
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EOP: UNLOCKING SUPERIOR PROBLEM SOLVING IN
SMALL LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Small language models, referred to as LLMs with fewer than 10 billion parameters
in this work, face critical challenges in problem-solving tasks, often achieving less
than 10% accuracy, highlighting the urgent need for effective solutions. While
much of the existing research has focused on enhancing the performance of larger
models like GPT, an important question remains: Can techniques developed for
large models be adapted effectively for smaller ones? Moreover, is it possible to
improve these smaller models to the point where they rival, or even outperform,
larger models such as GPT-4 in problem-solving tasks?
In this paper, we introduce Evaluation-Oriented Problem-Solving (EOP), a novel
framework aimed at enhancing the problem-solving capabilities of small LLMs.
Our approach significantly boosts the performance of these models, achieving a
2% higher accuracy on Python Puzzles compared to standard GPT-4 and a 27%
improvement over state-of-the-art prompting methods using GPT-4 in the Game of
24. Beyond these results, EOP also demonstrates notable accuracy improvements
on other tasks. These findings suggest that, with the appropriate strategies, small
LLMs can achieve substantial performance gains in problem-solving, challenging
the prevailing notion that scaling model size is the primary path to improvement.

1 INTRODUCTION

Large Language Models (LLMs) have advanced rapidly, demonstrating strong performance across
various intelligent tasks such as commonsense reasoning (Hendrycks et al., 2020; Wang, 2018),
question-answering (Joshi et al., 2017), scientific knowledge acquisition (Clark et al., 2018; Cobbe
et al., 2021), and programming (Chen et al., 2021). The open-source community has also contributed
to this growth, offering models of diverse sizes and capabilities. Small LLMs, typically with fewer
than 10 billion parameters, are gaining traction due to their advantages in cost and energy efficiency,
lower hardware requirements for self-deployment, and reduced domain adaptation costs, all while
maintaining relatively high performance on various benchmarks such as reading comprehension and
common-sense understanding (Bansal et al., 2024; Javaheripi et al., 2023; Dubey et al., 2024).

Despite their strengths in natural language understanding, LLMs face significant challenges in
problem-solving (Wei et al., 2022; Yao et al., 2024; Besta et al., 2024; Dubey et al., 2024). Even ad-
vanced models like GPT-4 (OpenAI, 2024a) struggle, consistently scoring poorly on various bench-
marks (OpenAI, 2024b), with smaller models performing even worse due to their limited parameters.
Experiments on three problem-solving tasks revealed this gap: GPT-4 scored just 3.0% on Game of
24 (Yao et al., 2024) and 31.1% on Python Puzzles (Schuster et al., 2021), while smaller models
fared even worse, as shown in Figure 1.

Various approaches, such as Chain-of-Thought (CoT) (Wei et al., 2022), Tree-of-Thought
(ToT) (Yao et al., 2024), Graph-of-Thought (GoT) (Besta et al., 2024), and Meta-prompting (Suzgun
& Kalai, 2024), have been proposed to enhance the performance of GPT models. These prompting
techniques significantly elevate the reasoning capabilities of GPT-4. In particular, Meta-prompting
proves to be the most effective method, leading to substantial improvements in accuracy when ap-
plied to GPT-4, as demonstrated in Figure 1.

Given these contexts, we explored three critical questions to better understand the capabilities of
small LLMs in reasoning tasks:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0

5

10

15

20

25

30

35
Ac

cu
ra

cy
 (%

)
Game Of 24

0

10

20

30

40

Ac
cu

ra
cy

 (%
)

Python Puzzles

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Word Sorting

Llama3.1-8B
Llama3.1-8B w/ MP
Llama3.1-8B Ours

GPT-4
GPT-4 w/ MP

Figure 1: We compare the problem-solving accuracy across three tasks: Game Of 24, Python
Puzzles, and Word Sorting, each with different evaluation difficulty. Python Puzzles uses an oracle
Python interpreter to verify the answer, Game Of 24 is easy (evaluating the expression is equal
to 24), and Word Sorting is the hardest (evaluating the list of words is in the correct order). Key
observations: 1) GPT-4 (OpenAI, 2024a) performs poorly on some tasks, with Llama3.1-8B scoring
even lower. 2) Meta-Prompting (MP) (Suzgun & Kalai, 2024) boosts GPT-4’s performance but is
less effective for small LLMs. 3) Our method enables small LLMs to outperform GPT-4 with MP
on Game Of 24 and surpass GPT-4 in Python Puzzles, demonstrating improvements across various
tasks.

Q1: Are current methods designed for large models applicable to small LLMs? Although
advanced prompting techniques, such as meta-prompting, effectively enhance reasoning in models
like GPT-4, our experiments revealed no significant improvement in small LLMs. As shown in
Figure 1, methods that succeed with larger models do not appear to be well-suited for their smaller
counterparts. The reasons for this discrepancy remain unclear.

Q2: Are small LLMs applicable in problem-solving tasks? Despite their limitations, small LLMs
are not entirely ineffective. When using with an oracle evaluator to cherry-pick the correct answer
from multiple attempts, they showed improved accuracy, as presented in Figure 2. This indicates that
small models can benefit from repeated trials, though they still struggle to identify correct solutions
on their own.

Q3: How can small LLMs be made effective in problem-solving tasks? This question forms the
core motivation of our work. We propose that the key to unlocking the problem-solving potential of
small LLMs lies in developing a tailored approach that compensates for their weaknesses through
evaluation-focused prompting techniques. By leveraging multiple trials and structured evaluations,
small models can perform significantly better without requiring extensive fine-tuning. To develop
a general framework that is effective across different tasks (i.e. task-agnostic), we chose three
problem sets with varying levels of evaluation difficulty: Python Puzzles (Schuster et al., 2021)
requires solving Python problems with code comprehension. We have an oracle evaluator (a Python
interpreter), making them the simplest to evaluate. Game of 24 (Yao et al., 2024) requires using 4
numbers and 3 operators (each from + − ×÷) to get an arithmetic result of 24. It is slightly more
challenging but still straightforward, as it only requires checking if an expression equals 24. Word
Sorting (Srivastava et al., 2023) requires output an alphabetically sorted list from a list of words. It
poses a great challenge on evaluation, as evaluating the correctness involves checking whether each
pair of words in a list is sorted character by character, which is considerably more complex.

In this paper, we make four key contributions:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1 10 20 30
#Shots

20

40

60

80

Id
ea

l A
cc

ur
ac

y
(%

)

Trend of Ideal Accuracy on #Shots

Game of 24
Python Puzzles
Word Sorting

Figure 2: The ideal accuracy of the small LLM consistently improves as the number of attempts
increases. ideal accuracy means utilizing an task-specific oracle evaluator to cherry-pick the correct
answer from multiple trials. It demonstrates the potential of small LLMs: With a reliable evaluator,
small models can achieve superior accuracy.

• Understanding failure modes: We identify why advanced prompting methods, such as
meta-prompting, fail to improve the reasoning abilities of small LLMs. Specifically, small
models struggle to process complex instructions and step-wise refining.

• Emphasizing the role of evaluators: We demonstrate the importance of robust evaluators
in reasoning tasks. Our findings show that an oracle evaluator, when used with small LLMs,
can dramatically improve their accuracy by enabling multiple attempts. This drives us to
build a reliable evaluation scheme that can close the gap to the oracle evaluator.

• Introducing a novel evaluation-based prompting method: We propose a new,
evaluation-focused prompting technique specifically designed for small LLMs. This
method enhances reasoning performance, achieving a 2% higher accuracy on Python Puz-
zles compared to standard GPT-4 and a 27% improvement over state-of-the-art prompting
methods using GPT-4 in the Game of 24, even without access to an oracle evaluator.

• Addressing varying levels of evaluator expertise: We explore how different reasoning
tasks may require evaluators with varying levels of expertise. Our method adapts to these
different cases, ensuring that small models can handle a wide range of tasks with the ap-
propriate level of evaluation support.

2 RELATED WORK

Recent advancements in prompting methods have significantly enhanced the reasoning capabilities
of LLMs. One of the earliest approaches, Chain-of-Thought (CoT) (Wei et al., 2022), guides LLMs
by providing few-shot examples of reasoning steps or by appending instructions like ”Let’s think
step by step” to encourage intermediate thinking. This method improves the likelihood of generating
correct answers through guided reasoning. Building upon CoT, CoT with Self-Consistency (Wang
et al., 2022) further refines this process by performing multiple reasoning attempts and selecting
the final answer through result aggregation, which improves accuracy. Based on this method, more
advanced techniques are developed:

Tailored and Structured Thoughts: Methods like Tree-of-Thoughts (ToT) (Yao et al., 2024), break
down problems into subproblems, structuring reasoning as a tree. Graph-of-Thoughts (GoT) (Besta
et al., 2024) extends this concept by transforming the tree into a graph, enhancing performance on
more complex tasks like sorting. However, both methods require manual task-specific constructions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Question

Problem
Solver

Answer

Question

Problem
Solver

 Step1
Step2
Step3

...
Answer

Question

Problem
Solver

Wrong

CorrectEvaluator

No Answer Has Answer

 Step1
Step2
Step3

...
[Answer]

Question

Problem
Solver

 Step1
Step2
Step3

...
Answer

Reasoning
Evaluator

Msg1
Msg2
Msg3

...

Debugger

Suggestions

Problem
Solver

 NewStep1
NewStep2

...

Refined
Answer

......

Final
Answer

Refined
Answer

RefinedAnswer

Aggregation
Evaluator

Final
Answer

Standard CoT Meta-Prompting

EOP

Refined
Answer

Figure 3: Overview of task-agnostic prompting methods. Standard refers to basic LLM-based
problem-solving. CoT (Wei et al., 2022) prompts step-by-step thinking, while Meta-prompting (Suz-
gun & Kalai, 2024) refines answers using multiple rounds. Our EOP framework aggregates multiple
trials with two evaluators: Aggregation and Reasoning.

Task-agnostic Answer-refining: Meta-prompting (Suzgun & Kalai, 2024) eliminates manual graph
construction by allowing a meta-LLM to guide reasoning or call upon specialized expert LLMs. It
also incorporates multi-agent debate (Du et al., 2023) and self-reflection (Shinn et al., 2023), making
it state-of-the-art in many reasoning tasks.

Solution Caching: Buffer-of-Thoughts (Yang et al., 2024), on the other hand, aggressively caches
solutions for reuse in similar tasks, but this method depends heavily on the quality of the cached
solution and it introduces hard-coding, such as using the chess Python library for ”Checkmate in
One” problems.

3 METHODOLOGY

Figure 3 demonstrates an overview of EOP prompting pipeline. Our method introduces two key
changes from other prompting methods based on GPT-4: the use of multiple trials (breadth-first)
instead of multiple rounds (depth-first) and the incorporation of a reasoning evaluator. As described
in Section 3.1, the problem solver powered by a small LLM generates multiple responses for each
question, and an aggregation evaluator selects the best answer from these responses. This approach
is crucial for improving overall accuracy. The second key change is the reasoning evaluator (Sec-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Flow of thoughts
in MP

Depth-
First

Flow of thoughts
in EOP

Breadth-
First

(a) The comparison between our breadth-first answer explo-
ration and depth-first answer refining methods (Besta et al.,
2024; Suzgun & Kalai, 2024) that are based on strong models
like GPT-4.

Gam
e O

f 2
4

Pyt
ho

n P
uzz

les

Word
 So

rtin
g

Che
ckm

ate
 In

 One

So
nn

et
Writi

ng
0

10

20

30

40

50

Ac
cu

ra
cy

Depth-first vs. Breadth-first on Llama
Llama+MP
Llama+EOP

(b) The comparisons of Llama3.1-
8B (Meta, 2024) powered with meta-
prompting (MP) (Suzgun & Kalai,
2024) and that powered by EOP. The
benchmarks are described in Section 4

Figure 4: Comparisons between depth-first answer refining and breadth-first retrying.

tion 3.3), which evaluates the step-by-step reasoning process, rather than just the final answer. This
evaluator processes the reasoning steps, and a debugger (Section 3.4) provides feedback to help
refine the original answer. Although multiple iterations of refinement are possible, often one refine-
ment pass suffices to improve the solution.

For tasks that can be converted into coding problems, such as Python tasks, both the reasoning and
aggregation evaluators are Python interpreters, evaluating the reasoning process and final answer
respectively (Section 3.2). Importantly, while the reasoning evaluator analyzes the full reasoning
process, the aggregation evaluator only receives the final answer to avoid being misled by incorrect
intermediate reasoning.

Since all tasks rely on proper evaluation, correct answer formatting is essential. To ensure that the
LLM-generated responses are in the correct format, we utilize a hierarchical answer formulator (Sec-
tion 3.5) to extract and structure the answers properly, preventing false rejections due to formatting
issues.

3.1 MULTIPLE TRIALS

As shown in Figure 2, the accuracy of problem-solving continues to increase when conducting re-
peated trials, assuming we have an oracle evaluator. In contrast, methods such as ToT, GoT, and
Meta-Prompting also use multiple rounds of reasoning. However, these approaches fail to signifi-
cantly improve the performance of standard small LLMs, as demonstrated in Figure 4b. We suspect
that this is because small LLMs are easily misled by incorrect answers during the refining process.
This issue is discussed further in Section 3.2.

Given this, we opt to run small LLMs in multiple independent rounds using a breadth-first approach
rather than adopting depth-first answer-refining methods, which are better suited for powerful mod-
els like GPT-4. The distinction between these approaches is illustrated in Figure 4a.

3.2 AGGREGATION EVALUATOR

As discussed in Section 1, small LLMs have the potential to produce correct answers across multiple
trials. However, it is often challenging for these models to identify which of their generated answers
is correct. For tasks that can be transformed into Python problems, a Python interpreter serves as
a reliable oracle. In such cases, if one of the trial answers is correct, the interpreter will accurately
validate the result.

For other tasks, the LLM must act as its own evaluator, responsible for assessing the correctness of
its outputs. For example, in the Game of 24, evaluating whether an expression equals 24 is relatively

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

straightforward. However, small LLMs can still make evaluation errors, as shown in the following
example:

Input:
2, 4, 4, 3

Output:
1. 2 + 4 = 6; 2. 6 * 4 = 24.
Each number of the input is used once.
From this analysis, (2 + 4) * 4 is considered an answer to
the question.

Evaluation:
The result is deemed correct, and each number is used once.

In this instance, the small LLM incorrectly evaluates the expression by assuming that each num-
ber is used only once, even though the number 3 is missing. Our tests showed that regardless of
how the prompt is adjusted (e.g., through reasoning prompts (Qiao et al., 2022) or few-shot learn-
ing (Reynolds & McDonell, 2021)), there is always a risk that the LLM will misjudge such condi-
tions. As a result, the evaluation accuracy is limited by the inherent weaknesses of small LLMs.

This limitation was also observed in more comprehensive experiments with the metric evaluation
accuracy measured for the Game of 24 and Word Sorting as shown in Section 4.3.

3.3 REASONING EVALUATOR

3.3.1 PYTHON PUZZLES

In contrast to previous work (Yao et al., 2024; Besta et al., 2024), our goal is to design a framework
that is task-agnostic, eliminating the need for custom reasoning processes for each ad-hoc task. For
instance, Meta-prompting (Suzgun & Kalai, 2024) introduces a pipeline with complex instructions,
refining answers recursively and evaluating with a powerful model. However, applying such tech-
niques to small LLMs often fails or even harms performance.

To create a generalizable reasoning process for small LLMs, we use Python Puzzles as a key exam-
ple. Python problem-solving is widely applicable, and many other tasks, like Game of 24, can be
transformed into Python problems. Instead of merely giving the LLM a wrong answer and expect-
ing it to correct itself, EOP leverages the evaluator to provide more detailed feedback on why an
answer is wrong, avoiding potential misleading information from the previous response. The prob-
lem solver first attempts to solve the task step by step, with the reasoning evaluator then assessing
the correctness of each step in the reasoning process.

In Python Puzzles, maintaining syntactic correctness while solving a problem step-by-step can be
difficult. To address this, we instruct the problem solver to insert assert statements at key points to
verify partial results. If an assertion fails, the error, along with any other runtime errors, is reported
to the debugger agent, which helps identify both logical and runtime issues.

For example, in Figure 5, we showcase a full reasoning flow from question to final answer. The task
requires returning a list of even indices from a given list, with odd indices assigned a constant value.
The assertions first verify the total length of the output list, then check whether the even-indexed
elements match the input, and finally confirm that odd-indexed elements are equal to the constant
value. The reasoning evaluator identifies an error in the second assertion, enabling downstream
agents in the pipeline to refine the solution based on accurate feedback.

By adopting this approach, the LLM can pinpoint the specific part of the reasoning process respon-
sible for the incorrect outcome, significantly reducing the risk of being misled by earlier wrong
answers.

3.3.2 GAME OF 24

Game of 24 is a task that can easily be converted into a Python program. In doing so, EOP is
able to outperform all existing methods, including those that are task-aware, as demonstrated in

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

def sol():
 # The even-indexed elements of the list should be equal to the elements of the list "nums"
 # The odd-indexed elements of the list should be equal to the element "sep" repeated (len(nums)
- 1) times
 # So, we create a list that meets these conditions
 li = [39, 25, 94, 25, 99, 25, 46, 25, 93]

 # Check if the length of "li" is equal to the length of "nums" plus (len(nums) - 1)
 assert len(li) == len([39, 94, 99, 46, 93]) + (len([39, 94, 99, 46, 93]) - 1), "Length of li is
incorrect"

 # Check if the even-indexed elements of "li" are equal to "nums"
 assert li[::2] == [39, 94, 99, 46, 93], "Even-indexed elements of li are not equal to nums"

 # Check if the odd-indexed elements of "li" are equal to "sep" repeated (len(nums) - 1) times
 assert li[1::2] == [25] * (len([39, 94, 99, 46, 93]) - 1), "Odd-indexed elements of li are not
equal to sep repeated (len(nums) - 1) times"

 # Return the input that makes "sat" return "True"
 return li

Given a Python function "sat", the goal is to find an input or a set of inputs that makes "sat" return "True" and then include your input inside a
function called "sol()".

Insert assertion into the code to help verify the intermediate results

def sat(li: List[int], nums=[39, 94, 99, 46, 93], sep=25):
 return li[::2] == nums and li[1::2] == [sep] * (len(nums) - 1)

def sol():
 # Determine the correct input for the "sat" function
 nums = [39, 94, 99, 46, 93]
 sep = 25
 li = nums + [sep] * (len(nums) - 1)
 assert len(li) == len(nums) + (len(nums) - 1), "The length of li should be equal to the length
of nums plus (len(nums) - 1)"
 assert li[::2] == nums, "Even-indexed elements of li should be equal to nums"
 assert li[1::2] == [sep] * (len(nums) - 1), "Odd-indexed elements of li should be equal to sep
repeated (len(nums) - 1) times"
 return li

[39, 94, 99, 46, 93, 25, 25, 25, 25]

An error occurred at line 11 of code
Even-indexed elements of li should be equal to nums

Possible Reasons for the Error
* The error occurs because the even-indexed elements of "li" are not equal to "nums".
* This could be due to the fact that the list "li" is created by concatenating "nums" with "sep" repeated (len(nums) - 1) times, but the even-
indexed elements of the resulting list are not equal to "nums".
* To fix this error, the programmer needs to ensure that the even-indexed elements of "li" are equal to "nums" by modifying the creation of the list
"li".

Code Review
* The code is well-structured and uses assertions to handle edge cases.
* However, the assertion at line 11 fails, indicating that the even-indexed elements of "li" are not equal to "nums".
* To fix this error, the programmer needs to modify the creation of the list "li" to ensure that the even-indexed elements are equal to "nums".

Question Initializer

Problem Solver

1

2

Reasoning Evaluator 3

Debugger 4

Problem Solver 5

[39, 25, 94, 25, 99, 25, 46, 25, 93]
True

6Final Evaluator

Figure 5: A demo of a successfully corrected Python Puzzle. The Reasoning Evaluator detects
an assertion error and reports it to the Debugger, which identifies the error source and provides
feedback to the Problem Solver.

Table 1. However, this approach does not evaluate the arithmetic reasoning capability within our
EOP framework, as it predominantly tests Python coding skills, which overlap with tasks like Python

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of methods for solving Game of 24. Llama is short for Llama3.1-8B (Meta,
2024). ToT (Yao et al., 2024) and GoT (Besta et al., 2024) require the user to build a specific
tree/graph structure for the thought. ’-’ represents not supported: Meta-prompting (MP) (Suzgun &
Kalai, 2024) is task-agnostic, and it has both versions of using and not using a Python interpreter;
While ToT and GoT are task-specific, and do not need the help of Python interpreter. EOP with
Python is able to outperform all these methods.

Frameworks Task-specific w/o Python w/ Python
GPT-4 + ToT 74.0% - -
GPT-4 + GoT 73.2% - -
GPT-4 + MP - 11.0% 67.0%
Llama + EOP - 37.8% 78.6%

Puzzles. To specifically assess arithmetic reasoning, we prohibit the use of the Python interpreter
for the Game of 24 task. Instead, the problem solver generates a possible solution step by step, with
a general reasoning evaluator verifying each step. Finally, the small LLM serves as an aggregation
evaluator, as described in Section 3.2.

3.3.3 WORD SORTING

For the Word Sorting task, the evaluation can be quite challenging, as demonstrated in Section 4.3,
where the accuracy of the aggregation evaluator hovers around 50%. Similar difficulties are also
encountered with the reasoning evaluator. Although we could make the reasoning evaluator specific
to the Word Sorting task, such as instructing it to compare two adjacent words at a time to simplify
the evaluation, this approach introduces two issues: 1) it is not task-agnostic, and 2) even with
this modification, the task remains beyond the capabilities of small LLMs, and no improvement in
accuracy was observed using this method. Consequently, for Word Sorting and all tasks other than
Python-related problems, we employ a general reasoning evaluator, as described in Section 3.3.2.

3.4 DEBUGGER

Reasoning evaluators assist in analyzing errors in previous answers. To streamline the incorporation
of error analysis into the problem solver, we introduce a debugger that converts error messages into
actionable suggestions. These suggestions, along with the original question and the prior answer, are
then fed back to the problem solver. In this way, the connection between the errors and the solution
refinement is smoother. We use the Debugger specifically for Python-related tasks, because Python
interpreters only provide error messages without analysis. Debugger in other tasks simply passes
the outputs of the reasoning evaluator.

3.5 HIERARCHICAL ANSWER FORMULATOR

Due to the reliance on the evaluation process, precise answer formulation is crucial, especially for
Python tasks, as formatting errors can lead to compilation failures. To ensure correct answer for-
matting, we employ a hierarchical answer formulation unit: first, we attempt to extract the answer
using predefined rules. If this fails, we utilize a small LLM to generate the answer in the specified
format, followed by another attempt with the rule-based extractor. This process is repeated a limited
number of times or until the correct format is obtained.

3.6 ADDRESSING THE KEY QUESTIONS

This research provides clear answers to the questions posed in Section 1 as follows:

• Applying answer-refining methods (Suzgun & Kalai, 2024) designed for models like GPT-
4 does not yield significant improvements for small LLMs. These smaller models are more
prone to being misled by incorrect answers during refinement (Section 3.1).

• While small LLMs can generate correct answers through multiple trials, the challenge lies
in accurately selecting the correct answer from among the candidates.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: End-to-end experiments on different benchmarks, baselines, and small models. CoT (Wei
et al., 2022) represents the SOTA of the chain of thoughts. MP is short for meta-prompting (Suzgun
& Kalai, 2024). Llama represents Llama3.1-8B (Meta, 2024) and Qwen means Qwen2.5-7B mod-
els (Alibaba, 2024). Experiments are conducted on tasks: Game of 24 (Yao et al., 2024), Python
Puzzles (Schuster et al., 2021), Word Sorting (Srivastava et al., 2023), Checkmate in One (Srivastava
et al., 2023), and Sonnet Writing (Suzgun & Kalai, 2024). Green boxes represent best of all, and
Blue boxes represents best of small LLMs.

Task GPT4 GPT4
+ CoT

GPT4
+ MP

Llama Qwen Llama
+ EOP

Qwen
+ EOP

Game of 24 3.0% 11.0% 11.0% 5.3% 11.0% 37.8% 28.6%
Python Puzzles 31.1% 36.3% 45.8% 9.8% 9.9% 33.2% 24.1%
Word Sorting 80.4% 83.6% 84.0% 39.5% 16.6% 52.4% 22.8 %

Checkmate in One 36.4% 32.8% 57.2% 4.1% 4.2% 4.4% 4.4%
Sonnet Writing 62.0% 71.2% 77.6% 24.0% 29.1% 28.8% 32.8%

• Our methodology proposes a comprehensive framework specifically aimed at enhancing
the problem-solving abilities of small LLMs. Its effectiveness is demonstrated and vali-
dated through the experiments detailed in Section 4.

4 EXPERIMENTS

4.1 SETUP

To evaluate the performance of small LLMs, we conduct experiments on two sets of models:
Llama3.1-8B (Meta, 2024) and Qwen2.5-7B (Alibaba, 2024). For coding tasks, in order to fully
leverage the strengths of fine-tuned models, we use Qwen2.5-7B-Coder for the Qwen series experi-
ments.

For the benchmark, in addition to Game Of 24, Python Puzzles, and Word Sorting, we also in-
clude Checkmate in One (Srivastava et al., 2023), which is a particularly challenging problem for
small LLMs, demonstrating their limitations. Another benchmark, Sonnet Writing (Suzgun & Kalai,
2024), requires generating a sonnet with a restricted rhyme scheme.

For baselines, we primarily compare our results with meta-prompting and CoT, as other meth-
ods, such as multi-agent debate and self-reflection, are encapsulated within meta-prompting. Task-
specific techniques like ToT and GoT are not considered task-agnostic and are thus excluded.

4.2 END-TO-END EXPERIMENT RESULTS

Table 2 presents an overall comparison of various baselines, models, and benchmarks. Notably,
despite utilizing a significantly weaker model in EOP, we are still able to outperform GPT and even
GPT+MP in several tasks. However, EOP also has its limitations. For the task of Checkmate in
One, we are unable to further enhance the model’s performance, as evaluating the results poses a
significant challenge for smaller LLMs, resulting in an evaluation precision of only 4%.

4.3 ABLATION STUDIES ON EVALUATORS

As summarized in Table 3. We found that when the reasoning process is hidden from the aggregation
evaluator, the accuracy for both tasks improved. By developing oracle evaluators tailored for each
task, we observed that evaluation accuracy increased when the reasoning process was made trans-
parent to the aggregation evaluator. This confirms our intuition that exposing the wrong reasoning
process can mislead evaluators to some extent.

To assess the effectiveness of the reasoning evaluator introduced in Section 3.3, we conducted ex-
periments to compare the accuracy across three problem-solving tasks, both with and without the use

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Comparison of two approaches for applying aggregation evaluators: reasoning-process
aware vs. reasoning-process agnostic (Agn.). Accuracy improves for both tasks when the reasoning
process is hidden from the aggregation evaluator. We also analyze evaluation accuracy using a
manually designed oracle evaluator, tailored for a single task. The experiments utilize Llama3.1-8B.

Task Accuracy Eval. Acc.
Game of 24 18.4% 88.5%

Game of 24 Agn. 33.7% 97.6%
Word Sorting 37.2% 50.6%

Word Sorting Agn. 42.0% 52.2%

Table 4: Comparison of problem-solving accuracy with and without the reasoning evaluator. The
reasoning evaluator significantly enhances accuracy by providing detailed feedback on the correct-
ness of each reasoning step. Experiments utilize Llama3.1-8B.

Task Acc. w/o Reasoning Eval. Acc. w/ Reasoning Eval.
Game of 24 33.7% 37.8%

Python Puzzles 27.2% 33.2%
Word Sorting 40.4% 52.4%

Checkmate in One 4.2% 4.4%
Sonnet 24.8% 28.8%

Table 5: Comparison of accuracy with and without the Debugger in Python Puzzle. The Debugger
is essential, as the absence of it leads to reduced accuracy from the reasoning evaluator.

Task Acc. w/o Reasoning
Eval. & Debugger

Acc. w/ Reasoning
Eval. & w/o Debugger

Acc. w/ Debugger &
Reasoning Eval.

Python Puzzles 27.2% 24.1% 33.2%

of reasoning evaluators. The results, presented in Table 4, demonstrate a significant improvement in
accuracy when the reasoning evaluators are employed, which evaluate the problem solver’s reason-
ing process step-by-step. This confirms our hypothesis that small LLMs benefit from more detailed
feedback on their errors, enabling them to refine incorrect answers more effectively. The difference
between aggregation evaluator and reasoning evaluator is one of our major contributions.

We further verify the effectiveness of employing a debugger to analyze error messages from the
Python interpreter, which serves as our reasoning evaluator. Unlike an LLM-based evaluator, the
Python interpreter does not inherently provide detailed analysis of reasoning errors. Therefore, a
dedicated debugger is required to extract this information. The results presented in Table 5 under-
score the significance of utilizing this debugger for improving reasoning accuracy. This experiment
also indicates that using a reasoning evaluator combined with a debugger can further improve an
oracle evaluator.

5 CONCLUSION

In this work, we explored the Evaluation-Oriented Problem-Solving (EOP) framework to enhance
small LLMs’ problem-solving abilities. Our experiments showed that EOP allows small LLMs to
achieve competitive performance across tasks like Python coding, word sorting, and mathemati-
cal reasoning. The use of reasoning evaluators significantly improved accuracy by enabling error
correction and output evaluation. However, challenges remain, particularly in complex tasks like
Checkmate in One. Future work will focus on refining the reasoning evaluator and further improv-
ing small LLMs’ robustness in challenging tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alibaba. Qwenlm/qwen2.5: Qwen2.5 is the large language model series developed by qwen
team, alibaba cloud. https://github.com/QwenLM/Qwen2.5, 2024. (Accessed on
09/27/2024).

Hritik Bansal, Arian Hosseini, Rishabh Agarwal, Vinh Q Tran, and Mehran Kazemi. Smaller,
weaker, yet better: Training llm reasoners via compute-optimal sampling. arXiv preprint
arXiv:2408.16737, 2024.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17682–17690, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio
César Teodoro Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, et al.
Phi-2: The surprising power of small language models. Microsoft Research Blog, 1:3, 2023.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Meta. Introducing llama 3.1: Our most capable models to date. https://ai.meta.com/
blog/meta-llama-3-1/, 2024. (Accessed on 09/26/2024).

OpenAI. Models - openai api. https://platform.openai.com/docs/models/
gpt-4-and-gpt-4-turbo, 2024a. (Accessed on 09/26/2024).

OpenAI. Learning to reason with llms — openai. https://openai.com/index/
learning-to-reason-with-llms/, 2024b. (Accessed on 09/27/2024).

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei
Huang, and Huajun Chen. Reasoning with language model prompting: A survey. arXiv preprint
arXiv:2212.09597, 2022.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond
the few-shot paradigm. In Extended abstracts of the 2021 CHI conference on human factors in
computing systems, pp. 1–7, 2021.

11

https://github.com/QwenLM/Qwen2.5
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tal Schuster, Ashwin Kalyan, Oleksandr Polozov, and Adam Tauman Kalai. Programming puzzles.
arXiv preprint arXiv:2106.05784, 2021.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2(5):9, 2023.

A Srivastava, A Rastogi, A Rao, AAM Shoeb, A Abid, A Fisch, AR Brown, A Santoro, A Gupta,
A Garriga-Alonso, et al. Beyond the imitation game: Quantifying and extrapolating the capabili-
ties of language models (arxiv: 2206.04615). arxiv, 2023.

Mirac Suzgun and Adam Tauman Kalai. Meta-prompting: Enhancing language models with task-
agnostic scaffolding. arXiv preprint arXiv:2401.12954, 2024.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv preprint arXiv:1804.07461, 2018.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E Gonzalez,
and Bin Cui. Buffer of thoughts: Thought-augmented reasoning with large language models.
arXiv preprint arXiv:2406.04271, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

A ABLATION STUDY OF ACCURACY VS. NUMBER OF MULTIPLE TRIALS

The number of trials performed by small LLMs significantly impacts the accuracy of their final
output, as illustrated in Figure 2. After applying the full EOP framework, the accuracy improvement
follows a similar trend, as shown in Figure 6. Conducting 10 trials yields substantial accuracy gains
across the three tasks, while increasing the number of trials to 30 shows diminishing returns. Users
should consider adopting a moderate number of trials to strike a balance between accuracy and
computational cost.

B MEASURE OF THE EOP EFFECTIVENESS ON DIFFERENT TASKS

EOP has focused on quantifying its effectiveness quantitatively. At first, the evaluation accuracy of
the aggregation evaluator is proposed. For example, tasks like Python Puzzles achieve an evaluation
accuracy of 100% due to the availability of reliable evaluation methods (e.g., a Python interpreter).
Similarly, Game of 24 achieves 97.6% evaluation accuracy as shown in Table 3. However, tasks like
Word Sorting, with only 52.2% evaluation accuracy, show smaller improvements in problem-solving
accuracy under EOP.

To address a potential limitation of this evaluation accuracy, where a large number of true negatives
might inflate the metric when the model generates excessive incorrect answers, we propose using the
F1 score instead. This provides a more balanced measure by considering both precision and recall.
After adopting the F1 score, the results are shown in Table 6.

This relationship is intuitive: if the aggregation evaluator can reliably determine the correctness of
answers (reflected by high F1 scores), it is more likely to select the correct answer from the pool of
candidates. EOP is designed to exploit this property by enhancing the quality of candidates through
breadth-first multiple trials, reasoning evaluators, debuggers, and answer formatters.

To address when EOP is most effective, we propose two key considerations:

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

1 10 20 30
#Trials

10

20

30

40

50
Ac

cu
ra

cy
 (%

)
Trend of Accuracy on #Trials Using EOP

Game of 24
Python Puzzles
Word Sorting

Figure 6: Ablation study of accuracy vs. number of trials. The accuracy improves marginally when
the number of attempted trials increases.

Task Accuracy Improvement Aggregation Evaluator F1
Python Puzzles +23.4% -

Game of 24 +32.5% 0.83
Word Sorting +12.9% 0.52

Checkmate-in-One +0.3% 0.05

Table 6: EOP accuracy improvement and F1 scores of the aggregation evaluator for different tasks.

• When evaluating a problem is easier than solving it: In such cases, evaluation-based
methods act like SAT-solvers for NP-hard problems, leveraging simpler evaluations to
tackle complex problems.

• Using F1 score of the aggregation evaluator as a predictor: Users can assess the F1
score of the aggregation evaluator using sample questions from the target task. While there
isn’t a universal threshold (different models have different capabilities on different tasks),
this measure provides a clearer indication of whether EOP can achieve significant accuracy
improvements. For instance, tasks with low F1 scores like Checkmate-in-One (0.05) yield
marginal improvements, while tasks with higher F1 scores like Game of 24 (0.83) benefit
significantly.

13

	Introduction
	Related work
	Methodology
	Multiple Trials
	Aggregation Evaluator
	Reasoning Evaluator
	Python Puzzles
	Game of 24
	Word Sorting

	Debugger
	Hierarchical Answer Formulator
	Addressing the Key Questions

	Experiments
	Setup
	End-to-End Experiment Results
	Ablation Studies on Evaluators

	Conclusion
	Ablation Study of Accuracy vs. Number of Multiple Trials
	Measure of the EOP Effectiveness on Different Tasks

