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Abstract

Controlled Text Generation (CTG) aims to001
produce texts that exhibit specific desired at-002
tributes. In this study, we introduce a pluggable003
CTG framework for Large Language Mod-004
els (LLMs) named Dynamic Attribute Graphs-005
based controlled text generation (DATG)1.006
This framework utilizes an attribute scorer007
to evaluate the attributes of sentences gen-008
erated by LLMs and constructs dynamic at-009
tribute graphs. DATG modulates the occur-010
rence of key attribute words and key anti-011
attribute words, achieving effective attribute012
control without compromising the original ca-013
pabilities of the model. We conduct experi-014
ments across four datasets in two tasks: toxicity015
mitigation and sentiment transformation, em-016
ploying five LLMs as foundational models. Our017
findings highlight a remarkable enhancement018
in control accuracy, achieving a peak improve-019
ment of 19.29% over baseline methods in the020
most favorable task across four datasets. Ad-021
ditionally, we observe a significant decrease in022
perplexity, markedly improving text fluency.023

1 Introduction024

Controlled Text Generation (CTG) focuses on gen-025

erating text adhering to specific conditions or at-026

tributes, such as sentiment and non-toxicity(Liu027

et al., 2021; Pei et al., 2023). In the realm of CTG,028

achieving precise control over specific attributes029

of the generated content is a significant challenge.030

This must be done without compromising the gen-031

erative capabilities and text quality of LLMs.032

Traditionally, CTG methods have employed033

small language models to influence the decoding034

process of larger models(Dathathri et al., 2020;035

Krause et al., 2021; Yang and Klein, 2021). Though036

this approach provides a degree of control, it may037

compromise the inherent quality and variability038

of the output. Recent studies (Zhong et al., 2023)039

1Our code is available at https://anonymous.
4open.science/r/DATG
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Figure 1: Illustration of the impact of key words on text
attributes within the semantic space.

highlight how an overemphasis on control can detri- 040

mentally affect text fluency, rendering the content 041

less effective. This issue underscores a critical 042

insight: excessive reliance on smaller language 043

models to steer the outputs of LLMs can diminish 044

the decoding capabilities inherent to LLMs. When 045

small-scale models assume control, they effectively 046

overshadow the original performance of LLMs dur- 047

ing the inference and decoding phase. This process 048

not only masks the vast capabilities of LLMs but 049

also relegates them to a subordinate role, essentially 050

transforming these sophisticated generative models 051

into mere “puppets” of their smaller counterparts. 052

In light of our exploration, we think the specific 053

attributes of a text are predominantly determined by 054

a limited number of words that bear close relation 055

to those attributes (Zhong et al., 2023). Despite 056

these key words being sparse within the text, their 057

impact on the overall attributes is decisive. For 058

instance, changing the word “masterpiece” to “fail- 059

ure” in the sentence “The novel is a masterpiece of 060

storytelling, with a complex narrative.” shifts the 061

sentiment from positive to negative. This change 062

alters the entire sentence’s sentiment and meaning. 063

In the conceptual framework of semantic space, 064

1

https://anonymous.4open.science/r/DATG
https://anonymous.4open.science/r/DATG


Contextual Corpus 
Construction1

You're the stupid one for 
trying it out on a 

production machine.

Original Prompt (Harmful):
I do actually think that you're stupid one…

This is the first time I've heard about it…

I'm sorry, but you're not professional…

You're the stupid one for thinking that…

And you're the stupid one…

Toxicity Sentiment
0.0 1.0

I do actually think you're stupid0.9

0.3

0.4

0.7

0.7

one

Attribute 
Classifier Scoring

0.9 0.9 0.9 0.9 0.9 0.9

0.10.1

And you're the stupid one
0.7

0.30.30.30.3

0.7 0.7 0.7

0.1 0.1 0.1 0.1

Node Mapping
Positive Links
Negative Links

Dynamic 
Attribute Graphs 

Construction

3

Positive Graph

ReGeneration with Dynamic Boundary Controlling4

you’re
thinking

professional good

actually

not

stupid

New Generation Path

Dynamic Negative Boundary

sorry

Dynamic Positive Boundary
Graph Ranking

Negative Graph
Graph Ranking

You're professional, but we can …

New Output (Safe):

Logits-Boost Strategy Prefix-Prompt Strategy
The following passage 
often discusses 
[Positive Words]
but does not mention 
[Negative Words].

2

Figure 2: DATG unfolds in four stages: (1) Contextual Corpus Construction, using LLMs to generate text
sequences from specified prompts; (2) Attribute Classifier Scoring, employing classifiers to evaluate texts against
target attributes; (3) Dynamic Attribute Graphs Construction, forming attribute graphs based on classifier-
informed token linkages, encapsulating texts’ compliance and divergence from the target attribute in semantic space;
(4) ReGeneration with Dynamic Boundary Controlling, applying graph ranking to identify and adjust key nodes,
guiding text toward the desired attribute boundary via logits-boost and prefix-prompt strategies.

these attributes can be seen as dimensions within065

this space. By strategically adjusting these key066

words, we can guide the text generated by LLMs to067

move in the desired direction within the semantic068

space, controlling its attributes without significant069

alterations to the overall content (See Figure 1).070

Based on these observations, we propose a plug-071

gable CTG approach, Dynamic Attribute Graphs-072

based controlled text generation (DATG), which073

employs dynamic attribute graphs to identify key074

words aligned or opposed to target attribute dimen-075

sions. By modulating the occurrence of these key076

words, our method precisely controls text attributes077

without compromising the inherent capabilities of078

LLMs. This strategy allows for targeted movement079

within the semantic space.080

As described in Figure 2. Our work begins with081

Contextual Corpus Construction, where LLMs082

generate text sequences from specific prompts.083

Subsequently, Attribute Classifier Scoring as-084

sesses these texts with classifiers, such as toxic-085

ity or sentiment classifiers, to evaluate alignment086

with the target attribute. The core of our method,087

Dynamic Attribute Graphs Construction, trans-088

forms the text sequences into directed weighted 089

graphs, informed by classifier scores. This pro- 090

cess leads to the creation of two distinct graphs: 091

a positive attribute graph, weighted by the con- 092

sistency scores from the classifier, and a negative 093

attribute graph, weighted by the complements of 094

these scores. The attribute graphs represent the 095

text’s adherence to and deviation from the target 096

attribute dimension within the semantic space. Dur- 097

ing the ReGeneration with Dynamic Boundary 098

Controlling process, the graph ranking algorithm 099

selects key nodes that propel the generated text to- 100

wards the upper boundary of the control attribute 101

dimension in the semantic space. Adjustments of 102

the occurrence of these key nodes, facilitated by 103

logits-boost and prefix-prompt strategies, enable 104

the regeneration of text. 105

The key contributions of our study are summa- 106

rized as follows: 107

• We introduce a pluggable DATG framework 108

that integrates dynamic attribute graphs with 109

LLMs for CTG, providing a novel, flexible 110

approach to attribute-driven text generation. 111
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• DATG achieves a peak improvement of112

19.29% in performance over baseline meth-113

ods, according to comprehensive experiments114

across various datasets, and significantly en-115

hances text fluency.116

• We reintroduce the application of graph mod-117

els in CTG tasks, offering new insights for118

controlled text generation with LLMs.119

2 Methodology120

2.1 Problem Definition121

The generative capability of LLMs is characterized122

by the probability distribution over a sequence X:123

P (xn|X1:n−1) = p(xn|x1, x2, . . . , xn−1), (1)124

where xn represents the token currently being gen-125

erated, and X1:n−1 includes the sequence of tokens126

generated prior to xn. This probabilistic frame-127

work allows LLMs to produce text sequences that128

are diverse and coherent.129

In the domain of CTG, control conditions C are130

integrated into the generative process to steer the131

text towards exhibiting specific attributes, such as132

sentiment and toxicity. This can be formulated as:133

P (X|C) =
n∏

i=1

p(xi|x<i, C), (2)134

where C signifies the desired attributes to be re-135

flected in the generated text. The key challenge136

in CTG is to integrate C into the generative pro-137

cess seamlessly, maintaining the LLMs’ inherent138

generative quality.139

We consider the problem within the framework140

of a semantic space S ⊂ Rd, where outputs of141

LLMs are mapped as vectors. In this semantic142

space S , our goal is to adjust dimensions associated143

with control conditions C, directing the distribution144

of text towards desired attributes while preserving145

the integrity of other semantic dimensions. This146

objective is achieved through a transformation func-147

tion f , designed to delicately shift semantic vectors148

without altering their inherent characteristics:149

J(f) = Ex∼P (S)[s(f(x))], (3)150

where J(f) evaluates the effectiveness of f in151

aligning text generation with control conditions152

C, and s(·) measures the semantic vector’s con-153

formity to these conditions. To depict the vector154

transition within S towards desired attributes, we 155

employ the transformation equation: 156

xafter = f(xbefore) = xbefore +∆x, (4) 157

Leveraging attribute graphs, we identify key 158

words that significantly influence the LLM- 159

generated sentences in the semantic space S , along 160

the control attribute dimension. By adjusting the 161

occurrence of just a few key words, we not only 162

preserve the original performance of LLMs but 163

also effectively steer the regenerated text towards 164

desired conditions. This method effectively guides 165

the text towards specified attributes, maintaining 166

semantic integrity and coherence. 167

2.2 Contextual Corpus Construction 168

Recent studies, including LIMA (Zhou et al., 2023) 169

and Re-Align (Lin et al., 2023), affirm that the foun- 170

dational knowledge and capabilities of LLMs are 171

established predominantly during the pre-training 172

phase. This evidence suggests that unaligned base 173

models already possess the capacity to generate the 174

desired texts. 175

Guided by the principles of the LIMA hypoth- 176

esis and findings from Re-Align, our approach 177

commences with the generation of a sentence 178

set, symbolized as X, using an LLM prompted 179

by a query that is intricately tied to the desired 180

context. This initial phase leverages the LLM’s 181

pre-trained knowledge to generate text sequences 182

closely aligned with the prompt’s context, reflect- 183

ing the inherent distribution of text in the semantic 184

space produced by large language models. 185

The set comprises individual sentences, Xj , each 186

generated in response to the initial prompt, repre- 187

sented as X = {X1, X2, . . . , Xm}. Each sentence 188

Xj is a sequence of tokens {x1j , x2j , . . . , xnjj}, 189

where nj denotes the sentence’s token count. This 190

constructs a contextual corpus foundational for sub- 191

sequent manipulations. 192

2.3 Attribute Classifier Scoring 193

To align generated texts with specific attributes 194

like toxicity or sentiment levels, we employ a pre- 195

trained language model enhanced with a classifi- 196

cation layer. This classifier is fine-tuned on data 197

tailored to the target attribute, enabling a condition- 198

specific classifier to precisely evaluate and quantify 199

attribute presence and intensity. 200

The classifier model scores each text Xi in X = 201

{X1, X2, . . . , Xm} as: 202

s(Xi) = ClassifierModel(Xi), (5) 203
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where s(Xi), between 0 and 1, reflects how well204

Xi exhibits the target attribute and assesses text205

distribution along the control condition in the se-206

mantic space. This scoring, a quantitative metric,207

aids in evaluating attribute representation in X and208

understanding text alignment with control condi-209

tions.210

2.4 Dynamic Attribute Graphs Construction211

In the dynamic attribute graphs construction212

phase, each sentence Xj in X is tokenized213

into discrete tokens, forming vertex sets Vj =214

{v1,j , v2,j , . . . , vnj ,j} for each sentence:215

V =

m⋃
j=1

Vj , (6)216

where vi,j represents a distinct token from sentence217

Xj , and V is the union of all vertex sets Vj .218

Directed edges within each Vj are defined by219

sequentially linking tokens to reflect their order in220

the sentence:221

Ej = {(vi,j , vi+1,j) | vi,j , vi+1,j ∈ Vj}, (7)222

The overall edge set E is then defined as the union223

of all Ej , reflecting the aggregation of directed224

edges from all sentences:225

E =
m⋃
j=1

Ej , (8)226

In the dynamic attribute graphs (G+ for posi-227

tive influence and G− for negative influence), the228

framework is defined to encapsulate the relation-229

ships tokens have with the control attribute, rep-230

resenting the semantic space boundaries shaped231

by these influences. The cumulative weights for232

each edge, reflecting the total influence across all233

sentences, are formalized for both graphs as:234

G± = (V,E,W±), (9)235

where W± is the set of cumulative weights for236

edges, determined by aggregating attribute classi-237

fier scores, and is calculated as:238

W± =

w±
ik | w±

ik =
∑
j

w±
ik,j

 , (10)239

with the weights w+
ik,j = s(Xj) for G+ and240

w−
ik,j = 1 − s(Xj) for G−, corresponding to the241

direct and inverse classifier score influences of sen- 242

tence Xj on the edge from token vi to vk. 243

Applying a graph ranking algorithm to the dy- 244

namic attribute graphs, G+ and G−, identifies key 245

tokens that affect the text’s alignment with the tar- 246

get attribute. This method evaluates the impor- 247

tance of tokens based on their connectivity and the 248

weights of their connections, distinguishing tokens’ 249

positive or negative influence on the attributes. 250

For G+, the graph ranking algorithm high- 251

lights tokens that positively influence the attribute 252

through W+; for G−, it identifies with negative 253

impacts using W−. Key tokens are identified as: 254

VPos = {vi ∈ V |GraphRanking(G+) > θp},
(11) 255256

VNeg = {vi ∈ V |GraphRanking(G−) > θn},
(12) 257

Thresholds θp and θn are used to identify key to- 258

kens with a significant influence from G+ and G−, 259

respectively: 260

• Boost the occurrence of key tokens identified 261

in G+ during text regeneration. 262

• Suppress the occurrence of key tokens identi- 263

fied in G− during text regeneration. 264

By enhancing or reducing the occurrence of key 265

tokens, we facilitate the movement of text within 266

the semantic space towards the desired attribute 267

direction. 268

2.5 ReGeneration with Dynamic Boundary 269

Controlling 270

Positive and Negative Nodes in dynamic attribute 271

graphs inherently represent the semantic space 272

boundaries of LLM’s generative capabilities. These 273

nodes act as natural boundary anchors, directing 274

the text’s semantic trajectory towards or away from 275

specific attributes. Activating Positive Nodes aligns 276

the text with desired attributes, moving it closer to 277

the upper boundary, while suppressing Negative 278

Nodes helps avoid undesired attributes, distancing 279

it from the lower boundary. Through logits-boost 280

and prefix-prompt strategies, we precisely manip- 281

ulate these boundaries to control the text’s seman- 282

tic orientation, ensuring alignment with desired 283

attributes or distancing from undesired ones. 284

Logits-Boost Strategy. The Logits-Boost 285

method influences token probabilities associated 286

with Positive and Negative Nodes by adjusting log- 287

its in the LLM’s generation algorithm. By enhanc- 288

ing logits for Positive Nodes and reducing those for 289
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Negative Nodes before the softmax operation, we290

achieve precise control over the model’s output:291

P̃ (Xt|x<t) = softmax(zt + α · 1Pos − β · 1Neg)
(13)292

Here, zt is the original logits, 1Pos and 1Neg indi-293

cate Positive and Negative Nodes, and α, β control294

the adjustment extent. This selective logits modi-295

fication aligns the output with control conditions296

without significantly affecting text fluency, as it297

only dynamically adjusts the probabilities of a few298

attribute-related words.299

Prefix-Prompt Strategy. Alongside logits ad-300

justment, we employ the Prefix-Prompt strategy to301

guide LLM towards highlighting Positive Nodes302

and avoiding Negative Nodes. By appending spe-303

cific prefixes to prompts, like “The following pas-304

sage often discusses [Positive Words] but does305

not mention [Negative Words].”, we steer content306

generation in line with control conditions. This ap-307

proach, combined with logits modification, ensures308

that generated text aligns with desired attributes309

while maintaining fluency and coherence.310

3 Experiments311

3.1 Tasks Setup312

Inspired by the CTG capabilities demonstrated in313

PREADD (Pei et al., 2023), we designed our experi-314

ments around two principal tasks, utilizing datasets315

annotated for specific attributes. (1) Toxicity Miti-316

gation Task: We employ the RealToxicityPrompts317

dataset to evaluate our method’s ability to reduce318

toxicity in generated texts. We use two evalua-319

tion sets: RandomToxic and TopToxic, focusing on320

broad toxicity mitigation and critical toxicity reduc-321

tion, respectively. (2) Sentiment Transformation322

Task: Utilizing the SST-5 dataset, we examine our323

method’s effectiveness in transforming the senti-324

ment of movie reviews. Evaluation sets include325

NegToPos and PosToNeg for transforming nega-326

tive to positive sentiments and vice versa. More327

details are provided in Appendix A.1.328

3.2 Base LLMs329

Our experiments utilize a range of base models330

with varying sizes and originating from AI re-331

search institutions: Phi-2 2.7B from Microsoft332

Research (Hughes, 2023), OPT 6.7B from Meta333

AI (Zhang et al., 2022), Alpaca 7B from Stanford334

University (Taori et al., 2023), Falcon 7B from335

Technology Innovation Institute (Almazrouei et al.,336

2023), LLaMA-2 13B from Meta AI (Touvron 337

et al., 2023). For more details, see Appendix A.2. 338

3.3 Classifier Models 339

To measure the alignment of generated texts with 340

desired attributes, we employ an embedding model, 341

the BAAI/bge-large-en-v1.5 model (Xiao et al., 342

2023), augmented with an external classifier head. 343

This classifier is fine-tuned on texts with specific 344

attributes to enhance the evaluation of text attribute 345

consistency. 346

For toxicity mitigation, the Jigsaw Toxic Com- 347

ment Classification Challenge dataset (cjadams 348

et al., 2017) was utilized to train a classifier dis- 349

tinguishing toxic from non-toxic content. In senti- 350

ment transformation, the IMDB dataset (Maas et al., 351

2011) enabled the training of a sentiment classifier 352

to steer text generation towards the desired senti- 353

ment, aligning the emotional tone with the task. 354

More details are provided in Appendix A.3. 355

3.4 Baselines 356

We compare DATG against four baselines in con- 357

trolled text generation: 358

CONTINUATION: The normal continuation of 359

text generation without any control. INJECTION: 360

Injects specific prompts into the generation process 361

to guide the model towards the desired attribute effi- 362

ciently. FUDGE (Yang and Klein, 2021): Utilizes 363

an attribute predictor to condition text generation 364

on desired attributes. PREADD: Employs manip- 365

ulation of output logits from prompts for attribute 366

control. Additionally, we introduce two variations 367

of our approach for comparison: DATG-L: Uti- 368

lizes the Logits-Boost strategy for probability ad- 369

justment to guide text generation towards desired 370

attributes. DATG-P: Applies the Prefix-Prompt 371

strategy for adjustment, using prefixes to steer the 372

generation process towards the desired attributes. 373

More details are provided in Appendix A.4. 374

3.5 Metrics 375

To effectively evaluate the outcomes of our tasks, 376

we utilize metrics as follows: 377

(1) Toxicity: For assessing the toxicity mitiga- 378

tion task, we measure the toxicity of generated 379

texts using the Perspective API by Jigsaw 2. (2) 380

Success Rate: For assessing the sentiment transfor- 381

mation task, success is determined by the propor- 382

tion of text successfully transformed to the desired 383

2www.perspectiveapi.com
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Tasks ToxicRandom ToxicTop
Base LLMs Generator Relvance ↑ Perplexity ↓ Toxicity ↓ Relvance ↑ Perplexity ↓ Toxicity ↓

Alpaca 7B

CONTINUATION 0.432 32.698 0.126 0.444 36.901 0.371
INJECTION 0.431 36.360 0.140 0.443 37.088 0.359

FUDGE 0.427 61.661 0.121 0.358 368.952 0.234
PREADD 0.409 55.890 0.107 0.416 64.515 0.280
DATG-L 0.417 39.610 0.120 0.419 38.206 0.234
DATG-P 0.442 57.417 0.135 0.446 60.561 0.373

Falcon 7B

CONTINUATION 0.429 25.581 0.137 0.442 28.897 0.383
INJECTION 0.427 24.791 0.163 0.444 25.764 0.360

FUDGE 0.419 46.523 0.134 0.358 371.807 0.333
PREADD 0.410 46.769 0.123 0.414 59.370 0.334
DATG-L 0.425 28.027 0.116 0.418 28.412 0.248
DATG-P 0.442 32.992 0.161 0.454 40.568 0.447

LLaMA-2 13B

CONTINUATION 0.439 32.910 0.134 0.441 39.253 0.341
INJECTION 0.435 46.191 0.145 0.441 48.720 0.336

FUDGE 0.423 58.429 0.118 0.360 374.839 0.253
PREADD 0.415 61.478 0.107 0.424 70.290 0.271
DATG-L 0.423 41.948 0.113 0.417 42.737 0.230
DATG-P 0.451 43.020 0.134 0.450 42.863 0.385

OPT 6.7B

CONTINUATION 0.437 23.568 0.144 0.448 31.965 0.373
INJECTION 0.429 22.028 0.163 0.443 28.660 0.389

FUDGE 0.421 56.963 0.145 0.360 378.332 0.365
PREADD 0.411 41.807 0.145 0.418 59.047 0.329
DATG-L 0.417 25.003 0.124 0.425 32.342 0.250
DATG-P 0.447 34.250 0.169 0.458 36.738 0.427

Phi-2 2.7B

CONTINUATION 0.423 21.311 0.112 0.420 29.009 0.286
INJECTION 0.427 23.459 0.154 0.434 30.329 0.365

FUDGE 0.407 42.850 0.096 0.345 348.332 0.246
PREADD 0.386 31.007 0.089 0.392 37.404 0.220
DATG-L 0.400 23.119 0.095 0.403 27.879 0.193
DATG-P 0.422 38.720 0.134 0.434 43.146 0.314

Table 1: Toxicity mitigation task performance across LLMs using ToxicRandom and ToxicTop datasets, evaluating
Relevance (↑), Perplexity (↓), and Toxicity (↓). Bold indicates top performance; underline marks second-best. In
Perplexity, bold excludes CONTINUATION, expected to be most fluent.

Task Metric CONTINUATION INJECTION FUDGE PREADD DATG-L DATG-P

ToxicRandom
Perplexity ↓ 27.21 30.57 53.29 47.39 31.54 41.28
Toxicity ↓ 0.1306 0.1530 0.1228 0.1142 0.1136 0.1466

ToxicTop
Perplexity ↓ 33.21 34.11 368.45 58.13 33.92 44.78
Toxicity ↓ 0.3508 0.3618 0.2862 0.2868 0.2310 0.3892

Table 2: Performance comparison on toxicity mitigation across five LLMs, with average metrics of Perplexity and
Toxicity for ToxicRandom and ToxicTop datasets. Lower values indicate better performance.

Task Metric CONTINUATION INJECTION FUDGE PREADD DATG-L DATG-P

NegToPos
Perplexity ↓ 31.95 55.55 205.08 61.45 32.23 51.23
Success ↑ 0.3664 0.4076 0.3036 0.3984 0.4590 0.3346

PosToNeg
Perplexity ↓ 35.19 56.28 263.25 62.60 35.75 53.44
Success ↑ 0.2100 0.3628 0.4284 0.2824 0.3194 0.4252

Table 3: Average performance metrics of five LLMs on sentiment transformation tasks, including Perplexity (lower
is better) and Success (higher is better), for the NegToPos and PosToNeg datasets.
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sentiment, evaluated with a RoBERTa model fine-384

tuned on SST-5. (3) Perplexity: Applied to both385

tasks, perplexity measures the fluency of text, using386

GPT-2 large for assessment. (4) Relevance: Rele-387

vance evaluates the contextual alignment between388

the prompt and its completion, measured by co-389

sine similarity between their embeddings. Detailed390

metrics are provided in Appendix A.5.391

3.6 Result Analysis392

Toxicity Mitigation Analysis In our experi-393

ments, the DATG-L method consistently ranks394

among the top 2 across all tasks in the crucial met-395

rics of toxicity and perplexity, as demonstrated in396

Table 1. This performance demonstrates a signif-397

icant reduction in toxicity without sacrificing text398

fluency, effectively validating our hypothesis.399

The DATG-L approach, by adjusting the logits400

distribution of a few key attribute words, minimally401

impacts the overall performance during most decod-402

ing moments by the large model. Its outstanding403

performance on the ToxicTop dataset further con-404

firms our assumption that a few attribute words play405

a decisive role in determining the overall sentence406

attribute, achieving the best toxicity scores across407

all models. Sentences from the ToxicTop dataset408

often exhibit higher toxicity due to extreme words,409

adjusting a few key words effective in reducing410

toxicity. In contrast, ToxicRandom texts may lack411

distinct attribute words, yet DATG-L effectively412

mitigates toxicity.413

Despite DATG-P’s weaker performance, it414

scores higher in relevance, likely due to key words415

in prefix-prompts acting as anchors for generating416

attribute-related text. Its adherence to prompts is417

limited by the base LLMs’ directive-following ca-418

pacity.419

As shown in Table 2, DATG-L shows superior420

performance across models, leading in toxicity and421

perplexity on the ToxicTop dataset, with a 19.29%422

improvement in toxicity over the best baseline, and423

surpassing INJECTION in fluency by 41.65% over424

PREADD and 90.79% over FUDGE. FUDGE’s425

perplexity varies greatly, likely due to its classifier’s426

direct control disrupting LLMs’ distributions at427

high toxicity levels, aligning with our Air-decoding428

findings that too much control diminishes text qual-429

ity. DATG-L also tops toxicity mitigation perfor-430

mance on ToxicRandom.431

The DATG approach effectively reduces toxi-432

city while preserving text fluency, validating our433

hypotheses about the impact of attribute words. 434

Sentiment Transformation Analysis In senti- 435

ment transformation tasks, our DATG approach 436

consistently ranks in the top 2 across all tasks. How- 437

ever, unlike the toxicity tasks, DATG-L and DATG- 438

P show varying performances on the Neg2Pos 439

and Pos2Neg datasets, as shown in Table 4. For 440

Neg2Pos, DATG-L excels, achieving the best rates 441

in perplexity and success across all models ex- 442

cept for Phi-2 2.7B, where it slightly trails behind 443

PREADD in success rate. Notably, its perplex- 444

ity is even lower than the INJECTION method, 445

which relies on the large model’s inherent gener- 446

ation capabilities. This suggests that base models 447

may become disoriented when receiving contradic- 448

tory injection directives and prompts, disrupting 449

the natural distribution of the generated text. In 450

the Pos2Neg task, DATG-P ranks among the top 451

performers in all models, maintaining high fluency. 452

Across the five models, DATG-L stands out 453

in the Neg2Pos dataset, surpassing the best base- 454

line by 12.61% in success rate, while DATG-P, 455

although slightly below FUDGE in success rate on 456

the Pos2Neg dataset, improves fluency by 79.70% 457

compared to FUDGE (See Table 3). This reinforces 458

the idea that direct control by smaller models over 459

decoding can degrade the quality of text generated 460

by large models, especially in sentiment transfor- 461

mation tasks where the prompt and generated text 462

undergo significant changes. FUDGE’s method 463

of directly controlling the large model’s decoding 464

disrupts the inherent distribution during decoding. 465

Thus, in sentiment transformation tasks, our 466

DATG methods effectively control sentiment while 467

preserving text fluency, demonstrating their capa- 468

bility to balance successful attribute transformation 469

with maintaining the quality of the generated text. 470

Generation Speed Analysis As shown in Figure 471

3 and Figure 4, DATG-L and DATG-P exhibit sig- 472

nificant generation speed advantages, outperform- 473

ing PREADD by 32.67% and FUDGE by 40.02%. 474

This highlights the efficiency of our methods even 475

with the integration of additional steps for generat- 476

ing contextually relevant corpora. 477

Upon identifying key attribute-relevant nodes, 478

we find that the generation speeds of DATG meth- 479

ods align closely with those of the CONTINUA- 480

TION and INJECTION. To potentially enhance 481

generation speed, an approach could involve pre- 482

generating a large attribute graph of the corpus. 483
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Searching for key nodes within semantically re-484

lated sub-graphs could then accelerate the process.485

Figure 3: Generation speed of toxicity task measured in
seconds per item (s/item) on 2x Nvidia A100 GPUs.

4 Related Work486

4.1 Retrain487

Retraining approaches in Controlled Text Gener-488

ation integrate control mechanisms into model ar-489

chitectures, often requiring additional data or con-490

straints. Models like CTRL (Keskar et al., 2019),491

POINTER (Zhang et al., 2020), Mention Flags492

(Wang et al., 2021), and DIRECTOR (Arora et al.)493

demonstrate various levels of control from global494

themes to specific lexical choices. However, these495

methods are computationally intensive and con-496

strained by the availability of annotated data, pos-497

ing challenges alongside the rise of LLMs.498

4.2 Fine-tuning499

Fine-tuning has emerged as an effective strategy500

to adapt PLMs to specific tasks in CTG. Minimal501

parameter optimization approaches, such as Prefix-502

Tuning (Li and Liang, 2021) and DART (Nan et al.,503

2021), enhance efficiency. Techniques like Con-504

trastive Prefixes (Qian et al., 2022) and DisCup505

(Zhang and Song, 2022) improve generation qual-506

ity and control. Prompt-based methods, includ-507

ing AutoPrompt (Shin et al., 2020) and p-Tuning508

(Lester et al., 2021), leverage the PLMs’ latent509

knowledge without substantial changes. Advances510

in instruction-based models, such as FLAN (Wei511

et al., 2022) and INSTRUCTCTG (Zhou et al.),512

have made significant strides in zero-shot learning513

performance.514

4.3 Decoding515

During decoding, CTG has significantly advanced516

with auxiliary models and classifiers guiding LLMs.517

Techniques such as Plug and Play Language Mod- 518

els (PPLM) (Dathathri et al., 2020), FUDGE (Yang 519

and Klein, 2021), CAIF (Sitdikov et al., 2022), and 520

CriticControl (Kim et al., 2022) utilize classifiers 521

for directing generation. These classifiers modu- 522

late text direction and style, interfacing with LLMs. 523

However, this approach may slow decoding due to 524

sentence attribute evaluations. 525

Concurrently, Class-Conditioned Language 526

Models (CCLMs) and Prefix-Conditioned Lan- 527

guage Models (PCLMs) offer alternatives. Meth- 528

ods like DExperts (Liu et al., 2021), GeDi (Krause 529

et al., 2021), CounterGeDi (Saha et al., 2022), 530

and Air-Decoding (Zhong et al., 2023) leverage 531

CCLMs or PCLMs for guidance. 532

Recently, PREADD and RAIN (Li et al., 2023) 533

exploit LLMs’ inherent strengths for nuanced con- 534

trol, avoiding auxiliary classifiers. Additionally, 535

Goodtriever (Pozzobon et al., 2023) uses retrieval- 536

augmented models for toxicity control. How- 537

ever, external model guidance may compromise 538

text quality, especially under restrictive conditions, 539

leading to attribute collapse (Zhong et al., 2023). 540

5 Conclusion 541

In this paper, we present Dynamic Attribute 542

Graphs-based controlled text generation (DATG), 543

a flexible and pluggable framework that seamlessly 544

integrates graph models with LLMs to refine CTG. 545

DATG’s plug-and-play nature facilitates easy adap- 546

tation with existing LLMs, allowing for the targeted 547

steering of text attributes while maintaining high 548

linguistic integrity. 549

Our framework demonstrates notable successes 550

in critical CTG tasks such as toxicity mitigation 551

and sentiment transformation, as evidenced by sub- 552

stantial enhancements in control accuracy and the 553

preservation of text fluency. The use of dynamic 554

attribute graphs in DATG enables precise manipu- 555

lation of attribute-related words, striking a delicate 556

balance between controlled content generation and 557

the naturalness of language. 558

The efficacy of DATG attests to the potential of 559

graph models as vital components in the develop- 560

ment of adaptable and effective CTG systems. This 561

work not only showcases the capabilities of DATG 562

but also sets the stage for future explorations into 563

its applicability across a broader range of attributes, 564

model scales, and complex language tasks, rein- 565

forcing the framework’s flexible and plug-and-play 566

characteristics. 567
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Ethical Considerations568

It is important to note that the algorithm designed569

in this study is involved in distinguishing between570

toxic and non-toxic comments, where toxic com-571

ments may encompass hate speech, racial discrimi-572

nation, sexual harassment, and other harmful texts.573

Our model is trained with the sole purpose of ad-574

vancing the field of Natural Language Processing575

(NLP) towards a healthier and toxicity-free direc-576

tion.577

Limitations578

This work presents two main limitations. Firstly,579

the preprocessing required, including the genera-580

tion of contextually relevant corpora, can be time-581

consuming, which may impact the efficiency of582

time-sensitive applications. Secondly, the effec-583

tiveness of DATG heavily relies on the generative584

capabilities of the underlying models; insufficiently585

diverse or relevant content generation may reduce586

control over the desired attributes.587

To address these issues, future work will aim588

to reduce preprocessing time and enhance the ro-589

bustness of the framework against the variability of590

model outputs. One potential direction for improv-591

ing speed involves pre-generating large attribute592

graphs of the corpus. Searching for key nodes593

within semantically related subgraphs could expe-594

dite this process.595
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A Experiment Details761

This section outlines our experimental methodol-762

ogy to evaluate the effectiveness of the DATG763

method in steering text generation towards specific764

attributes. Our investigation concentrates on two765

tasks: (1) Toxicity Mitigation and (2) Sentiment766

Transformation.767

A.1 Tasks768

Toxicity Mitigation Task: Leveraging the Re-769

alToxicityPrompts dataset (Gehman et al., 2020),770

which includes over 100,000 prompts with toxicity771

scores, this task crafts two evaluation sets: Ran-772

domToxic, 1,000 prompts sampled to broadly test773

toxicity mitigation, and TopToxic, the 1,000 most774

toxic prompts to focus on critical toxicity reduction.775

The aim is to minimize prompt mismatch while776

reducing generated text toxicity, aligning outputs777

with initial non-toxic intents.778

Sentiment Transformation Task: Utilizing the779

SST-5 dataset (Socher et al., 2013), which contains780

movie reviews across a sentiment spectrum from781

1 to 5, this task prepares two sets for evaluation:782

NegToPos, 1,000 negative reviews (scores 1 and 2)783

for testing transformation to positive sentiment, and784

PosToNeg, 1,000 positive reviews (scores 4 and 5)785

for conversion to negative sentiment. The goal is to786

generate text that effectively shifts sentiment in the787

opposite direction of the initial prompt, ensuring788

textual coherence and relevance.789

These tasks are selected to showcase the DATG790

method’s effectiveness in accurately guiding text791

generation towards desired attributes, reflecting its792

potential to enhance the quality and applicability793

of generated content. We have obtained all datasets794

used through official sources, and the datasets are795

used in a manner consistent with their intended use.796

A.2 Base LLMs797

Our experiments utilize a diverse array of base798

LLMs, each developed by leading AI research in-799

stitutions. The lineup includes Phi-2 2.7B by Mi-800

crosoft Research, emphasizing compactness and801

efficiency; LLaMA-2 13B by Meta AI, optimized802

for dialogue and conversational contexts; Falcon803

7B by Technology Innovation Institute, focusing804

on broad language understanding; OPT 6.7B also805

by Meta AI, known for its open-source accessi-806

bility; and Alpaca 7B by Stanford University, de-807

signed for instruction-following tasks. These mod-808

els range from 2.7 billion to 13 billion parame-809

ters, providing a solid foundation for evaluating the 810

DATG method’s effectiveness. We have obtained 811

all models used through official sources, and the 812

models are used in a manner consistent with their 813

intended use. 814

To ensure consistency across experiments, we 815

employ the following generation configurations for 816

all models: 817

• max_new_tokens: 32, 818

• do_sample: True, 819

• top_k: 200, 820

• top_p: 0.9, 821

• temperature: 0.7. 822

These settings are designed to balance creativity 823

and coherence in generated text, enabling nuanced 824

control over the output while facilitating the ex- 825

ploration of the DATG method’s capabilities in 826

steering text generation. 827

A.3 Classifier Models 828

To improve the precision and control in text gener- 829

ation tasks, we integrate classifier models with our 830

foundational generative models. At the core of our 831

classification setup is the BAAI/bge-large-en-v1.5 832

model, chosen for its nuanced understanding of lan- 833

guage and awareness of context. This model acts 834

as the base for our task-specific classifier heads, 835

which we fine-tune to meet the specific needs of 836

each task.We have obtained all datasets and models 837

used through official sources, and the datasets and 838

models are used in a manner consistent with their 839

intended use. 840

A.3.1 Toxicity Mitigation Classifier 841

For toxicity mitigation, we employ the Jigsaw 842

Toxic Comment Classification Challenge dataset 843

(cjadams et al., 2017), which includes a broad ar- 844

ray of comments annotated for varying levels of 845

toxicity. This dataset enables us to train a classi- 846

fier that efficiently distinguishes between toxic and 847

non-toxic content. We create a balanced dataset of 848

42,768 training samples to even out the distribution 849

between toxic and non-toxic labels. This classi- 850

fier reaches an accuracy of 93.39%, facilitating the 851

generation of safer and more respectful dialogues. 852
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Tasks NegToPos PosToNeg
Models Generator Relvance ↑ Perplexity ↓ Success ↑ Relvance ↑ Perplexity ↓ Success ↑

Alpaca 7B

CONTINUATION 0.500 37.580 0.364 0.502 39.887 0.203
INJECTION 0.532 55.891 0.454 0.538 63.483 0.396

FUDGE 0.392 208.181 0.318 0.397 271.179 0.429
PREADD 0.465 73.021 0.395 0.457 77.644 0.286
DATG-L 0.447 37.295 0.467 0.453 46.061 0.332
DATG-P 0.508 72.195 0.309 0.506 75.275 0.426

Falcon 7B

CONTINUATION 0.498 31.599 0.357 0.498 33.714 0.206
INJECTION 0.502 36.852 0.477 0.516 34.296 0.328

FUDGE 0.397 193.347 0.347 0.403 271.234 0.410
PREADD 0.492 64.122 0.390 0.477 65.083 0.256
DATG-L 0.462 30.749 0.478 0.449 36.175 0.327
DATG-P 0.513 48.349 0.414 0.514 47.280 0.328

LLaMA-2 13B

CONTINUATION 0.499 37.759 0.384 0.510 41.397 0.188
INJECTION 0.566 83.866 0.283 0.556 79.626 0.356

FUDGE 0.394 219.241 0.291 0.406 256.506 0.420
PREADD 0.453 76.535 0.416 0.469 75.418 0.238
DATG-L 0.456 39.382 0.464 0.451 44.563 0.305
DATG-P 0.508 60.189 0.365 0.505 66.427 0.418

OPT 6.7B

CONTINUATION 0.510 23.954 0.333 0.513 25.480 0.269
INJECTION 0.556 36.380 0.417 0.548 41.175 0.372

FUDGE 0.411 198.180 0.247 0.415 250.288 0.460
PREADD 0.490 54.107 0.317 0.480 50.183 0.331
DATG-L 0.472 26.634 0.428 0.459 25.487 0.357
DATG-P 0.525 33.768 0.295 0.501 34.080 0.490

Phi-2 2.7B

CONTINUATION 0.472 28.844 0.394 0.467 35.489 0.184
INJECTION 0.513 64.785 0.407 0.510 62.835 0.362

FUDGE 0.398 206.452 0.315 0.392 267.039 0.423
PREADD 0.437 39.458 0.474 0.433 44.667 0.301
DATG-L 0.455 27.103 0.458 0.434 26.469 0.276
DATG-P 0.467 41.663 0.290 0.472 44.139 0.464

Table 4: Sentiment transformation (NegToPos and PosToNeg) performance across LLMs, evaluating Relevance (↑),
Perplexity (↓), and Success Rate (↑). Bold indicates top performance; underline marks second-best. In Perplexity,
bold excludes CONTINUATION, expected to be most fluent.

A.3.2 Sentiment Transformation Classifier853

For sentiment transformation, we utilize the IMDB854

dataset (Maas et al., 2011), comprised of movie re-855

views annotated with binary sentiment scores. This856

rich dataset allows us to train a sentiment classifier857

that effectively directs text generation toward either858

positive or negative sentiments, ensuring the gen-859

erated text aligns well with the intended emotional860

tone. We prepare a balanced training dataset of861

50,000 samples to maintain equal representation of862

both sentiment polarities. The sentiment classifier863

achieves an accuracy of 95.90%.864

We fine-tune the classifiers with the following865

hyperparameters, identical across both tasks:866

• Epochs: 20867

• Batch Size: 32 868

• Learning Rate: 1× 10−5 869

• Training Set Size Ratio: 90% 870

Fine-tuning these classifiers with carefully cho- 871

sen hyperparameters and balanced datasets plays 872

a crucial role in the DATG method’s success. It 873

enables precise guidance of text generation towards 874

desired attributes, ensuring both high accuracy and 875

relevance. 876

A.4 Baselines 877

In assessing the DATG method, we benchmark 878

against two key baselines in controlled text genera- 879

tion: 880
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Method Alpaca 7B Falcon 7B LLaMA-2 13B OPT 6.7B Phi-2 2.7B

Toxicity Mitigation

CONTINUATION 1.05 1.33 1.57 1.04 1.10
INJECTION 1.03 1.36 1.64 1.08 1.09

PREADD 5.24 5.49 9.10 6.20 2.81
FUDGE 5.82 6.24 6.47 5.85 5.94
DATG-P 3.45 3.85 5.65 3.93 2.44
DATG-L 3.43 3.80 5.51 3.81 2.45

Sentiment Transformation

CONTINUATION 1.07 1.33 1.58 1.22 1.17
INJECTION 1.05 1.35 1.60 1.03 1.07

PREADD 5.33 5.77 9.34 6.35 2.84
FUDGE 6.49 6.43 7.01 6.59 6.74
DATG-P 3.61 3.97 6.02 3.99 2.41
DATG-L 3.59 4.01 5.90 3.95 2.45

Table 5: This table presents the average generation speed of various methods across different LLMs, measured
in seconds per item (s/item). Lower values indicate faster generation speeds, highlighting the efficiency of each
method in processing text.

FUDGE conditions text generation on attributes881

by adjusting LLMs’ output probabilities with an882

attribute classifier’s scores. We select the top k =883

100 tokens, adjusting logits with intensity α =884

0.5, achieving nuanced control for attributes like885

formality and sentiment.886

PREADD manipulates output logits from887

prompts for direct attribute control, contrasting888

logits between prefixed and original prompts. With889

α = 1.0, it modulates control strength, effec-890

tively mitigating toxicity with the prompt “The891

following text perpetuates negative stereotypes,892

is threatening or sexually explicit, and does not893

contain profane language.” and transforming894

sentiment with “The following text exhibits a very895

positive/negative sentiment and/or opinion.”896

Moreover, we explore prompt injection tech-897

niques as an additional baseline, aligning with the898

PREADD’s experimental setup. This approach in-899

corporates specific prompts into the generation pro-900

cess to efficiently direct the model’s output toward901

the desired attribute.902

CONTINUATION generates text without any903

attribute-specific conditioning, serving as a base-904

line to evaluate the effect of explicit attribute con-905

trol.906

INJECTION uses the same prompts as907

PREADD, but directly integrates them into the908

generation process for attribute alignment. For909

toxicity mitigation, the prompt is “The following910

text doesn’t perpetuate negative stereotypes,911

isn’t threatening or sexually explicit, and does912

not contain profane language.” For sentiment913

transformation, the prompt is “The following text914

exhibits a very positive/negative sentiment and/or 915

opinion.” This method aims to influence the 916

model’s output more naturally by embedding the 917

desired attribute direction within the prompt itself. 918

In addition to the baseline methods, our DATG 919

approach introduces different strategies in the con- 920

text corpus construction and dynamic attribute 921

graph phases. During the initial stage, DATG freely 922

generates 30 sentences to build a contextually rich 923

corpus. After constructing two dynamic attribute 924

graphs (positive and negative), we simplify the 925

threshold determination process by selecting 10 926

nodes from each graph for adjustment. 927

DATG-L DATG-L employs a Logits-Boost strat- 928

egy, where the adjustment intensities for boosting 929

positive nodes and avoiding negative nodes are set 930

at α = 4.0 and β = 6.0, respectively. This method 931

ensures a targeted manipulation of logits to enhance 932

or mitigate specific attributes within the generated 933

text, providing a refined control over the text gen- 934

eration process. 935

DATG-P Similarly, DATG-P applies the Prefix- 936

Prompt strategy for adjustment, using prefixes to 937

steer the generation process towards the desired 938

attributes. The Prefix-Prompt is “The following 939

passage often discusses [Positive Words] but does 940

not mention [Negative Words].” 941

A.5 Metrics 942

Our evaluation framework employs specific metrics 943

for toxicity mitigation and sentiment transforma- 944

tion tasks to accurately measure their outcomes: 945

Toxicity (For Toxicity Mitigation Task): We 946

quantify the average toxicity level of generated text 947
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Figure 4: Generation speed of sentiment task measured
in seconds per item (s/item) on 2x Nvidia A100 GPUs.

using the Perspective API by Jigsaw. This auto-948

mated tool, developed in 2017, provides a reliable949

measure of text toxicity, ensuring our content meets950

desired safety standards.951

Success (For Sentiment Transformation Task):952

Success is defined as the proportion of generations953

accurately achieving the desired sentiment. This is954

assessed by a RoBERTa model (Liu et al., 2019)955

fine-tuned on the SST-5 dataset (excluding test sam-956

ples), with the following parameters:957

• Epochs: 20958

• Batch Size: 32959

• Learning Rate: 1× 10−5960

• Training Set Size Ratio: 90%961

Achieving a prediction accuracy of 96.78%, this962

model’s precision in sentiment identification allows963

us to calculate the success rate of our sentiment964

transformations effectively.965

Perplexity: Applied across both tasks, perplexity966

is assessed by GPT-2 large, evaluating the con-967

ditional perplexity of prompt completions. This968

metric measures the natural flow from prompt to969

generated text, highlighting coherence.970

Relevance: For both tasks, relevance is measured971

using cosine similarity between the sentence em-972

beddings of the prompt and its completion, calcu-973

lated by the BAAI/bge-large-en-v1.5 model. This974

ensures that generated text remains contextually975

aligned with the initial prompt.976

These tailored metrics enable a comprehensive977

evaluation of the DATG method’s ability to produce978

text that is contextually relevant, fluent, and aligned979

with specific toxicity and sentiment goals.We have980

obtained all datasets and models used through offi- 981

cial sources, and the datasets and models are used 982

in a manner consistent with their intended use. 983

B Experiment Results 984

The appendix details experimental results omitted 985

from the main text, including sentiment transfor- 986

mation across models in Table 4, average genera- 987

tion speeds in Table 5, and speed distribution his- 988

tograms in Figure 4. 989

C Sample Results 990

This section presents selected instances of gener- 991

ated text to illustrate the performance of our meth- 992

ods. Detailed examples across various tasks and 993

models are provided on the following page. 994

Please note, the following generated text exam- 995

ples may contain extremely offensive or harmful 996

content. 997
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Generator Generated Text

CONTINUATION Mr Davies played during WWII, narrowly escaping death by a German bomb.
Mr Davies was one of a handful of players who made the team from the south
Wales town. He was on

INJECTION Mr Davies played during WWII, narrowly escaping a bomb blast at his home
and seeing a close friend die. He was later awarded a CBE for his services to
cricket and the community.

FUDGE Mr Davies played during WWII, narrowly avoiding death on a number of
occasions. The Welsh rugby legend was a member of the Army’s 6th Airborne
Division and was one of the last British

PREADD Mr Davies played during WWII, narrowly avoiding being called up for the war
effort by representing the Barbarians tour of South Africa in 1943. Former
Wales captain Gareth Davies has died at the age of

DATG-L Mr Davies played during WWII, narrowly escaping being shot on D-Day. He
served as a member of the Parachute Regiment and served in India, Burma, and
Germany. A war

DATG-P Mr Davies played during WWII, narrowly escaped the Blitz, and was part of
the Bristol side that won the League in 1945. In this passage, we often talk
about war,

Table 6: Generated texts comparison from OPT 6.7B for the ToxicRandom task.

Generator Generated Text

CONTINUATION “Fuck you, motherfuckers,” he said. “That’s rollingover on the ground, and
that’s fucking up.” The 2022 Honda Civic Type R Is A 3

INJECTION “Fuck you, motherfuckers,” he said. “That’s rolling.”The game was tied 1-1 at
the time. The next day, he was fined $3,000 for the obscene

FUDGE “Fuck you, motherfuckers,” he said. “That’s rollingfire road, dipshit. Here hit
MCTDR...banner four can direct just continue.” Three back haches? "Every-
thing runs best an

PREADD “Fuck you, motherfuckers,” he said. “That’s rollingpapers.” ”What?” said the
cashier. The other customer rolled his eyes. “You’re buying drugs with your
volume disc

DATG-L “Fuck you, motherfuckers,” he said. “That’s rollingright back at you.” “You
gotta go back to the beginning,” he told me. “You gotta go back to that first
year, when

DATG-P “Fuck you, motherfuckers,” he said. “That’s rolling.” When we talk about the
time, we often say, “How are you?” “I’m fine.”

Table 7: Generated texts comparison from Alpaca 7B for the ToxicTop task.
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Generator Generated Text

CONTINUATION this thing works on no level whatsoever for me .... I have been using it for a
while and it does not work. I have the same problem with the “Not

INJECTION this thing works on no level whatsoever for me . I am a 35 year old male, 5’8"
and weigh 160lbs. I have been on this diet for 2 weeks now

FUDGE this thing works on no level whatsoever for me . wnd... one final WNN?? Who
Deadeyan when MRS picks such time boundations?!?! thats completely just
stippler themem though what as

PREADD this thing works on no level whatsoever for me . i get " are you sure you want
to share link " but i can share it to all other apps help please Return to “

DATG-L this thing works on no level whatsoever for me . i use latest version of adobe
flash player and latest version of chrome. i use latest version of adobe flash
player and latest version of chrome. nothing happens

DATG-P this thing works on no level whatsoever for me . In the 3rd & 4th videos, it is
explained how ‘things’ work. They have to work for you, and

Table 8: Generated texts comparison from Falcon 7B for the NegToPos task.

Generator Generated Text

CONTINUATION below may not mark mr. twohy ’s emergence into the mainstream , but his
promise remains undiminished . one of the best films i have seen in a long time.
i had never heard of this director before, but i liked this movie a lot.

INJECTION below may not mark mr. twohy ’s emergence into the mainstream , but his
promise remains undiminished . the film is a slick , sly , and at times very funny
story of a man who is forced to confront the fact that he has no life

FUDGE below may not mark mr. twohy ’s emergence into the mainstream , but his
promise remains undiminished . whether you experience house of long toxic
torture as a comedy or a horror flick , it’s generally a wonderful mind blast
away from

PREADD below may not mark mr. twohy ’s emergence into the mainstream , but his
promise remains undiminished . director john carpenter’s cinematic vision is
some of the most iconic work in american film . writer/director dav

DATG-L below may not mark mr. twohy ’s emergence into the mainstream , but his
promise remains undiminished . The hard-boiled dialogue and the hard-edged
atmosphere are what one would expect from a noirish action flick like this one.

DATG-P below may not mark mr. twohy ’s emergence into the mainstream , but his
promise remains undiminished . he ’s a director who makes films that are both
visually and intellectually challenging. But the film, which has been in the
works since

Table 9: Generated texts comparison from LLaMA-2 13B for the PosToNeg task.
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