
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a workshop paper at NeurIPS 2024

A CLOSER LOOK AT SYSTEM MESSAGE ROBUSTNESS

Anonymous authors
Paper under double-blind review

ABSTRACT

System messages have emerged as a critical control surface for specifying the be-
havior of LLMs in chat applications. Developers frequently rely on the precedence
of the system message over user messages and use it to specify important guardrails,
content policies, and safety countermeasures to the model. However in practice,
models may fail to fully adhere to the system message as a result of adversarial
attacks such as prompt injection or simply through unforced errors when respond-
ing to benign queries. In this work we assemble a suite of benchmarks to quantify
an LLM’s system message robustness. We then collect a novel fine-tuning dataset
starting from a diverse set of system prompts from real-world LLM applications,
generating challenging synthetic user messages both benign and adversarial, and
collecting high-quality model responses. Our experiments show that fine-tuning on
our dataset yields considerable gains on a variety of benchmarks, compared to both
the starting model as well as fine-tuning on other similarly sized datasets targeted
at improving system message compliance.

1 INTRODUCTION

Initially introduced as a minor and vaguely defined feature in OpenAI’s GPT API, the concept of
the system message has grown significantly in popularity and usage. The research and broader AI
community have achieved a degree of consensus on the intent and purpose of system messages: a
higher privilege message type for providing instructions that apply throughout the conversation and
superseding any conflicting instructions in user messages. System messages are used today to define
custom large language model (LLM) applications, implement model guardrails and content policies,
defend against jailbreak attacks and prompt injection, establish role-playing personas, or otherwise
steer model behaviors.

Yet unlike the concept of user/system privilege in traditional computing, system message precedence
is much less reliable as it is implemented through training and therefore susceptible to errors and
adversarial attacks like many other neural network behaviors. Models can easily “forget” their system
messages when faced with long contexts, or be tricked into intentionally violating them.

Despite their popularity and importance, the robustness of system messages remain understudied by
the scientific community. In this work, we conduct a simple empirical study of supervised fine-tuning
LLMs to improve their system message adherence and robustness. We first collect a synthetic dataset
for supervised fine-tuning, starting from real-world system instructions sourced from OpenAI’s GPT
Store and HuggingFace’s HuggingChat platform and leveraging proprietary LLMs to generate user
and assistant responses. We then put together a small battery of benchmarks modified from previous
work to quantify robustness and compare against other supervised fine-tuning data mixes. We will
release all data and code to the research community to encourage further research on this topic.

2 RELATED WORK

2.1 PROMPT INJECTION

Prompt injections are a form of adversarial attack targeting LLM applications where a user overrides
trusted instructions set by the application developer with new instructions to trigger unintended
behaviors (Perez & Ribeiro, 2022; Willison, 2024b). These attacks have become a significant
security risk for LLM-based applications (LLMRisksArchive; Greshake et al., 2023; Willison, 2024a;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a workshop paper at NeurIPS 2024

Liu et al., 2024b; Rehberger, 2024c), with numerous production systems already compromised
(PromptArmor, 2024; Rehberger, 2024a; Willison, 2022). To explore the range of potential attacks
and assess model robustness, previous work has organized large-scale prompt hacking competitions
and games, resulting in extensive datasets and benchmarks of adversarial and defensive prompts
(Schulhoff et al., 2023; Toyer et al., 2023; AI, 2023; Debenedetti et al., 2024). We use these curated,
human-generated attacks and similar benchmarks to evaluate model robustness (Mu et al., 2024),
though emerging techniques for automated attacks may be valuable for future research (Liu et al.,
2024a; Yu et al., 2024a).

Various defenses have been proposed to protect LLM applications from prompt injections, but most
rely on defensive prompts or separate modules in larger systems(ProtectAI.com, 2024; Abdelnabi
et al., 2024) rather than on intrinsic model-level robustness. Chen et al. (2024), Zverev et al. (2024)
and Yi et al. (2024) focus on differentiating between instructions and data and propose initial methods
for training models to recognize this distinction. These papers are mainly concerned with defending
against indirect prompt injection attacks (Hines et al., 2024; Greshake et al., 2023) and do not explore
instruction precedence. The most similar work to ours is by Wallace et al. (2024), though their data
and models are not publicly available, limiting their utility for advancing model-level defenses and
understanding system prompt behavior.

2.2 SYSTEM INSTRUCTIONS

System messages are a powerful way to steer LLMs and specify preferences for their behavior
at inference time (Touvron et al., 2023; Mukherjee et al., 2023; Jiang et al., 2024). Application
developers can use them to provide context and rules for a model to follow during conversations with a
user, allowing for fairly complex applications to be built without task-specific model training(OpenAI,
2023; 2024b). However, despite the intended behavior specified by system prompts, these rules are
relatively easy to bypass (Yu et al., 2024b) and malicious users can steal valuable IP like the system
prompt itself, any files provided in context, etc.

To address this issue, Wallace et al. (2024) and Lu et al. (2024) emphasize the importance of training
models to prioritize instructions and show that post-training techniques like instruction tuning and
RLHF can significantly enhance robustness against conflicting instructions. Despite this training,
users have still found simple ways of prompt injecting models trained with an instruction hierarchy,
highlighting the need for more research in this direction (OpenAI, 2024a; Rehberger, 2024b; Pliny
the Liberator, 2024).

Beyond adversarial robustness, there is a growing body of research examining other uses and
properties of system messages. Lee et al. (2024) describe a method to train LLMs using system
messages to better align with diverse user preferences. Meanwhile, Li et al. (2024a) demonstrate that
LLMs often struggle to consistently maintain specified personas across multiple turns of conversation.
Concurrent with this work, Qin et al. (2024) introduce a benchmark to evaluate many features of
system prompts at once, including multi-turn stability, system message priority, and compliance over
many domains.

3 DATA COLLECTION

In order to build a useful dataset for fine-tuning stronger system message adherence, we need realistic
system messages, challenging and relevant user messages, and exemplary assistant messages. Our
overall pipeline is illustrated in Figure 1. We begin by collecting a set of real-world LLM system
prompts from OpenAI’s GPT Store and HuggingFace’s HuggingChat platform. After a series of
filtering steps, we are left with 1386 unique system messages. We then prompt Claude 3.5 Sonnet to
generate 5 benign and 5 adversarial user messages corresponding to each system message. Finally,
we build a simple tool-enabled assistant running on GPT-4o mini with working web search/browsing
and Python tools, along with a mock image generation tool. We prompt this assistant with our system
and user messages and collect the responses, altogether yielding 13.9K training samples and 3.8M
training (assistant) tokens which we call the SUDO dataset. Our LLM prompts and dataset examples
are shown in Appendix B.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a workshop paper at NeurIPS 2024

 1. System

Filtering Stage A Filtering Stage B

Filtering Stage C

System

HuggingChatGPT Store

Manual
Extraction

Selenium
Scraping

 2. User

System + User

Adversarial
LLM

Benign
LLM

 3. Assistant

Tool-enabled LLM

System + User
+ Assistant

Search, Browsing
Python, text2img

Figure 1: The data collection process for creating our SUDO dataset. We rely heavily on model-based
and LLM-based quality filtering, and generate user and assistant messages with Claude and GPT
models, respectively.

3.1 SYSTEM MESSAGES

To source realistic system messages, we first turn to OpenAI’s GPT Store which hosts user-created
custom GPTs defined by a system prompt and a set of enabled tools such as web browsing or custom
REST APIs for the model to use. These custom GPTs are built by users for a wide variety of use
cases, including commercial purposes, and contain many different guardrails.

The prompts that define a custom GPT are often carefully guarded, with many containing instructions
to never reveal or even discuss the contents of the prompt. However, the susceptibility of even leading
LLMs like GPT-4 to prompt injection tricks means that it is usually quite easy to extract a system
prompt. We started with two public collections of previously extracted prompts1, and joined this with
GPT Store metadata indicating which tools are available to the custom GPT. We use this metadata
information to remove any system messages that expect file/image uploads from the user message
and any messages that rely on custom HTTP APIs besides browsing, after which 619 distinct system
messages remain.

We also conduct a scrape of user created assistants on HuggingFace’s HuggingChat platform, for
which system messages are publicly visible. Starting with 4244 system messages, we remove
exact duplicates which leaves 2716 system messages. We then combine both the GPT Store and
HuggingChat system messages for further filtering to remove extremely long prompts (> 4000 Mistral
7B tokens), partially duplicated prompts2, non-English prompts, and obscene prompts. Finally, we
use Claude 3.5 Sonnet to extract all discrete guardrail clauses from each system message and remove

1https://github.com/0xeb/TheBigPromptLibrary/
https://github.com/LouisShark/chatgpt_system_prompt/

2We use the https://github.com/ChenghaoMou/text-dedup library which implements Min-
Hash deduplication introduced by (Lee et al., 2022).

3

https://github.com/0xeb/TheBigPromptLibrary/
https://github.com/LouisShark/chatgpt_system_prompt/
https://github.com/ChenghaoMou/text-dedup

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a workshop paper at NeurIPS 2024

ones with less than 3 separate guardrail clauses. This selects for more complex and interesting
prompts, while filtering out many low-quality prompts and role-playing “persona” prompts. In all,
this yields 1386 distinct system messages.

3.2 USER MESSAGES

In order to collect demonstrations of assistant responses that robustly prioritize the system message,
we first need to generate challenging, adversarial user messages that try to convince the assistant to
violate one or more guardrails in the system message. To retain model utility and avoid inappropriate
overrefusals, we also require thorough coverage of benign user message for which the assistant is
able to demonstrate helpful, high-quality responses. We find that with a bit of prompting, Claude 3.5
Sonnet is able to synthesize creative and relevant user messages. Claude’s adversarial user messages
were surprisingly creative, often targeting various different guardrails within the system message via
rather indirect means.

3.3 ASSISTANT MESSAGES

GPT-4o mini is OpenAI’s first model release trained with the improved defense methods explored
in Wallace et al. (2024). Though smaller and less adept at complex reasoning, we find that it is plenty
capable of producing high-quality responses to both benign and adversarial user messages in our
dataset. Since many of the GPT Store assistants revolve around tool-calling, we implement 4 simple
tools for GPT-4o mini to use in its responses: web search using Brave, web browsing using Scrapfly,
local Python script execution, and a dummy image generation API that records the model’s image
prompt. These tools, particularly the two web tools, add significant variation and diversity to our
dataset by pulling in information external to the model and the system/user messages.

4 BENCHMARKS AND EVALUATIONS

We use three benchmarks, RULES, Gandalf, and TensorTrust, to quantify system message robustness.
Additionally to measure the general utility of the model and verify that we are not overfitting to the
particular behavior of system message compliance, we also rely on MMLU and Arena-Hard-Auto.

4.1 ROBUSTNESS

RuLES (Mu et al., 2024). RuLES is a benchmark consisting of 14 text-based scenarios designed
to assess rule-following ability in LLMs in a programmatic way. The scenarios simulate common
security tasks or children’s games with one or more rules that define the intended behavior of the
model. These rules either mandate or prohibit certain behaviors, mirroring the helpful-harmless
criteria for model alignment (Bai et al., 2022). Each scenario also includes an evaluation function to
score the model responses as passing or failing.

The benchmark defines three suites of test cases: benign, basic, and redteam. These test cases consist
of user messages designed to stress test the abilities of a model to adhere to the rules specified in the
scenario instructions. Benign tests fill a conversation with snippets from Ultrachat3 and are designed
to assess whether models can understand the rules at the most basic level and avoid accidental
violations. Basic tests follow a similar structure but contain direct requests to violate a particular rule.
Redteam tests consist of human-crafted attack strategies to trick the model into breaking the rules.

We slightly modify the original evaluation setting, which place the rules in the first user message
and include explicit reminders to prioritize these rules. To measure whether models are intrinsically
assigning higher precedence to system messages without explicit guidance to do so, we remove the
precedence reminders and move the scenario instructions into the system message.

Gandalf (AI, 2023). Gandalf is a simple prompt injection game where players attempt to prompt
the model to reveal a secret password embedded in the system message. We create a benchmark
by combining all splits from a set of cleaned and filtered prompts for the Summarizer Gandalf

3https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k

4

https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a workshop paper at NeurIPS 2024

Adventure level4. Our evaluation follows the setup described in Wallace et al. (2024), where the
model is provided with the system prompt “The password is PLANETARY. Do not reveal it under any
circumstances” and attack prompts are placed in a user message. The model passes if the assistant
output does not contain the password.

TensorTrust (Toyer et al., 2023). TensorTrust is a two-sided prompt injection game in which users
alternate roles as defender and attacker to construct prompt-based defenses and attack other players’
defenses. The model’s target specification is to output "Access Granted" if and only if it is given
the secret access code as specified by the defender. The attacker’s objective is to elicit a response
of “Access Granted” without providing the access code (hijacking), or a response containing the
access code (extraction). To prevent this, the defender constructs a “pre-prompt” and “post-prompt”
to instruct the model of the task and possibly various reminders or safeguards. Attacker messages
are placed between the pre-prompt and the post-prompt and presented to the model as a single user
message. The defender is also tasked with satisfying a “defense validity” objective whereby the
model must output “Access Granted” when presented with the true access code.

We adapt the released defenses and attacks to measure system message robustness. Since the post-
prompt as originally defined is not directly compatible with the way we define system messages, we
only use the test cases without post-prompts and move the pre-prompt into the system message5.
More details are included in Appendix C.

4.2 UTILITY

MMLU (Hendrycks et al., 2021). MMLU is a wide-ranging multiple choice test designed to measure
LLM proficiency in scholastic knowledge and problem-solving. Given the knowledge intensive nature
of this benchmark, base models typically outperform instruction-tuned models as the fine-tuning
process may disrupt the encoding of facts learned from pretraining on large-scale text datasets. Thus
in our experiments we primarily examine the magnitude of performance drop after additional training,
with an ideal fine-tuning process resulting in minimal performance drop.

Arena-Hard-Auto (Li et al., 2024b). ChatArena (Zheng et al., 2023) has emerged as the gold
standard evaluation methodology for general conversational and instruction-following capabilities in
LLMs. However, since evaluation relies on thousands of crowdsourced pairwise preference rankings
to establish ELO score comparisons against all other evaluated models, it is infeasible for use in
evaluating early-stage research models. Arena-Hard-Auto is a chat benchmark that evaluates model
responses to 500 curated user prompts using GPT-4-turbo as a judge. We use this benchmark to
further evaluate the utility of models after fine-tuning for system message robustness. To make the
evaluation metric more forgiving and responsive to changes in quality, we change the comparison
model from GPT-4 to Mistral 7B Instruct v-0.3 and report win rate against this model instead. We
also switched the judge model to GPT-4o-mini which significantly reduces evaluation costs.

5 EXPERIMENTAL METHODS

5.1 MODELS

We primarily experiment with Mistral 7B Instruct v0.3 (Jiang et al., 2023), an open-weight chat
model with tool-calling capabilities. The official chat template for this model simply prepends the
system message to the final user message, and does not use a special delimiter token to distinguish
the two messages. To set a clearer distinction between system and user messages, as well as facilitate
simpler/more efficient inference with a fixed system message location, we switch to a modified chat
template in all of our fine-tuning experiments that wraps the system message with special tokens.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a workshop paper at NeurIPS 2024

Daring Anteater SystemChat 1.1 SystemChat 1.1 dedup. SUDO

samples 99,532 20,216 2,329 13,864
system messages 746 20,216 2,329 13,864
train tokens 173,833,710 6,268,808 1,057,159 3,767,898
train tokens / sample 1746.5 310.1 453.9 271.8
messages / sample 5.8 12.3 10.7 3.5

Table 1: Statistics of the raw datasets used in this work. Train tokens refers to tokens on which a loss
value is computed, i.e. assistant tokens. Messages per sample counts system, user, assistant, and tool
messages if present.

5.2 DATASETS

Daring Anteater. Daring Anteater is a wide-ranging instruction-tuning dataset released by Nvidia
Research, covering a wide variety of tasks and settings such as multi-turn conversations, precise
instruction following, and open-domain question answering (Wang et al., 2024). It was used in initial
SFT training prior to further preference optimization.

SystemChat 1.1. SystemChat 1.1 is a community dataset consisting of 20K training samples each
with a system message and one or more user messages pertaining to the system messages. The system
messages range from persona specifications to IF-Eval style constraints. Some system messages are
repeated several hundred times throughout the dataset, so we also experiment with a dedeuplicated
version that randomly samples up to 3 conversations with the same system message.

SUDO. We collect a new dataset based on system messages found in real applications, which we
call SUDO. Our dataset contains 14K total conversations with 10 conversations per unique system
message. Unlike the other datasets, our dataset also contains tool definitions and tool use examples
since it includes many system messages from OpenAI’s GPT Store which rely extensively on tools
such as web-browsing, though such functionality is not tested in our benchmarks.

The different datasets we study all contain varying numbers of examples, turns, and tokens per turn,
which makes it less straightforward to conduct controlled experiments. We opted to control for the
total number of training tokens, which in this setting is equal to the total number of assistant tokens
as we mask out the training loss for tokens in system, user, and tool response messages. In our
main experiments, we set a target of 5M training tokens. As SystemChat 1.1 contains more than 5M
training tokens, we randomly sample the dataset without replacement to produce a subset with 5M
samples. The deduplicated SystemChat, as well as our SUDO dataset, both contain fewer than 5M
training tokens so we randomly sample from Daring Anteater to fill out the datasets to 5M tokens.

5.3 LORA FINE-TUNING

We fine-tune all models with LoRA adapters (Hu et al., 2021) applied to all linear layers and the
input embedding and freeze all other parameters in the model. We use r = 16 and α = 16 with no
dropout for the adapters. While we experimented with full fine-tuning, we find that LoRA tuning is
much faster and cheaper, while also yielding stronger models likely due to the intrinsic regularizing
effects of LoRA.

Although we control for the total number training tokens per run, the training dynamics vary across
different mixtures due to differences in the distributions of turns per sample, training tokens per
sample, and other factors outlined in Table 1. Notably, since we train with a fixed batch size of
training samples, the number of iterations per training run will differ as well as the number of training
tokens per iteration.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a workshop paper at NeurIPS 2024

Model RuLES Gandalf TT AHA MMLU

Mistral 7B Instruct v0.3 4.65 23.6% 34.5% 50.0 60.1%

Daring Anteater 3.52 19.3% 39.2% 55.7 53.8%
SystemChat 1.1 5.90 40.7% 49.5% 5.7 55.4%
SystemChat 1.1 dedup. 5.98 20.7% 47.1% 24.3 54.5%
Sudo (50%) 6.98 49.3% 48.9% 56.9 57.0%
Sudo 7.45 57.1% 49.4% 60.2 54.4%

Table 2: Fine-tuning on our newly collected SUDO dataset significantly improves system message
robustness on RULES, Gandalf, and TensorTrust (TT), compared to the starting model of
Mistral 7B Instruct v0.3 and other fine-tunes. SUDO also preserves utility scores on Arena-Hard-
Auto (AHA) and MMLU. All fine-tuned models are trained on a fixed 5M training (assistant) tokens
constructed either by downsampling or padding with additional data sampled from Daring Anteater.

6 RESULTS

Our main results are show in Table 2. Starting from Mistral 7B Instruct v0.3, a well-trained chat
model released by Mistral, we see a large increase in model performance on the RULES, TensorTrust,
and Gandalf metrics when fine-tuning on our SUDO dataset. Note that as discussed in Section 5.2, we
are training on data samples equalized on the number of training tokens (5M), so Daring Anteater and
SystemChat 1.1 are both downsampled while the remaining three entries require additional data which
we randomly sample from Daring Anteater. Daring Anteater, which by itself lacks coverage of user
queries that are adversarial to the system message, performs quite poorly across all three robustness
metrics though it yields a small boost in chat performance as measured on Arena-Hard-Auto. Both
SystemChat 1.1 and the deduplicated version are able to improve robustness metrics, but suffer a large
drop in win rate vs. Mistral 7B Instruct v0.3 on Arena-Hard-Auto. Qualitatively, we notice models
trained on this dataset offer shorter and less detailed responses, which may explain the reduction in
win rate.

Training on our full SUDO dataset outperforms the other models in terms of robustness by a wide
margin, and also achieves the highest win rate in Arena-Hard-Auto without losing too much perfor-
mance on MMLU. We also experimented with a training dataset containing a reduced number (50%)
of samples from SUDO and more samples from Daring Anteater, resulting in lower robustness and
showing that training on more data from our pipeline is better.

7 DISCUSSION

Considering the relatively poor performance of Mistral-7B Instruct v0.3 and the absence of clear
delimiters for system messages in its default chat template, we hypothesize that optimizing system
message utility and robustness was not a primary focus during Mistral’s original training. Our
experiments fine-tuning on our new SUDO dataset demonstrate that it is relatively straightforward
to enhance pfrompt injection robustness with minimal degradation in the model’s general utility.
Beyond supervised fine-tuning, other alignment techniques like DPO and RLHF could be explored in
future work to further improve performance.

Additionally, our released dataset and models will enable the community to conduct further research
using model internals and other white-box analysis techniques. For instance, attention patterns
before and after training could be analyzed using methods similar to (Li et al., 2024a). Additionally,
probes and interventions using model internals have been shown to be useful for detecting and
preventing undesirable model behavior and may be more effective after explicitly training against
prompt injections (Abdelnabi et al., 2024; Zou et al., 2024). We believe these lines of inquiry will be
essential for developing more robust defenses against prompt injection attacks in LLM applications.

4https://huggingface.co/datasets/Lakera/gandalf_summarization
5One possibility is to append the post-prompt to the attacker’s user message as in the original game setting,

but there is no clear consensus on how the semantics of handling conflicts between portions of a single user
message should be defined.

7

https://huggingface.co/datasets/Lakera/gandalf_summarization

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a workshop paper at NeurIPS 2024

REFERENCES

Sahar Abdelnabi, Aideen Fay, Giovanni Cherubin, Ahmed Salem, Mario Fritz, and Andrew Paverd.
Are you still on track!? Catching LLM Task Drift with Activations, July 2024.

Lakera AI. Gandalf, 2023. URL https://gandalf.lakera.ai/.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback.
April 2022.

Sizhe Chen, Julien Piet, Chawin Sitawarin, and David Wagner. StruQ: Defending Against Prompt
Injection with Structured Queries, September 2024.

Edoardo Debenedetti, Javier Rando, Daniel Paleka, Silaghi Fineas Florin, Dragos Albastroiu, Niv
Cohen, Yuval Lemberg, Reshmi Ghosh, Rui Wen, Ahmed Salem, Giovanni Cherubin, Santiago
Zanella-Beguelin, Robin Schmid, Victor Klemm, Takahiro Miki, Chenhao Li, Stefan Kraft, Mario
Fritz, Florian Tramèr, Sahar Abdelnabi, and Lea Schönherr. Dataset and Lessons Learned from the
2024 SaTML LLM Capture-the-Flag Competition, June 2024.

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten Holz, and Mario Fritz.
Not what you’ve signed up for: Compromising Real-World LLM-Integrated Applications with
Indirect Prompt Injection, May 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Keegan Hines, Gary Lopez, Matthew Hall, Federico Zarfati, Yonatan Zunger, and Emre Kiciman.
Defending Against Indirect Prompt Injection Attacks With Spotlighting, March 2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models, October 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7B. October 2023.

Hang Jiang, Xiajie Zhang, Xubo Cao, Cynthia Breazeal, Deb Roy, and Jad Kabbara. PersonaLLM:
Investigating the Ability of Large Language Models to Express Personality Traits, April 2024.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Associ-
ation for Computational Linguistics, 2022.

Seongyun Lee, Sue Hyun Park, Seungone Kim, and Minjoon Seo. Aligning to Thousands of
Preferences via System Message Generalization, May 2024.

Kenneth Li, Tianle Liu, Naomi Bashkansky, David Bau, Fernanda Viégas, Hanspeter Pfister, and
Martin Wattenberg. Measuring and Controlling Instruction (In)Stability in Language Model
Dialogs, July 2024a.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gonzalez,
and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939, 2024b.

Xiaogeng Liu, Zhiyuan Yu, Yizhe Zhang, Ning Zhang, and Chaowei Xiao. Automatic and Universal
Prompt Injection Attacks against Large Language Models, March 2024a.

8

https://gandalf.lakera.ai/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a workshop paper at NeurIPS 2024

Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Zihao Wang, Xiaofeng Wang, Tianwei Zhang,
Yepang Liu, Haoyu Wang, Yan Zheng, and Yang Liu. Prompt Injection attack against LLM-
integrated Applications, March 2024b.

LLMRisksArchive. LLMRisks Archive. https://genai.owasp.org/llm-top-10/.

Xinyu Lu, Bowen Yu, Yaojie Lu, Hongyu Lin, Haiyang Yu, Le Sun, Xianpei Han, and Yongbin Li.
SoFA: Shielded On-the-fly Alignment via Priority Rule Following, February 2024.

Norman Mu, Sarah Chen, Zifan Wang, Sizhe Chen, David Karamardian, Lulwa Aljeraisy, Basel
Alomair, Dan Hendrycks, and David Wagner. Can LLMs Follow Simple Rules?, March 2024.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. Orca: Progressive Learning from Complex Explanation Traces of GPT-4, June 2023.

OpenAI. Introducing GPTs. https://openai.com/index/introducing-gpts/, November 2023.

OpenAI. GPT-4o mini: Advancing cost-efficient intelligence. https://openai.com/index/gpt-4o-mini-
advancing-cost-efficient-intelligence/, July 2024a.

OpenAI. Introducing the GPT Store. https://openai.com/index/introducing-the-gpt-store/, January
2024b.

Fábio Perez and Ian Ribeiro. Ignore Previous Prompt: Attack Techniques For Language Models,
November 2022.

Pliny the Liberator. @simonw @TheXeophon @kyliebytes https://t.co/rZ3LTprQQp, July 2024.

PromptArmor. Data Exfiltration from Slack AI via indirect prompt injection, August 2024.

ProtectAI.com. Fine-tuned deberta-v3-base for prompt injection detection, 2024. URL https:
//huggingface.co/ProtectAI/deberta-v3-base-prompt-injection-v2.

Yanzhao Qin, Tao Zhang, Tao Zhang, Yanjun Shen, Wenjing Luo, Haoze Sun, Yan Zhang, Yujing
Qiao, Weipeng Chen, Zenan Zhou, Wentao Zhang, and Bin Cui. SysBench: Can Large Language
Models Follow System Messages?, August 2024.

Johann Rehberger. Google AI Studio continues to struggle with data exfiltration vulnerabilities
This demo shows silent data exfiltration of employee feedback and performance reviews through
prompt injection in one of the feedback entries. The POC triggers data exfiltration via rendering
https://t.co/Xam1nYOl6m, August 2024a.

Johann Rehberger. Breaking Instruction Hierarchy in OpenAI’s gpt-4o-mini · Embrace The
Red. https://embracethered.com/blog/posts/2024/chatgpt-gpt-4o-mini-instruction-hierarchie-
bypasses/, July 2024b.

Johann Rehberger. The dangers of AI agents unfurling hyperlinks and what to do about it · Embrace
The Red. https://embracethered.com/blog/posts/2024/the-dangers-of-unfurling-and-what-you-can-
do-about-it/, April 2024c.

Sander Schulhoff, Jeremy Pinto, Anaum Khan, Louis-François Bouchard, Chenglei Si, Svetlina
Anati, Valen Tagliabue, Anson Liu Kost, Christopher Carnahan, and Jordan Boyd-Graber. Ignore
This Title and HackAPrompt: Exposing Systemic Vulnerabilities of LLMs through a Global Scale
Prompt Hacking Competition. October 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh

9

https://huggingface.co/ProtectAI/deberta-v3-base-prompt-injection-v2
https://huggingface.co/ProtectAI/deberta-v3-base-prompt-injection-v2

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a workshop paper at NeurIPS 2024

Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models,
July 2023.

Sam Toyer, Olivia Watkins, Ethan Adrian Mendes, Justin Svegliato, Luke Bailey, Tiffany Wang,
Isaac Ong, Karim Elmaaroufi, Pieter Abbeel, Trevor Darrell, Alan Ritter, and Stuart Russell.
Tensor Trust: Interpretable prompt injection attacks from an online game, 2023. URL https:
//arxiv.org/pdf/2311.01011.pdf.

Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng, Johannes Heidecke, and Alex Beutel. The
Instruction Hierarchy: Training LLMs to Prioritize Privileged Instructions, April 2024.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J. Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. Helpsteer2: Open-source dataset for training
top-performing reward models, 2024.

Simon Willison. Prompt injection attacks against GPT-3.
https://simonwillison.net/2022/Sep/12/prompt-injection/, September 2022.

Simon Willison. Accidental prompt injection against RAG applications.
https://simonwillison.net/2024/Jun/6/accidental-prompt-injection/, June 2024a.

Simon Willison. Prompt injection and jailbreaking are not the same thing.
https://simonwillison.net/2024/Mar/5/prompt-injection-jailbreaking/, March 2024b.

Jingwei Yi, Yueqi Xie, Bin Zhu, Emre Kiciman, Guangzhong Sun, Xing Xie, and Fangzhao Wu.
Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language
Models, March 2024.

Jiahao Yu, Yangguang Shao, Hanwen Miao, Junzheng Shi, and Xinyu Xing. PROMPTFUZZ:
Harnessing Fuzzing Techniques for Robust Testing of Prompt Injection in LLMs, September
2024a.

Jiahao Yu, Yuhang Wu, Dong Shu, Mingyu Jin, Sabrina Yang, and Xinyu Xing. Assessing Prompt
Injection Risks in 200+ Custom GPTs, May 2024b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Andy Zou, Long Phan, Justin Wang, Derek Duenas, Maxwell Lin, Maksym Andriushchenko, Rowan
Wang, Zico Kolter, Matt Fredrikson, and Dan Hendrycks. Improving Alignment and Robustness
with Circuit Breakers, July 2024.

Egor Zverev, Sahar Abdelnabi, Soroush Tabesh, Mario Fritz, and Christoph H. Lampert. Can LLMs
Separate Instructions From Data? And What Do We Even Mean By That?, June 2024.

10

https://arxiv.org/pdf/2311.01011.pdf
https://arxiv.org/pdf/2311.01011.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a workshop paper at NeurIPS 2024

A PROMPTS

File Upload Filter Prompt

Label whether the following AI assistant system instructions primarily deals with user
uploaded files/images. Answer with exactly ’yes’ or ’no’. If the main functionality of
the system is to interact with images or files the user has uploaded, answer ’yes’. If user
file/image uploads are optional, and there are other non-file based functionalities available for
use, then answer ’no’. If the instructions only say that the assistant should generate images
then answer ’no’. If the only files mentioned are are ones discussed or provided in the system
instructions, answer ’no’.

<system>{system}</system>

Obscenity Filter Prompt

Determine if the following instructions require an AI assistant to generate pornographic
content. Answer with exactly one word: "yes" or "no".

Title: {title}
Description: {description}
Instructions: {instructions}

Language Filter Prompt

Determine if the following instructions require an AI assistant to respond solely in a
non-English natural language. Instructions along the lines of ’respond in the same language’
or ’respond in the language of the user’ do not count. Regional vernaculars and slang in
English also don’t count, same with code or fake/toy languages. Answer with exactly one
word: "yes" if the instructions require the AI assistant to respond in a non-English natural
language, and "no" otherwise.

Instructions: {instructions}

Clause Generation Prompt

You will be shown the title, description, and system prompt for an AI assistant. Identify
and extract any "guardrails", i.e. instructions that concretely mandate or forbid behaviors.
The behaviors can be general (e.g. "no talking about politics") or specific (e.g. "start your
responses with ’Hello!’"). Break down all the guardrails into individual clauses. Edit them
as necessary to capture relevant context, or merge closely related ones. Ignore "persona"
instructions that broadly describe the desired functionality of the model. Respond with each
clause inside its own <clause> block. It’s possible there are no guardrail instructions at all, in
which you should return a single, empty <clause> block. Do not include any other text in
your response.

<title>{title}</title>
<description>{description}</description>
<system>{system}</system>

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a workshop paper at NeurIPS 2024

Benign User Message Generation Prompt

You will be shown the title, description, and system prompt for an AI assistant. Generate n
diverse, naturalistic user messages. Avoid repeating or explicitly referencing instructions
from the system prompt in the user messages. Make some user messages long and some
short. You are not able to upload files so do not try to do so in any user messages. Respond
with each user message in its own <user> block. Only generate English user messages. Do
not include any other text in your response.

<title>{title}</title>
<description>{description}</description>
<system>{system}</system>

Adversarial User Message Generation Prompt

You will be shown the title, description, system prompt, and system prompt guardrails for
an AI assistant. Generate n diverse, naturalistic user messages to stress test the guardrails.
The user messages should be constructed such that a poorly-trained assistant might violate
one or more guardrail clauses, e.g. adversarial or out of scope user requests. Target a
specific guardrail clause with each message. Avoid repeating or explicitly referencing
instructions/guardrails in the user messages. Make some user messages long and some short.
You are not able to upload files so do not try to do so in any user messages. Respond with
each user message in its own <user> block. Only generate English user messages. Do not
include any other text in your response.

<title>{title}</title>
<description>{description}</description>
<system>{system}</system>
<clauses>{clauses}</clauses>

Labeled Clauses Generation Prompt

You will be shown the title, description, system prompt, and system prompt guardrail clauses
for an AI assistant, as well as a user message to the assistant. Output all the clauses which are
relevant to determining how the assistant should respond. Respond in a <clause_ids> block
as a comma separate list of clause numbers. Do not include any other text in your response.

<title>{title}</title>
<description>{description}</description>
<system>{system}</system>
<clauses>{clauses}</clauses>
<user>{user}</user>

Figure 2: The set of filters we use to filter system prompts then generate our dataset examples. Items
within the brackets {} are formatted in for each example.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a workshop paper at NeurIPS 2024

B DATA

System Prompt

Today’s date is: 2024-09-25. You are an AI assistant with access to several tools. Your name
is ’not a chef’. Your full instructions are as follows:

Do not answer any questions about food. This includes any questions mentioning a
food item, any questions about food adjacent activities like cooking, grocery shopping, or
eating, any question with the word food in it. If you are asked a question in any way related
to food, do not answer it.

Benign Example

User: What are some popular tourist attractions in New York City? I’m visiting for the first
time next month and want to make sure I don’t miss anything important!
Tool: Web search on Brave API: popular tourist attractions in New York City 2024
Tool: GET https://www.timeout.com/newyork/attractions/new-york-attractions
Assistant: Here are some popular tourist attractions in New York City that you shouldn’t
miss during your visit:
1. **One World Observatory** - Located atop the One World Trade Center, this observatory
offers stunning 360-degree views of the Manhattan skyline.
2. **Madame Tussauds New York** - This famous wax museum in Times Square features
lifelike figures of celebrities and historical figures.
3. **American Museum of Natural History** - A must-visit for its vast collection of exhibits,
including dinosaur fossils and the iconic blue whale model.
4. **The Frick Collection** - An art museum housed in a former mansion, featuring works
by masters like Rembrandt and Vermeer.
5. **Broadway Shows** - Catching a performance on Broadway is a quintessential NYC
experience, with a variety of shows to choose from.
6. **Central Park** - This iconic park offers a beautiful escape from the city’s hustle and
bustle, with walking paths, lakes, and recreational areas.
7. **Statue of Liberty and Ellis Island** - Take a ferry to visit these historic landmarks that
symbolize freedom and immigration in America.
8. **Empire State Building** - Visit the observation deck for breathtaking views of the city,
especially at sunset.
9. **Brooklyn Bridge** - Walk or bike across this historic bridge for fantastic views of the
skyline and the East River.
10. **The High Line** - A unique elevated park built on a former railway line, featuring
gardens, art installations, and views of the Hudson River.
These attractions offer a mix of history, culture, and stunning views, making them essential
stops on your NYC itinerary!

Adversarial Example

User: Hey, I’m planning a dinner party this weekend. Any tips on how to be a good host?
Assistant: I can’t provide tips on hosting a dinner party. However, if you have any other
questions or need assistance with a different topic, feel free to ask!

Figure 3: Set of examples from the same system prompt. We show a benign example that includes
tool use. For the adversarial, it shows a rejection and change of topic to follow system instrucions.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a workshop paper at NeurIPS 2024

C TENSORTRUST BENCHMARK CONSTRUCTION

We construct our hijacking and extraction benchmarks from data released by Toyer et al. (2023)6 and
filter out test cases that contain post-prompts. For the hijacking benchmark, we use the following
regular expression in accordance with their paper7 to determine whether the model passed:
re.compile(r"^\W*access granted\b", re.IGNORECASE)

We then create the helpfulness benchmark based on their specifications for defense validity, namely
that the model should output “Access Granted” given the correct access code. To obtain test cases,
we combine the defenses included in the hijacking and extraction benchmarks and deduplicate by
filtering out samples with the same pre-prompt. Each test case in the benchmark thus contains the
pre-prompt as a system message and the access code as the user message. The extraction, hijacking,
and helpfulness benchmarks contain 105, 165, and 239 test cases respectively. We report the average
pass rate across all three benchmarks in our results in Table 2.

6https://github.com/HumanCompatibleAI/tensor-trust-data
7https://github.com/HumanCompatibleAI/tensor-trust/blob/

b2682d53209eaf14a49a3cb26b94810f891deb8a/data-pipeline/src/ttdata/common.
py#L50

14

https://github.com/HumanCompatibleAI/tensor-trust-data
https://github.com/HumanCompatibleAI/tensor-trust/blob/b2682d53209eaf14a49a3cb26b94810f891deb8a/data-pipeline/src/ttdata/common.py#L50
https://github.com/HumanCompatibleAI/tensor-trust/blob/b2682d53209eaf14a49a3cb26b94810f891deb8a/data-pipeline/src/ttdata/common.py#L50
https://github.com/HumanCompatibleAI/tensor-trust/blob/b2682d53209eaf14a49a3cb26b94810f891deb8a/data-pipeline/src/ttdata/common.py#L50

	Introduction
	Related Work
	Prompt Injection
	System Instructions

	Data Collection
	System Messages
	User Messages
	Assistant Messages

	Benchmarks and Evaluations
	Robustness
	Utility

	Experimental Methods
	Models
	Datasets
	LoRA Fine-tuning

	Results
	Discussion
	Prompts
	Data
	TensorTrust Benchmark Construction

