± 0.24 −2.26± 0.22 −2.30± 0.23
CT-Gaussian −1.29± 0.31 −1.49± 0.38 −1.77± 0.32 −1.98± 0.39 −2.17± 0.30 −2.30± 0.37 −2.46± 0.34 −2.59± 0.29 −2.72± 0.28 −2.85± 0.31

D.S. G-VAE (Gaussian) −1.92± 0.29 −2.27± 0.31 −2.49± 0.34 −2.65± 0.31 −2.76± 0.37 −2.85± 0.29 −2.91± 0.32 −2.96± 0.34 −3.00± 0.35 −3.03± 0.38
D.S. G-VAE (CRPS) −1.29± 0.20 −1.50± 0.25 −1.66± 0.23 −1.77± 0.29 −1.87± 0.22 −1.97± 0.24 −2.05± 0.25 −2.12± 0.31 −2.19± 0.27 −2.26± 0.27
G-Latent (Gaussian) −1.25± 0.37 −1.43± 0.30 −1.56± 0.25 −1.65± 0.22 −1.73± 0.21 −1.80± 0.20 −1.85± 0.20 −1.89± 0.20 −1.93± 0.21 −1.97± 0.23
G-Latent (CRPS) −0.98 ± 0.18 −1.25 ± 0.20 −1.44 ± 0.21 −1.58 ± 0.21 −1.69 ± 0.21 −1.78 ± 0.21 −1.85 ± 0.20 −1.91 ± 0.20 −1.96 ± 0.19 −2.00 ± 0.19

Table 19: KDE Loglikelihood per step t′ on semi-synthetic dataset with bandwidth 0.4. Best per
column in bold.
Model t′=2 t′=3 t′=4 t′=5 t′=6 t′=7 t′=8 t′=9 t′=10 t′=11

G-Net −1.37± 0.32 −2.22± 0.39 −2.94± 0.39 −3.54± 0.43 −4.01± 0.44 −4.38± 0.42 −4.65± 0.44 −4.88± 0.45 −5.04± 0.40 −5.15± 0.47
Transformer G-Net −1.21± 0.30 −1.49± 0.32 −1.89± 0.40 −2.42± 0.43 −2.91± 0.44 −3.38± 0.45 −3.69± 0.39 −3.85± 0.37 −4.01± 0.40 −4.14± 0.35
CT-CRPS −1.15± 0.19 −1.40± 0.20 −1.62± 0.24 −1.86± 0.25 −1.99± 0.26 −2.14± 0.24 −2.29± 0.24 −2.35± 0.22 −2.48± 0.23 −2.60± 0.22
CT-Gaussian −1.41± 0.31 −1.56± 0.32 −1.68± 0.34 −1.81± 0.30 −1.95± 0.29 −2.06± 0.31 −2.19± 0.29 −2.33± 0.28 −2.38± 0.28 −2.52± 0.28

D.S. G-VAE (Gaussian) −1.97± 0.28 −2.30± 0.30 −2.51± 0.28 −2.66± 0.32 −2.77± 0.31 −2.85± 0.31 −2.91± 0.35 −2.96± 0.33 −2.99± 0.32 −3.02± 0.32
D.S. G-VAE (CRPS) −1.39± 0.22 −1.57± 0.25 −1.70± 0.22 −1.80± 0.22 −1.89± 0.22 −1.97± 0.25 −2.04± 0.24 −2.11± 0.22 −2.18± 0.21 −2.24± 0.21
G-Latent (Gaussian) −1.34± 0.36 −1.48± 0.31 −1.59± 0.28 −1.66± 0.26 −1.72± 0.25 −1.77± 0.24 −1.81± 0.24 −1.85± 0.24 −1.88± 0.24 −1.91± 0.24
G-Latent (CRPS) −1.10 ± 0.14 −1.32 ± 0.15 −1.48 ± 0.16 −1.59 ± 0.16 −1.69 ± 0.16 −1.76 ± 0.16 −1.82 ± 0.15 −1.87 ± 0.15 −1.91 ± 0.14 −1.95 ± 0.14

Table 20: RMSE per step t′ on semi-synthetic dataset. Best per column in bold.

Model t′=2 t′=3 t′=4 t′=5 t′=6 t′=7 t′=8 t′=9 t′=10 t′=11

G-Net 0.67± 0.03 0.82± 0.04 0.96± 0.04 1.02± 0.05 1.09± 0.05 1.18± 0.05 1.22± 0.06 1.25± 0.06 1.29± 0.06 1.35± 0.06
Transformer G-Net 0.59± 0.03 0.66± 0.04 0.73± 0.04 0.80± 0.04 0.86± 0.05 0.92± 0.05 1.00± 0.06 1.06± 0.06 1.11± 0.06 1.17± 0.06
CT-Gaussian 0.54± 0.05 0.64± 0.06 0.72± 0.06 0.78± 0.05 0.84± 0.05 0.88± 0.06 0.91± 0.05 0.95± 0.05 0.99± 0.06 1.03± 0.06
CT-CRPS 0.55± 0.05 0.67± 0.06 0.76± 0.06 0.80± 0.05 0.85± 0.05 0.91± 0.06 0.94± 0.06 0.97± 0.06 1.02± 0.05 1.05± 0.06
CT 0.37 ± 0.01 0.46 ± 0.01 0.49 ± 0.01 0.51 ± 0.02 0.53 ± 0.02 0.54 ± 0.02 0.55 ± 0.02 0.58 ± 0.02 0.60 ± 0.02 0.61 ± 0.02

D.S. G-VAE (Gaussian) 0.56± 0.06 0.69± 0.05 0.79± 0.06 0.88± 0.07 0.97± 0.07 1.09± 0.06 1.18± 0.08 1.24± 0.09 1.30± 0.08 1.35± 0.08
D.S. G-VAE (CRPS) 0.57± 0.05 0.68± 0.06 0.77± 0.06 0.85± 0.06 0.93± 0.08 1.02± 0.06 1.10± 0.07 1.16± 0.09 1.22± 0.08 1.26± 0.09
G-Latent (Gaussian) 0.54± 0.05 0.62± 0.05 0.67± 0.05 0.70± 0.05 0.73± 0.05 0.76± 0.05 0.78± 0.05 0.79± 0.06 0.81± 0.07 0.83± 0.07
G-Latent (CRPS) 0.56± 0.06 0.65± 0.06 0.72± 0.06 0.77± 0.06 0.81± 0.05 0.85± 0.05 0.88± 0.04 0.90± 0.04 0.92± 0.03 0.94± 0.03
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J.3 REAL WORLD DATASET

In table 21, we show the Energy Scores. In table 22, we show the KDE-LL metric for bandwidth 3.6. In table
23, we show the RMSE metrics.

Table 21: Energy Score per step t′ on real-world dataset. Rightmost column reports the Global
Energy Score across steps. Best per column in bold.

Model t′=2 t′=3 t′=4 t′=5 t′=6 Global

G-Net 5.32± 0.08 5.82± 0.08 6.29± 0.08 6.98± 0.09 7.44± 0.11 18.35± 0.33
Transformer G-Net 5.28± 0.06 5.84± 0.08 6.17± 0.09 6.47± 0.08 6.90± 0.08 16.70± 0.23
CT-CRPS 4.92± 0.06 5.39± 0.08 5.60± 0.07 5.77± 0.08 5.86± 0.07 14.61± 0.27
CT-Gaussian 5.25± 0.06 5.71± 0.08 5.99± 0.08 6.15± 0.07 6.34± 0.08 15.55± 0.23

D.S. G-VAE (Gaussian) 5.51± 0.08 5.99± 0.08 6.21± 0.10 6.34± 0.06 6.44± 0.07 15.98± 0.23
D.S. G-VAE (CRPS) 4.89± 0.08 5.36± 0.08 5.56± 0.09 5.70± 0.07 5.82± 0.06 14.38± 0.19
G-Latent (Gaussian) 5.27± 0.06 5.64± 0.08 5.84± 0.09 5.96± 0.07 6.07± 0.07 15.21± 0.26
G-Latent (CRPS) 4.85 ± 0.05 5.25 ± 0.08 5.47 ± 0.06 5.60 ± 0.09 5.72 ± 0.06 14.23 ± 0.23

Table 22: KDE Loglikelihood per step t′ on real-world dataset with bandwidth 3.6. Best per column
in bold.

Model t′=2 t′=3 t′=4 t′=5 t′=6

G-Net −3.92± 0.05 −4.11± 0.05 −4.29± 0.06 −4.55± 0.07 −4.83± 0.04
Transformer G-Net −3.89± 0.06 −4.06± 0.08 −4.16± 0.06 −4.30± 0.06 −4.48± 0.04
CT-CRPS −3.81± 0.06 −3.94± 0.06 −3.99± 0.07 −4.08± 0.04 −4.19± 0.06
CT-Gaussian −3.92± 0.06 −4.04± 0.07 −4.09± 0.06 −4.18± 0.06 −4.24± 0.07

D.S. G-VAE (Gaussian) −3.90± 0.06 −3.98± 0.06 −4.01± 0.05 −4.03± 0.05 −4.04± 0.05
D.S. G-VAE (CRPS) −3.82± 0.06 −3.92± 0.05 −3.94± 0.05 −3.99± 0.06 −4.04± 0.06
G-Latent (Gaussian) −3.85± 0.06 −3.89± 0.06 −3.92± 0.05 −3.94 ± 0.04 −3.95 ± 0.06
G-Latent (CRPS) −3.79 ± 0.06 −3.88 ± 0.05 −3.91 ± 0.05 −3.94 ± 0.05 −3.96± 0.06

Table 23: RMSE per step t′ on real-world dataset. Best per column in bold.

Model t′=2 t′=3 t′=4 t′=5 t′=6

G-Net 11.84± 0.24 12.83± 0.29 13.54± 0.33 14.05± 0.30 14.23± 0.29
Transformer G-Net 10.90± 0.30 11.67± 0.26 12.39± 0.38 12.96± 0.32 13.21± 0.29
CT-CRPS 9.34± 0.25 10.10± 0.29 10.53± 0.26 10.75± 0.29 10.91± 0.28
CT-Gaussian 9.63± 0.25 10.41± 0.29 10.74± 0.29 11.01± 0.34 11.25± 0.30
CT 9.00 ± 0.23 9.57 ± 0.24 9.90 ± 0.25 10.16 ± 0.27 10.35 ± 0.31

D.S. G-VAE (Gaussian) 9.58± 0.25 10.29± 0.22 10.66± 0.29 10.88± 0.26 11.04± 0.29
D.S. G-VAE (CRPS) 9.40± 0.22 10.09± 0.25 10.41± 0.23 10.63± 0.29 10.79± 0.30
G-Latent (Gaussian) 9.42± 0.23 10.09± 0.23 10.43± 0.25 10.64± 0.19 10.80± 0.25
G-Latent (CRPS) 9.23± 0.20 9.79± 0.24 10.14± 0.23 10.36± 0.29 10.55± 0.28

K LLMS USAGE

We used LLMs for diverse tasks in the production of this work. Mainly, for text and math reviewing and
correction. To a lesser extent, for discussing ideas.
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