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ABSTRACT

State space model (SSM) is a powerful tool in neuroscience field to character-
ize the dynamic nature of brain functions by elucidating the mechanism of how
brain system transits between brain states and how underlying states give rise to
the observed neural activities. Although tremendous efforts have been made to
lend the power of deep learning and mathematical insight of SSM in various func-
tional neuroimaging studies, current state-of-the-art methods lack a holistic view
of brain state evolution as a self-organized dynamical system where each part
of the brain is functionally inter-connected. Since the topological co-activation
of functional fluctuations exhibits an intrinsic geometric pattern (symmetric and
positive definite, or SPD) on the Riemannian manifold, the call for understanding
how a selective set of functional connectivities in the brain supports diverse be-
havior and cognition emerges a new machine learning scenario of manifold-based
SSM for large-scale functional neuroimages. To that end, we propose a geometric
neural networks, coined GeoMind, designed to uncover evolving brain states by
tracking the trajectory of functional dynamics on a high-dimensional Riemannian
manifold of SPD matrices. Our GeoMind demonstrates promising results in iden-
tifying specific brain states based on task-based functional Magnetic Resonance
Imaging (fMRI) data, as well as in diseases early diagnosis for Alzheimer’s dis-
ease, Parkinson’s disease and Autism. These results highlight the applicability
of the proposed GeoMind in neuroscience research. Furthermore, to assess the
generalization capabilities of our model, we applied it to the domain of human
action recognition (HAR), achieving promising performance on three benchmark
datasets (UTKinect, Florence and HDM05). This demonstrates the scalability and
robustness of the proposed geometry deep model of SSM in capturing complex
spatio-temporal dynamics across diverse fields.

1 INTRODUCTION

The human brain is a complex and dynamic system composed of distinct structural regions, each
specialized for specific functions (Bassett et al., 2011; Hutchison et al., 2013). While these regions
are locally segregated, they are dynamically inter-connected to process a wide range of information.
Over the past few decades, understanding the functional mechanisms of human brain has been a cen-
tral focus in both basic and clinical neuroscience. Functional magnetic resonance imaging (fMRI) is
a popular non-invasive technique in neuroimaging field, which measures changes in blood oxygen
level-dependent (BOLD) signals over time. Although converging evidence supports the biologi-
cal mechanism that BOLD signals underline the neural activities, research focus has been shifted
to investigate the functional connectivity (FC) which characterizes the co-activations of functional
fluctuations throughout the entire brain (Bassett & Sporns, 2017).

In the majority of current functional brain network studies, Pearson’s correlation is used to measure
the strength of FC between two brain regions (Van Den Heuvel & Pol, 2010; Amaral et al., 2008).
Recently, there has been a growing consensus in the neuroimaging field, that the topology of func-
tional brain networks changes over time, even in a task-free environment (Bassett et al., 2011). For
instance, abnormal dynamics in functional connectivity have been linked to various brain disorders,
providing critical insights into the underlying neurobiological processes (Breakspear, 2017). In light
of this, striking efforts have been made to uncover the neurobiological mechanism of brain activi-
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ties by modeling the transit of latent brain states from the observed BOLD signals or evolving FCs
(Logothetis et al., 2001; Fox et al., 2006; Pievani et al., 2014).

Functional dynamics are modeled through two main approaches: (1) leveraging temporal heuristics
in BOLD signals and (2) capturing topology changes in evolving FC matrices. BOLD signals, which
track blood oxygen changes, provide neural activity information but struggle to disentangle intrinsic
fluctuations from external noise. For example, neural mass models in (Singh et al., 2020) describe
brain dynamics using non-linear equations but often overlook spatial dependencies. In contrast, FC
matrices reveal functional relationships between brain regions by correlating BOLD signals, offer-
ing insights into network-level interactions. Dynamic FC (dFC) extends this by tracking temporal
connectivity evolution via sliding windows (Karahanoğlu & Van De Ville, 2017), integrating spatial
and temporal information. For example, (Dan et al., 2022a) proposed a geometric-attention neural
network to relate FC topology changes to brain activities. However, sliding window techniques are
sensitive to window size, where suboptimal patterns can impair the detection of subtle brain state
transitions.

The widespread success of recurrent neural networks (RNNs, Fig. 1 (a)) (Rumelhart et al., 1986),
including long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) and gated recurrent
units (GRU) (Cho, 2014), in sequential modeling tasks such as natural language processing (NLP),
has inspired numerous efforts to apply these architectures for characterizing brain dynamics (Li &
Fan, 2018; 2019). Recently, state space models (SSMs) (as shown in Fig.1 (b, black solid box)) (Gu
et al., 2021; 2022) have emerged as a powerful tool for capturing a system’s behavior using hidden
variables, or “states”, marked as st (i.e., s(t)), which effectively model temporal dependencies in
sequential data with well-established theoretical properties. These models have gained significant
attraction in fields like computer vision (CV) and NLP due to their ability to represent complex
temporal patterns. A more inclusive literature survey can be found in the Appendix A.1.
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Figure 1: The architecture of RNNs (a) typically relies on a Multi-
Layer Perceptron (MLP) to project the hidden state space into the output
space, where various downstream tasks are then performed. These mod-
els operate entirely within Euclidean space. In contrast, vanilla SSMs (b,
black solid box) incorporate two ODEs—the state equation (upper) and
observation equation (lower)—which can directly perform downstream
tasks through the inferred observed output, also within Euclidean space,
focusing primarily on temporal information. Our proposed geometric
deep model of SSM (b, purple dashed box) extends this approach by
capturing both temporal and spatial information, operating on a mani-
fold space.

Relevant work of SSM on
brain functional studies. Mo-
tivated by the great success of
SSM in CV and NLP appli-
cations, there are a number
of learning-based SSMs pro-
posed to understand the dy-
namic characteristics of func-
tional activation, primarily ap-
plying these models to event-
related (task-based) fMRI data
analysis (Faisan et al., 2007;
Hutchinson et al., 2009). Since
these models sought to link each
brain state to external stimuli
(i.e., events), they are not well-
suited for analyzing resting-
state fMRI (rs-fMRI) data. To
address this limitation, Suk
et al. (2016) employed an auto-
encoder model to learn the rela-
tionship between regional mean
time series of BOLD signals and latent states and a hidden Markov model (HMM) to characterize
the state transitions. However, the auto-encoder and HMM are trained separately in this work, which
limits its overall efficiency. Additionally, this approach only focuses on capturing the dynamics of
brain activity from BOLD signals, ignoring the crucial spatial structural information of the brain
network. Meanwhile, Tu et al. (2019) proposed a linear SSM, leveraging a mean-field variational
Bayesian approach, to infer causal-like effective connectivities from observed electroencephalogra-
phy (EEG) and fMRI data. Due to the dynamic nature of FCs, however, SSM at the connectivity
level only has limited power to uncover the complex relationship between evolving FCs and the
underlying behavior/cognitive outcomes.

Our work. The dynamic nature of complex system cannot be understood by thinking of the system
as comprised of independent elements. Rather, an approach is needed to utilize knowledge about
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the complex interactions within a system to understand the behavior of the system overall. In light
of this, modeling the fluctuation of functional connectivities on the Riemannian manifold provides a
holistic view of understanding how brain function emerges in cognition and behavior. In this paper,
we integrate the power of geometric deep learning on Riemannian manifold and the mathematical
insight of SSM to uncover the interplay between evolving brain states and observed neural activi-
ties. First, our method is structural in that we propose to learn intrinsic FC feature representations
on the Riemannian manifold of SPD matrices, which allows us to take the whole-brain wiring pat-
terns into account by considering each FC matrix as a manifold instance. Second, our method is
behavioral in that we leverage the SSM to model temporal dynamics. As shown in Fig. 1 (b),
SSMs operate through two core ordinary differential equations (ODEs)–the state equation and the
observation equation–which describe the relationship between the input x(t) (short for xt) of the
dynamic system and the system output y(t) (short for yt) at a given time t, mediated by a latent
state s(t) (short for st). Taken together, our contribution has three folds. (1) We present a novel
geometric deep model by integrating state space model and manifold learning. By incorporating
Riemannian geometry, our deep model provides an in-depth insight into system dynamics and state
transitions, enhancing the model’s ability to capture both temporal and spatial complexities in a
data-driven manner. (2) We replace the Euclidean algebra of conventional SSMs with Riemannian
geometric algebra (accompanied by theoretical analysis) to effectively capture the spatio-temporal
information, which allows us to better handle irregular data structures and harness the geometric
properties of SPD matrices. (3) We have significantly improved the computational efficiency com-
pared to manifold-based deep models by using modern machine techniques such as geometric deep
model (Sec. 3.1) and geometric-adaptive attention mechanism (Sec. 3.2).

We have applied our proposed method to two types of system dynamics: brain dynamics and action
recognition (Bilinski & Bremond, 2015; Guo et al., 2013). While brain dynamics is our primary fo-
cus, action recognition serves as a validation task to assess the method’s generalization performance
across different domains. In the application of understanding brain dynamics, upon which we refer
to as GeoMind, we have evaluated model performance on the large-scale human brain connectome
(HBC) databases – one Human Connectome Project (Zhang et al., 2018) and four disease-related
resting-state fMRI data: (1) Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al.,
2005), (2) Open Access Series of Imaging Studies (OASIS) (LaMontagne et al., 2019), (3) Parkin-
son’s Progression Markers Initiative (PPMI) (Marek et al., 2011), and (4) the Autism Brain Imaging
Data Exchange (ABIDE). For action recognition, we use three classic human action recognition
(HAR) datasets including the Florence 3D Actions dataset (Seidenari et al., 2013), the HDM05
database (Müller et al., 2007), and the UTKinect-Action3D (UTK) dataset (Xia et al., 2012). Our
GeoMind has achieved significant results across both brain dynamics and action recognition tasks,
demonstrating its effectiveness and practicality. These applications on both neuroscience and com-
puter vision highlight the scalability and robustness of our proposed approach in understanding
complex spatio-temporal dynamics across diverse systems.

2 PRELIMINARY

2.1 STATE SPACE MODEL

The system dynamics typically formulate as the following state space model:
s′(t) = As(t) +Bx(t) and y(t) = Cs(t) +Dx(t) (1)

where s(t) ∈ RN indicates the current state, A ∈ RN×N denotes the transition matrix, x(t) ∈ R
denotes the control input, B ∈ RN×1 represents the influence of control variables on state variables.
y(t) ∈ RM denotes the output of the system (it considers single-input and single-output conventions,
i.e., M = 1), C ∈ RM×N represents the influence of the current state on output, D ∈ RM×1

(usually set as 0) denotes the influence of control variables on system output, as shown in Fig. 1 (b).

2.2 RIEMANNIAN GEOMETRY ALGEBRA

Distance Metric. Following the notation in (Chakraborty et al., 2018), we use M to represent
the set of N × N SPD matrices (Xsym+

N
∈ M), and let G denotes the general linear group

of N × N full-rank matrices. The group G acts on X via the group action g.X := gXg⊤,
where g ∈ G. Furthermore, we employ the Stein metric (Cherian et al., 2011), defined as
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d(X,Y ) =
√
log det

(
X+Y

2

)
− 1

2 log det(XY ), to measure the distance between two SPD matri-
ces (Xsym+

N
, Ysym+

N
∈ M). This metric is notably more computationally efficient, as it circumvents

the need for eigen decomposition.

“Translation” Operation on Manifold M. Let I represent the set of all isometries on M, meaning
that for any g ∈ I, the distance between points is preserved: d(g.X, g.Y ) = d(X,Y ) for all X,Y ∈
M. It is evident that I forms a group, and for any given g ∈ I and X ∈ M, the mapping g.X 7→
Y , where Y ∈ M, defines a group action. With the Stein metric, I corresponds to the general
linear group G. In this context, we focus on a subgroup of G, specifically the orthogonal group O,
which consists of all N × N orthogonal matrices. For any g ∈ O, the group action is defined as
g.X := gXg⊤. Since this group action preserves distances, it is referred to as a “translation” on the
manifold, analogous to translations in Euclidean space, and is denoted by TX(g) := gXg⊤.

Weighted Fréchet Mean (wFM) of Matrices on Manifold M. Given a set of matrices {Xn}Nn=1 ⊂ M
and corresponding non-negative weights {wn}Nn=1 with

∑N
n=1 wn = 1, the weighted Fréchet mean

(wFM) is defined as the matrix F ∗ that minimizes the weighted sum of squared distances to the
elements in the set: F ∗ = argmin

F

∑N
n=1 wnd

2 (Xn, F ) . We assume that the matrices Xn lie within

a geodesic ball of an appropriate radius, ensuring the existence and uniqueness of the Fréchet mean.
Henceforth, we denote the wFM of Xn with weights wn as F(Xn, wn).

Convolution Operation on SPD manifold M. The SPD convolution operation of the kth(k =
1, . . . ,K) network layer is depicted as

X
(k)
i,j =

θ−1∑
u=0

θ−1∑
v=0

Hu,vX
(k−1)
i+u,j+v (2)

where H ∈ Rθ×θ is the convolutional kernel, X(k)
i,j ∈ R(N−θ+1)×(N−θ+1) is the feature representa-

tion at matrix location (i, j) of the kth(k = 1, . . . ,K) network layer. Herein, if H is a SPD matrix
resulting in a SPD matrix X(k) (the proof is shown in the Appendix A.3). To maintain the SPD geo-
metric structure during feature presentation learning, the SPD convolutional kernel H is constructed
by using multiplication of one matrix Z ∈ R(θ×θ), i.e., H = Z⊤Z + ϵI , where ϵ → 0+, and I is an
identity matrix for guaranteeing that H is dominantly diagonal. By doing so, we only need to learn
the parameter Z, free of the constraint to ensure that the entire learning processing is implemented
on the SPD manifold.

3 METHOD

3.1 GEOMETRY DEEP MODEL OF SSM

Overview. We propose a geometric deep model of SSM by extending the model design from Eu-
clidean space to the manifold space. Unlike vanilla SSMs, where observations and hidden states
evolve in Euclidean space, our approach models the data instance as a sequence of FC matrices over
time (i.e., a series of SPD instances on manifold). Since the system input X(t) ∈ RN×N at time
t lies on the SPD manifold M, we require the hidden state, S(t), to be also represented as an SPD
matrix. We further expect the system output, Y (t), to follow the same SPD property, which allows
us to capture the entire evolutionary state of the data on the Riemannian manifold space, preserving
its inherent geometric structure.

Problem formulation. Following the Markov decision process (MDP) (Mnih et al., 2015), we in-
troduce an “agent” A to control the evolution of states by calculating intrinsic control inputs X(t).
The objective is to ensure that the transformed input closely approximates the real input while em-
bedding it within a high-dimensional manifold and preserving its original geometric structure. In
this context, the agent A is trained to learn a stochastic policy that, at each step k, maps the history of
previous interactions with the environment to a probability distribution over the actions at step k. At
each step, the agent alternatively performs three key actions: (i) Updates the control input X(k) by
imposing a convexity constraint on the weights B to ensure the input becomes more aligned within
the system. (ii) Captures the system dynamics S(k) by integrating a learnable transition matrix A.
(iii) Updates the system state through a “translation” operation on the manifold. The main learning
components of our approach can be summarized as follows:
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Internal state. The agent maintains the current internal state S(k) that summarizes the representation
of FC matrices inferred from the history state S(k−1) and the impact of control signals X(k) on the
current system state S(k). The agent perceives the evolving environment (inferred current state S(k))
by deciding how to act (for inducing geometric information on the FC matrices). After that, we can
derive the system output Y (k) (i.e., observation) from the current hidden states by an observation
equation. To do so, the internal state and system output can be formulated by a set of translation T
and weighted Fréchet mean F (defined in Sec. 2.2) on the manifold M:

S(k) = T
(
F
(
{S(k−1)}, {Ã}

)
,F

(
{X(k)}, {B̃}

))
Y (k) = T

(
F
(
{S(k)}, {C}

)
,F

(
{X(k)}, {D}

)) (3)

where Ã and B̃ is discretized by Ã = exp(∆A), B̃ = (∆A−1(exp(∆A)− I) ·∆B. In addition, ∆
is the step size of discretization and A,B,C,D are the learnable parameters. The whole workflow
is shown in Fig. 1 (b, highlighted in purple).

Actions. At each step k, the inferred state influences the changes in the environmental variables.
Specifically, the task/event, associated with the evolution of brain states {q|(1, ..., Q)}, is determined
from a distribution parameterized by a softmax function applied to the system’s output, i.e., P (Q =

q | ŷ(k)) =
exp(w⊤

q ŷ(k))∑Q

q′=1
exp(w⊤

q′ ŷ
(k)

, where ŷ(k) is the vectorized system output at step k, computed

by logarithmic mapping ŷ(k) = log(Y (k)) = Φ log(Λ)Φ⊤. Note, log(Λ)is the diagonal matrix
of eigenvalue logarithm, and wq represents the weight vector for specific brain task q. The softmax
function calculates the probability of each class q based on the system’s output, yielding a probability
distribution over the Q classes (e.g., brain tasks/events/clinical outcomes underlying particular brain
states).

Rewards. After executing the actions, the agent continuously influences the system’s state evolution
through feedback, which is typically quantified by minimizing the recognition error to maximize the
overall benefit. Thus, we define the reward as: L = −

∑K
k=1

∑Q
q=1 okq logP (Q = q | ŷ(k), where

okq is the one-hot encoded ground truth label for class q at step k, with okq = 1 indicating that the
inferred system output corresponds to the true label, and okq = 0 otherwise. The goal is to minimize
this loss, driving the system towards more accurate predictions.

Efficient geometric neural network of SSM. To efficiently conduct the inference process, we can
re-formulate the SSM (in Eq. 2) as a global convolution operation K (in Eq. 1) over time as follows:

K =
(
CB +D,CAB, . . . , CA(k)B, . . .

)
, y = x ∗ K (4)

The evolution of this formulation is described in Appendix A.2. In this context, we discrete this
learning process of the agent into convolution operations on the manifold, based on Eq. 2. Thus, the
multi-channel convolution operation on the manifold yields a multi-channel output as:

X
(k)
i,j = {X(k)

i,j (r)}
R
r=1, X

(k)
i,j (r) =

L−1∑
l=0

θ−1∑
u=0

θ−1∑
v=0

K̂r,l
u,vX

(k−1)
i+u,j+v(l), (5)

where R denotes the number of convolutional kernels, L represents the channel number, and
K̂ ∈ RR×L×θ×θ is the multi-channel convolution kernels where each kernel Kr,l is an SPD matrices.
In Eq. 5, X(k) ∈ RR×(N−θ+1)×(N−θ+1) denotes the output of the current layer and is also an SPD
matrix (the proof is shown in the Appendix A.3). According to Eq. 4, we define K̂ = K⊤K + ϵI ,
where learning K ensures the preservation of the SPD property. Next, we employ the elementwise
operation exp(·) operation as a non-linear activation function on the Riemannian algebra, ensuring
the output remains an SPD matrix (see proof in Appendix A.4). The resulting SPD matrices are then
normalized using the Frobenius norm to ensure bounded eigenvalues and maintain numerical stabil-
ity. The model operates in convolutional mode for efficient, parallelizable training, processing the
entire input sequence simultaneously. During autoregressive inference, it transitions to a recurrent
mode (Eq. 3), enabling efficient step-by-step processing as inputs are received sequentially.

Comparison between vanilla SSM and our geometric SSM. It is worthwhile to noting that our
formulation of system state update and observation equation through MDP offers a new insight of

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

learning mechanism in SSM, which is beyond the extension from Euclidean space to Riemannian
manifold. As outlined in Eq. 3, we compute a weighted combination of prior information, where
S(k) serves as the current state or token, and we transform X(k) using a “translation” operation.
This process aggregates the information gathered at the current time step. Moreover, our geometric
SSM integrates the power of MDP, enabling greater adaptability to diverse states, efficient decision-
making, enhanced model interpretability, and scalability to complex dynamic systems. In addition
to conventional SSMs, our update rules are highly nonlinear, taking into account both spatial struc-
tural information and temporal dynamics. Taken together, our framework demonstrates improved
learning performance compared to vanilla SSMs by leveraging the geometric (covariance) structure
and applying global convolutional operations on the manifold. We present the number of parameters
and runtime for different models in Table 5.

3.2 GEOMETRIC-ADAPTIVE ATTENTION

To uncover the geometric pattern associated with the related diseases and brain tasks, we introduce a
geometric-adaptive attention (GaA) module, which is bound to the SPD convolution kernel K. In or-
der to preserve the geometric structure information of the original input matrix to the greatest extent
possible, GaA is designed to ensure that both the input and output matrices retain SPD properties
while preserving their dimensionality. By doing so, we pad the edges of the output matrix with zeros
of size θ − 1 and introduce a small positive diagonal value to maintain the SPD properties (proved
in Appendix A.5). The resulting geometric transformation is defined as:

δ(·) = exp([X ∗ K])

max(exp([X ∗ K])
(6)

where [·] = diag(θ,X) =

[
θ 0
0 X

]
denotes SPD padding operation. This formulation is inspired

by the standard sigmoid function, which maps the input values to the range [0,1], thereby preserv-
ing the SPD structure. Following this notion, we apply element-wise multiplication between the
attention weights and the features to effectively capture system dynamics. This module leverages
geometric properties to enhance the attention mechanism, enabling the model to adaptively cap-
ture both spatial and structural relationships within the inferred data. By incorporating geometric
features from X , it extends traditional attention mechanisms, which typically operate in Euclidean
space, into a manifold-aware framework. This transition leads to a more robust representation of
the underlying data, especially when working with complex structures such as graphs or SPD ma-
trices. The geometric-adaptive attention module enhances the model’s focus on relevant patterns by
accounting for both temporal and spatial dependencies in a principled geometric context, resulting
in improved performance across tasks that involve intricate spatio-temporal relationships.

4 EXPERIMENTS

4.1 DATASET

We apply our method to two types of datasets including human action recognition (HAR) and human
brain connectome (HBC), more detailed data information is shown in Table 3 and Appendix A.6.

For HAR dataset. We evaluate the performance of the proposed GeoMind on three widely-used
HAR benchmarks: the Florence 3D Actions dataset (Seidenari et al., 2013), the HDM05 database
(Müller et al., 2007), and the UTKinect-Action3D (UTK) dataset (Xia et al., 2012). The Florence
3D Actions dataset consists of 9 activities performed by 10 subjects, with each activity repeated 2
to 3 times, resulting in a total of 215 samples. The actions are captured by the motion of 15 skeletal
joints. For the HDM05 dataset, we follow the protocol from (Wang et al., 2015), focusing on 14
action classes. This dataset contains 686 samples, each represented by 31 skeletal joints. Lastly, the
UTKinect-Action3D dataset comprises 10 action classes. Each action was performed twice by 10
subjects, yielding a total of 199 samples.

For HBC dataset. We select one dataset of healthy young adults and four disease-related human
brain datasets for evaluation: the HCP Working Memory (HCP-WM) (Zhang et al., 2018), ADNI
(Mueller et al., 2005), OASIS (LaMontagne et al., 2019), PPMI (Marek et al., 2011), and ABIDE
(Di Martino et al., 2014). We selected a total of 1,081 subjects from the HCP-WM dataset. The
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Figure 2: The construction of SPD matrices for HAR (a) and HBC (b) datasets. Leaning the system dynamics
on manifold space as illustrated in (c).

working memory task included eight task events. Brain activity was parcellated into 360 regions
based on the multi-modal parcellation from (Glasser et al., 2016). For the OASIS (924 subjects)
and ABIDE (1,025 subjects) datasets, which are binary-class datasets, one class represents a disease
group and the other represents healthy controls. In the ADNI dataset, subjects are categorized based
on clinical outcomes into four distinct cognitive status groups. The PPMI dataset also consists of
four classes. We employ Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al.,
2002) (116 brain regions) on ADNI, PPMI, ABIDE datasets, while Destrieux atlas (Destrieux et al.,
2010) (160 brain regions) are used in OASIS to verify the scalability of the models.

4.2 SPD MATRICES CONSTRUCTION

For HAR dataset. HAR datasets exhibit variability due to differences in action duration, com-
plexity, the number of action classes, and the technology used for data capture. Therefore, we first
apply a preprocessing step following (Paoletti et al., 2021) to obtain the SPD matrices. This step
involves fixing the root joint at the hip center (red dashed circle in Fig. 2 (a)) and calculating the
relative 3D positional differences for all other N − 1 joints. For each timestamp t = 1, . . . , T ,
we obtain a 3 × (N − 1)-dimensional column vector p(t) representing the relative displacements
of the joints. Then, we compute covariance matrices using the method proposed in (Paoletti et al.,
2021) to yield the SPD matrices. After that, we apply a sliding window technique to capture the
dynamics over time, resulting in a sequence of SPD matrices X = {X(t) | t = 1, . . . , T} ∈
RT×(3(N−1))×(3(N−1)), as illustrated in Fig. 2(a).

For HBC dataset. Assuming each fMRI scan has been processed into N mean time courses of
BOLD signals, each with T time points (where N represents the number of brain parcellations), we
employ a sliding window technique to capture functional brain dynamics. Specifically, we construct
a N×N correlation matrix at each time point t (t = 1, . . . , T ) based on the BOLD signal within the
sliding window, centered at time t. This results in a sequence of FC matrices encoding the functional
dynamics for each scan, represented as X = {X(t) | t = 1, . . . , T} ∈ RT×N×N , in Fig. 2 (b).

4.3 COMPARISON METHODS AND EVALUATION METRICS

For HAR dataset. There are some popular methods for HAR, such as multi-part bag-of-pose
(MBP) (Seidenari et al., 2013), Lie group (Vemulapalli et al., 2014), shape analysis on manifold
(SAM) (Devanne et al., 2014), elastic function coding (EFC) (Anirudh et al., 2015), multi-instance
multitask learning (MML) (Yang et al., 2016), Tensor Representation (TR) (Koniusz et al., 2016),
LieNet(Hussein et al., 2013), SPGK (Wang et al., 2016), ST-NBNN (Weng et al., 2017), GR-GCN
(Gao et al., 2019) and DMT-Net and F-DMT-Net (Zhang et al., 2020). We also include Bi-long short-
term memory (Bi-LSTM) (Ben Tanfous et al., 2018) and pair-ware LSTM (P-LSTM) (Shahroudy
et al., 2016).

For HBC dataset. We stratify the comparison methods for HBC into two groups: spatial and
sequential models. Spatial models focus on capturing brain dynamics. Traditional GNNs like GCN
(Kipf & Welling, 2016) and GIN (Xu et al., 2018) are included for their ability to handle structured
data. Subgraph-based GNNs like Moment-GNN (Kanatsoulis & Ribeiro, 2023) focus on identifying
local patterns, while expressive GNNs like GSN (Bouritsas et al., 2022) and GNN-AK (Zhao et al.,
2021) enhance subgraph encoding for better expressivity. SPDNet (Dan et al., 2022b), a manifold-
based model, is chosen for managing high-dimensional data. Plus, an MLP serves as a simple,
generic baseline. Sequential models target temporal dynamics in BOLD signals. 1D-CNN captures
temporal patterns, while RNN (Rumelhart et al., 1986) and LSTM (Hochreiter & Schmidhuber,
1997) handle sequential dependencies. MLP-Mixer (Tolstikhin et al., 2021) integrates both temporal
and spatial information, and Transformer (TF) (Vaswani et al., 2017) captures global dependencies
through attention. Mamba (Gu & Dao, 2023), vanilla SSM, is included for its ability to model
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Table 1: Results on HAR dataset.
Florence UTKinect HDM05

Methods Accuracy (%) Methods Accuracy (%) Methods Accuracy (%)
MBP 82.00 Lie group 97.10 Lie group 70.26 ± 2.89
Lie group 90.08 EFC 94.90 LieNet 75.78 ± 2.26
SAM 66.20 SPGK 97.40 SPDNet 61.45 ± 1.12
EFC 87.04 ST-NBNN 98.00 P-LSTM 73.42 ± 2.05
MML 89.67 Bi-LSTM 96.90 DMT-Net 81.52 ± 1.17
TR 95.47 GR-GCN 98.50 F-DMT-Net 85.30 ± 1.58
GeoMind 98.96 GeoMind 98.67 GeoMind 89.85 ± 1.86

system dynamics over time. Two dynamic-FC methods, STAGIN (Kim et al., 2021), NeuroGraph
(Said et al., 2023). Three brain network analysis methods BrainGNN (Li et al., 2021), BNT (Kan
et al., 2022), and ContrastPool (Xu et al., 2024). More details are shown in Appendix A.7.

Evaluation metrics. For the Florence and UTKinect datasets, we adopt the standard leave-one-
actor-out validation protocol as outlined in (Gao et al., 2019). This method generates Q classification
accuracy values, which are averaged to produce the final accuracy score. For the HDM05 dataset, we
follow the experimental setup from (Huang & Van Gool, 2017), conducting 10 random evaluations.
In each evaluation, half of the samples from each class are randomly selected for training, with
the remaining half used for testing. In all HBC experiments, we utilize a 10-fold cross-validation
scheme, reporting accuracy (Acc), precision (Pre), and F1 score to provide a thorough evaluation of
model performance across various datasets.

4.4 RESULTS ON HUMAN ACTION RECOGNITION (HAR)

Table 1 presents the numerical results for the HAR dataset, demonstrating that our method delivers
competitive performance. The superiority of our method lies in its ability to simultaneously capture
spatio-temporal correlations while preserving the geometric structure between joints.

Remark 1. Our method effectively captures higher-order correlations between the 3D coordinates
of body joints and their temporal dynamics. Additionally, our method models the spatio-temporal
co-occurrences of body joints using a tailored global convolution kernel, which helps mitigate the
impact of noisy joints and enhances overall action recognition accuracy.

4.5 RESULTS ON HUMAN BRAIN CONNECTIVITY (HBC)

In this section, we explore the brain dynamics of health (task-based fMRI) and disease-related
(resting-state fMRI) cohorts. Firstly, we conduct a task-based recognition experiment for HCP-
WM dataset on fourteen methods, Table 2 (first column) shows the performance on different meth-
ods. Sequential models demonstrate a notable performance (pair-wise t-test, p < 10−4) advantage
over spatial models, with up to a 30% increase in accuracy. Our proposed GeoMind achieves the
best overall performance.

Remark 2. One possible explanation, from the perspective of machine learning, the superior per-
formance of sequential models over spatial models may be due to the stronger correlation between
the dynamic nature of BOLD signals and cognitive tasks, compared to the static wiring topology
of functional connectivities in healthy brains. Biologically, this difference stems from the design
of task-based experiments, which target specific brain responses related to cognitive functions like
attention and memory. These tasks increase brain activity, as reflected in the fluctuating dynamics
of BOLD signals.

Secondly, we analyze the early diagnosis of neurodegenerative diseases using resting-state fMRI,
focusing on Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) due to the availability of large
public datasets. Specifically, we assess the classification performance between cognitively normal
(CN) individuals and those with neurodegenerative diseases (ND). In these experiments, spatial
models perform slightly better than sequential models (difference is not statistically significant with
p = 0.37). Our proposed GeoMind demonstrates a much better performance in these tasks (outper-
forms the 2nd-ranked method with a significance improvement at p < 0.01).

Remark 3. In contrast to task-based fMRI, which captures brain activity in response to specific tasks,
resting-state fMRI measures spontaneous brain activity, reflecting intrinsic functional connectivity
between brain regions. These fundamental differences in biological mechanisms explain why spatial
models often achieve higher classification accuracy than sequential models in this context. Neuro-
logical impairments in ND may result from dysfunction rather than outright neuron loss (Palop et al.,
2006). ND can thus be viewed as a disconnection syndrome, where large-scale brain networks are
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Two dynamic-FC methods, STAGIN (Kim et al., 2021), NeuroGraph
 (Said et al., 2023). Three brain network analysis methods BrainGNN (Li et al., 2021), BNT (Kan
 et al., 2022), and ContrastPool (Xu et al., 2024). More details are shown in Appendix A.7.
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Table 2: Evaluation performance for different methods across HBC datasets. The best performance is high-
lighted in bold, while the second-best is underlined.

Metric HCP-WM ADNI OASIS PPMI ABIDE

1D-CNN
Acc 96.71 ± 0.74 76.00 ± 6.45 88.75 ± 1.87 68.02 ± 10.75 68.87 ± 3.10
Pre 96.73 ± 0.73 72.92 ± 14.98 87.23 ± 5.95 65.33 ± 13.50 70.79 ± 3.71
F1 96.71 ± 0.74 68.99 ± 9.60 84.93 ± 2.88 61.41 ± 13.42 67.93 ± 3.14

RNN
Acc 94.54 ± 0.97 75.20 ± 6.14 87.15 ± 2.31 56.55 ± 7.21 56.97 ± 3.20
Pre 95.60 ± 0.95 69.66 ± 75.82 77.30 ± 5.55 45.15 ± 15.34 59.66 ± 5.53
F1 94.54 ± 0.97 68.90 ± 8.94 81.25 ± 3.30 43.14 ± 8.46 48.52 ± 5.82

LSTM
Acc 96.61 ± 0.30 77.60 ± 6.25 87.07 ± 2.32 64.21 ± 10.56 56.68 ± 3.03
Pre 96.64 ± 0.29 76.11 ± 13.32 75.87 ± 4.04 57.86 ± 18.23 53.37 ± 14.74
F1 96.61 ± 0.30 72.48 ± 9.05 81.07 ± 2.09 56.25 ± 15.00 45.10 ± 5.31

Mixer
Acc 96.88 ± 0.65 77.20 ± 5.95 87.15 ± 2.20 66.12 ± 11.03 62.24 ± 2.26
Pre 96.93 ± 0.63 77.87 ± 12.76 77.60 ± 4.52 63.27 ± 16.97 64.37 ± 4.72
F1 96.89 ± 0.64 72.09 ± 9.56 81.26 ± 3.04 58.64 ± 14.44 60.68 ± 5.24

TF
Acc 97.77 ± 0.48 79.20 ± 5.31 88.03 ± 1.49 70.43 ± 11.74 67.02 ± 4.57
Pre 97.80 ± 0.47 78.53 ± 10.50 85.58 ± 5.17 66.59 ± 13.26 67.53 ± 4.85
F1 97.77 ± 0.48 75.39 ± 7.58 83.61 ± 2.90 64.68 ± 14.35 66.63 ± 4.77

Mamba
Acc 96.76 ± 0.86 74.40 ± 5.43 87.09 ± 0.75 67.93 ± 10.69 66.34 ± 0.27
Pre 96.80 ± 0.84 67.78 ± 14.50 75.93 ± 0.23 66.40 ± 11.44 68.26 ± 0.17
F1 96.76 ± 0.86 66.98 ± 8.59 81.10 ± 0.23 59.11 ± 8.87 66.30 ± 1.24

GCN
Acc 72.69 ± 2.14 74.40 ± 3.67 88.01 ± 1.70 68.02 ± 11.57 67.11 ± 4.49
Pre 73.28 ± 1.93 67.12 ± 12.30 84.86 ± 4.42 60.28 ± 18.09 67.76 ± 4.14
F1 72.72 ± 2.09 67.52 ± 5.87 84.20 ± 2.13 61.56 ± 15.25 66.88 ± 4.44

GIN
Acc 72.52 ± 2.41 76.40 ± 6.05 87.93 ± 2.52 70.33 ± 8.72 65.27 ± 3.86
Pre 73.02 ± 2.57 69.75 ± 16.55 83.17 ± 6.22 66.64 ± 11.05 66.45 ± 4.36
F1 72.40 ± 2.53 69.61 ± 9.92 83.59 ± 3.84 64.84 ± 10.62 64.96 ± 3.88

GSN
Acc 79.99 ± 1.91 79.20 ± 4.66 88.69 ± 1.69 70.40 ± 12.48 67.02 ± 3.17
Pre 80.28 ± 1.83 82.37 ± 4.81 86.22 ± 2.42 70.63 ± 14.00 68.30 ± 3.72
F1 79.92 ± 1.87 75.75 ± 4.92 86.54 ± 1.82 66.95 ± 13.64 66.38 ± 3.38

MGNN
Acc 74.70 ± 1.65 76.80 ± 3.92 88.73 ± 2.27 69.45 ± 10.37 64.97 ± 4.57
Pre 75.86 ± 1.39 76.80 ± 9.67 87.99 ± 4.92 63.10 ± 15.32 66.03 ± 5.28
F1 74.63 ± 1.71 72.49 ± 6.08 85.16 ± 3.73 63.23 ± 13.29 63.45 ± 6.77

GNN-AK
Acc 59.48 ± 0.95 77.20 ± 6.21 88.05 ± 2.00 68.83 ± 7.70 61.75 ± 3.23
Pre 61.97 ± 1.09 75.52 ± 13.41 86.38 ± 4.05 63.26 ± 11.75 64.71 ± 5.36
F1 59.32 ± 1.12 71.46 ± 9.81 83.88 ± 2.95 63.76 ± 9.01 58.10 ± 5.93

SPDNet
Acc 85.61 ± 1.01 78.50 ± 5.73 88.37 ± 2.14 66.02 ± 10.10 70.33 ± 3.03
Pre 85.89 ± 1.05 65.04 ± 9.01 86.19 ± 5.45 42.92 ± 15.25 70.95 ± 3.04
F1 85.57 ± 1.04 61.91 ± 13.62 84.66 ± 2.76 40.14 ± 17.60 70.02 ± 2.99

MLP
Acc 83.54 ± 1.20 80.40 ± 4.54 89.26 ± 1.86 58.98 ± 10.94 68.77 ± 2.96
Pre 84.18 ± 1.10 81.38 ± 5.55 88.72 ± 3.05 62.43 ± 13.15 69.39 ± 2.86
F1 83.56 ± 1.23 78.46 ± 4.99 86.47 ± 2.09 57.84 ± 11.82 68.67 ± 3.08

STAGIN
Acc 91.05 ± 0.90 74.00 ± 5.13 88.97 ± 1.81 67.75 ± 8.65 69.36 ± 2.23
Pre 91.11 ± 0.90 63.49 ± 15.47 89.33 ± 1.69 59.93 ± 13.32 69.94 ± 2.35
F1 91.02 ± 0.90 65.50 ± 8.45 85.46 ± 2.89 60.22 ± 10.83 68.86 ± 2.35

NeuroGraph
Acc 67.97 ± 1.41 77.60 ± 4.07 89.06 ± 2.05 73.31 ± 10.64 60.97 ±2.00
Pre 68.59 ± 1.17 76.19 ± 10.87 88.71 ± 3.15 67.98 ± 14.56 62.98 ± 5.28
F1 67.92 ± 1.33 73.52 ± 5.94 85.93 ± 2.32 68.63 ± 12.23 58.78 ± 4.26

GeoMind
Acc 98.29 ± 0.26 81.20 ± 2.27 89.60 ± 1.87 71.35 ± 10.26 70.97 ± 3.47
Pre 98.18 ± 0.34 83.18 ± 4.19 87.38 ± 2.12 76.07 ± 7.33 72.29 ± 4.14
F1 98.16 ± 0.35 78.72 ± 2.63 87.34 ± 3.26 70.60 ± 9.73 71.04 ± 3.60

progressively disrupted by neuropathological processes (Chiesa et al., 2017). Evidence suggests that
(1) brain function deteriorates years before cognitive decline and (2) the prodromal period can last
decades before clinical diagnosis (Viola et al., 2015). Table 2 provide solid evidence for the potential
of deep models in the early diagnosis of ND, with potential applications in clinical routine.

Thirdly, we analyze neuropsychiatric disorders using resting-state fMRI, focusing on Autism con-
ditions in ABIDE dataset. Table 2 (last column) shows that spatial models slightly outperform
sequential models. Herein, it is important to highlight the consistent top performance of SPDNet
across all evaluation metrics, second only to our GeoMind. Both SPDNet and our GeoMind share
two key methodological innovations: (1) preserving the geometry of FC matrices through manifold-
based feature representation learning (as shown in Fig. 2 (c)), and (2) utilizing a spatio-temporal
framework to capture dynamic patterns within evolving FC matrices. The exceptional performance
of SPDNet and GeoMind indicates that the effective diagnosis of neuropsychiatric disorders may de-
pend on robust spatio-temporal feature representation, grounded in solid mathematical foundations.
This is further reinforced by the biological evidence discussed below.
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STAGIN
 Acc 91.05 ± 0.90 74.00 ± 5.13 88.97 ± 1.81 67.75 ± 8.65 69.36 ± 2.23
 Pre 91.11 ± 0.90 63.49 ± 15.47 89.33 ± 1.69 59.93 ± 13.32 69.94 ± 2.35
 F1 91.02 ± 0.90 65.50 ± 8.45 85.46 ± 2.89 60.22 ± 10.83 68.86 ± 2.35
 NeuroGraph
 Acc 67.97 ± 1.41 77.60 ± 4.07 89.06 ± 2.05 73.31 ± 10.64 60.97 ±2.00
 Pre 68.59 ± 1.17 76.19 ± 10.87 88.71 ± 3.15 67.98 ± 14.56 62.98 ± 5.28
 F1 67.92 ± 1.33 73.52 ± 5.94 85.93 ± 2.32 68.63 ± 12.23 58.78 ± 4.26
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HCP-WM OASIS PPMI ABIDEADNI

Default mode Sensorimotor

Cerebellum

Somatosensory
Central executive Frontal lobe

Temporal lobe
Visual

Figure 3: Critical connections from geometric attention map on HBC datasets.

Remark 4. Autism and other neuropsychiatric disorders (such as Bipolar Disorder and Schizophre-
nia) are marked by atypical neural connectivity, with increased or decreased variability in BOLD
signals, as well as altered neural dynamics that affect the timing and coordination of brain activity,
impacting social and cognitive processing (Müller & Fishman, 2011; Uher et al., 2014; Rudie &
Dapretto, 2013; Menon, 2011; Just et al., 2012). Since Autism affects both network topology and
neural dynamics, a spatio-temporal approach is better suited for accurate diagnosis. In contrast,
for early detection of ND, spatial models tend to outperform sequential models, as cognitive de-
cline in ND is often associated with widespread neurodegeneration and disrupted network function.
Ultimately, integrating disease-specific pathophysiological insights is essential for developing and
interpreting effective diagnostic tools.

Finally, we evaluate the brain attention maps on the HBC datasets. Specifically, we extract the
attention matrix δ(·) of our GaA module (Sec. 3.2) to analyze the contributions of brain regions
and their connections during working-memory tasks, as well as their involvement in the progression
of AD, PD and Autism. To clarify, we select the top-20 connections (with high weight) from δ(·)
and map them back into brain, as shown in Fig. 3. For HCP-WM dataset, the critical connections
are mainly located in the default mode network (DMN, highlighted in blue dashed circles) and cen-
tral executive network (in orange dashed circle), implying that these regions are highly related to
the working-memory tasks. In AD (OASIS and ADNI dataset), the primary symptoms—cognitive
decline, memory loss, and behavioral changes—are well-documented. Our analysis reveals that
the most significant brain connections are found within the DMN and the somatosensory cortex (in
green dashed circles). This suggests that, in addition to memory degeneration, some patients may
experience abnormal responses to tactile stimuli or disruptions in body part sensation as the disease
progresses. These findings highlight the impact of AD on sensory processing and bodily awareness.
For PD, our analysis highlights key connections in the sensorimotor regions (in red dashed circles),
the frontal lobe (purple dashed circle), DMN, and the cerebellum (in black dashed circle). These
findings suggest that while PD primarily affects motor function, likely due to cerebellar dysfunction,
it may also impact cognitive and emotional functions, indicating a broader neurological involvement
beyond just motor control. For Autism, we also observe the responses of temporal lobe (in brown
dashed circle) and visual region (in yellow dashed circle), implying that this disease is closely as-
sociated with challenges in language processing, motor coordination and social interaction. Though
not cast in stone, most of the identified brain regions are aligned with current clinical findings.

Remark 5. Although different diseases exhibit significant variations (neuropsychiatric disorders and
neurodegenerative diseases), there are consistent patterns across certain neurodegenerative diseases,
such as AD and PD. From our experimental results, the attention mechanism we designed shows
the potential in uncovering the underlying mechanisms and progression pathways common to these
diseases. This mechanism could offer valuable insights into both the distinct and shared aspects of
different disease conditions, aiding in the exploration of their pathogenesis.

5 CONCLUSION

This work presents a geometric deep model of SSM, GeoMind, for understanding behavior/cognition
through deciphering brain dynamics. In line with theoretical analysis, our method integrates the
principles of geometric deep learning and efficient feature representation learning on non-Euclidean
data, specifically designed for learning on sequential data with inherent topological connections. We
have achieved promising experimental results on human connectome data as well as human action
recognition, indicating great applicability in real-world data for neuroscience and computer vision.
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A APPENDIX

A.1 LITERATURE SURVEY

RNN and its variants on manifold to neuroimaging application. Recurrent neural networks
(RNNs) have been reformulated as ordinary differential equations (ODEs) with continuous-time
hidden states, as highlighted by LTCNet (Hasani et al., 2021). These models serve as effective algo-
rithms for modeling time series data and are widely utilized across medical, industrial, and business
domains. For instance, Cai et al. (2023) has demonstrated its potential for brain state recognition and
Han et al. (2024) achieves continuous modeling of dynamic brain signals using ODEs. Furthermore,
the survey proposed by Niu et al. (2024) provides a comprehensive overview of ODE applications
in the field of medical imaging, showcasing their practicality and impact in this domain. Following
this, several manifold-based RNN models have emerged. For instance, Chakraborty et al. (2018) in-
troduced a statistical recurrent model defined on the manifold of symmetric positive definite (SPD)
matrices and evaluated its diagnostic potential for neuroimaging applications. This approach un-
derscores the effectiveness of utilizing manifold-based techniques to enhance the performance of
RNNs in complex medical contexts. The RNN model formulated on Riemannian manifolds Jeong
et al. (2021) is robustly supported by mathematical theory, as it utilizes covariance information to
dynamically model time-series data (Jeong et al., 2023). This capability allows it to capture richer
and more subtle representations within a higher-dimensional latent space. Such an approach is par-
ticularly effective in modeling complex data structures, such as capturing the functional dynamics
(Dan et al., 2022a; Huang et al., 2021), where the relationships among data points are inherently
geometric. By operating within the manifold framework, these models adeptly accommodate the
intricacies of underlying data distributions, thereby enhancing both interpretability and predictive
performance.

RNNs and their variants, while widely used for sequential modeling tasks, have notable limitations
that affect their performance in complex, dynamic systems. One of the key challenges is that RNNs
implicitly learn sequential patterns and temporal dependencies, without explicitly modeling the un-
derlying dynamics. This implicit nature makes RNNs harder to interpret, often turning them into
“black-box” models where the relationships between input variables and predicted outcomes can be
obscured, limiting their utility in scenarios requiring high interpretability. Although advancements
like LTCNet (Hasani et al., 2021) have improved the interpretability of RNNs by framing them as
an ODE, these models primarily focus on the dynamics of the hidden states and inputs (as shown
in Fig. 1 (a)). However, they failed to consider observation equations (but usually use MLP to fit
the observations), which describe the relationship between hidden states and observed data. This
formulation reduces their ability to fully model the observable aspects of a system, resulting in an
incomplete picture of the system’s dynamics and limiting their explanatory power.

SSM to neuroimaging application. State Space Models (SSMs) explicitly model temporal dy-
namics through latent variables governed by two key ODEs: the state equation, which captures the
evolution of the hidden state over time, and the observation equation, which relates the latent state
to observable data. This structured, ODE-based framework allows SSMs to offer a clearer under-
standing of how systems evolve and provides a higher level of interpretability compared to RNNs.
This makes SSMs particularly valuable in domains requiring an understanding of underlying sys-
tem dynamics, such as medical diagnostics and time-series forecasting. In contrast to RNNs and
their variants (e.g., LSTMs, GRUs), which often operate as “black boxes,” SSMs like Kalman Fil-
ters (Kalman, 1960) have well-established theoretical properties. These properties typically include
convergence and stability, providing a solid mathematical foundation that is difficult to guarantee
with more complex RNN architectures. RNNs, especially deeper ones, can suffer from issues like
vanishing or exploding gradients, which affect training stability and interoperability. SSMs also
naturally incorporate probabilistic structures, allowing them to effectively handle noisy or uncer-
tain data. This is particularly advantageous in low Signal-to-Noise Ratio (SNR) datasets, such as
fMRI (Wu et al., 2019) and Electroencephalogram (EEG) data (Plub-in & Songsiri, 2018), where
the ability to account for noise and uncertainty is critical. In light of these performance advantages,
only a few manifold-based SSMs have been developed. For instance, Chikuse (2006) explores the
modeling of time series observations in state-space forms defined on Stiefel and Grassmann mani-
folds. This approach utilizes Bayesian methods to estimate state matrices by calculating posterior
modes, effectively integrating geometric constraints with probabilistic inference. However, while
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Bayesian methods excel in handling uncertainty, they often face limitations in scalability, inference
speed, and flexibility compared to deep learning models, which offer more efficient and powerful
representation capabilities for large-scale data.

In this context, the introduction of deep geometric SSMs aims to combine the representational power
of deep neural networks with the interpretability and structured dynamics inherent in traditional
SSMs. By incorporating the geometric properties of manifold-based modeling, these models adeptly
capture the intrinsic structure of the data, which is crucial for accurately representing complex rela-
tionships in high-dimensional datasets, such as those found in brain imaging. This combination not
only enhances interpretability but also allows for a more nuanced understanding of the underlying
dynamics, ultimately improving the efficacy of the modeling process.

A.2 SSM TO CONVOLUTION OPERATION

s0 = Bx0

y0 = Cs0 +Dx0 = (CB +D)x0

s1 = As0 +Bx1 = ABx0 +Bx1

y1 = Cs1 +Dx1 = C
(
ABx0 +Bx1

)
+Dx1 = CABx0 + (CB +D)x1

s2 = As1 +Bx2 = A
(
ABx0 +Bx1

)
+Bx2 = A2Bx0 +ABx1 +Bx2

y2 = Cs2 +Dx2 = C
(
A2Bx0 +ABx1 +Bx2

)
+Dx2 = CA2Bx0 + CABx1 + (CB +D)x2

yk = CAkBx0 + CAk−1Bx1 + · · ·+ CABxk−1 + (CB +D)xk

⇒ K =
(
CB +D,CAB, . . . , CAkB, . . .

)
⇒ y = x ∗ K

(7)
Here, we abbreviate x(k), s(k), y(k), A(k) as xk, sk, yk, Ak for simplicity.

A.3 SPD CONVOLUTION OPERATION

Proof. Since H is SPD, it can be decomposed as follows:

H = ZZ⊤, (8)

where Z = [z1, z2, . . . , zθ] is a matrix of full rank. The convolutional result of an SPD representation
matrix X ∈ RN×N can then be expressed as:

O = X ∗H = X ∗ (ZZ⊤), (9)

⇒ X ∗ (z1z⊤1 ) + · · ·+X ∗ (zθz⊤θ ), (10)

⇒ X ∗ z1 ∗ z⊤1 + · · ·+X ∗ zθ ∗ z⊤θ , (11)
where the transition from Eq. 10 to Eq. 11 uses the property of separable convolution. Suppose
zi = [mi1,mi2, . . . ,miθ]

⊤, for i = 1, 2, . . . , θ. The convolution between X and zi can be written
as:

X ∗ zi = PziX, X ∗ z⊤i = XP⊤
zi , (12)

where Pzi ∈ R(M−N+1)×M and

Gzi =


mi1 mi2 · · · miN 0 0 · · ·
0 mi1 mi2 · · · miN 0 · · ·
0 0 mi1 mi2 · · · miN · · ·
...

...
...

...
...

...
...

0 0 · · · 0 mi1 mi2 · · · miN

 . (13)

Thus, the following equations hold:

X ∗ zi ∗ z⊤i = PziXP⊤
zi , (14)

and
O = X ∗ Z = Pz1XP⊤

z1 + · · ·+ PzθXP⊤
zθ
. (15)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Since the rank of Pzi equals M − N + 1, the matrix PziXP⊤
zi is also SPD. Therefore, for any

q ∈ RM where q ̸= 0, we have:
q⊤Oq =

θ∑
i=1

q⊤PziXP⊤
zi q > 0. (16)

Hence, O is an SPD matrix.

Furthermore, the k-th channel of X can be written as:

X(k) =

L∑
l=1

X(l) ∗H(k,l), (17)

where X(l) denotes the l-th channel of the input descriptor. Since X(l) and H(k,l) are SPD matrices,
and according to the above proof, X(l) is also an SPD matrix. Therefore, X(k) is a multi-channel
SPD matrix.

A.4 SPD exp(·) OPERATION

Proof: Since X is symmetric, we know that for any integer k, the powers Xk are also symmetric.
The matrix exponential of X is defined by the following power series:

exp(X) =

∞∑
k=0

Xk

k!
. (18)

Each term in this series involves a symmetric matrix Xk, and the sum of symmetric matrices remains
symmetric. Therefore, exp(X) is symmetric.

Since X is symmetric, it can be diagonalized as: X = QΛQ⊤, where Q is an orthogonal matrix (i.e.,
Q⊤Q = I) and Λ is a diagonal matrix containing the eigenvalues λ1, λ2, . . . , λn of X . Because X
is positive definite, all eigenvalues λi are positive, i.e., λi > 0 for all i.

The matrix exponential exp(X) is then given by:
exp(X) = Q exp(Λ)Q⊤, (19)

where exp(Λ) is the diagonal matrix with entries exp(λ1), exp(λ2), . . . , exp(λn). Since the expo-
nential function satisfies exp(λi) > 0 for all λi ∈ R, each eigenvalue of exp(X) is positive. Thus,
exp(X) has strictly positive eigenvalues, and since it is symmetric, it is also positive definite.

A.5 SPD PADDING [·] OPERATION

Given a SPD matrices X ∈ Sym+
N and a small positive value θ, the assemble matrix Y =

diag(θ,X) =

[
θ 0
0 X

]
is a SPD matrix.

Proof: First, Y is a symmetric, since Y ⊤ =

[
θ 0
0 X

]⊤
=

[
θ 0
0 X

]
= Y . Then, to show that Y is

positive definite, we need to verify that for any non-zero vector z =

[
z1
z2

]
∈ RN+1, the quadratic

form z⊤Y z is strictly positive.

We compute the quadratic form:

z⊤Y z =
[
z1 z⊤2

] [θ 0
0 X

] [
z1
z2

]
= z21θ + z⊤2 Xz2. (20)

Since θ > 0, the term z21θ ≥ 0, and it is strictly positive if z1 ̸= 0.

Furthermore, since X ∈ Sym+
N , X is positive definite, meaning z⊤2 Xz2 > 0 for any non-zero

z2 ∈ RN .

Thus, for any non-zero vector z =

[
z1
z2

]
, we have:

z⊤Y z = z21θ + z⊤2 Xz2 > 0. (21)
which proves Y ∈ Sym+

N+1 is a SPD matrix.
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A.6 DATASET

Table 3: The summarization of the HAR and HBC datasets.
Dataset # of sequences # of classes mean of lengths # of joints/ROIs

UTKinect 199 10 29 20
Florece 3D Actions 215 9 19 15

HDM05 686 14 248 31
HCP-WM 17,296 8 39 360

ADNI 250 5 177 116
OASIS 1,247 2 390 160
PPMI 209 4 198 116

ABIDE 1,025 2 200 116

For HAR dataset. We evaluate the performance of the proposed GeoMind on three benchmark
HAR datasets: the Florence 3D Actions dataset (Seidenari et al., 2013), the HDM05 database
(Müller et al., 2007), and the UTKinect-Action3D (UTK) dataset (Xia et al., 2012). The Florence
3D Actions dataset includes 9 activities (answer phone, bow, clap, drink, read watch, sit down, stand
up, tie lace, wave), performed by 10 subjects, with each activity repeated 2 to 3 times, resulting in
a total of 215 samples. These actions are represented by the motion of 15 skeletal joints. For the
HDM05 dataset, we follow the protocol outlined in (Wang et al., 2015), selecting 14 action classes
(clap above head, deposit floor, elbow to knee, grab high, hop both legs, jog, kick forward, lie down
on floor, rotate both arms backward, sit down chair, sneak, squat, stand up, throw basketball). The
sequences, captured using VICON cameras, result in 686 samples, each represented by 31 skeletal
joints—significantly more than in the Florence dataset. The increased number of joints and higher
intra-class variability make this dataset particularly challenging. Finally, the UTKinect-Action3D
dataset consists of 10 action classes (carry, clap hands, pick up, pull, push, sit down, stand up,
throw, walk, wave hands), captured using a stationary Microsoft Kinect camera. Each action was
performed twice by 10 subjects, yielding 199 samples in total.

For HBC dataset. We select one dataset of healthy young adults and four disease-related hu-
man brain datasets for evaluation: the Human Connectome Project-Young Adult Working Memory
(HCP-WM) (Zhang et al., 2018), Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller
et al., 2005), Open Access Series of Imaging Studies (OASIS) (LaMontagne et al., 2019), Parkin-
son’s Progression Markers Initiative (PPMI) (Marek et al., 2011), and the Autism Brain Imaging
Data Exchange (ABIDE). We selected a total of 1,081 subjects from the HCP-WM dataset. The
working memory task included both 2-back and 0-back conditions, with stimuli featuring images
of bodies, places, faces, and tools, interspersed with fixation periods. The specific task events are:
2bk-body, 0bk-face, 2bk-tool, 0bk-body, 0bk-place, 2bk-face, 0bk-tool, and 2bk-place. Brain ac-
tivity was parcellated into 360 regions based on the multi-modal parcellation from (Glasser et al.,
2016). For the OASIS (924 subjects) and ABIDE (1,025 subjects) datasets, which are binary-class
datasets, one class represents a disease group and the other represent healthy controls. In the ADNI
dataset, subjects are categorized based on clinical outcomes into distinct cognitive status groups:
cognitively normal (CN), subjective memory concern (SMC), early-stage mild cognitive impair-
ment (EMCI), late-stage mild cognitive impairment (LMCI), and Alzheimer’s Disease (AD). For
population analysis, we group CN, SMC, and EMCI into a “CN-like” group, while LMCI and AD
form the “AD-like” group. This grouping enables a detailed analysis of cognitive decline and dis-
ease progression. The PPMI dataset consists of four classes: normal control, scans without evidence
of dopaminergic deficit (SWEDD), prodromal Parkinson’s disease, and Parkinson’s disease (PD).
This classification supports the study of different stages of Parkinson’s progression. We employ
Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) (116 brain regions) on
ADNI, PPMI, ABIDE datasets, while Destrieux atlas (Destrieux et al., 2010) (160 brain regions) are
used in OASIS to verify the scalability of the models.

A.7 COMPARSION METHODS AND EXPERIMENTAL RESULTS

We roughly summarize the comparison methods for HBC into two categories: spatial models and
sequential models.
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Spatial models. The spatial models are essential for understanding brain dynamics. Traditional
GNNs like graph convolutional network (GCN) (Kipf & Welling, 2016) and graph isomorphism
network (GIN) (Xu et al., 2018) are selected for their ability to effectively capture diffusion pat-
terns and isomorphism encoding in structured data. Subgraph-based GNNs, such as Moment-GNN
(Kanatsoulis & Ribeiro, 2023), emphasize subgraph structures, enabling the identification of local-
ized patterns that might be overlooked by traditional GNNs. Expressive GNNs, including graph
substructure network (GSN) (Bouritsas et al., 2022) and GNNAsKernel (GNN-AK) (Zhao et al.,
2021), are chosen for their enhanced expressivity through subgraph isomorphism counting and local
subgraph encoding, which could be crucial for distinguishing subtle differences in complex systems.

A manifold-based model like the symmetric positive definite network (SPDNet) (Dan et al., 2022b)
is adopted for its ability to manage high-dimensional manifold data, making it suitable for more
complicated datasets.

Two graph-based brain network analysis models for disease diagnosis, BrainGNN (Li et al., 2021),
an interpretable brain graph neural network for fMRI analysis, and ContrastPool (Xu et al., 2024), a
contrastive dual-attention block and a differentiable graph pooling method.

Additionally, a traditional multi-layer perceptron (MLP) serves as a model due to its efficiency and
versatility across various domains.

For all spatial models, following the optimal settings described in (Said et al., 2023), we use the
vectorized static functional connectivity (FC) as graph embeddings and the static FC matrices (N ×
N ) as adjacency matrices, where only the top 10% of edges are retained through thresholding to
ensure sparsity. The input of SPDNet is the original N ×N FC matrices.

For dynamic-FC models (STAGIN (Kim et al., 2021) and NeuroGraph (Said et al., 2023), the thresh-
olded dynamic FC matrices serve as the graph, NeuroGraph serve the vectorized FC as the em-
bedding and STAGIN incorporates BOLD signals as part of the embedding, alongside its unique
embedding construction method. For our GeoMind, we use the dynamic FC matrices as the input,
resulting in T ×N ×N matrices.

Sequential models. The sequential models are selected for analyzing temporal dynamics in time-
series BOLD signals. 1D-CNN is chosen for its ability to capture temporal patterns through convo-
lutional operations. RNN (Rumelhart et al., 1986) and LSTM (Hochreiter & Schmidhuber, 1997) are
included for their proficiency in modeling sequential data and capturing long-range dependencies.
MLP-Mixer (Tolstikhin et al., 2021) is selected for its capability to mix both temporal and spa-
tial features, offering a comprehensive view by integrating information across different dimensions.
Transformer (Vaswani et al., 2017) is chosen for its powerful attention mechanisms, which allow
it to capture global dependencies in sequential data. Brain network transformer (BNT) (Kan et al.,
2022) is a tailored approach specifically designed for brain network analysis. Lastly, the state-space
model (SSM), represented by Mamba (Gu & Dao, 2023), is selected for its advanced state-space
modeling abilities that effectively capture system dynamics over time.

For the sequential models, the inputs are the BOLD signals (N × T ).

Note, the inputs for all comparison methods align with the recent work presented in (Ding et al.,
2024), ensuring fairness in the evaluation process.

We further conducted experiments using three brain network analysis models on disease-based
datasets, including ADNI, OASIS, PPMI, and ABIDE. The diagnostic accuracies of 10-fold cross-
validation are presented in Table 4. It is clear that our GeoMind consistently outperforms all the
compared methods.

Table 4: Diagnostic accuracies on three popular brain network analysis models.
ADNI OASIS PPMI ABIDE

BrainGNN 76.57 ± 10.01 86.07 ± 5.71 67.88 ± 10.32 62.24 ± 4.44
BNT 79.68 ± 6.15 86.07 ± 3.19 64.55 ± 16.80 69.99 ± 5.37

ContrastPool 80.08 ± 5.01 89.02 ± 4.22 69.78 ± 7.36 70.72 ± 3.45
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A.8 INFERENCE TIME AND THE NUMBER OF PARAMETERS

We summarize the inference time and the number of parameters of each mode on HCP-WM dataset
(N = 360, T = 39), all the experiments are conducted on NVIDIA RTX 6000Ada GPUs. We
can observe that our method efficiently utilized the parameters compared to most counterpart meth-
ods. Compared to Mamba (vanilla SSM), our method requires more time in the final step due to
the logarithmic mapping, which involves the computationally expensive Singular Value Decompo-
sition (SVD). However, it is more efficient than SPDNet (a manifold-based model), as we leverage
convolution operations. As a result, the overall computational cost remains manageable.

Table 5: Model inference time (ms/item) and the number of parameters (M) comparison across
various architectures on HCP-WM dataset.

GCN GIN GSN MGNN GNN-AK SPDNet MLP 1D-CNN

Time (ms) 2.29 2.28 3.40 2.23 38.18 27.05 2.67 0.93
Para (M) 1.79 3.89 0.92 4.94 290.3 0.19 66.9 2.22

RNN LSTM Mixer TF Mamba NeuroGraph STAGIN GeoMind

Time (ms) 0.87 0.91 0.91 1.21 0.33 39.79 20.92 2.51
Para (M) 1.19 14.45 6.78 12.98 27.05 0.29 1.17 14.60

More detailed information is shown in https://anonymous.4open.science/r/
GeoMind-12E8/.

A.9 ABLATION STUDY

We perform ablation studies to investigate the effects of sliding window size and the contribution of
the proposed GaA module in the underlying GeoMind network architecture. For sliding window
size, the experiments are performed on the PPMI dataset. For the evaluation without the GaA
module, we conduct experiments on all datasets, with the sliding window size fixed at 15. The
numerical results from 10-fold cross-validation are presented in Table 6.

Table 6: Ablation studies in terms of sliding window size and the contribution of GaA module in the underlying
GeoMind network architecture.

Window size 15 25 35 45 55
Acc 71.35 ± 10.26 70.83 ± 15.74 71.69 ± 10.10 72.01 ± 8.51 71.01 ± 14.23
Pre 76.07 ± 7.33 74.72 ± 10.00 73.54 ± 6.50 71.73 ± 7.56 71.00 ± 7.89
F1 70.60 ± 9.73 71.71 ± 7.29 70.72 ± 3.90 68.56 ± 6.74 67.67 ± 7.81

w/o GaA HCP-WM ADNI OASIS PPMI ABIDE
Acc 97.25 ± 0.65 79.60 ± 2.80 89.26 ± 2.29 70.97 ± 8.02 69.75 ± 2.70
Pre 97.29 ± 0.64 80.51 ± 4.92 87.37 ± 5.68 73.53 ± 8.93 69.90 ± 1.68
F1 97.24 ± 0.66 76.86 ± 3.78 86.49 ± 3.52 67.34 ± 8.66 69.66 ± 1.24

We can observe that GeoMind demonstrates relative insensitivity to window size, with optimal per-
formance observed at moderate values, typically within the range of 25 to 35. This robustness can
be attributed to GeoMind’s reliance on the SSM module to capture dynamic temporal characteris-
tics. Additionally, the proposed GaA module is an essential component of the network architecture,
contributing significantly to its overall performance.

A.10 DISCUSSION

We expect our manifold-based deep model to facilitate our understanding on brain behavior in the
following ways.

(1) Enhance the prediction accuracy. A plethora of neuroscience findings indicate that fluctuation
of functional connectivities exhibits self-organized spatial-temporal patterns. Following this notion,
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we conceptualize that well-defined mathematical modeling of intrinsic data geometry of evolving
functional connectivity (FC) matrices might be the gateway to enhance prediction accuracy. Our
experiments have shown that respecting the intrinsic data geometry in method development leads to
significantly higher prediction accuracy for cognitive states, as demonstrated in Table 2.

(2) Enhance the model explainability. We train the deep model to parameterize the transition of
FC matrices on the Riemannian manifold (Eq. 4 and 5). By doing so, we are able to analyze the
temporal behaviors with respect to each cognitive state using post-hoc complex system approaches
such as dynamic mode decomposition, stability analysis.

(3) Provide a high-order geometric attention mechanism that is beyond node-wise or link-wise focal
patterns. Conventional methods often employ attention components for each region or link in the
brain network separately, thus lacking the high-order attention maps associated with neural circuits
(i.e., a set of links representing a sub-network). In contrast, the geometric attention mechanism
(Eq. 6) in our method operates on the Riemannian manifold, taking the entire brain network into
account. As shown in Fig. 3, our method has identified not only links but also sub-networks relevant
to cognitive states and disease outcomes.
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