
An Expansive Latent Planner for Long-horizon
Visual Offline Reinforcement Learning

Robert Gieselmann
KTH Royal Institute of Technology

Stockholm, Sweden
Email: robgie@kth.se

Florian T. Pokorny
KTH Royal Institute of Technology

Stockholm, Sweden
Email: fpokorny@kth.se

Abstract—Sampling-based motion planning algorithms are
highly effective in finding global paths in geometrically-complex
environments. However, classical approaches, such as RRT, are
difficult to scale beyond low-dimensional search spaces and
rely on privileged knowledge e.g. about collision detection and
underlying state distances. In this work, we take a step towards
the integration of sampling-based planning into the reinforcement
learning framework to solve sparse-reward control tasks from
high-dimensional inputs. Our method, called VELAP, determines
sequences of waypoints through sampling-based exploration in
a learned state embedding. Unlike other sampling-based tech-
niques, we iteratively expand a tree-based memory of visited
latent areas, which is leveraged to explore a larger portion
of the latent space for a given contingent of search iterations.
We demonstrate state-of-the-art results in learning control from
offline data in the context of vision-based manipulation under
sparse reward feedback. Our method extends the set of available
planning tools in model-based reinforcement learning to include
a latent planner that searches for global solutions paths, rather
than being bound to a fixed prediction horizon.

I. INTRODUCTION

The acquisition of complex motor skills from raw sensory
observations presents one of the main goals of robot learning.
Reinforcement learning (RL) [38] provides a generic frame-
work to obtain such decision-making policies through the
interaction with an environment. Especially model-based RL
methods [30] have recently gained attention due to benefits
in terms of sample-efficiency and robustness in long-horizon
scenarios. To address the issue of short-sighted decisions,
model-based agents are often combined with planning al-
gorithms. However, effective planning with high-dimensional
inputs, such as video data, is often challenging due to the
increased complexity of the search space and the difficulty
in generating accurate long-term predictions. Consequently, a
growing body of research has explored the utilization of rep-
resentation learning to simplify the decision-making problem
by mapping it to an abstract and lower-dimensional latent state
space [14, 15, 28, 33, 16].

The model-based RL literature has investigated various
planning methods in latent spaces, encompassing zero-order
shooting-based approaches such as the Cross-Entropy Method
(CEM) [5, 14] and Model-Predictive Path Integral (MPPI)
[41, 31, 16], first-order gradient-based optimization [36, 15],
and more recently, trajectory collocation using second-order
solvers [33]. Despite this methodological diversity, the ma-

zt

st

Ф

latent
data support

encoder

Fig. 1. We propose a sampling-based planning approach which grows a
search tree in the latent space to globally explore reward-maximizing paths
(blue:start, red:goal nodes, green: estimated values).

jority of existing tools primarily facilitate local optimization
within a fixed prediction horizon. In this paper, we argue that
long-horizon planning in learned latent state spaces can pose
significant geometric challenges, necessitating methods that
strive for global solutions. Even with guidance from value
heuristics, such as the one proposed in [16], local minima may
still impede progress, particularly when estimating the optimal
value function is difficult due to sparse reward feedback or
limited training data.

The limitations observed in existing methods raise the need
for more sophisticated planning strategies that can seam-
lessly integrate with learned state and dynamics models.
Sampling-based motion planning [23], a well-established field
in classical robotics, provides a diverse range of algorithms
for finding global paths between states in continuous and
geometrically-complex environments. However, these methods
typically require the definition of suitable distance metrics,
state samplers, and rely on other task-specific information,
such as collision checks. Recent works by [28, 19, 13] have
proposed modifications of sampling-based planners for plan-
ning in latent spaces. However, these approaches either rely
on expert data or are not directly applicable to reward-based
learning settings. It is worth noting that, for many problems,
defining objectives through rewards offers greater practicality
compared to specifying explicit goal states. For instance, in
the context of wrapping a deformable cloth around an object,
the set of successful goal states may be extensive due to the
vast underlying configuration space of deformable objects.

This paper explores the integration of sampling-based plan-
ning techniques into learned latent spaces, providing new
avenues for model-based reinforcement learning. Specifically,



we focus on the challenging scenario of offline RL [24],
which is characterized by the amplified effects of value ap-
proximation errors [12]. Offline learning has gained significant
attention due to its potential in leveraging logged trajectory
data. Moreover, it allows us to better study the performance
of planning in isolation by disentangling training and data
collection. We introduce a novel method, termed Value-guided
Expansive Latent Planning (VELAP), which combines a long-
horizon planning module with a learned state embedding
which is optimized to facilitate efficient generation and task-
specific evaluation of future predictions. Similar to [13], we
draw inspiration from sampling-based motion planners in
robotics and construct a tree-based representation that grows
by probing the continuous latent space. This search tree serves
as a memory of state coverage and guides the planning
process towards unexplored regions within the data support.
Moreover, we demonstrate that leveraging value estimates
obtained through temporal difference learning as sampling
heuristics during planning significantly accelerates the dis-
covery of suitable solution paths. To benchmark our method,
we adapt the robot manipulator control environments from
the meta-world benchmark suite [43]. Our experiments reveal
that our proposed method surpasses existing approaches by
a significant margin in terms of episode success rate. We
attribute this performance gain to VELAP’s ability to overcome
local value optima through global exploration, in contrast to
the prevalent approach of optimizing over a fixed horizons.

II. PRELIMINARIES

a) MDPs and Offline RL: A Markov decision process
(MDP) is defined by a tupleM = (S,A,P, r, γ), where S and
A are state and action spaces, P(s′|s, a) are state dynamics,
r(s, a) is a scalar reward function, and γ is a discount factor.
The goal of reinforcement learning [38] (RL) is to find a policy
π(a|s) that maximizes the expected discounted future reward
R[τ ] over all trajectories τ given an initial state distribution
p0 and induced by π, i.e., to optimize Eπ[R[τ ]]. The problem
of offline RL [24] arises when training from a fixed dataset
D consisting of trajectories generated by a behavioral policy
πβ . Due to the limited coverage of D across the state-action
space, effectively addressing the adverse consequences of poor
approximations outside the data support becomes crucial in the
development of offline RL methods [12].

b) Hindsight data relabeling: Relabeling data has
emerged as a popular technique in goal-conditioned off-policy
RL [2, 8, 25, 7, 26] for the purpose of enhancing training
efficiency. The underlying idea behind hindsight relabeling
is to transform unsuccessful trajectories into successful ones
by retrospectively modifying their goals [2]. This approach
extends to offline trajectory datasets, where relabeling can
automatically generate experiences for learning state-reaching
behaviors [6, 27]. Specifically, failed transitions can be re-
labeled by designating the subsequent state as the desired
goal and adjusting the corresponding reward accordingly. To
introduce diversity into the dataset, negative examples of
hindsight goals can be sampled from future steps within the

State encoder: ϕ : S → Z
Dynamics: h : Z ×A → Z (1)

Action model: g : Z × Rm → A
Local policy: πl : Z×Z→A Ql : Z×Z×A→R

Global policy: πg : Z→A Qg : Z×A→R

same trajectory or from alternative trajectories. A connection
between hindsight relabeling and contrastive learning was
recently discussed in [9].

III. VALUE-GUIDED EXPANSIVE LATENT TREES

In this section, we detail the elements that comprise VELAP,
our proposed offline RL planning agent.

a) Problem definition: We are interested in solving
sparse reward continuous control tasks from high-dimensional
inputs. For this purpose, we choose the example of visual
control for a state space S and action space A = Rdaction .
S = RW×H×C×N describes sequential image data where W
is the image width, H the height, C the channel dimension
and N the number of frames. Note that we employ the MDP
formulation, hence assume that states s ∈ S are informative to
predict the distribution of future states. A sparse binary reward
r : S×A→{0, 1} is designed to provide a positive value only
upon successful completion of the task. To train our model, we
are provided with an offline dataset D consisting of recorded
transitions obtained from a sub-optimal policy.

b) Components overview: To tackle the specified prob-
lem, we propose a novel model-based reinforcement learning
agent that incorporates a tree-based search, inspired by ESTs
[17], within a learned representation space. Our approach in-
volves several key components outlined in Eq. 1. The encoder
ϕ maps input states to latent encodings, while the dynamics
model h predicts future latent states based on actions, serving
as a tool for expanding the search tree during planning. A local
policy πl is trained to navigate between neighboring states in
the tree. The global policy πg determines optimal actions with
respect to the MDP task objective. Both policies are learned
using actor-critic RL algorithms. Among various actor-critic
offline RL methods available, we select TD3-BC [10] due
to its robustness and simple implementation. To improve the
predictions of Ql and measure value uncertainty, we employ an
ensemble of nens Q-heads {Ql

1, ..Q
l
nens
} similar to [1] (see App.

E). For the following, we use k to denote the k-th ensemble
member and define Qi,j

min := min{Ql
k(zi, zj , π

l(zi, zj))}nens
k=1

as the minimum and Qi,j
std := std{Ql

k(zi, zj , π
l(zi, zj))}nens

k=1

as the standard deviation of the ensemble predictions at a
particular step. Finally, we incorporate a conditional gener-
ative model g to facilitate sampling actions from the state-
conditioned action distribution.

c) Alignment of representation and planner: To compute
feasible path in Z , our state representations must favor the
approximation of long-horizon dynamics. In particular, our
model should not only predict the next state with high accuracy
but provide useful future waypoint predictions over several



time steps. At the same time, our goal is to solve the
MDP control task, hence a good representation should also
learn relevant features which ease optimization of the control
behaviors πg and πl. Existing work on model-based RL often
use surrogate metrics for model learning (e.g. mean-squared
error on dynamics or pixel reconstruction loss) which do not
enforce compliance with the actual control performance. In the
literature this misalignment between the environment model
and planner [22] has been shown to hamper the performance
of the controller. To overcome those issues, we train our state
representation encoder ϕ through joint optimization with the
latent dynamics, local and global RL policies, leading to the
overall training objective Lmodel (Eq. 2). In this regard, LQl

describes the temporal difference (TD) value loss for training
Ql, LQg the TD loss for training Qg and Lh the loss function
for the dynamics model h.

Lmodel =LQl + c0 · LQg + c1 · Lh (2)

LQl = E
D′
[(Ql(zt, z

g, at)− (rt + γQl(zt+1, z
g, πl(zt+1, z

g))))2]

(3)

LQg =E
D
[(Qg(zt, at)− (rt + γQg(zt+1, π

g(zt+1))))
2] (4)

In accordance to the standard TD3-BC training objective, we
simultaneously optimize the corresponding policies πl and πg

in Lπl and Lπg (App. F, Eq. 6). Note that this step is done by
alternating between optimizing Lmodel and policy improvement
while the encoder parameters are not optimized during the
policy update 1.

To provide data for training πl and Ql, we synthesize a set
of state-reaching experiences D′ by relabeling the transitions
in D. More specifically, we employ hindsight goal relabeling
similar to [6, 27] to sample goals zg ∈ Z and use a binary
reward to indicate success (detailed information on relabeling
strategy in App. E). For training the dynamics model, we
choose a contrastive loss objective (CPC) [32] similar to
[13]. In practice, we found this approach to work better in
maintaining accurate long-term predictions compared to a
standard mean-squared error objective.

d) Exploration strategy: We formulate our RL decision-
making task as a geometric planning problem and seek a plan-
ner that efficiently explores the latent space searching for high-
valued states. Similar to [13], we follow the concept of ESTs
[17] and iteratively expand the current set of nodes through
action sampling. The tree T =(V, E) can be seen as a growing
memory of latent nodes V ⊂ Z and transitions E ⊂ Z×Z . The
core mechanism behind our expansion strategy is summarized
in Alg. 1. We first initialize T = (V={zinit}, E=∅) where
zinit ∈ Z is the latent encoding of the current state sinit ∈ S
obtained from ϕ. For niter steps, a node zexpand is drawn
using a categorical distribution Pnode defined over V . Starting
from zexpand, the dynamics h rolls out a short nsim-step state
sequence given actions drawn from our generative model g (or
πg). Since Ql

k estimates the return for trying to reach a node

1We optimize the state representation during the critic update instead of
the policy improvement step as motivated by the empirical analysis in [42].

under sparse rewards, a temporal distance proxy is given by
logγ Q

l
k. To account for value approximation errors [12], we

will use the minimum value among the ensembles predictions
to obtain a conservative distance estimate. After every nsim-
step expansion with h, we determine if the transition from
zexp to znew is feasible by checking if Qexp,new

min is above a
threshold τ low

discard. If it lies below this threshold, we discard
znew. Secondly, we also reject it if the corresponding value
of Qexp,new

std is above a threshold τ std
discard. The purpose of this

second rejection step is filter states in which the epistemic
uncertainty, i.e. model uncertainty, is high and thereby avoid
the evaluation of high-uncertainty areas, for example outside
the support of the latent data distribution. Lastly, we also want
to determine if the newly generated node is sufficiently novel
from the existing ones T and discard it otherwise. We found
this step to be necessary to keep computation at a moderate
level by sparsifying the tree. For that, we discard znew if
max{Qi,new

min |zi ∈ V} is above a threshold τ high
discard. In other

words, we find the closest neighbor zneigh in the tree and reject
znew if there already exists a node which can transition to it
within few steps. If znew passes the previous stages, it is added
to T , i.e. V←V ∪ {znew} and E←E ∪ {zexp→new}.

Algorithm 1 Node sampling and tree expansion
1: Given: zinit, niter, nsim, τ neigh

discard, τ std
discard g, h, πg , Qg , Ql

k, πl

2: Initialize: V ← {zinit}, E ← ∅
3: for niter steps do
4: Sample node zexp from V given Pnode(V)
5: znew ← zexp
6: Simulate forward using dynamics for nsim steps
7: for nsim steps do
8: Sample action a∼g(.|znew) (or a=πg(znew))
9: znew ← h(znew, a)

10: end for
11: Reject node if too close to existing one in the tree, too far
12: from expansion node or if the value uncertainty is too high
13: if Qexp,new

min > τ low
discard and Qexp,new

std < τ std
discard then

14: if max{Qi,new
min |zi ∈ V} < τ high

discard then
15: Add new node to tree
16: V←V ∪ {znew}; E←E ∪ {zexp→new}
17: end if
18: end if
19: end for

e) Node sampling heuristics: To achieve fast and task-
oriented exploration, we combine two sampling heuristics
based on (a) the inverse number of neighbors around each
node and (b) the state-action value of Qg . (a) leads to quick
exploration of undiscovered latent states, while (b) drives the
planner towards high-rewarding states. For both parts, we use
exponential weighting as shown in Eq. 7 and 8 (App. G).
In this regard, nneigh

i corresponds the number of incoming
neighbors for a node (Vneigh

→i ). We compose Pnode by sampling
according to Psparse with probability psparse and from Pvalue with
pvalue (otherwise random uniform).

f) Action sampling: Our action-generative model g mim-
ics the state-dependent action distribution in the data and
is learned using a standard conditional VAE [21]. Sampling



(a) SpiralMaze (b) ObstacleMaze (c) WindowClose

(d) FaucetClose (e) ButtonWall (f) DrawerButton

Fig. 2. Visualizations of evaluation control environments. The tasks (c) -
(f) presents adaptations from the meta-world benchmark [43] for which we
render images using a static camera.

actions from g (e.g. instead of uniformly from A) avoids
the evaluation of undesired state-actions pairs for which our
models have not seen any data. To help our planner discover
task-relevant areas quicker, we also sample with probability
ppolicy actions from πg .

g) Planning Objective and Control: We presented a
planner which builds a sparse tree representation in the latent
space while being guided by value and sparsity heuristics. To
pick the best path, we must define an objective that ranks all
paths T . In practice, we first identify G, the set of trajectories
in T reaching the goal which we determine by checking the
leaf node values predicted by Qg against a threshold τgoal.
Among the elements in G, we then choose the path g∗ which
is associated with the minimal path length computed based on
using Ql as a distance proxy between subsequent states (Eq.
5). If G = ∅, we simply pick we one in T that leads to the
highest-valued state (based on Qg).

g∗ = argmin
g∈G

c(g) with c(g) =
∑

(i,j)∈Eg

logγ Q
i,j
min (5)

To use our planner in a control setting, we embed it into
a model-predictive control loop. The controller queries our
planner every nreplan steps and locally uses the local policy
πl to steer between nodes in the planned sequences of latent
states. If close enough, the controller switches to the next
waypoint, which we determine by checking the value of Ql.

IV. EXPERIMENTS

a) Environments: For our quantitative evaluation, we
consider the simulated vision-based control tasks shown in
Fig. 2. A detailed description of the evaluation environments in
App. G. Our training data D was collected using a combination
of random actions and a small number of noisy expert demon-
strations. For all environment, we form states by concatenating
three consecutive image frames of resolution 64x64. We use
a latent space of dimension 32 for all experiments. Further
information on the training procedure, baselines and data
collection can be found in the appendix.

TABLE I
SUCCESS RATES (%) ON TEST SCENARIOS.

METHOD BC BC (D∗) TD3-BC MPPI MBOP IRIS IRIS (MULTI-STEP) VELAP

SPIRAL MAZE 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 15± 31 94 ± 3
OBSTACLE MAZE 0± 0 15± 6 35± 22 83± 11 40± 25 50± 25 62± 14 97 ± 2

WINDOW 0± 0 34± 11 16± 8 70± 7 23± 4 69± 3 43± 20 78 ± 4
FAUCET 0± 0 36± 6 13± 7 41± 7 33± 2 10± 2 3± 1 51 ± 12
BUTTONWALL 0± 0 0± 0 2± 2 9± 10 0± 0 35± 5 8± 8 76 ± 9
DRAWERBUTTON 0± 0 0± 0 0± 0 0± 0 0± 0 5± 3 0± 0 11 ± 3

b) Experimental Results: The results for the quantitative
evaluation are presented in Table I. As shown, VELAP con-
sistently outperform the baselines across all environment in
terms of average episode success rate. Interestingly, the im-
provements due to our method are particularly visible in tasks
which require far-reaching planning such as the SpiralMaze
environment and ButtonWall. These results support that our
tree-based memory and expansion strategy is indeed effective
at improving upon learned model-free offline RL policies in
sparse-reward settings. To further support that our method is
able to compute feasible latent paths over many time steps,
we illustrate a planned solution path for the SpiralMaze task
in Fig. 3 (App. L). It can be seen that the path corresponds
to a global solution which covers the entire space reaching
the far-distant goal region. Fig. 4 (App. L) presents similar
visualizations for the ObstacleEnv environment. As the figure
suggests, our state embedding correctly identifies the positions
of the obstacles and enables our planner to find a feasible path
towards the goal region. Further visualization are provided in
App. L.

V. DISCUSSION

a) Limitations: Our method provides the basis that al-
lows interesting future extensions. Firstly, VELAP is currently
implemented for the offline RL scenario. Similar to e.g.
[14, 33], it could be adapted to the online setting by interleav-
ing online data collecting and model learning. Moreover, the
planning could be integrated into the RL training to provide
better updates for policy and critic [37, 15, 34]. At the moment,
our method is geared towards fully-observable environments.
A promising future direction could be to solve partially-
observable MDPs by planning in belief spaces [20]. Decision-
making could be improved in that way by considering the
dynamics and perceptual uncertainty which is propagated
along the predicted states. Another exciting direction could
be the integration of language-specified goal as recently been
done e.g. in [29] [35].

VI. CONCLUSION

We present VELAP, a model-based planning agent for tasks
with sparse rewards from offline data. Unlike most existing
planning tools currently used in model-based RL, we propose
a novel tree-based search algorithm similar to the type of
sampling-based planners used in robot motion planning. An
empirical comparison, which included high-dimensional robot
manipulation tasks, demonstrated significant improvements of
our method over the state-of-the-art. We hope that our results
will stimulate further research on the integration of classical
planning tools and data-driven approaches.



REFERENCES

[1] Gaon An, Seungyong Moon, Jang-Hyun Kim, and
Hyun Oh Song. Uncertainty-based offline reinforcement
learning with diversified q-ensemble. In Neural Informa-
tion Processing Systems, 2021.

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas
Schneider, Rachel Fong, Peter Welinder, Bob Mc-
Grew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech
Zaremba. Hindsight experience replay. Advances in
neural information processing systems, 30, 2017.

[3] Arthur Argenson and Gabriel Dulac-Arnold. Model-
based offline planning. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=OMNB1G5xzd4.

[4] Joshua Bialkowski, Sertac Karaman, and Emilio Fraz-
zoli. Massively parallelizing the rrt and the rrt. In
2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3513–3518, 2011. doi:
10.1109/IROS.2011.6095053.

[5] Zdravko I. Botev, Dirk P. Kroese, Reuven Y. Rubin-
stein, and Pierre L’Ecuyer. Chapter 3 - the cross-
entropy method for optimization. In C.R. Rao and
Venu Govindaraju, editors, Handbook of Statistics, vol-
ume 31 of Handbook of Statistics, pages 35–59. Elsevier,
2013. doi: https://doi.org/10.1016/B978-0-444-53859-8.
00003-5. URL https://www.sciencedirect.com/science/
article/pii/B9780444538598000035.

[6] Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao,
Dmitry Kalashnikov, Jacob Varley, Alex Irpan, Benjamin
Eysenbach, Ryan C Julian, Chelsea Finn, and Sergey
Levine. Actionable models: Unsupervised offline rein-
forcement learning of robotic skills. In Marina Meila and
Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 1518–
1528. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/chebotar21a.html.

[7] Todor Davchev, Oleg Olegovich Sushkov, Jean-Baptiste
Regli, Stefan Schaal, Yusuf Aytar, Markus Wulfmeier,
and Jon Scholz. Wish you were here: Hindsight goal se-
lection for long-horizon dexterous manipulation. In Inter-
national Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=FKp8-pIRo3y.

[8] Ben Eysenbach, Xinyang Geng, Sergey Levine, and
Russ R Salakhutdinov. Rewriting history with inverse rl:
Hindsight inference for policy improvement. Advances in
neural information processing systems, 33:14783–14795,
2020.

[9] Benjamin Eysenbach, Tianjun Zhang, Sergey Levine,
and Ruslan Salakhutdinov. Contrastive learning as
goal-conditioned reinforcement learning. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=
vGQiU5sqUe3.

[10] Scott Fujimoto and Shixiang Shane Gu. A minimalist ap-
proach to offline reinforcement learning. In Thirty-Fifth
Conference on Neural Information Processing Systems,
2021.

[11] Scott Fujimoto, Herke Hoof, and David Meger. Address-
ing function approximation error in actor-critic methods.
In International conference on machine learning, pages
1587–1596. PMLR, 2018.

[12] Scott Fujimoto, David Meger, and Doina Precup. Off-
policy deep reinforcement learning without exploration.
In International Conference on Machine Learning, pages
2052–2062, 2019.

[13] Robert Gieselmann and Florian T. Pokorny. Latent
planning via expansive tree search. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
editors, Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=
zSdz5scsnzU.

[14] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben
Villegas, David Ha, Honglak Lee, and James Davidson.
Learning latent dynamics for planning from pixels. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 2555–2565, 09–15 Jun 2019.

[15] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mo-
hammad Norouzi. Dream to control: Learning behav-
iors by latent imagination. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=S1lOTC4tDS.

[16] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal
difference learning for model predictive control. In
ICML, 2022.

[17] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning
in expansive configuration spaces. In Proceedings of
International Conference on Robotics and Automation,
volume 3, pages 2719–2726 vol.3, 1997. doi: 10.1109/
ROBOT.1997.619371.

[18] Brian Ichter. Massive Parallelism and Sampling Strate-
gies for Robust and Real-Time Robotic Motion Planning.
PhD thesis, Stanford University, 2018.

[19] Brian Ichter, Pierre Sermanet, and Corey Lynch.
Broadly-exploring, local-policy trees for long-horizon
task planning. In 5th Annual Conference on Robot
Learning, 2021. URL https://openreview.net/forum?id=
yhy25u-DrjR.

[20] V. Indelman, L. Carlone, and F. Dellaert. Towards
planning in generalized belief space. In International
Symposium on Robotics Research (ISRR), December
2013.

[21] Diederik P Kingma and Max Welling. Auto-encoding
variational bayes, 2014.

[22] Nathan Lambert, Brandon Amos, Omry Yadan,
and Roberto Calandra. Objective mismatch in
model-based reinforcement learning. arXiv preprint
arXiv:2002.04523, 2020.

https://openreview.net/forum?id=OMNB1G5xzd4
https://openreview.net/forum?id=OMNB1G5xzd4
https://www.sciencedirect.com/science/article/pii/B9780444538598000035
https://www.sciencedirect.com/science/article/pii/B9780444538598000035
https://proceedings.mlr.press/v139/chebotar21a.html
https://proceedings.mlr.press/v139/chebotar21a.html
https://openreview.net/forum?id=FKp8-pIRo3y
https://openreview.net/forum?id=vGQiU5sqUe3
https://openreview.net/forum?id=vGQiU5sqUe3
https://openreview.net/forum?id=zSdz5scsnzU
https://openreview.net/forum?id=zSdz5scsnzU
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=yhy25u-DrjR
https://openreview.net/forum?id=yhy25u-DrjR


[23] S. M. LaValle. Planning Algorithms. Cambridge Uni-
versity Press, Cambridge, U.K., 2006. Available at
http://planning.cs.uiuc.edu/.

[24] Sergey Levine, Aviral Kumar, George Tucker, and Justin
Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020.

[25] Andrew Levy, Robert Platt, and Kate Saenko. Hierar-
chical reinforcement learning with hindsight. In Inter-
national Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=ryzECoAcY7.

[26] Alexander Li, Lerrel Pinto, and Pieter Abbeel. Gener-
alized hindsight for reinforcement learning. Advances
in neural information processing systems, 33:7754–7767,
2020.

[27] Jinning Li, Chen Tang, Masayoshi Tomizuka, and Wei
Zhan. Hierarchical planning through goal-conditioned
offline reinforcement learning. IEEE Robotics and Au-
tomation Letters, 7(4):10216–10223, 2022. doi: 10.1109/
LRA.2022.3190100.

[28] Kara Liu, Thanard Kurutach, Christine Tung, Pieter
Abbeel, and Aviv Tamar. Hallucinative topological
memory for zero-shot visual planning. In Hal Daumé
III and Aarti Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research,
pages 6259–6270. PMLR, 13–18 Jul 2020. URL http:
//proceedings.mlr.press/v119/liu20h.html.

[29] Corey Lynch and Pierre Sermanet. Language conditioned
imitation learning over unstructured data. Robotics:
Science and Systems, 2021. URL https://arxiv.org/abs/
2005.07648.

[30] Thomas M Moerland, Joost Broekens, and Catholijn M
Jonker. Model-based reinforcement learning: A survey.
arXiv preprint arXiv:2006.16712, 2020.

[31] Anusha Nagabandi, Kurt Konoglie, Sergey Levine, and
Vikash Kumar. Deep Dynamics Models for Learning
Dexterous Manipulation. In Conference on Robot Learn-
ing (CoRL), 2019.

[32] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Rep-
resentation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[33] Oleh Rybkin, Chuning Zhu, Anusha Nagabandi, Kostas
Daniilidis, Igor Mordatch, and Sergey Levine. Model-
based reinforcement learning via latent-space collocation.
In Marina Meila and Tong Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Re-
search, pages 9190–9201. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/rybkin21b.html.

[34] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hu-
bert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore
Graepel, Timothy Lillicrap, and David Silver. Mastering
atari, go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609, dec 2020. doi:

10.1038/s41586-020-03051-4. URL https://doi.org/10.
1038%2Fs41586-020-03051-4.

[35] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport:
What and where pathways for robotic manipulation. In
Proceedings of the 5th Conference on Robot Learning
(CoRL), 2021.

[36] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey
Levine, and Chelsea Finn. Universal planning networks:
Learning generalizable representations for visuomotor
control. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 4732–4741. PMLR, 10–15 Jul
2018. URL http://proceedings.mlr.press/v80/srinivas18b.
html.

[37] Richard S. Sutton. Dyna, an integrated architecture for
learning, planning, and reacting. SIGART Bull., 2(4):
160–163, jul 1991. ISSN 0163-5719. doi: 10.1145/
122344.122377. URL https://doi.org/10.1145/122344.
122377.

[38] Richard S. Sutton and Andrew G. Barto. Reinforce-
ment Learning: An Introduction. The MIT Press, sec-
ond edition, 2018. URL http://incompleteideas.net/book/
the-book-2nd.html.

[39] Joshua B. Tenenbaum, Vin de Silva, and John C.
Langford. A global geometric framework for non-
linear dimensionality reduction. Science, 290(5500):
2319–2323, 2000. doi: 10.1126/science.290.5500.
2319. URL https://www.science.org/doi/abs/10.1126/
science.290.5500.2319.

[40] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mu-
joco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012. doi:
10.1109/IROS.2012.6386109.

[41] Grady Williams, Paul Drews, Brian Goldfain, James M.
Rehg, and Evangelos A. Theodorou. Aggressive driving
with model predictive path integral control. In 2016 IEEE
International Conference on Robotics and Automation
(ICRA), pages 1433–1440, 2016. doi: 10.1109/ICRA.
2016.7487277.

[42] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon
Amos, Joelle Pineau, and Rob Fergus. Improving sample
efficiency in model-free reinforcement learning from
images. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 10674–10681,
2021.

[43] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,
Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
world: A benchmark and evaluation for multi-task and
meta reinforcement learning. In Conference on Robot
Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.
10897.

https://openreview.net/forum?id=ryzECoAcY7
http://proceedings.mlr.press/v119/liu20h.html
http://proceedings.mlr.press/v119/liu20h.html
https://arxiv.org/abs/2005.07648
https://arxiv.org/abs/2005.07648
https://proceedings.mlr.press/v139/rybkin21b.html
https://doi.org/10.1038%2Fs41586-020-03051-4
https://doi.org/10.1038%2Fs41586-020-03051-4
http://proceedings.mlr.press/v80/srinivas18b.html
http://proceedings.mlr.press/v80/srinivas18b.html
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://www.science.org/doi/abs/10.1126/science.290.5500.2319
https://www.science.org/doi/abs/10.1126/science.290.5500.2319
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897


APPENDIX

A. Model architectures

TABLE II
HYPERPARAMETERS OF THE ENCODER ϕ

Parameter Value

Batch-norm. yes
Filters [32,32,64,64]
Kernels [4,4,4,4]
Strides [2,2,2,2]
Activation LeakyRelu
Dense layers [256, 128, 32]

TABLE III
HYPERPARAMETERS OF DYNAMICS MODEL h

Parameter Value

Batch-norm. yes
Activation LeakyRelu
Dense layers [128,128,128,128,32]

TABLE IV
HYPERPARAMETERS OF ACTION SAMPLER g (β-VAE)

Parameter Value

Batch-norm. yes
Activation LeakyRelu
Latent dimension 16
β (kl-weight) 0.01
Encoder dense layers [128,128,128, 2*16]
Decoder dense layers [128,128,128, daction,]

TABLE V
HYPERPARAMETERS OF POLICY NETWORKS πl AND πg

Parameter Value

Batch-norm. yes
Activation LeakyRelu
Dense layers [128,128,128, daction]

TABLE VI
HYPERPARAMETERS OF CRITIC NETWORKS Ql AND Qg

Parameter Value

Batch-norm. yes
Activation LeakyRelu
Dense layers [128,128,128, 1]



B. Training hyperparameters

TABLE VII
HYPERPARAMETERS DURING TRAINING (MODEL LEARNING)

Parameter Value

batch size 64
learning rate (all models) 0.0003
c0 0.2
c1 (SpiralMaze) 0.001
c1 (ObstacleMaze) 1.0
c1 (metaworld tasks) 0.01
c2 0.001
c3 0.001
c3 (expert) 0.5
γ (discount factor) 0.96
dZ 32
T (temperature parameter) 1.0
nens 3

C. Planner and controller hyperparameters

TABLE VIII
HYPERPARAMETERS DURING INFERENCE (PLANNING)

Name Description Value

niter Number of planner iterations 250 (500 in ButtonWall)

nsim Number of simulation steps during tree expansion 5 (10 in SpiralMaze, ButtonWall and
DrawerButton)

τ
high
discard

Q-value threshold for discarding node
if too close to existing nodes in the tree γ2

τ low
discard

Q-value threshold for discarding node
if too far from expansion node γnsim

τ std
discard

Q-value threshold for discarding node
if standard deviation of ensemble prediction is too high 1.0− γ

τgoal Q-value threshold to determine goal nodes γ1

dneigh
Euclidean distance threshold

to determine candidate neighbors
3 x upper 5-percentile of Eucl. distances
between encoding of subsequent states

TABLE IX
HYPERPARAMETERS DURING INFERENCE (CONTROLLER)

Parameter Description Value

nreplan Planning frequency 15 (25 in SpiralMaze, ButtonWall)
ϵgoal Q-threshold to determine vicinity to the goal γ5

ϵwp Q-threshold for switching to the next waypoint γ3

D. Additional details about planning method

a) Neighbor computation: To determine if a newly sampled node znew is novel, we check its similarity to existing nodes
in the tree by evaluating the state-action value function. Yet, evaluating the value network for all nodes in the tree results in
an enormous computational overhead. Yet, we can significantly reduce this computation by first determining a set of candidate
neighbors around znew using the Euclidean metric and a distance threshold dneigh. In practice, we found it useful to define dneigh
based on the statistics of Euclidean distances between subsequent states in the dataset (see App. C).

b) Batch processing: The method in Alg. 1 describes an iterative schema for which at every expansion step one new node
is generated and evaluated. Yet, some steps can be computed in parallel on a GPU in order to speed up the planning time.
For a practical implementation, we therefore suggest to parallelize the tree expansion by sampling multiple expansion nodes
at once and generating new nodes by passing batches through the neural network dynamics model. Similarly, we can compute
state-action values in batches instead of assessing a single nodes at a time. For a discussion about parallelized implementations
of classical RRT-like planners, we refer to [4, 18].



E. Training of policy and value functions

We use TD3-BC [10] as the base offline RL algorithm to train our local and goal policies πl and πg , respectively state-action
value functions a Ql

k and Qg . Within our planning framework Ql
k takes an important role as it provides us with a distance proxy.

To improve the accuracy of the value estimates, we use k Q networks (instead of 2 usually used in TD3). During the training
update of the Q-network, we then determine the Q-target by taking the minimum value among the predictions given by the
ensemble of Q-networks (similar to [1]). The ensemble further allows us to filter out unlikely or out-of-distribution transitions
generated during the tree expansion by thresholding the resulting Q-values based on the minimum predicted ensemble value
and the standard deviation among the predicted values.

Our models πl and Ql
k describe goal-reaching navigation policy and state-action value functions which require a set of

goal-conditioned reaching experiences for training. Since our original dataset D might not provide such data, we augment it
using data augmentation via hindsight relabeling. In particular, we create a new dataset D′ creating transitions (zt, at, rt, zt+1,
zg , γ) ∈ D′ based on the existing transitions in D by relabeling the values of rt, γ (γ also indicates terminal condition, i.e.
γ = 0) and adding a new goal state zg . In this regard, we apply a combination of three different relabeling strategies (a) set
goal zg to be next state of the original transitions and set γ = 0 and rt = 1 (b) sample zg from the set of future states within
the same trajectory and set rt = 0 (c) sample zg from another trajectory in the data and rt = 0.

F. RL policies training objectives

Lπl = E
D′
[−Ql(zt, z

g, πl(zt, z
g))] + c2 · E

D′
[(πl(zt, z

g)− at)
2]

Lπg = E
D
[−Qg(zt, π

g(zt))] + c3 · E
D
[(πg(zt)− at)

2]
(6)

G. Node sampling heuristics

Psparse(zi) =
e−nneigh

i /Tsparsity∑
zj∈V e−nneigh

j /Tsparsity
(7)

Pvalue(zi) =
eQ

g
i /Tvalue∑

zj∈V eQ
g
j /Tvalue

(8)

H. Description of block environments

Similar to the evaluation environments in [13], we implement two long-horizon navigation tasks whose underlying state
space is relatively low-dimensional in order to facilitate visual inspection of learned latent representations using dimensionality
reduction techniques (e.g. Isomap [39]). In both environments, a block robot is controlled using velocity commands while its
movements are limited to a planar surface.

1) SpiralMaze: To solve this task, the block agent must navigate form the outer end of the spiral-shaped corridor to the
inner region (colored in red; see Fig. 2). The maximum allowed number of episode steps is limited to 300. To generate training
data, the agent is placed randomly at a collision free position in the workspace and random actions sequences are applied by
subsequently adding Gaussian noise to a randomly sampled initial action. For testing, the agent’s position is sampled uniformly
within a small region close to the outer end of the spiral-shaped corridor.

2) ObstacleMaze: In this environment, the agent must navigate towards the upper wall of the workspace (color in red; see
Fig. 2). To achieve this goal, the agent must take actions around two obstacles which are randomly placed within the center
of the workspace at the beginning of each new episode. The maximum allowed number of environment steps is set to 100.
For testing, the agent is initialized at a random configuration close to the wall which is on the opposite side of the goal. We
used the same random data collection policy as for the SpiralMaze task.

I. Description of manipulation environments

We adapted and implemented several robot manipulation environments based on the Metaworld [43] robot benchmark tasks.
The underlying physics simulator in this regard is Mujoco [40]. To enable visual manipulation, similar to the problems studied
in [33], we render RGB images from a static viewpoint. The robot is controlled by commanding desired endeffector and gripper
opening displacements resulting in a 4-dimensional action space. WindowClose and FaucetClose were with small adaptions
modified from [43]. Moreover, we evaluate two new scenarios ButtonWall and DrawerButton which are specifically designed
to evaluate our method in extremely sparse reward conditions and over a lengthy temporal horizon. These scenarios necessitate
the use of trajectory ”stitching” techniques to discover a solution policy.

For data collection, we implemented a suboptimal policy that takes random actions (additive Gaussian noise) most of the time
and with a low probability takes an action generated by a scripted expert policy. Table. X shows the number of transition samples



TABLE X
COMPOSITION OF TRAINING DATASETS FOR EACH ENVIRONMENT

Environment Num. contexts Traj. per context Max. traj. length Successful transitions

SpiralMaze 1 1000 20 0.12 %
ObstacleMaze 250 20 20 0.11 %
WindowClose 200 10 50 0.48 %
ButtonWall 200 10 50 0.16 %
FaucetClose 200 10 50 0.31 %
DrawerButton 150 20 50 0.16 %

and trajectories in the training data and further presents the portion of successful actions (reward=1). For all manipulation tasks,
we set the maximum permitted environmental steps at 150, with the exception of the ”ButtonWall” scenario, where we allow
up to 250 steps during the evaluation phase.

1) WindowClose: In order to accomplish this task, the robotic arm must successfully open a window by shifting a specific
handle sideways. We implement environmental variability by randomly determining the x-y location of the window object in
each episode. During the data collection stage, we randomly position the end-effector above the surface of the table. However,
we restrict the sampling of expert actions to areas close to the handle. This approach is intended to guarantee that the strategy
employed necessitates to ”stitch” different trajectories together to reach the objective and complete the task when starting
from states that are farther away. To ensure challenging planning situations during testing, we initiate the robot at a significant
distance away from the target.

2) FaucetClose: This task is similar to the WindowClose task, but it requires the agent to use its end-effector to close
a faucet instead. In addition, we employ analogous strategies for data gathering and scenario creation as those used in the
WindowClose environment.

3) ButtonWall: In this particular scenario, the robot’s end-effector is tasked with maneuvering around a wall structure before
reaching a button to press. The exact position of the wall is randomized at the beginning of each episode. Additionally, there
is a height constraint imposed on the end-effector to ensure that the agent follows a longer path around the wall instead of
simply raising the end-effector. The dataset was generated by placing the agent either in front of the wall, near the button, or
far behind the wall. However, expert demonstrations in the dataset are only available for scenarios where the agent starts in
proximity to the goal. To enhance the complexity of the planning task during testing, the end-effector is sampled within an
area located behind the wall.

4) DrawerButton: In this scenario, the agent is tasked to first close a drawer using its end-effector and then press a button.
To train the agent, we develop a dataset by separately collecting trajectories for each subtask. Again, this approach necessitates
a method capable of combining different trajectories in the data to devise a solution that achieves the overall task goal.

J. Composition of training dataset

The table below presents the composition of our training datasets. Each context in this regards, refers to a new environment
initialization (excl. agent) such as the position of obstacles.

K. Baselines

To assess the effectiveness of VELAP, we compare it with existing offline RL methods and consider the following baselines.
Behavioral cloning (BC): A simple yet often effective baseline which is trained to imitate the behavioral policy πβ using
a supervised learning objective. We also assessed a variant of this method using a subset of only successful trajectories
(D∗). TD3-BC [10]: An adaptation of the Twin Delayed DDPG algorithm [11] which mitigates the negative effects of value
overestimation by adding an imitation objective to the policy update. MPPI: A sampling-based trajectory optimization method
provides the base planning algorithm in various state-of-the-art model-based RL methods (e.g. [31, 16]). We consider a variant
of this method for the offline learning setup which uses TD3-BC within the cost update during optimization. MBOP [3]: A
model-based planning method which uses an adaptation of MPPI to optimize paths particularly in the offline RL setting. IRIS:
An offline RL method particularly designed for sparse reward settings. In essence, it uses a hierarchical decomposition of the
policy for which a manager predicts feasible subgoals given future candidate states (n-step horizon) sampled from a generative
model (cVAE) which a worker policy must achieve. We also examined an adaptation, which we call IRIS (multi-step), where
the set of potential subgoals is generated by randomly shooting future state sequences given the state prediction model. To
establish a fair comparison and disentangle the effects of the representation and planner, we use the same base representations
and dynamics models across all methods.

L. Visualizations



(a) (b) (c) (d) (e) (f)

Fig. 3. Latent space visualizations for SpiralMaze (a) xy coordinates of block robot (b) Isomap embeddings of latent spaces (c) environment reward for
xy-coordinates (d) predicted Q-values for latent space (e) predicted Q-values for xy-coordinates (f) planned latent path computed using VELAP

(a) (b) (c) (d) (e) (f) (g)

(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Latent space visualizations for ObstacleMaze tasks (a) xy coordinates of block robot (b) Isomap embeddings of latent spaces (c) environment
reward for xy-coordinates (d) predicted Q-values for latent space (e) predicted Q-values for xy-coordinates (f) example visual inputs for different contexts (g)
corresponding latent path computed using VELAP

(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Latent space visualizations for ButtonWall tasks (a) xy coordinates of block robot (b) Isomap embeddings of latent spaces (c) environment reward
for xy-coordinates (d) predicted Q-values for latent space (e) predicted Q-values for xy-coordinates (f) example visual inputs for different contexts (g)
corresponding latent path computed using VELAP


	Introduction
	Preliminaries
	Value-guided Expansive Latent Trees
	Experiments
	Discussion
	Conclusion
	Appendix
	Model architectures
	Training hyperparameters
	Planner and controller hyperparameters
	Additional details about planning method
	Training of policy and value functions
	RL policies training objectives
	Node sampling heuristics
	Description of block environments
	SpiralMaze
	ObstacleMaze

	Description of manipulation environments
	WindowClose
	FaucetClose
	ButtonWall
	DrawerButton

	Composition of training dataset
	Baselines
	Visualizations


