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Abstract

Integrating fairness into machine learning models has been an important consideration
for the last decade. Here, neurosymbolic models offer a valuable opportunity, as they
allow the specification of symbolic, logical constraints that are often guaranteed to be
satisfied. However, research on neurosymbolic applications to algorithmic fairness is still
in an early stage. With our work, we bridge this gap by integrating counterfactual fairness
into the neurosymbolic framework of Logic Tensor Networks (LTN). We use LTN to express
accuracy and counterfactual fairness constraints in first-order logic and employ them to
achieve desirable levels of both performance and fairness at training time. Our approach is
agnostic to the underlying causal model and data generation technique; as such, it may be
easily integrated into existing pipelines that generate and extract counterfactual examples.
We show, through concrete examples on three real-world datasets, that logical reasoning
about counterfactual fairness has some important advantages, among which its intrinsic
interpretability, and its flexibility in handling subgroup fairness. Compared to three recent
methodologies in counterfactual fairness, our experiments show that a neurosymbolic, LTN-
based approach attains better levels of counterfactual fairness.

1. Introduction

In the last decade, there has been a considerable amount of research on the topic of fairness
in deep learning, as neural networks are increasingly used in critical contexts such as credit
scoring, risk assessment of recidivism, and job recruitment. As of today, making these sys-
tem fairer is a complex and multi-faceted challenge. In this context, the idea of leveraging
neurosymbolic approaches to tackle algorithmic unfairness has been largely underexplored
so far. The potential for a good fit between these two research lines has been pointed out
in the recent surveys by Gibaut et al. (2023) and Bhuyan et al. (2024). Neurosymbolic AI
allows one to reason symbolically about the neural network’s behaviour, by establishing a
correspondence between its low-level information processing and high-level logical reasoning
(Hitzler and Sarker, 2022; Sarker et al., 2021). As such, the approach shows many advan-
tages for establishing trust in deep learning systems, by making models more interpretable
and transparent (Gibaut et al., 2023).
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To bridge this gap, we propose an in-processing method to train a counterfactually fair
neural network by means of the neurosymbolic method of Logic Tensor Networks (LTN)
proposed by Badreddine et al. (2022). Counterfactual fairness (CF) reframes the problem
of algorithmic fairness in terms of causality, by asking the question: “Would I be treated
in the same way, had my protected feature been different?”. In short, it requires that, for
a machine learning model to be fair, sensitive attributes (e.g., race, gender, etc.) have no
causal influence on its outcomes. In the present work, we integrate CF into the neural
network learning process, in the form of logical constraints. Furthermore, we show how
to exploit symbolic reasoning after network training to better secure fairness for specific
subgroups of sensitive groups. Lastly, we integrate a counterfactual knowledge extraction
method into the LTN training process. We evaluate our method on three real-world datasets
with binary as well as score-based predictions. We find that our method is able to take
accurate decisions with minimal infractions in terms of counterfactual fairness, especially
when subgroup fairness is considered. The main contributions of this work are the follow-
ing. First, we push the state-of-the-art in neurosymbolic fairness approaches by showing
how to integrate counterfactual fairness and subgroup counterfactual fairness into LTN.
Secondly, we introduce a novel methodology to automatically extract fairness constraints
from counterfactual explanations.

2. Related Work

Counterfactual Fairness. According to counterfactual fairness, a classifier treats indi-
viduals fairly if they would have received the same outcome, had their sensitive attribute
been different. The computation of such a counterfactual outcome requires knowledge of
the structural causal model1 M underlying the data-generating process. Knowing M, the
computation of the counterfactual outcome corresponds to the intervention ŶS←s′ (Pearl
and Mackenzie, 2018), which denotes the value of the predicted outcome Ŷ – as determined
by the structural equations of M – once sensitive feature S has been set to s′. The original
formalisation by Kusner et al. (2017) is given in probabilistic terms as the requirement that
the probability distribution of the outcomes is the same in the actual world, where S = s,
and in the counterfactual world, where S = s′. This must hold for any individual i.e., under
any assignment of sensitive feature S and non-sensitive features A in the actual world:

P (ŶS←s = y|S = s,A = a) = P (ŶS←s′ = y|S = s,A = a) ∀y ∈ Ŷ , a ∈ A, s, s′ ∈ S (1)

Among the approaches to counterfactual fairness, the majority of the work proposes to
enforce it by generating counterfactual data, and then use this data to enhance factual
training data to input into a machine learning training pipeline (Javaloy et al., 2023; Zuo
et al., 2023; Louizos et al., 2017; Kim et al., 2021; Lin et al., 2024; Xu et al., 2019; Kocaoglu
et al., 2018; Yang et al., 2021). The main focus throughout these approaches lies on the

1. A structural causal model M is defined as the tuple ⟨U, V, F ⟩, where U is the set of exogenous variables
whose values are determined by factors outside the model and are, therefore, taken “as given”; V is the
set of endogenous variables, whose values are ultimately determined by the exogenous variables; F is the
set of structural equations that determine the value of each endogenous variable, as a function of other
endogenous and exogenous ones. The predicted outcome of the ML model Ŷ is an endogenous variable.
Let us denote the set of non-sensitive features as A = (V ∪ U) \ {S, Ŷ }.
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counterfactual generation process leaving aside modifications on the final predictor itself.
Differently, Grari et al. (2023) claim that additionally integrating counterfactual fairness
objectives into the loss function of the machine learning pipeline contributes to counter-
factually fairer predictions. Our proposal builds on the latter suggestion and develops the
idea of a neurosymbolic approach in which the requirements of counterfactual fairness are
expressed logically and injected at training time.
Logic Tensor Networks. The LTN framework integrates a fully differentiable first-order
logic L with a fuzzy semantics. Its signature contains a set of constants C, function symbols
F , variables X , and predicate symbols P. Symbols are interpreted by their grounding G
onto real numbers. Every object denoted by a constant, variable, or term is grounded onto a
tensor of real number; function symbols are grounded as n-ary functions that map n vectors
of real numbers to one vector of real numbers; predicates are grounded as functions that
map onto the interval [0, 1] representing their degree of truth. Connectives are interpreted
according to fuzzy logic semantics, while the universal quantification is defined as the gen-
eralised p-mean (Badreddine et al., 2022; Wagner and d’Avila Garcez, 2021).
Fairness Through Neurosymbolic Methods. The paper by Wagner and d’Avila Garcez
(2021) has recently inaugurated a line of research that combines algorithmic fairness with
neurosymbolic aspects. Here, the authors propose a general method for instilling fairness
constraints into deep network classifiers. They apply the LTN framework and inject these
fairness constraints as logically expressed axioms. Then, the learning process feeds back
until these are satisfied. Their work focuses on the group fairness metrics of demographic
parity and disparate impact for which the reported experiments reveal that fairness with
respect to these metrics is achieved without sacrificing accuracy. Furthermore, it is experi-
mentally shown by Greco et al. (2023) that the effectiveness of LTN for securing fairness is
highly dependent on the semantic interpretations chosen, and that the optimal combination
of them yields results in line with previous non-neurosymbolic approaches to group fairness.
Counterfactual Explanations. One active line of research in fair machine learning ex-
plores the possibility of using XAI methods to discover and even impose fairness (Deck
et al., 2024). In the pipeline by Wagner and d’Avila Garcez (2021), the SHAP explainabil-
ity method (Lundberg and Lee, 2017) is used, but plays no active role, as it is only employed
to isolate problematic imbalances and subsequently check the efficacy of their fairness con-
straints in their mitigation. In contrast, in our pipeline we can exploit counterfactual
explanationsfor the automatic generation and injection of ad hoc fairness constraints into
the network. The counterfactual explanation of a negatively predicted point is defined as
the (set of) nearest feature combination(s) obtaining a favourable prediction. Our method
is inspired by the one that Goethals et al. (2024) have introduced to detect significant dif-
ferences in the distribution of counterfactual explanations between sensitive groups. As an
example, they show that in the Adult dataset women are more frequently returned marital-
status as a counterfactual explanation, in comparison to men. The feature marital-status is
not often considered sensitive (like gender), but still it is generally thought of as immutable,
i.e., a feature that individuals cannot or do not want to act upon. Since it is problematic
to suggest that an individual should change immutable features of this type to obtain a
positive outcome, we maintain that counterfactual explanations involving immutable fea-
tures are undesirable. For this reason, in Section 3.3, we develop a method to smooth out
possible imbalances in undesirable counterfactual explanations between sensitive groups.
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Figure 1: Overview of our pipeline for binary predictions. Here, S denotes the set of sensi-
tive attributes, Fi a feature, T the dataset and D the prediction model.

3. Method

The goal of our pipeline is to enforce counterfactual fairness, while preserving accuracy of
predictions, and additionally disincentivising undesirable counterfactual explanations that
suggest to intervene on immutable features to achieve a favourable outcome. Specifically,
we define certain data columns as immutable if they are either sensitive or particularly chal-
lenging for individuals to act upon. We give a mapping of feature columns into immutable,
sensitive and actionable in Appendix A. We attain these three goals by integrating adequate
axioms into the training process of the LTN framework.

An overview of the pipeline for datasets with binary outcomes can be found in Figure 1.
As a first pre-processing step, we approximate counterfactual examples for all data points
x in the data T . Here, any counterfactual generation method can be applied. Secondly,
we introduce axioms to ensure accuracy, followed by the axioms enforcing counterfactual
fairness. Finally, we add axioms from our counterfactual knowledge extraction method,
which disincentivise counterfactual explanations intervening on an immutable feature. We
then train a model, which can post-hoc be queried for imbalances between sensitive sub-
groups. The result can be fed back into the training pipeline by adding additional axioms
and retraining our model until model satisfiability is reached. Our pipeline is capable to
handle, with different sets of axioms, both binary predictions and score-based ones.

3.1. Accuracy Axioms

The first axioms we add to the training pipeline ensure the accuracy of the model predictions.
Here, for binary predictions, we adapt the axioms for predictive performance by Wagner
and d’Avila Garcez (2021). Let D denote our classifier, T our dataset and let x ∈ T hold.
Furthermore, let T + be the set of data points with a positive outcome as ground truth
and T − the data points with a negative outcome as ground truth. Then, we can state the
following axioms:

∀x ∈ T + : D(x) (A1)

∀x ∈ T − : ¬D(x) (A2)

For a score based prediction, our axioms have to take into account that predictions and
ground truth are close to each other. We therefore define a predicate for the equality
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Eq(ŷ, y) = 1/(1 + 0.5
∑

j(ŷj − yj)
2), where ŷ denotes the predicted score of the data points

x ∈ T . With y as ground truth score, we then have the axiom optimizing the predictive
performance for score based settings:

∀x ∈ T : Eq(D(x), y) (A3)

3.2. Counterfactual Fairness Axioms

By adding the axioms, we want that a data point and its counterfactual with respect to
the sensitive attribute S receive the same outcome. Let x′ ∈ cf(x, S) denote the set of
generated counterfactuals of x with respect to the sensitive feature S. Intuitively, we have
that for counterfactual fairness

∀x ∈ T , ∀x′ ∈ cf(x, S) : D(x) ↔ D(x′) (A4)

should hold. Adding Axiom A4 will guarantee us an overall counterfactually fairer model
as it reformulates the original definition of counterfactual fairness expressed in (1), as a
first-order logic constraint. Note that, as before, we need to modify Axiom A4 for score-
based prediction by reformulating D(x) ↔ D(x′) to Eq(D(x), D(x′)) (as defined above)
to check for closeness of predicted scores. This holds for all further axioms. We now go
one step further, showing how to integrate counterfactual fairness axioms for subgroups
(or “subgroup counterfactual fairness”). The rationale here is that Axiom A4 does not
capture whether the model is less fair to a sensitive subgroup in the dataset than to another
subgroup. We therefore refine our axioms with respect to subgroups C1, . . . , Cn as follows:

∀x ∈ TC1 , ∀x′ ∈ cf(x, S) : D(x) ↔ D(x′) (A41)

. . .

∀x ∈ TCn , ∀x′ ∈ cf(x, S) : D(x) ↔ D(x′) (A4n)

In a simple setting, the data could be divided into subgroups with different sensitive values.
Yet, also more refined subgroups are supported, i.e. further partitioning the sensitive groups
(e.g., females and males) into subgroups based on other features (e.g., age). These subgroups
can be designed to partition the entire dataset (for instance, “young females”, “elderly
females”, “young males”, and “elderly males”), or to isolate a specific subset of interest
within the sensitive group, for which we want to impose the fairness constraint. This is
especially interesting in real-world scenarios where counterfactual fairness might not be
relevant for all subgroups of the sensitive feature, but only for some of them. For instance,
a financial institute might want to evaluate the counterfactual fairness w.r.t. gender of a
loan that can be granted to young people only, or certain professionals only (e.g., teachers).
In this case, we would apply axiom A4n for ∀x ∈ Tyoung or ∀x ∈ Tteachers. This setup makes
our approach adaptable to many applications in which subgroup counterfactual fairness is
to be attained.

3.3. Counterfactual Knowledge Extraction Axioms

We want our pipeline to be able to detect an imbalance in the frequency of undesirable
counterfactual explanations between sensitive groups and automatically generate ad hoc
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axioms to mitigate such an imbalance. To this end, we generate counterfactual explanations
of negatively predicted data points.2 We then compare the frequencies of counterfactual
explanations across groups by aggregating the data points on the basis of the sensitive
attribute. Thus, we obtain the difference of frequencies for undesirable explanations. This
score provides an analyst with a way to extract valuable information on which specific
counterfactual explanations are not desirable, and for which sensitive class. Let us denote
these explanations by (s′, F1), . . . , (s

′, Fm) and TS=s′ the dataset for which the sensitive
attribute is s′. We want for a data point x that its counterfactual explanations x′ ∈ cf(x, Fi)
with respect to feature Fi, receives the same outcome as x, indicating that feature Fi is not
relevant to the outcome of the prediction. This can be modelled by the following axioms:

∀x ∈ TS=s′ , x
′ ∈ cf(x,F1) : D(x) ↔ D(x′) (A51)

. . .

∀x ∈ TS=s′ , x
′ ∈ cf(x,Fm) : D(x) ↔ D(x′) (A5m)

While for counterfactual fairness axioms we add all axioms at the same time in the training
pipeline, these axioms are added iteratively for better model surveillance and oversee their
individual influence to counterfactual fairness. Furthermore, a human-in-the-loop may be
integrated in this part of the pipeline to assess which constraints are desirable to be inte-
grated as axioms.

4. Experiments

We conducted experiments to showcase that integrating accuracy, CF and axioms from
counterfactual knowledge extraction is beneficial for training counterfactually fairer mod-
els.3 Specifically, we address the following research questions:

(Q1) How does our method improve overall and subgroup counterfactual fairness?
(Q2) How does our method compare to other approaches in terms of fairness and accuracy?
(Q3) Can counterfactual knowledge extraction be exploited to learn effective axioms?

General Setup. We conduct experiments on the Adult, COMPAS, COMPAS(age),
and Lawschool datasets. Dataset details can be found in Appendix A. Our function for
approximating counterfactual examples x′ ∈ cf(x, F ) is implemented via causal normalizing
flows (Javaloy et al., 2023) (for details, see Appendix B). Yet, we stress that our method does
not train to generate counterfactual examples but only requires them as input, and may be
employed in conjunction with any counterfactual generation methodology. These generation
methods can be applied in a pre-processing step and the generated counterfactuals can then
serve as input into our pipeline. As predicate for prediction in LTN, we train a multi-layer
perceptron (MLP) with two layers of 100 and 50 neurons trained with the Adam optimizer
with learning rate 0.1. We report averaged results over a 5-fold cross-validation. For LTN,
we use Reichenbach implication and p = 1 as universal quantifier’s exponent (Badreddine

2. Limiting ourselves to those interventions on one feature only, which result in a change of the original
prediction. Our interventions set the feature to the most frequent (max 10) values that are at least
present in 1% of the training set. For continuous features, we take the percentiles.

3. Our code can be found at https://github.com/xheilmann/CounterfactualFair_LTN
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Figure 2: CF-MSE for the Adult dataset in three different axiom settings for each subgroup
in (gender, race). Male corresponds to m, female to f, and asian-pac-islander,
american-indian-eskimo are abbreviated with api and aie, respectively.

et al., 2022). In this section, we evaluate our method for equally weighted axioms. We
report our results with imbalanced weight settings in Appendix D.4.

4.1. Q1: Fairness and subgroup axioms improve counterfactual fairness

Setup. To show the effectiveness of our method, we evaluate three different axiom set-
tings. As a baseline, we only apply the accuracy axioms (Equation A1-A2 or A3) to our
pipeline (acc axioms). Next, we integrate the CF axiom (Equation A4) in addition to the
accuracy axioms (acc+CF axioms). Lastly, we evaluate on the combination of subgroup
axioms (Equation A41-A4n) and accuracy axioms (acc+CF sg axioms). All settings em-
ploying fairness axioms, pre-train an LTN for 1500 epochs on the accuracy axioms, then
add the CF axioms. We measure the degree of fairness in a model’s decision by comput-
ing the mean squared error (MSE) between the predictions made for factual data points
and their counterfactuals: 1

n

∑
x∈T ,x′∈cf(x,S) |D(x) − D(x′)|2, which we will call CF-MSE

for clarity (Grari et al., 2023). Lower values of CF-MSE indicate a counterfactually fairer
model.
Results. Results for Adult are displayed in Figure 2. There, one can see that applying
the CF axioms strongly increases fairness for the majority of subgroups. The greatest im-
provement in CF-MSE can thereby be seen for the largest subgroup, namely white males,
whereas for the female subgroups fairness only improves slightly and even gets worse for
females in the “other” ethnic subgroup. However, integration of the subgroup axioms into
the training objective mostly prevents this phenomenon. Overall, CF improves for all sub-
groups upon the accuracy-only baseline; for all subgroups but white males, the CF-MSE
is again improved by adding subgroup CF axioms. The same holds for the COMPAS
dataset. In the top row plots of Figure 3, we show that CF axioms as well as subgroup CF
axioms improve CF-MSE over all subgroups. We give complete numerical results for our
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Table 1: Comparison of our pipeline (three different axiom settings) with current baselines
evaluated on CNF approximated counterfactuals in terms of accuracy, CF-MSE
and worst subgroup CF-MSE (sg) as average of 5 runs. Row-wise best results are
in bold.

LTN (our pipeline)
dataset metric acc acc+CF acc+ CF sg CNF GAN DCEVAE

Adult accuracy ↑ 0.782±0.006 0.758±0.01 0.812±0.001 0.825±0.001 0.777±0.005 0.831±0.002
CF-MSE ↓ 0.160±0.006 0.065±0.002 0.055±0.001 0.074±0.009 0.216±0.011 0.109±0.009

CF-MSE (sg)↓ 0.210±0.004 0.066±0.002 0.084±0.044 0.113±0.000 0.263±0.018 0.291±0.013
COMPAS accuracy↑ 0.671±0.010 0.675±0.003 0.651±0.013 0.661±0.003 0.685±0.002 0.665±0.009

CF-MSE↓ 0.156±0.037 0.047±0.004 0.045±0.006 0.072±0.010 0.107±0.012 0.188±0.051
CF-MSE(sg)↓ 0.208±0.094 0.045±0.002 0.043±0.092 0.086±0.010 0.110±0.012 0.194±0.061

COMPAS accuracy↑ 0.658±0.013 0.654±0.016 0.658±0.012 0.667±0.002 0.675±0.001 0.651±0.008
(age) CF-MSE↓ 0.254±0.032 0.079±0.016 0.075±0.016 0.094±0.003 0.171±0.010 0.244±0.044

CF-MSE(sg)↓ 0.428±0.048 0.131±0.021 0.142±0.057 0.181±0.006 0.204±0.013 0.342±0.074
Lawschool MSE↓ 0.767±0.013 0.782±0.002 0.796±0.013 0.771±0.008 0.906±0.000 0.754±0.024

CF-MSE↓ 0.096±0.028 0.003±0.000 0.001±0.000 0.012±0.002 0.227±0.013 0.210±0.042
CF-MSE(sg)↓ 0.358±0.021 0.011±0.002 0.001±0.002 0.014±0.003 0.272±0.025 0.251±0.046

LTN pipeline on all considered datasets in Table 1. Therein, we include average CF-MSE
and worst-subgroup CF-MSE for all datasets and methods considered. The clear trend is
that the average CF-MSE across groups improves when applying subgroup fairness axioms
for all datasets. In COMPAS (age) and Adult, we even observe small increases in terms of
accuracy. For Lawschool, subgroup CF axioms efficiently reduce the worst subgroup CF-
MSE to 0.001 (also see Appendix D.1). We conclude, in terms of Q1, that our methodology
has a positive impact in terms of fairness, esp. when subgroups are actively considered.

4.2. Q2: Strong increase in fairness

Setup. We choose the following approaches as baselines: DCEVAE (Kim et al., 2021),
causal normalizing flows (CNF) (Javaloy et al., 2023) and a GAN-based method (Grari
et al., 2023) (for implementation details, see Appendix C). For DCEVAE and CNF, we
trained an MLP with the same hyper-parameters as our pipeline on the combined set of
generated counterfactual and factual data points. Note that these methodologies, differently
from ours, generate counterfactual examples themselves. This also means that they are
not agnostic to the specific generated data points. To keep the comparison as fair as
possible, we test all methodologies on the same counterfactual data, which we generate using
a causal normalising flow model (Javaloy et al., 2023). Results on differently generated
counterfactuals are given in Appendix D.3. We then report CF-MSE, accuracy (Adult,
COMPAS), MSE (Lawschool) as well as worst subgroup CF-MSE for all methodologies
and datasets. Here, worst subgroup CF-MSE denotes the worst CF-MSE value for the
subgroups we evaluate our method on.

Results. We provide a complete comparison in Table 1. Regarding the comparison with
CNF, results show that our pipeline, which adds counterfactual fairness constraints during
training, significantly improves CF compared to only pre-processing for fairness as done
by CNF. However, except for COMPAS, this results in a decrease in accuracy compared
to CNF. For the GAN-based method, we can see improved accuracy for COMPAS but
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Figure 3: Top: Development of CF-MSE for our pipeline for 5 different axioms settings
for both COMPAS datasets. Bottom: Ratio of undesirable explanations for each
sensitive group before and after applying a CKE axiom for (black, age).

worse overall CF as well as worse subgroup CF in comparison to our method. Similarly,
DCEVAE has strong results in terms of accuracy and MSE, but struggles in achieving
counterfactually fair results. Here, our results differ significantly from the ones reported
by the original authors (Kim et al., 2021). Our empirical, if anecdotal, experience with
DCEVAE is that it struggles to converge to an accurate result, and even that comes at the
expense of fairness. We elaborate on these reproducibility challenges in Appendix C.

4.3. Q3: Counterfactual knowledge extraction learns effective fairness axioms

Setup. Our pipeline, as described in Section 3.3, integrates counterfactual knowledge ex-
traction (CKE henceforth). To summarise, CKE detects imbalances across sensitive groups
in the frequency of undesirable counterfactual explanations, learning new training axioms
to reduce them. To generate the counterfactual of data point x with respect to a generic
immutable feature F (denoted by cf(x, F )) we use the method of causal normalizing flows
described in Appendix B. We define imbalance as a difference in frequencies of at least 0.1
for COMPAS, and 0.01 for Adult and Lawschool.
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Results. We applied the extracted axioms both on top of models trained with the CF axiom
(acc+CF+CKE) and with subgroup CF axioms (acc+CF sg+CKE). Results forCOMPAS
are reported in Figure 3 as well as in Table 2 of Appendix D.2 . Here, the CKE deduced
a strong imbalance for age for the black subgroups. After enforcing that age be irrelevant
for decisions made in the black group, the imbalance drops below the threshold. However,
deincentivising age as counterfactual explanation results in the imbalance widening for
other attributes – especially priors count (Figures 3(c) and 3(d)). In the same figure,
we observe that CF increases for both ethnicity subgroups even though axioms are only
added for the black subgroup. A further increase of CF is achieved in the combination of
subgroup CF axioms and the CKE axiom (Figures 3(a) and 3(b)). For Lawschool, as the
counterfactual knowledge extraction works on binary predictions, we map the best 40% of
all scores to a positive outcome. As a result, for Lawschool for one out of five runs race was
detected as undesirable explanation for the female subgroup when CKE was evaluated after
only training with the accuracy axioms. Yet, when CF axioms were added race was not
detected as undesirable explanation anymore. Therefore, we conclude that CF axioms in this
setting already eliminate undesirable explanations efficiently enough. For Adult, we refer
to Table 3 in Appendix D.2. Therein, race, marital-status, native-country were interestingly
detected as undesirable explanations for males. Here, for each detection a CKE axiom was
added subsequently after 500 additional training epochs (ordered from highest imbalance
to smallest imbalance), after which we each checked the axiom’s impact on accuracy, CF-
MSE and worst subgroup CF-MSE. Due to the axiom ordering by imbalance level, we have
different sequences in which axioms are added for each run. Overall we found that accuracy
stays stable throughout the CKE process. However, while CF is improved, subgroup CF
gets worse with each additional CKE axiom after the first. It is left for further research how
to establish scalability of the method beyond a single CKE axiom. Our takeaway on the
CKE technique (Q3) is that it is indeed able to learn beneficial axioms that reduce specific
unfairness patterns for certain subgroups and feature combinations. It is also possible to
employ a similar principle to extract counterfactual examples for algorithmic recourse. We
present a preliminary investigation of this technique in Appendix D.5.

5. Conclusion and Future Work

To conclude, we have shown how to integrate the individual-based notion of counterfactual
fairness into an LTN training pipeline. We proposed axioms for this integration and refined
the axioms to subgroups to achieve higher counterfactual fairness in these. Furthermore,
we integrated counterfactual knowledge extraction into our pipeline with subsequent axiom
extraction to discourage undesirable counterfactual explanations. Our pipeline improves
counterfactual fairness and decreases the discrepancy between subgroups w.r.t. the unfair
baseline. This paper and the previous work we relate to suggest that the neurosymbolic
approach to fairness is promising. For one thing, it allows us to explicitly codify fairness ax-
ioms, but also potentially balance different axioms depending on the trade-offs/constraints
for the application at hand. On the other hand, various methods are currently applied to
check that the prediction model actually satisfies these constraints after training. Thus, we
expect that there will be more in this line of work in the future, which makes the need for
a robust system all the more pertinent.
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Appendix A. Datasets

We conduct experiments on the Adult dataset (Becker and Kohavi, 1996), with gender as
our sensitive attribute. As subgroups, we take each attribute combination of (gender, race).
As immutable features we identifymarital-status, relationship, race and native-country. The
test set contains around 10K data points and their corresponding counterfactuals.

Furthermore, we apply our method on the COMPAS dataset (Angwin et al., 2016) with
race as the sensitive attribute. Here, we evaluate on and add subgroup fairness axioms
for race and each attribute combination of (race, age). For the latter, we group the age
attribute into four categories, namely, under 30, 31-45, 46-60, and older than 60 years
(COMPAS(age) in the following). As immutable feature we have age. In our test set we
have on average 1230 data points and their counterfactuals.

As a third dataset, we employ the Lawschool dataset (Wightman, 1998) with gender as
the sensitive attribute. We want to stress that Kusner et al. (2017) show that this dataset is
counterfactually fair with respect to gender. Here, we evaluate how adding our (subgroup)
counterfactual fairness axioms improve subgroup fairness for all combinations of (gender,
race). We have race as immutable feature. We evaluate on a test set containing 4359 data
points.

Appendix B. Estimation of Counterfactuals

To estimate the counterfactuals of our (factual) observations, we applied the methods of
Causal Normalizing Flows (CNF) (Javaloy et al., 2023) due to their relative simplicity of
implementation with respect to the other two methods (GAN and DCEVAE, see Appendix
C). CNF are causal generative models that leverage on the deep-learning method of nor-
malizing flows to accurately and efficiently approximate the structural causal model M –
as defined in Section 2 – of a data-generating process. The approximation is carried out on
the basis of (factual) observations and the causal graph induced by M. The causal graph
induced by M is a directed acyclic graph whose nodes are labelled by the endogenous and
exogenous variables of M, and where each directed edge from node a to node b indicates
that the latter depends on the former. The exogenous variables correspond to the roots of
the graph. Unlike M, the causal graph induced by it is in many cases obtainable through
domain knowledge, as it is a description of the causal dependencies of M, without specify-
ing its structural equations. We extended the original code4 to generate the counterfactuals
with respect to all the attributes, rather than just for the sensitive one. This is necessary
for the generation of the counterfactual knowledge extraction (CKE) axioms described in
Section 3.3. For the interventions, we set the feature value to the most frequent values that
are at least present in 1% of the dataset, up to a maximum of 10 values. For continuous
features, we took their percentiles.

For generating counterfactuals, we trained the CNF on the partial5 causal graphs by
Zhang et al. (2016) for Adult, by Russell et al. (2017) for COMPAS, and by Kusner et al.
(2017) for Lawschool. For COMPAS and Lawschool we provide the partial causal graphs

4. Available at https://github.com/psanch21/causal-flows
5. Following Javaloy et al. (2023), we do not model the causal dependencies between the predictors and

the target variable.
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(a) COMPAS dataset (b) Lawschool dataset

Figure 4: Partial causal graphs for the COMPAS (a) and Lawschool (b) datasets. The
arrows connecting nodes and rectangles indicate that the node is connected to
every node inside the rectangle. White nodes denote immutable sensitive features,
grey nodes immutable non-sensitive features, and blue nodes actionable features.

in Figure 4. For training we kept the same hyperparameters as Javaloy et al. (2023), for all
three datasets: 1000 epochs, batch size of 256, and inner dimension of [32, 32, 32].

Appendix C. Baselines

In this section, we provide more information on each of the three baselines our pipeline
is compared to: GAN-based method, DCEVAE and CNF. Also, we report hyperparam-
eter settings and adaptions made for the comparison. All the following methodologies,
differently from ours, generate counterfactual examples themselves. Our approach, how-
ever, is agnostic to the underlying counterfactual generation technique and may be easily
integrated in existing pipelines that generate and extract counterfactual examples. This
presents a challenge in terms of comparison, as these methods will tend to perform better
on the set of counterfactuals that they themselves generated compared to other methodolo-
gies. Hence, we provide an evaluation of each baseline on a test set of the counterfactuals
(approximated by CNF) we input into our pipeline (results in the main paper) as well as
a study on how our method performs when we input the counterfactuals generated by the
GAN method (Appendix D.3). Furthermore, for DCEVAE and CNF, we train an MLP
with the same hyperparameters as the underlying MLP in our method on the complete set
of counterfactual and original data points. This is not to be confused with other proposed
settings in literature (Javaloy et al., 2023), where predictors are sometimes trained in an
unaware setting, which means that sensitive attributes are left out during training or only
trained on non-descendent variables of the sensitive attribute.

GAN-based method. Grari et al. (2023) introduce a Generative Adversarial Model
(GAN) approach for counterfactual inference and learning a counterfactually fair predictive
model. For counterfactual inference, they propose a neural network encoder which generates
a counterfactual from input X (original data point), Y and sensitive attribute S and a
decoder which tries to reconstruct original Y and X from the generated data point and S.
The adversarial network tries to infer S in this setting. For the counterfactual predictive
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Figure 5: CF-MSE for Lawschool in three different axiom settings for each subgroup in
(gender, race).

model, they add an additional term for penalizing counterfactual unfairness to their loss
function and extend this method to continuous features.

We ran the available code6 for 100 epochs for counterfactual inference and 1000 epochs
for training a counterfactual fair predictor with learning rate 0.0001. For batch size we
evaluated [256, 512, 2048]. Results are shown for 512 for Lawschool and COMPAS and 2048
for Adult. All other hyperparamters were set as given in the code.

DCEVAE. The Disentangled Causal Effect Variational AutoEncoder (DCEVAE) was
proposed by Kim et al. (2021) as an extension to existing methodologies in fair variational
optimisation. The main improvement put forward by the authors is the development of
a ELBO-like objective for a causal graph in which variables that descend from sensitive
attributes are kept separate from other covariates. The model then seeks to disentangle
the VAE representations to separate the effects of the two sets of features. Among other
applications, the authors test the counterfactual effect of applying their method to the Adult
dataset.

In terms of integration into our experimental analysis, we started from the public code
release by Kim et al. (2021) available at https://github.com/aailabkaist/DCEVAE. How-
ever, we noticed that the main PyTorch backprop code consistently gave a tensor version

6. From https://github.com/fairml-research/Counterfactual_Fairness
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Table 2: Comparison of our proposed pipeline in five different axiom settings in terms of
accuracy, CF-MSE and worst subgroup CF-MSE (sg) as average of 5 runs for both
COMPAS datasets. CKE adds an axiom for (black, age).

dataset metric acc acc+CF acc+CF sg acc+CF+CKE acc+CF sg+CKE

COMPAS accuracy↑ 0.671±0.010 0.675±0.003 0.651±0.013 0.645±0.008 0.633±0.022
CF-MSE ↓ 0.156±0.037 0.047±0.004 0.045±0.006 0.032±0.001 0.025±0.006

CF-MSE(sg) ↓ 0.208±0.094 0.045±0.002 0.043±0.092 0.033±0.005 0.031±0.031
COMPAS accuracy ↑ 0.658±0.013 0.654±0.016 0.658±0.012 0.636±0.017 0.649±0.009

(age) CF-MSE ↓ 0.254±0.032 0.079±0.016 0.075±0.016 0.077±0.027 0.047±0.016
CF-MSE(sg)↓ 0.428±0.048 0.131±0.021 0.142±0.057 0.118±0.038 0.088±0.088

mismatch error. Thus, we modified the backprop loop by slightly changing the parameter
update logic. We note that other authors that sought to reproduce the results from Kim
et al. (2021) relied on the same bugfix.7

For hyperparameters we tested [100, 250, 500] as training epochs and [0.001, 0.0001] as
learning rate as well as [512, 1024] as batch size for all three datasets. We reported best
results (100 epochs, 0.0001 learning rate, 1024 batch size) averaged over five runs.

CNF. We provide details on how we applied Causal Normalizing Flows (Javaloy et al.,
2023) to approximate counterfactuals in Appendix B. Provided these counterfactuals, we
train an MLP with the same parameters as for our methology on the combined dataset of
counterfactuals and original data points. In terms of comparison, this baseline is the closest
to our pipeline, as the same counterfactual generation method is applied. Yet, training is
done differently as our method integrates counterfactual fairness constraints directly into
the training pipeline and does not only take the generated counterfactual as input.

Appendix D. Additional Experimental Results

We include here some additional experiments for Section 4. Furthermore we provide results
to show that our method is agnostic to the input counterfactuals, how different weight
settings influence the outcome and what additional knowledge extraction is possible for our
method. We ran all experiments on a computer with specification Ubuntu 22.04.1 LTS,
64 GB RAM and Ryzen Threadripper 1920X 12-Core Processor as CPU. Running times
ranged from 1 minute to 1.5 hours for the largest dataset.

D.1. Additional Results Section 4.1

For Lawschool, in Figure 5 we show how CF-MSE changes for the balanced weight set-
ting. As already mentioned in Section 4.1, we can see a huge improvement of CF for this
dataset when adding CF axioms and an even stronger improvement when adding CF sub-
group axioms. Therefore, even though when regarding gender as sensitive subgroup for
Lawschool, we can provide counterfactual fairness for the sensitive intersectional subgroups
(gender, race).

7. For details, we refer to the train.py script on both the original repository, given above, and
the following repository https://github.com/osu-srml/CF_Representation_Learning/blob/master/

DCEVAE/train.py
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Table 3: Impact for Adult of continuously adding CKE axioms on accuracy, CF-MSE and
worst subgroup CF-MSE (sg). The CKE axioms are iteratively added in the order
in which they appear in the table from left to right. Results are for one run, as
the order of axioms varies across runs.

metric LTN(acc) LTN(acc+CF) LTN (acc+CF+CKE)
(race,male) (mar.-status,male) (nat.-country,male)

accuracy ↑ 0.778 0.755 0.757 0.755 0.755
CF-MSE ↓ 0.183 0.063 0.052 0.058 0.050

CF-MSE (sg) ↓ 0.224 0.073 0.070 0.100 0.139

D.2. Additional Results for Section 4.3

In Table 2, we see the aggregated results for Figure 3. CF-MSE is greatly reduced overall but
also for subgroups when adding CKE axioms to disincentivise age for the black subgroup.
Yet, we see a trade-off between improved CF-MSE and a loss in accuracy when applying
additional CKE axioms.

In Table 3 we show for Adult how subsequently adding the detected CFK axioms in-
fluences the results. The table shows that the accuracy stays stable throughout the entire
CKE process. However, while CF is improved, subgroup CF gets worse with each additional
CFK axiom after the first. This trend is also visible in the other runs. It is left for further
research if only applying single CKE axioms or a specific addition order levels out these
trade-offs.

D.3. Applying our method to other counterfactuals

As stressed before, unlike ours, all methodologies we compare to generate counterfactual
examples themselves. Our method relies only on a set of counterfactuals given as input, so
that it is agnostic to the underlying counterfactual generation technique. However, during
comparison of the different methods we faced the challenge that just a comparison of meth-
ods without taking the generated counterfactuals into account is not appropriate for our
method. We therefore firstly compared each baseline on a common test set of the counter-
factuals (approximated by CNF) we input into our pipeline. Secondly, we took the coun-
terfactuals generated by the GAN-based method as input into our method and compared it
to the GAN pipeline. For this comparison, we had to modify the GAN-based method, as in
the original version CF-MSE and accuracy is calculated on different data encodings which
was not possible as input into our pipeline. In Table 4 the results show better values for
CF-MSE when training with our method. For COMPAS and COMPAS(age) this results
in a decreased accuracy, compared to the GAN-based method. However, for the Adult and
Lawschool dataset accuracy and MSE is improved upon the GAN method. Altogether,
these results show that our method is applicable to counterfactuals generated with different
methods than with CNF. Also, for these counterfactuals or method shows improved results,
specifically for CF-MSE, when compared to the original generation method.
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Table 4: Comparison of our proposed pipeline (with two different axiom settings) with the
GAN baseline evaluated on the counterfactuals the GANmethod produces in terms
of accuracy, CF-MSE and worst subgroup CF-MSE (sg) as average of 5 runs. Best
results are in bold.

dataset metric LTN(acc) LTN(acc+CF) GAN

Adult accuracy ↑ 0.771 ± 0.007 0.775 ± 0.005 0.758 ± 0.006
CF-MSE ↓ 0.231 ± 0.007 0.200 ± 0.007 0.208 ± 0.025

COMPAS accuracy ↑ 0.672 ± 0.015 0.658 ± 0.016 0.680 ± 0.001
CF-MSE ↓ 0.259± 0.016 0.115 ± 0.011 0.177 ± 0.015

COMPAS(age) accuracy ↑ 0.653 ± 0.013 0.654 ± 0.007 0.668 ± 0.006
CF-MSE ↓ 0.321 ± 0.011 0.210 ± 0.018 0.249 ± 0.042

Lawschool MSE ↓ 0.235 ± 0.002 0.234 ± 0.002 0.906 ± 0.001
CF-MSE ↓ 0.019 ± 0.015 0.019 ± 0.015 0.256 ± 0.028

Table 5: Comparison of our proposed pipeline with two different weight combinations for
acc+CF axioms as well as for acc+CF sg.

dataset metric LTN (acc+CF) LTN (acc+CF sg)
(1,1) (2,1) (1,1) (2,1)

Adult accuracy ↑ 0.758±0.01 0.772±0.006 0.812±0.001 0.769±0.004
CF-MSE ↓ 0.065±0.002 0.078±0.002 0.055±0.001 0.066±0.001

CF-MSE (sg) ↓ 0.066±0.002 0.094±0.054 0.084±0.044 0.084±0.004

COMPAS accuracy ↑ 0.675±0.003 0.674±0.013 0.651±0.013 0.683±0.009
CF-MSE ↓ 0.047±0.004 0.054±0.007 0.045±0.006 0.052±0.002

CF-MSE (sg) ↓ 0.045±0.002 0.057±0.012 0.043±0.092 0.049±0.078

COMPAS(age) accuracy ↑ 0.654±0.016 0.653±0.011 0.658±0.012 0.655±0.018
CF-MSE↓ 0.079±0.016 0.114±0.022 0.075±0.016 0.070±0.018

CF-MSE (sg)↓ 0.131±0.021 0.269±0.091 0.142±0.057 0.143±0.078

Lawschool MSE ↓ 0.782±0.002 0.773±0.018 0.796±0.013 0.786±0.018
CF-MSE ↓ 0.003±0.000 0.005±0.000 0.001±0.000 0.002±0.000

CF-MSE (sg) ↓ 0.011±0.002 0.011±0.001 0.001±0.002 0.002±0.000

D.4. Influence of Axiom Weights

Our pipeline supports different weights for each group of axioms (accuracy, CF, CKE). This
has direct influence on CF and accuracy as can be seen in Table 5. As a trend, accuracy
improves, if higher weights are chosen for the accuracy axioms while CF decreases. However,
this is not the case for all datasets, and we suggest here to try out different weight settings
when applying our pipeline.

D.5. Additional Knowledge Extraction

Integrating counterfactual fairness into a neurosymbolic framework poses several advan-
tages. In particular, the satisfaction level to any logical query may be straightforwardly
computed. This is of particular benefit in fairness-sensitive applications. Here we give two
concrete applications for this.
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Firstly, after training our pipeline, an individual can, for instance, run an existence query
for the question: is there a similar point in my subgroup which has a different outcome?
Concretely, for an individual data point x̂ which is in subgroup TC this query could be:

∃x ∈ TC , x ̸= x̂ : ¬D(x) = D(x̂) ∧ ||x− x̂||2 < τ (2)

Here, τ denotes the parameter for similarity and can be defined application-specific. In
Table 6, we show examples to the output of this query in terms of an exemplary data point
as well as the satisfaction level of the query for subgroups in the Adult dataset. We can
see that exemplary data points differ in the features age, education-level, marital-status,
relationship and occupation.

Secondly, the evaluation of CF can be flexibly queried for specific subgroups. This is
especially interesting in applications where CF might not be relevant for all subgroups in
the dataset as the application is specifically designed for one subgroup, e.g., giving out loans
to teachers. Here, one can run auniversally-quantified query for this subgroup and evaluate
if the model is CF with respect to the sensitive attribute. Overall, we conclude that a
fair neurosymbolic method contributes to a wide range of additional knowledge extraction
enhancing understanding of the underlying data and learning process.



A Neurosymbolic Approach to Counterfactual Fairness

Table 6: Satisfaction value (sat) and exemplary data point to the query is there a similar
point in my subgroup which has a different outcome? Here, τ is equal to 3 for
males and 5 for females.
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