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Abstract

In-Context Learning (ICL) is a phenomenon where task learning occurs through1

a prompt sequence without the necessity of parameter updates. ICL in Multi-2

Headed Attention (MHA) with absolute positional embedding has been the focus3

of more study than other sequence model varieties. We examine implications4

of architectural differences between GPT-2 and LLaMa as well as Llama and5

Mamba. We extend work done by Garg et al. (2022) and Park et al. (2024)6

to GPT-2/LLaMa hybrid and LLaMa/Mamba hybrid models – examining the7

interplay between sequence transformation blocks and regressive performance8

in-context. We note that certain architectural changes cause degraded training9

efficiency/ICL accuracy by converging to suboptimal predictors or converging10

slower. We also find certain hybrids showing optimistic performance improve-11

ments, informing potential future ICL-focused architecture modifications. Ad-12

ditionally, we propose the "ICL regression score", a scalar metric describing a13

model’s whole performance on a specific task. Compute limitations impose re-14

strictions on our architecture-space, training duration, number of training runs,15

function class complexity, and benchmark complexity. To foster reproducible and16

extensible research, we provide a typed, modular, and extensible Python package17

on which we run all experiments. This code is available at https://github.18

com/anonymousforneurips64/neurips2024-submission21757.19

1 Introduction20

Popularized by Large Language Models such as GPT-2 [1] and GPT-3 [2], In-Context Learning (ICL)21

is the ability for highly expressive generative sequence models to predict phenomena by processing22

demonstrations without performing traditional gradient steps. Such phenomena vary from effective23

control systems [3] to answering questions in natural language [4, 5]. A large body of recent work24

has studied this phenomenon in transformer models [6, 7, 2, 1, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,25

19, 20, 21, 22, 23, 24, 25] , which derive in structure from Vaswani et al. [26].26

Some recent examples of this research on ICL include Garg et al [6], which studies ICL by providing27

a variety of function classes for models to learn, additionally benchmarking robustness by testing per-28

formance on out-of-distribution data. Guo et al[11] shows the validity of composing simple function29

classes to produce complex ones, while Liu et al [20] produced a metric for model information recall.30

These works give us a set of metrics with which we can use to compare model performance on ICL.31

ICL was initially primarily studied in attention-based models but has recently been explored in32

other sequence models, creating discussion on its differences across those models and why these33
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Task dim (d) points (N ) x distribution y calculation / parameter distribution Task-specific

Linear Regression 20 41 N (0, Id) w ∼ N (0, Id) –
Sparse Linear 20 41 N (0, Id) w ∼ N (0, Id), sparsity(w)← k k = 3

2-Layer MLP 20 101 N (0, Id) W
(1)
ij ,W

(2)
ij ∼ N (0, 1) width = 100

Decision Tree 20 101 N (0, Id) leaf ∼ N (0, 1),non_leaf ∼ {1, ..., d} depth = 4
Sparse Parity 10 140 {−1, 1}d y =

∏
j∈I x[j] k = 2

Vector MQAR 20 128 Unif(Sd−1) y ∼ Unif(Sd−1) –

Table 1: Summary of tasks. Each regression target fθ(xi) is either parametrized by a randomly
sampled θ or directly computed/sampled as detailed above.

occur architecturally. In our paper, we study this by substituting key modern transformer (Llama)34

components with Mamba blocks and GPT-2 components and richly benchmarking.35

Since ICL for complete natural language understanding often requires training models with over a36

billion parameters, the effects of architectural changes on fine-grained ICL abilities are often left37

unexplored. As a consequence, although language models have progressed quickly and entertained38

radically new architectures, there is limited extensible research that explores the effects of fine-grained39

architecture choices on ICL ability [8, 14]. Garg et al. established using simple function classes to40

evaluate ICL ability and examined solely GPT-2 as a sequence model. Lee et al. [8] expanded this41

analysis on a slightly different set of function classes for a variety of base models. Park et al. [14]42

evaluated ICL performance of 2 hybrid architectures between Mamba and GPT-2. Using unmodified43

Llama/Mamba/GPT-2 as a control, we analyze GPT2-Llama and Llama-Mamba hybrid architectures44

derived from replacing portions of GPT2 components with analogous Llama sections and LLama45

with Mamba blocks, respectively, in 12 total architectures (3 unmodified + 9 hybrid).46

We observe that the code written to analyze ICL with simple function classes – although almost47

unanimously extensions of Garg et al.’s – often requires substantial, structural changes to the parent48

codebase1, greatly heightening the barrier to extending each project in turn. Inspired by Donoho’s49

ideal of Frictionless Reproducibility [27], we provide a set of simple abstractions and interfaces to50

facilitate extensions and modifications to our code while promoting interoperability between forks.51

2 Related Work52

There are many ways to capture qualitative aspects of ICL with quantitative measures. Weber et al.53

[17] compare the agreement between generations of a language model under varying prompts of54

equal meaning to test robustness to variations. Olsson et al. [22] compute a heuristic "ICL score" to55

measure an accuracy increase in predictions of a model given more context. We adapt this metric to56

fit our experimental setup more aptly, regularizing along both the number of in-context examples and57

against a baseline predictor.58

In general, evaluating ICL ability has been approached from two primary avenues: both when the59

only solution at train time is to meta-learn an algorithm [6, 8, 28, 11, 19] and when optimal loss60

at train time can also be satisfied by memorization or otherwise leveraging previously trained-on61

data [10, 23]. In this work, we take the former approach through learning a regression algorithm to62

randomized simple function classes [6, 11, 15].63

Further still, non-transformer architectures are capable of ICL [8]. Lee et al. [8] observed ICL64

in numerous sequence model architectures (e.g. RNNs, Mamba, S4, CNNs, GPT-2, and Llama)65

and found qualitative differences in each architecture’s performance. Chan et al. [25] found that66

Transformers depend on "burstiness" and long-tail distributions of natural data to outperform RNNs67

and LSTMs in ICL tasks. Park et al. [14] uses simple function classes similar to Garg et al. [6]68

in evaluating the ICL ability of Mamba, S4, S4-Mamba, and GPT-2. They find an overlapping but69

inequivalent set of function classes for which each model succeeds and construct a hybrid architecture70

1As mentioned, our code takes notable inspiration from the code distributed by Garg et al. [6], Park et
al. [14], and Lee et al. [8], which can be found at https://github.com/dtsip/in-context-learning,
https://github.com/krafton-ai/mambaformer-icl, and https://github.com/ivnle/synth-icl
respectively. The first two repositories are licensed under the MIT License and we could not identify the license
for the third.
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to achieve the union of these abilities. We further this work by closely examining the contributions of71

individual architectural changes for GPT-2 and Llama-style transformers towards ICL ability.72

3 Methods73

As established by Garg et al. and extended by recent work, our ICL tasks take the following form74

[6, 8, 14]:75

x0, fθ(x0), x1, fθ(x1), ...,

query︷︸︸︷
xN︸ ︷︷ ︸

prompt P

, fθ(xN )︸ ︷︷ ︸
completion

where P is a series of input-output pairs followed by a lone query. The model predicts a completion76

based on the prompt it received. The function parameters θ and the inputs xi are randomly sampled77

from a function class domain and an input domain, respectively. The tasks we regress to are78

summarized in Table 1 and detailed in Section 3.179

We train models for ICL by minimizing the expected loss over a distribution of prompts and cor-80

responding function outputs. This approach allows us to observe qualitative differences in model81

architectures by their ability to behave similarly to optimal or baseline estimators. To further simplify82

ICL aptitude evaluation, we introduce a proxy value summarizing a given model’s ICL ability for83

a specific task. This metric averages the error of a model normalized by the baseline error at each84

context length. We detail this further in Section 3.3.85

3.1 Training86

To determine task-specific ICL ability, our sequence models regress onto the functions shown87

above [14]. We replicate the function classes Linear Regression, Sparse Linear Regression,88

2-Layer MLP Regression, and Decision Tree Regression from Garg et al. [6] as they89

present a wide range of "difficulty" for sequence models. In addition, to capture the existence90

of some ICL ability, we also regress onto the two function classes examined in Park et al. [14]: parity91

function with induced sparsity (Sparse Parity) and parallel associative recall (Vector MQAR).92

Unless otherwise specified, we train all models with 12 layers, 8 attention heads, an expansion factor93

of 4 (in the case of models with Mamba Mixer layers), and linear layers to transform the input94

sequences into and from the embedding dimension of 256. We use the ADAM optimizer with a95

learning rate of 0.0001 for 500k steps. Our expansion factor was selected to ensure similar parameter96

counts across baselines and all other hyperparameters were chosen for consistency with Garg et al.97

[6]. Note for the four function classes from Garg et al., the same curriculum was used during training.98

No curriculum is used for the two new function classes from Park et al. [14]. For our compute2, we99

utilized 898.90 hours on an A10, 55.74 hours on an RTX 3090, 151.90 hours on an RTX 4090, 75.48100

hours on an RTX 4070 Ti, and 9.83 hours on an RTX 6000.101

Linear Regression and Sparse Linear Regression Each function in these tasks is parametrized as a102

single weight vector (w) of dimension equal to that of the x-values (i.e. 20) so that y = wTx. We103

sample the coordinate values from a normal distribution and (in the Sparse Linear case) zero out all104

values except a uniformly at random selected k coordinates. In essence, one can consider Linear105

Regression to be the degenerate case where the k = 20. We preserve these tasks from Garg et al. [6]106

to verify that none of our hybrid modifications lose the near-optimal performance that was already107

found with GPT-2.108

2-Layer MLP Regression We fill two weight matrices W (1) ∈ R100×20 and W (2) ∈ R1×100 with109

scalar samples from a normal distribution. y values are computed as the result of a forward pass110

through a 2-layer multi layer perceptron with a ReLU activation. That is: y = W (2)ReLU(W (1)x).111

This is a more complex function class that Garg et al. [6] found that GPT-2 can perform very well at,112

suggesting that this task can capture some ICL ability of an architecture.113

2On an A10, the approximate training time for Linear Regression and Sparse Linear Regression
was 12 hours, for 2-Layer MLP Regression and Decision Tree Regression was 2 days, and for Vector
MQAR was 5 hours.
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Decision Tree Regression We construct full decision trees of depth 4 with leaf values sampled from a114

normal distribution and branching conditions to be selected uniformly at random over the coordinates115

of the input dimension. The left branch is taken if the selected input coordinate is less than 0 and the116

right branch is taken otherwise. Garg et al. [6] found that GPT-2 was able to achieve much lower117

error for lower context lengths than XGBoost or Greedy Tree Learning, suggesting that this task can118

capture some ICL ability of an architecture.119

Sparse Parity We select k = 2 values to consider and compute their parity, expressed as either −1 or120

1. That is, we uniformly sample without replacement θ ∼ {1, ..., 10}k and compute y =
∏

i∈θ x[i].121

Along with a higher learning rate of 0.0004, this is identical to the scheme implemented in Park et al.122

[14]. They [14] found that GPT-2 style transformers do not perform well on this task, suggesting that123

this is a discerning proxy for measuring ICL ability. Finally, as convergence was quick for this task,124

we only trained models up to 200k steps.125

Vector MQAR We sample 2N points from the d-sphere of radius
√
d and group them randomly into126

pairs to forming N key-value pairs. For consistency with the experiments of Park et al. [14] and to127

reliably allow for the formation of transformer circuits highly relevant to this task [22, 14], we reduce128

model complexity by using an embedding dimension of 128, 2 layers, and a higher learning rate of129

0.0002. Park et al. [14] found that Mamba, our representative of SSM-type models, performed poorly,130

suggesting that this task can serve to ensure we don’t lose capabilities provided by transformers.131

Model Variation Pos. Emb. FFN Normalization
(1) GPT-2 Absolute GELU MLP Layer Norm

(1.1) GPT-2 RMS Absolute GELU MLP RMS Norm
(1.2) GPT-2 RoPE RoPE GELU MLP Layer Norm
(1.3) GPT-2 SwiGLU Absolute SwiGLU Layer Norm
(1.4) GPT-2 RMS SwiGLU Absolute SwiGLU RMS Norm
(1.5) GPT-2 RMS RoPE RoPE GELU MLP RMS Norm
(1.6) GPT-2 RoPE SwiGLU RoPE SwiGLU Layer Norm
(2) Llama RoPE SwiGLU RMS Norm

(2.1) Llama RoPE-less Mamba Mixer SwiGLU RMS Norm
(2.2) Llama SwiGLU-less RoPE Mamba Mixer RMS Norm
(2.3) Llama RoPE,SwiGLU-less Mamba Mixer Mamba Mixer RMS Norm
(3) Mamba – Mamba Mixer RMS Norm

(a) For our hybrid architectures, we modify 3 types of architectural
sub-blocks: positional embeddings, feed-forward network, and normal-
izations. We specify the sub-block alternatives used for each architecture.

(b) A block diagram illustrating how
each variation affects the overall archi-
tecture. Note that vertical arrows in a
given block indicate that some varia-
tions skip that block entirely.

Figure 1: Visual aid for our explored hybrid models in tabular and graphical format.

3.2 Architectures132

As detailed by Radford et al. [1], GPT-2 is almost identical to the original decoder-only transformer,133

with absolute positional embedding, pre-norm layer normalization, and a GELU activation function134

in the feed-forward network (FFN) (which is otherwise a multi-layer perceptron). In contrast, Llama135

[29, 30] combines a number of modern transformer modifications, including swapping layer norm136

with RMS norm [31], changing the architecture and activation function of the FFN, and using rotary137

4



GPT-2 Llama Mamba

Positional Embedding Absolute RoPE None
Feed Forward Network 2 layer MLP Convolutional MLP None
Attention Mechanism Multi-Query Multi-Head Multi-Query Multi-Head Mamba Mixer
Normalization Layer Norm RMS Norm RMS Norm

Table 2: A summary of the primary architectural differences between GPT-2, Llama, and Mamba.
We examine all variations between GPT-2 and Llama and all variations between Llama and Mamba.

positional embeddings instead of absolute positional embeddings [32]. We acknowledge that the138

larger variations of Llama2 [30] and both variations of Llama3 [33] used Grouped-Query Attention139

(GQA), however we surmise that at our model scales of ∼10 million parameters, GQA will not140

significantly affect the performance of our models. From an entirely different method of sequence141

modeling, Mamba forgoes positional embedding entirely, combining features of the Gated Linear142

Unit and state space expansion to remove the need for distinct attention and feed-forward blocks.143

We summarize these architectural differences in Table 2. We examine all combinations of these144

different components, training 12 total architectures (listed in Figure 1a) on our 6 tasks for a total of145

72 model-task pairs. Figure 1b illustrates how each of these variations compose into a model. We146

provide individual diagrams of each architecture in Appendix A.147

3.3 Evaluation148

In addition to the baseline metric (squared error as a function of context length) from Garg et. al.149

[6], we’ve established another metric: ICL regression score. This is a scalar expressing overall150

performance of a model on a task. Abstractly, the metric aims to capture the proportion of the baseline151

error saved by a model. The regression score is calculated by (1) computing the difference in error152

achieved by the model and the zero estimator at each context length, (2) computing the average of153

this value over the length of the sequence, (3) computing the same value for the baseline estimator,154

and (4) taking the ratio of these.155

In summary, ICL regression score can be calculated as follows:156

Smodel =

∑
i

(
ξ
(i)
model − ξ

(i)
0

)
∑

i

(
ξ
(i)
base − ξ

(i)
0

) (1)

where ξ
(i)
model is the squared error of the model of interest at context length i. Sim. ξ(i)base for baseline157

and ξ
(i)
0 for the zero estimator158

Summation over context length allows our ICL regression score to be used for the comparison of159

tasks with significantly differing context lengths. An interpretation for each of different possible160

values of our ICL regression score is given in 2a. This approach builds off of Olsson et al.’s "ICL161

Score" [22] by generalizing their selection of 500 and 50 in-context examples and reducing along the162

context length, allowing for tasks with widely different context lengths to be directly compared. We163

list our baselines in Table 2b.164

We replicate the baseline predictors for linear regression, sparse linear regression, and MLP regression165

from Garg et al. [6] due to the lack of a higher-performing baseline. However, we opted to use166

a pretrained GPT-2 model with identical structure to that used in Garg et al. to serve as a more167

calibrated baseline than Greedy Tree Learning or XGBoost. They showed superior decision tree ICL168

performance for a trained GPT-2 transformer compared to Greedy Tree Learning or XGBoost. For169

consistency with Park et al. [14] and due to the algorithmic hardness of Sparse Parity, we used170

our Mamba model trained on this task. Park et al. showed that Mamba can effectively learn this task,171

so we repeat our strategy as in Decision Tree Regression with our Mamba model (instead of172

GPT-2) as a baseline.173

3.4 Reproducibility Statement174

For ease of experimentation and reproducibility, we have built a typed, extensible, and modular175

Python codebase. We achieved this by identifying isolated processes in the training regime and176
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Condition Interpretation

Smodel > 1 model outperforms baseline
Smodel = 1 model matches baseline
Smodel < 1 model underperforms baseline
Smodel < 0 model underperforms zero estimator

(a) Interpretation of possible Smodel values com-
puted over context length.

Task Baseline Predictor

Linear Least Squares
Sparse Linear LASSO

MLP 2-layer NN
Decision Tree GPT-2
Sparse Parity Mamba

(b) The baselines for each task. The 2-layer NN is trained
for 1000 gradient steps, with a batch consisting of a ran-
domly selected point in the context. GPT-2 and Mamba
are trained for 500k steps on the specified task in the
same format as all other models.

Figure 2: Predictors and conditions for computation and interpretation of ICL regression score.

structuring our code to reflect them. In particular, the specification of (1) a function class, (2) a177

model type, (3) an evaluation scheme, and (4) a stage of training under a curriculum are all inherent178

to the experiment archetype as proposed by Garg et al. [6] and repeated by others [8, 15, 14]. We179

integrate standard reporting software Weights and Biases [34] and leverage fast implementations180

of attention [35] and 1-D convolutions [36]. We also implement a configuration-based system for181

training, loading, and evaluating models to facilitate frictionless repeatability of all experiments.182

4 Results183

We confirm the results from Garg et al. [6] and Park et al. [14] that GPT-2 and Mamba can184

learn our first four regression tasks in context. Park et al. [14] that Mamba struggles to perform185

Vector MQAR while transformers and hybrid architectures excel. We note that Llama and GPT-2186

have very comparable performance in Sparse Parity and Vector MQAR. We plot all qualitatively187

non-optimal squared error profiles in Figure 3 and all squared error profiles in Appendix B.188

(a) Notable phenomena for Sparse Linear. We
observe that while GPT-2 (orange) performs very
similarly to our baseline, adding RMS norm with-
out RoPE (red and green) leads to models perform-
ing notably worse than optimal.

(b) Notable phenomena for Decision Tree. We
note that Mamba (green) performs somewhat sub-
optimally while GPT-2 RMS (orange) fails to learn
the task entirely.

Figure 3: Squared error profiles that do not exhibit near-optimal behavior. Shaded regions are 99%
confidence intervals.

Models can converge to suboptimal regression schemes. We find that some model-task pairs189

produce suboptimal predictions, not as a result of insufficient training. A clear example is GPT-2190

RMS SwiGLU (model 1.4) on Sparse Linear. This model appears to not achieve optimal error191

– achieving an ICL Regression Score of only 0.754, opposed to ∼ 0.93 by other models – and yet192

its performance does not significantly improve with more gradient steps. We plot the squared error193

achieved by various checkpoints for model 1.4 in Figure 4a. We observe that this error profile appears194

similar to that of models trained on the Linear task and so also examine the prediction quality of the195
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(a) GPT-2 RMS SwiGLU Checkpoints on Sparse
Linear. We see that GPT-2 RMS SwiGLU converges
to the least squares solution, despite Lasso being the op-
timal solution. This suggests that GPT-2 RMS SwiGLU
fails to learn to utilize its context to its fullest extent.

(b) GPT-2 RMS SwiGLU trained on
Sparse Linear and evaluated on Linear.
When evaluated on a similar task to which
it was trained on, GPT-2 RMS SwiGLU ap-
pears to perform better than its siblings, de-
spite the fact that it performed worse than its
siblings on its original task! This suggests
that it learned a different regression scheme
than GPT-2 on the same training data.

Figure 4: Detailing plots to showcase GPT-2 RMS SwiGLU (model 1.4) learning a more general
but sub-optimal regression scheme when trained on Sparse Linear. Shaded regions are 99%
confidence intervals.

same model (GPT-2 RMS SwiGLU trained on Sparse Linear) on Linear in Figure 4b. We find196

that it indeed mimics the error profile of least squares. This result builds on Akyürek et al.’s findings197

[19] in what functions transformer models develop representations of. Akyürek et al. analyzed198

algorithms representable by GPT-2 like architectures. We note that they did not examine other layer199

types such as Mamba Mixer or SwiGLU.200

Models can escape suboptimal regression schemes. We see that GPT-2 SwiGLU (model 1.3)201

Sparse Linear on adopts a suboptimal regression scheme (least squares) partway in training,202

eventually unlearning its scheme in favor of the optimal regression scheme (lasso). We plot the203

squared error on Sparse Linear achieved by various checkpoints for Model 1.3 in Figure 5a, noting204

that the error of the checkpoint at 100k steps closely matches the error of least squares. Further, we205

examine the squared errors on Linear Regression for the various checkpoints for Model 1.3 in 5b and206

see that the checkpoint at 100k most closely matches least squares. This suggests that model 1.3207

learned the linear regression scheme in the beginning of training, but was eventually able to learn to208

utilize the sparse nature of its training data.209

Models can fail to converge within our training horizon. We find that a number of models210

performed strikingly poorly in their trained task. In particular, GPT-2 with Layer norm replaced by211

RMS norm (model 1.1) performed very poorly on Sparse Linear Regression and Decision212

Tree, as indicated by the lowest ICL Regression Score achieved in those tasks (0.535 and 0.114,213

respectively) and in Figures 3a and 3b. We also observe that GPT-2 with RMS and SwiGLU (model214

1.4) also did not converge to a regression scheme, despite apparently modelling a different regression215

scheme entirely. Similarly, Mamba (model 3) did not converge to a training scheme on Decision216

Tree as illustrated in Figure 6a. We believe this suggests a lower training efficiency for certain217

architectures on these tasks.218

Models can fail to learn the task entirely. In the case of Decision Tree, GPT-2 with RMS (model219

1.1) failed to learn the task entirely as not only indicated by its final ICL Regression Score but also220

its consistency in achieving very high error throughout training. We plot squared error for various221

checkpoints in Figure 6b.222

ICL Regression Scores reflect qualitative information contained in squared-error plots. Com-223

puted ICL Regression Scores are summarized in Table 3. Overall, most models are able to perform224

comparably to our baseline estimators, with nearly all examined models achieving a regression score225

of approximately 1 on all four function classes from Garg et al. (Linear Regression, Sparse226

Linear Regression, 2-Layer MLP, Decision Tree). The ICL Regression Scores for Linear227

7



(a) GPT-2 SwiGLU Checkpoints on
Sparse Linear. In the beginning of train-
ing, GPT-2 SwiGLU quickly converges to
least squares, but it is able to escape this re-
gression scheme and eventually has its error
profile approach that of Lasso.

(b) GPT-2 SwiGLU Checkpoints trained
on Sparse Parity and evaluated on
Linear Regression. We see that an ear-
lier checkpoint (100k) of GPT-2 SwiGLU
outperforms later checkpoints on a similar
task different from the task it was trained on.

Figure 5: Detailing plots to showcase GPT-2 SwiGLU (model 1.3) starting by learning a more general
but sub-optimal regression scheme but eventually converging to the optimal regression scheme when
trained on Sparse Linear. Shaded regions are 99% confidence intervals.

(a) Mamba Checkpoints on Decision Tree.
We see that Mamba does keep improving its er-
ror profile throughout training. This suggests that
Mamba did not reach convergence, and thus has
lower training efficiency on this task.

(b) GPT-2 RMS Checkpoints on Decision
Tree. We see that all checkpoints of GPT-2 per-
form very similarly, with little to no change in error
profile throughout training.

Figure 6: Squared error as a function of context length computed for various checkpoints for both
Mamba (model 3) and GPT-2 RMS (model 1.1) on Decision Tree. Shaded regions are 99%
confidence intervals.

Regression and 2-Layer MLP, along with their corresponding graphs of squared error as a function228

of context length, corroborate the claims from Garg et al. [6] that transformers can "learn" these tasks.229

Further, the ICL Regression Scores for Sparse Parity are consistent with Park et al. [14], with all230

hybrids between GPT-2, and Llama failing to "learn" the task and all hybrids between Llama and231

Mamba succeeding in "learning" the task. Indeed, the ICL Regression Score achieved by Mamba232

captures the qualitatively sub-optimal performance detailed above on Decision Tree.233

5 Discussion234

Even simple function classes leave room for local minima. We find that despite distilling down the235

phenomenon of In Context Learning to regression against simple function classes, there still exists236

room for models to adopt various regression schemes. This is supported by the apparent convergence237
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(1) GPT-2 0.996 0.932 1.130 1.000* 0.023
(1.1) GPT-2 RMS 0.997 0.535 1.130 0.114 –
(1.2) GPT-2 RoPE 0.995 0.927 1.130 1.004 –
(1.3) GPT-2 SwiGLU 0.997 0.913 1.128 0.994 –
(1.4) GPT-2 RMS SwiGLU 0.997 0.754 1.129 0.971 –
(1.5) GPT-2 RMS RoPE 0.996 0.927 1.128 1.005 –
(1.6) GPT-2 RoPE SwiGLU 0.996 0.929 1.129 1.011 –
(2) Llama 0.997 0.933 1.129 1.007 0.023

(2.1) Llama RoPE-less 0.996 0.928 1.130 1.018 1.000
(2.2) Llama SwiGLU-less 0.996 0.927 1.129 0.980 1.000
(2.3) Llama RoPE,SwiGLU-less 0.996 0.938 1.130 1.012 1.000
(3) Mamba 0.995 0.925 1.123 0.832 1.000*

Table 3: ICL Regression Scores for each architecture on each task, averaged over many sampled
functions, with 95% confidence intervals in the headers for each row. Best-in-task values are in
boldface except when not statistically significant from another architecture. GPT-2/Llama hybrids
were not evaluated on Sparse Parity due to compute constraints and lack of supporting evidence that
they should succeed. *These models were used as the baseline for this task.

of the error profiles of GPT-2 RMS (model 1.1) and GPT-2 RMS SwiGLU (model 1.4) to least238

squares regression for shorter context lengths.239

Hybrid architectures and function classes have varying levels of compatibility. Specific hybrid240

architectures can hesitate to learn/converge for certain function classes. This behavior is especially241

apparent in GPT-2 RMS’s (model 1.1) Decision Tree error graph and GPT-2 RMS SwiGLU’s (model242

1.4) Sparse Linear performance. It seems that GPT-2 RMS SwiGLU shows greater affinity towards243

learning least squares instead of LASSO. Certain hybrid architecture variations may place inductive244

biases on certain solution forms, resulting in extreme convergence times when these solution forms245

greatly vary from the optimal predictor’s form.246

Extensible Research as Reproducible Research. In the development of this work, continuously247

iterating to minimize the friction of reproduction has enabled rapid extension of our Python artifacts248

to support even abstractly defined hybrid architectures, which are often considered inextricable from249

highly bespoke code or dedicated packages such as xFormers [37]. We implore the reader to seriously250

consider the value of making their research extensible with a minimum of friction. We hope that our251

attempts to maximize extensibility and reproducibility contribute to the longevity of this work as a252

reliable, tested, and simple framework to use for studying simple function classes in context.253

5.1 Limitations and Future Work254

We have only one training run performed on each model-task pair. As a result, we have no255

estimation for how consistently observed phenomena appear with the given architectures. We only256

train each model for a maximum of 500K steps. Thus, when a model fails to converge within this257

window, we lose information on insightful trends that could possibly occur with further training.258

We do not empirically evaluate the effectiveness of ICL Regression Score or the usability of our259

provided code platform. We compute no verifying metrics to establish how well ICL Regression260

Score generalizes or is robust to qualitatively distinct ICL regression tasks. Similarly, we perform no261

user study on the effectiveness of our code platform, presenting only our own experience.262

Future Work In this paper we analyze ICL performance for GPT-2-Llama and Llama-Mamba263

hybrid architectures (9 total) on 6 tasks. Future relevant research could entail 1) expanding our264

architecture-space and streamlining our training-to-evaluation pipeline by creating an architecture265

search mechanism, 2) assessing our models on other sets of tasks, such as ones relating to lan-266

guage modeling or image classification, 3) verifying our results with additional training runs, 4)267

benchmarking model performance along hardware-related metrics.268
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A Architectures372

(a) The GPT-2 Architecture (b) The Llama Architecture (c) The Mamba architecture

Figure 7: The GPT-2, Llama, and Mamba architectures used in our regression tasks

(a) Llama with the feed-forward
block replaced by a Mamba Mixer
block

(b) Llama with rope embeddings
removed and a Mamba Mixer
prepended to serve as a "posi-
tional embedder"

(c) Llama with the feed-forward
block replaced by a Mamba Mixer
block, rope embeddings removed,
and a Mamba Mixer prepended to
serve as a "positional embedder"

Figure 8: The hybrid architectures as modifications to Llama
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(a) GPT-2 with the GELU MLP
replaced by a SwiGLU

(b) GPT-2 with the absolute po-
sitional encodings removed and
rotary position embeddings in-
cluded in attention

(c) GPT-2 with the Layer Norm
replaced by an RMS Norm

(d) GPT-2 with the GELU MLP
replaced by a SwiGLU and the
Layer Norm replaced by an RMS
Norm

(e) GPT-2 with absolute posi-
tional encodings removed, rotary
position embeddings included in
attention, and the Layer Norm re-
placed by an RMS Norm

(f) GPT-2 with the GELU MLP re-
placed by a SwiGLU, absolute po-
sitional encodings removed, and
rotary position embeddings in-
cluded in attention

Figure 9: The hybrid architectures as modifications to GPT-2
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B Complete Experimental Results373

B.1 Linear Regression374

(a) GPT-2-Llama Hybrid Runs (b) Llama-Mamba Hybrid Runs

(c) Residuals for GPT-2-Llama Hybrid Runs, taken
against Least Squares

(d) Residuals for Llama-Mamba Hybrid Runs,
taken against Least Squares

Figure 10: Linear Regression Runs with Residual Plots

B.2 Sparse Linear Regression375
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(a) GPT-2-Llama Hybrid Runs (b) Llama-Mamba Hybrid Runs

(c) Residuals for GPT-2-Llama Hybrid Runs, taken
against Lasso with α = 0.001

(d) Residuals for Llama-Mamba
Hybrid Runs, taken against Lasso
with α = 0.001

Figure 11: Sparse Linear Regression Runs

B.3 Decision Trees376

(a) GPT-2-Llama Hybrid Runs (b) Llama-Mamba Hybrid Runs

Figure 12: Decision Tree Runs

B.4 2-Layer NN Regression377
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(a) GPT-2-Llama Hybrid Runs (b) Llama-Mamba Hybrid Runs

Figure 13: 2-Layer NN Regression Runs

B.5 Sparse Parity378

(a) Hybrid and Base Model Runs (b) Residuals for Hybrid and Base Model Runs

Figure 14: Sparse Parity Runs with Residual Plots

B.6 Vector MQAR379

(a) GPT-2-Llama Hybrid Training Runs (b) Llama-Mamba Hybrid Training Runs

Figure 15: Vector MQAR Training Runs
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NeurIPS Paper Checklist380

1. Claims381

Question: Do the main claims made in the abstract and introduction accurately reflect the382

paper’s contributions and scope?383

Answer: [Yes]384

Justification: The abstract/introduction briefly covers the limitations of the paper while385

introducing the main claims/findings/contributions. We reference relevant work we are386

building off of.387

Guidelines:388

• The answer NA means that the abstract and introduction do not include the claims389

made in the paper.390

• The abstract and/or introduction should clearly state the claims made, including the391

contributions made in the paper and important assumptions and limitations. A No or392

NA answer to this question will not be perceived well by the reviewers.393

• The claims made should match theoretical and experimental results, and reflect how394

much the results can be expected to generalize to other settings.395

• It is fine to include aspirational goals as motivation as long as it is clear that these goals396

are not attained by the paper.397

2. Limitations398

Question: Does the paper discuss the limitations of the work performed by the authors?399

Answer: [Yes]400

Justification: We briefly mention some limitations in our analysis and experiments in Section401

5.1. We acknowledge our limited training runs, inexhaustive training horizon, incomplete402

evaluation of ICL Regression Score, and no metrics on the usability of our codebase.403

Similarly here we acknowledge that this list of limitations is by no means exhaustive.404

Guidelines:405

• The answer NA means that the paper has no limitation while the answer No means that406

the paper has limitations, but those are not discussed in the paper.407

• The authors are encouraged to create a separate "Limitations" section in their paper.408

• The paper should point out any strong assumptions and how robust the results are to409

violations of these assumptions (e.g., independence assumptions, noiseless settings,410

model well-specification, asymptotic approximations only holding locally). The authors411

should reflect on how these assumptions might be violated in practice and what the412

implications would be.413

• The authors should reflect on the scope of the claims made, e.g., if the approach was414

only tested on a few datasets or with a few runs. In general, empirical results often415

depend on implicit assumptions, which should be articulated.416

• The authors should reflect on the factors that influence the performance of the approach.417

For example, a facial recognition algorithm may perform poorly when image resolution418

is low or images are taken in low lighting. Or a speech-to-text system might not be419

used reliably to provide closed captions for online lectures because it fails to handle420

technical jargon.421

• The authors should discuss the computational efficiency of the proposed algorithms422

and how they scale with dataset size.423

• If applicable, the authors should discuss possible limitations of their approach to424

address problems of privacy and fairness.425

• While the authors might fear that complete honesty about limitations might be used by426

reviewers as grounds for rejection, a worse outcome might be that reviewers discover427

limitations that aren’t acknowledged in the paper. The authors should use their best428

judgment and recognize that individual actions in favor of transparency play an impor-429

tant role in developing norms that preserve the integrity of the community. Reviewers430

will be specifically instructed to not penalize honesty concerning limitations.431

3. Theory Assumptions and Proofs432
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Question: For each theoretical result, does the paper provide the full set of assumptions and433

a complete (and correct) proof?434

Answer: [NA]435

Justification: There are no theoretical results or claims in this paper, and thus no assumptions436

and proofs are required.437

Guidelines:438

• The answer NA means that the paper does not include theoretical results.439

• All the theorems, formulas, and proofs in the paper should be numbered and cross-440

referenced.441

• All assumptions should be clearly stated or referenced in the statement of any theorems.442

• The proofs can either appear in the main paper or the supplemental material, but if443

they appear in the supplemental material, the authors are encouraged to provide a short444

proof sketch to provide intuition.445

• Inversely, any informal proof provided in the core of the paper should be complemented446

by formal proofs provided in appendix or supplemental material.447

• Theorems and Lemmas that the proof relies upon should be properly referenced.448

4. Experimental Result Reproducibility449

Question: Does the paper fully disclose all the information needed to reproduce the main ex-450

perimental results of the paper to the extent that it affects the main claims and/or conclusions451

of the paper (regardless of whether the code and data are provided or not)?452

Answer: [Yes]453

Justification: We discuss training and evaluation in our paper while making our codebase454

accessible.455

Guidelines:456

• The answer NA means that the paper does not include experiments.457

• If the paper includes experiments, a No answer to this question will not be perceived458

well by the reviewers: Making the paper reproducible is important, regardless of459

whether the code and data are provided or not.460

• If the contribution is a dataset and/or model, the authors should describe the steps taken461

to make their results reproducible or verifiable.462

• Depending on the contribution, reproducibility can be accomplished in various ways.463

For example, if the contribution is a novel architecture, describing the architecture fully464

might suffice, or if the contribution is a specific model and empirical evaluation, it may465

be necessary to either make it possible for others to replicate the model with the same466

dataset, or provide access to the model. In general. releasing code and data is often467

one good way to accomplish this, but reproducibility can also be provided via detailed468

instructions for how to replicate the results, access to a hosted model (e.g., in the case469

of a large language model), releasing of a model checkpoint, or other means that are470

appropriate to the research performed.471

• While NeurIPS does not require releasing code, the conference does require all submis-472

sions to provide some reasonable avenue for reproducibility, which may depend on the473

nature of the contribution. For example474

(a) If the contribution is primarily a new algorithm, the paper should make it clear how475

to reproduce that algorithm.476

(b) If the contribution is primarily a new model architecture, the paper should describe477

the architecture clearly and fully.478

(c) If the contribution is a new model (e.g., a large language model), then there should479

either be a way to access this model for reproducing the results or a way to reproduce480

the model (e.g., with an open-source dataset or instructions for how to construct481

the dataset).482

(d) We recognize that reproducibility may be tricky in some cases, in which case483

authors are welcome to describe the particular way they provide for reproducibility.484

In the case of closed-source models, it may be that access to the model is limited in485

some way (e.g., to registered users), but it should be possible for other researchers486

to have some path to reproducing or verifying the results.487
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5. Open access to data and code488

Question: Does the paper provide open access to the data and code, with sufficient instruc-489

tions to faithfully reproduce the main experimental results, as described in supplemental490

material?491

Answer: [Yes]492

Justification: This paper contributes its codebase, which contains sufficient information in493

the ReadME for reproducibility. This paper’s "Methods" section discusses data generation494

for the simple function classes.495

Guidelines:496

• The answer NA means that paper does not include experiments requiring code.497

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/498

public/guides/CodeSubmissionPolicy) for more details.499

• While we encourage the release of code and data, we understand that this might not be500

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not501

including code, unless this is central to the contribution (e.g., for a new open-source502

benchmark).503

• The instructions should contain the exact command and environment needed to run to504

reproduce the results. See the NeurIPS code and data submission guidelines (https:505

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.506

• The authors should provide instructions on data access and preparation, including how507

to access the raw data, preprocessed data, intermediate data, and generated data, etc.508

• The authors should provide scripts to reproduce all experimental results for the new509

proposed method and baselines. If only a subset of experiments are reproducible, they510

should state which ones are omitted from the script and why.511

• At submission time, to preserve anonymity, the authors should release anonymized512

versions (if applicable).513

• Providing as much information as possible in supplemental material (appended to the514

paper) is recommended, but including URLs to data and code is permitted.515

6. Experimental Setting/Details516

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-517

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the518

results?519

Answer: [Yes]520

Justification: These details were explained under the "Methods" section are sufficient to521

understand our results.522

Guidelines:523

• The answer NA means that the paper does not include experiments.524

• The experimental setting should be presented in the core of the paper to a level of detail525

that is necessary to appreciate the results and make sense of them.526

• The full details can be provided either with the code, in appendix, or as supplemental527

material.528

7. Experiment Statistical Significance529

Question: Does the paper report error bars suitably and correctly defined or other appropriate530

information about the statistical significance of the experiments?531

Answer: [Yes]532

Justification: Every figure and number presented in this paper has confidence of intervals of533

95% or 99% (specified in each case).534

Guidelines:535

• The answer NA means that the paper does not include experiments.536

• The authors should answer "Yes" if the results are accompanied by error bars, confi-537

dence intervals, or statistical significance tests, at least for the experiments that support538

the main claims of the paper.539
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• The factors of variability that the error bars are capturing should be clearly stated (for540

example, train/test split, initialization, random drawing of some parameter, or overall541

run with given experimental conditions).542

• The method for calculating the error bars should be explained (closed form formula,543

call to a library function, bootstrap, etc.)544

• The assumptions made should be given (e.g., Normally distributed errors).545

• It should be clear whether the error bar is the standard deviation or the standard error546

of the mean.547

• It is OK to report 1-sigma error bars, but one should state it. The authors should548

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis549

of Normality of errors is not verified.550

• For asymmetric distributions, the authors should be careful not to show in tables or551

figures symmetric error bars that would yield results that are out of range (e.g. negative552

error rates).553

• If error bars are reported in tables or plots, The authors should explain in the text how554

they were calculated and reference the corresponding figures or tables in the text.555

8. Experiments Compute Resources556

Question: For each experiment, does the paper provide sufficient information on the com-557

puter resources (type of compute workers, memory, time of execution) needed to reproduce558

the experiments?559

Answer: [Yes]560

Justification: The list of all GPU types utilized for the experiments were included, along561

with the time spent for compute on each of them. Furthermore, we provide a breakdown of562

the time spent for each experiment type on the GPU that we utilized the most (an A10).563

Guidelines:564

• The answer NA means that the paper does not include experiments.565

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,566

or cloud provider, including relevant memory and storage.567

• The paper should provide the amount of compute required for each of the individual568

experimental runs as well as estimate the total compute.569

• The paper should disclose whether the full research project required more compute570

than the experiments reported in the paper (e.g., preliminary or failed experiments that571

didn’t make it into the paper).572

9. Code Of Ethics573

Question: Does the research conducted in the paper conform, in every respect, with the574

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?575

Answer: [Yes]576

Justification: We study ICL using simple function classes and do not use real world data.577

No human subjects are involved and there are no direct paths for negative societal impact.578

Guidelines:579

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.580

• If the authors answer No, they should explain the special circumstances that require a581

deviation from the Code of Ethics.582

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-583

eration due to laws or regulations in their jurisdiction).584

10. Broader Impacts585

Question: Does the paper discuss both potential positive societal impacts and negative586

societal impacts of the work performed?587

Answer: [NA]588

Justification: Since this paper studies ICL in hybrid models using simple function classes,589

there is no direct path to negative applications.590
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Guidelines:591

• The answer NA means that there is no societal impact of the work performed.592

• If the authors answer NA or No, they should explain why their work has no societal593

impact or why the paper does not address societal impact.594

• Examples of negative societal impacts include potential malicious or unintended uses595

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations596

(e.g., deployment of technologies that could make decisions that unfairly impact specific597

groups), privacy considerations, and security considerations.598

• The conference expects that many papers will be foundational research and not tied599

to particular applications, let alone deployments. However, if there is a direct path to600

any negative applications, the authors should point it out. For example, it is legitimate601

to point out that an improvement in the quality of generative models could be used to602

generate deepfakes for disinformation. On the other hand, it is not needed to point out603

that a generic algorithm for optimizing neural networks could enable people to train604

models that generate Deepfakes faster.605

• The authors should consider possible harms that could arise when the technology is606

being used as intended and functioning correctly, harms that could arise when the607

technology is being used as intended but gives incorrect results, and harms following608

from (intentional or unintentional) misuse of the technology.609

• If there are negative societal impacts, the authors could also discuss possible mitigation610

strategies (e.g., gated release of models, providing defenses in addition to attacks,611

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from612

feedback over time, improving the efficiency and accessibility of ML).613

11. Safeguards614

Question: Does the paper describe safeguards that have been put in place for responsible615

release of data or models that have a high risk for misuse (e.g., pretrained language models,616

image generators, or scraped datasets)?617

Answer: [NA]618

Justification: As this paper discusses ICL on simple function classes, it does not utilize619

real-world data or models real-world capabilities. Thus, there is no risk for misuse.620

Guidelines:621

• The answer NA means that the paper poses no such risks.622

• Released models that have a high risk for misuse or dual-use should be released with623

necessary safeguards to allow for controlled use of the model, for example by requiring624

that users adhere to usage guidelines or restrictions to access the model or implementing625

safety filters.626

• Datasets that have been scraped from the Internet could pose safety risks. The authors627

should describe how they avoided releasing unsafe images.628

• We recognize that providing effective safeguards is challenging, and many papers do629

not require this, but we encourage authors to take this into account and make a best630

faith effort.631

12. Licenses for existing assets632

Question: Are the creators or original owners of assets (e.g., code, data, models), used in633

the paper, properly credited and are the license and terms of use explicitly mentioned and634

properly respected?635

Answer: [Yes]636

Justification: We provide credit to the authors of the three codebases that inspired some of637

the features in our own and cite that their codebases fall under the MIT License for the first638

two, and could not be found for the third. URLs are provided for each codebase as well.639

Guidelines:640

• The answer NA means that the paper does not use existing assets.641

• The authors should cite the original paper that produced the code package or dataset.642
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• The authors should state which version of the asset is used and, if possible, include a643

URL.644

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.645

• For scraped data from a particular source (e.g., website), the copyright and terms of646

service of that source should be provided.647

• If assets are released, the license, copyright information, and terms of use in the648

package should be provided. For popular datasets, paperswithcode.com/datasets649

has curated licenses for some datasets. Their licensing guide can help determine the650

license of a dataset.651

• For existing datasets that are re-packaged, both the original license and the license of652

the derived asset (if it has changed) should be provided.653

• If this information is not available online, the authors are encouraged to reach out to654

the asset’s creators.655

13. New Assets656

Question: Are new assets introduced in the paper well documented and is the documentation657

provided alongside the assets?658

Answer: [Yes]659

Justification: Our codebase contains a ReadME providing thorough documentation. Our660

paper also explains high-level functionality of our codebase.661

Guidelines:662

• The answer NA means that the paper does not release new assets.663

• Researchers should communicate the details of the dataset/code/model as part of their664

submissions via structured templates. This includes details about training, license,665

limitations, etc.666

• The paper should discuss whether and how consent was obtained from people whose667

asset is used.668

• At submission time, remember to anonymize your assets (if applicable). You can either669

create an anonymized URL or include an anonymized zip file.670

14. Crowdsourcing and Research with Human Subjects671

Question: For crowdsourcing experiments and research with human subjects, does the paper672

include the full text of instructions given to participants and screenshots, if applicable, as673

well as details about compensation (if any)?674

Answer: [NA]675

Justification: There are no crowdsourcing experiments or research with human subjects, and676

thus no text of instructions or compensation information is included.677

Guidelines:678

• The answer NA means that the paper does not involve crowdsourcing nor research with679

human subjects.680

• Including this information in the supplemental material is fine, but if the main contribu-681

tion of the paper involves human subjects, then as much detail as possible should be682

included in the main paper.683

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,684

or other labor should be paid at least the minimum wage in the country of the data685

collector.686

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human687

Subjects688

Question: Does the paper describe potential risks incurred by study participants, whether689

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)690

approvals (or an equivalent approval/review based on the requirements of your country or691

institution) were obtained?692

Answer: [NA]693
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Justification: As there were no study participants in this study, this information was not694

included in this paper.695

Guidelines:696

• The answer NA means that the paper does not involve crowdsourcing nor research with697

human subjects.698

• Depending on the country in which research is conducted, IRB approval (or equivalent)699

may be required for any human subjects research. If you obtained IRB approval, you700

should clearly state this in the paper.701

• We recognize that the procedures for this may vary significantly between institutions702

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the703

guidelines for their institution.704

• For initial submissions, do not include any information that would break anonymity (if705

applicable), such as the institution conducting the review.706
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