Under review as submission to TMLR

Identifying and Mitigating Model Failures through Few-shot
CLIP-aided Diffusion Generation

Anonymous authors
Paper under double-blind review

Abstract

Deep learning models encounter unexpected failures, especially when dealing with challeng-
ing sub-populations. One common reason for these failures is features that the data may be
spuriously correlated with. To better understand these failure modes, human-interpretable
descriptions are crucial, which is expensive. In this study, we propose an end-to-end frame-
work that utilizes the capabilities of large language models (ChatGPT) and vision-language
deep models (CLIP) to generate text descriptions of failure modes associated with spurious
correlations (e.g., rarely seen backgrounds) without human-in-the-loop intervention. These
descriptions can be used to generate synthetic data using generative models, such as diffu-
sion models. The model can now use this generated data to learn from its weaknesses and
enhance its performance. Our approach serves as a broad solution, promising progress in
comprehending model failure modes and strengthening deep learning models automatically
across a wide range of failure scenarios (e.g., backgrounds, colors) in a few-shot manner.
Our experiments have shown remarkable improvements in accuracy (~ 21%) on hard
sub-populations (particularly for wrong background association) across 30 different models,
such as ResNets, EfficientNets, DenseNets, Vision Transformer (ViT), SwAVs, MoCos and
DINOs on various datasets such as ImageNet-1000, and CIFAR-100, iNaturalist-2018.

1 Introduction

The quality of training data directly impacts the performance and robustness of machine learning models.
Despite careful curation of training data, models can still exhibit failure modes where their performance
deteriorates in specific sub-populations of data, leading to misclassifications or inaccurate predictions [Jiang
et al.| (2018]); |Arpit et al.|(2017). The failure modes of deep networks can arise from various factors, such
as noisy labels [Sukhbaatar et al. (2014); Jiang et al.| (2018])); [Reed et al.| (2015), multi-labels |Zhang et al.
(2018b)), and spurious correlations Zhou et al.| (2020), particularly when it comes to distinguishing between
objects and their backgrounds Kattakinda & Feizi| (2021); [Xiao et al.| (2021)). (See Figure E] in appendix for
examples of these failures.)

Similar to how humans use image backgrounds as cues for object recognition, studies have shown that
machine learning models also rely on backgrounds when making decisions. In some cases, models may
prioritize backgrounds to the point of overlooking important object features for classification [Zhang et al.
(2007); Ribeiro et al.| (2016)); [Sagawa et al.| (2020).

Various strategies have been attempted to mitigate failure modes caused by spurious background associations,
but many are insufficient in addressing the entirety of the problem. Some methods involve human-in-the-loop
interventions Mitchell et al.| (2021)); |Santurkar et al.| (2021), which are both labor-intensive and challenging
to scale for large operations. Furthermore, many of these approaches specifically target only one spurious
correlation, such as background, and may not be readily applicable to other correlations like colors, thus
neglecting a comprehensive spectrum of potential failures [Barbu et al.| (2019); Hendrycks et al.| (2021a));
Hendrycks & Dietterich (2019)); Hendrycks et al.| (2021b); Kattakinda & Feizi (2021)). Additionally, certain
existing works lack clear descriptions of model failures in a human-understandable manner, posing challenges
in terms of interpretability and validation.

Under review as submission to TMLR

Train
o Debug heldout
Model's feature] Test on Wrongly ;
— Yes—>» Failure modes ———>
extractor d %ri DebugSet predicted?
P Debug seed
"A photo of {class_name} in {background}" Choose k most
Stable Diffusion /< selected backgrounds «—Background associations CLIP
per class
Class names "What are the uncommon backgro_un'c'is ChatGPT Background
that a {class_name} can appear in? texts
\ 2

Debug

Train $$loss_{Ic} = loss_{Ic}(generated) + lambda * loss_{Ic}(orignial)$$

model's feature
extractor

Train 4

Predicted class label

Q
[
(2]
7]
=
@
&

Figure 1: A summary of our approach applied to background spurious correlations: For a model based on
the wrongly predicted debug samples (failure samples), we form two sets - DebugSeed and DebugHeldout.
We use the DebugSeed set to address the model’s failures by inputting them to CLIP Radford et al.| (2021)),
along with a set of backgrounds obtained from ChatGPT where objects are less likely to occur with the data.
We then obtain a set of backgrounds and remove redundancies, and generate synthetic data by inputting
the prompt "A photo of {class_name} {background}" to Stable Diffusion [Rombach et al.| (2021)). With this
synthetic data that precisely captures the model’s failure modes related to backgrounds, we can now refine
the model’s predictions on other test data by training a very low-cost linear head on top of our model, which
assigns different weights to the original data and the generated data.

In conjunction with research on identifying failure modes, there are various refinement approaches aimed at
leveraging these failure modes to improve the accuracy of machine learning models. These strategies involve
actions such as generating additional datasets containing failure samples to assist the model in learning
robust features [Xiao et al| (2021)); Singla et al.| (2024) or adjusting the model’s parameters to integrate
information derived from identified failure modes Rame et al. (2022). However, these studies often lack
easily understandable descriptions of failure modes for human interpretation, posing challenges in assessing
their validity. Furthermore, these refinement approaches are typically not automated.

2 Our contribution

This research leverages recent generative models, large language models, and CLIP to introduce an automated
framework addressing failure modes (spurious correlations) in diverse task-specific deep learning models.
The framework, outlined in Figure [1| answers critical questions such as identifying and rectifying spurious
associations leading to model failure, utilizing these failure modes to refine models, exploring patterns in
failure modes across a model group, and using a single set of auxiliary data to improve a subgroup of models
simultaneously.

To summarize, our approach initially identifies all model failures on a specific subset, denoted as DebugSet,
which is a part of the validation set. We then pinpoint spurious correlations, such as background asso-

Under review as submission to TMLR

ciations, for each dataset class by querying ChatGPT with "What are the uncommon backgrounds that a
class__name can appear in?" and remove redundancies after obtaining uncommon backgrounds for all classes.
Subsequently, a zero-shot classification using CLIP identifies the background for each failure among all the
uncommon backgrounds. To enhance model performance, we generate k artificial images with prompts like
"[class_name] in [background_name]" and incorporate this supplementary data into the original train_ set.
In the second phase, we demonstrate that models with similar architectures exhibit analogous failures, allow-
ing efficient troubleshooting of a group of models using a single set of generated auxiliary data. This approach
proves both time and memory-efficient. The results of our experiments, detailed in section [5] underscore the
effectiveness of this straightforward method in achieving interpretability and refinement goals.

Our paper presents several contributions to model failure analysis and refinement. These contributions
include, but are not limited to, the following:

e Generalizability: Introducing an automatic end-to-end framework that interprets and rectifies
failures arising from specific spurious associations, such as incorrect background, color, and size
correlations, which can contribute to any model inaccuracies.

o Failure Inspection: Identification of spurious associations(section |5.2.1]), and exploring common
patterns in failure modes among individual models with same architectures (section [5.2.2)) in an
interpretable manner .

e Failure Mitigation: Improving the performance of individual models on challenging sub-
populations (5.3.1)), and boosting the performance of a subset of models by employing a unified
set of auxiliary data, leveraging shared failures to enhance efficiency in both time and memory usage

(section [5.3.2)).

e Collective Failure Mitigation: Refinement of a subset of models’ performance through a unified
set of auxiliary data owing to their shared failures, which saves time and memory. To the best
of our knowledge, this work represents the first effort to collectively address failures
within a subgroup of models simultaneously. (section .

3 Related work

3.1 Failure mode detection

Numerous studies have been conducted to detect failure modes in machine learning models. Some involve
human-in-the-loop methods, where failure examples are reviewed to identify common patterns Mitchell et al.
(2021); [Santurkar et al.|(2021). Others adopt automated approaches by introducing frameworks that effec-
tively capture model failures |(Chung et al.| (2019); |Singla et al.| (2021); Nushi et al.| (2018)); [Singla & Feizi
(2022)); Wong et al.| (2021)); Wu et al.| (2019); |Zhang et al.| (2018al); Jain et al.| (2023)). For instance, |Chung
et al.| (2019) employs a technique that slices the validation data to isolate sections where the model per-
forms poorly. [Singla et al| (2021) identifies visual attributes that lead to inadequate performance when
present or absent. |Jain et al.| (2023) identifies and represents model failures as directions in the latent space,
and [Eyuboglu et al.| (2022) proposes an evaluation framework to systematically compare (slice discovery
method) SDMs across diverse slice settings by generating captions for hard sub-populations. Distinguishing
itself from existing methodologies, our approach provides enhanced generality by permitting the explicit
selection of the spurious correlation targeted for mitigation, targeted data collection, giving
interpretable descriptions for failures, and being an automatic approach. For instance, although
the approach presented by Kattakinda et al. [Kattakinda et al. (2022)) effectively tackles spurious corre-
lations tied to foreground and background features by learning disentangled representations, it encounters
difficulties when confronted with a broader spectrum of spurious correlations, e.g., color. This is due to the
inherent challenge of learning disentangled representations for many spurious correlations in isolation from
the foreground object.

Under review as submission to TMLR

3.2 Mitigation of Hard Subpopulations and Interpretability of Models

Several methodologies leverage extracted failure modes to enhance the performance of deep learning models.
Singla et al.| (2024) introduce a framework that identifies visually similar images to model failures and
incorporates them as new data for refinement of various models. [Kattakinda et al.| (2022)) focus on learning
invariant features for foreground and background by penalizing the mutual information between the features
and background /foreground labels. This approach contributes to robust model training, particularly by
addressing issues related to spurious correlations.

In data generation, Bansal & Grover| (2023)), and [Wiles et al.| (2022) use generated data to diversify training
datasets. However, it’s essential to note that their methods do not specifically target failure modes like
spurious correlations. They rely on class names and general captions for generating auxiliary data, which
may not be tailored to address specific failure modes.

Moreover, |Wiles et al. (2022)) propose a bug discovery approach using off-the-shelf image generation and
captioning, contributing to the interpretability of model predictions. On the other hand, [Jain et al.| (2023)
leverage Support Vector Machines (SVMs) to distill model failures as directions in latent space, focusing on
latent representations of model failures.

Compared to existing methodologies that address failure modes on specific datasets, our framework intro-
duces two noteworthy contributions. Firstly, it achieves enhanced model performance with signif-
icantly fewer generated examples (5 for each failure). Secondly, our experiments extend to
collective refinement, demonstrating the ability to improve a subset of model failures by gen-
erating a single auxiliary artificial dataset based on only one model’s failures. This is particularly
valuable given our observation that models within the same categories exhibit similar failures, a phenomenon
also noted in |Wiles et al.| (2022)).

Moreover, our approach is efficient, eliminating the necessity for complete model retraining or fine-tuning.
We exclusively focus on retraining the linear head for classification, streamlining the failure mode mitigation
process.

3.3 Synthetic data as data augmentation

Numerous studies leverage the generative capabilities of diffusion and GAN models to produce synthetic
data, enhancing training datasets for better accuracy in downstream tasks. For example, in work by [Hong
et al.| (2023), a classifier is trained using consistency rules on unlabeled data generated from unconditional
GANSs, improving image classification. [Zhou et al.| (2023) employ the Stable Diffusion model to generate
diverse and high-quality training data for image classification efficiently. The theoretical aspect of using
synthetic data and its stability bound is explored by [Zheng et al.| (2023)), offering insights into improved
learning rates achievable with generative data augmentation, especially in small training set scenarios. [Ye-
Bin et al.[(2023) address the data imbalance problem by generating synthetic data. Additionally, Luzi et al.
(2022) introduces varied, nonidentical images through a partial reverse diffusion process, serving as a data
augmentation method to enrich training datasets. Various image editing methods Meng et al.| (2021)); [Kawar,
et al.| (2023); Zhang et al.| (2023); Brooks et al.| (2023); Mokady et al.| (2023)); [Koohpayegani et al.| (2023))
can also be considered for synthetic data generation to enhance training datasets. Our method uses the
targeted generation of synthetic data for hard subpopulations as data augmentation to address the problem
of spurious correlations.

4 Main method

4.1 Failure-mode detection

A common reason for accuracy drops during inference is the model’s learned spurious correlations from
training. For example, Associating objects with backgrounds, a spurious correlation can hinder the model’s
ability to learn about objects themselves. This challenge arises when the model encounters objects in
unfamiliar backgrounds during testing, notably in computer vision tasks where backgrounds define object

Under review as submission to TMLR

context. To tackle this, introducing the model to a range of scenarios that address the particular failure
mode (such as color or background associations) we aim to mitigate can improve its ability to identify objects
in different contexts and avoid correlating the objects and their changeable features (e.g., color) or contexts
(e.g., background).

Initially designed to rectify wrong background associations, our framework can be extended to address various
spurious correlations. We showcase its applicability by presenting results for color spurious associations in

Bl

To address and rectify failures attributed to backgrounds, we utilize the feature extractor for each model on
the datasets, generating a feature vector for each data point. The subsequent linear head atop this feature
extractor executes the classification task. Instances where the model makes incorrect predictions form a
set termed the DebugSet, which serves as a tool for identifying and resolving failure modes, comprising
all examples where the model fails. While these failures may stem from various factors, our experiments
underscore the significance of mitigating incorrect background associations, as they significantly improve the
performance of all models.

4.2 Failure-mode textualization

Vision-language models are popular as they can provide a more comprehensive understanding of complex
phenomena by combining information from different modalities like text, images, and audio, enabling them
to interpret data in a more human-readable form [Lu et al.| (2019)); |Chen et al.| (2018]); Mithun et al.| (2020).

Understanding failure modes is critical for validating proposed refinement methods. By identifying the causes
of failure, we can improve our models and refine our data collection methods. For each class name in our
dataset, we first prompt ChatGPT, "What are the uncommon backgrounds that a class_name can appear
in?" filter out the redundant suggested backgrounds and keep the 10 suggested uncommon backgrounds for
each class. Some examples can be seen in Table[I] Then, we use CLIP [Radford et al (2021) to interpret failure
modes by splitting the failures from the DebugSet into two sets called DebugSeed and DebugHeldout.
We then perform zero-shot classification by passing DebugSeed along the set of uncommon backgrounds
proposed by ChatGPT to a CLIP model, so for each data point, CLIP will opt for the background that is more
likely to be the actual background of the object shown in the image. For each data class, we then pinpoint
the k most frequently selected backgrounds by CLIP, which the model failed to classify. Our experiments,
as depicted in Figure 5] indicate that the optimal value for k, which is both small and practical, is 3. While
increasing the value of k may enhance final results, the marginal improvement is negligible compared to the
cost and time associated with generating additional synthetic data. This will provide valuable insights into
how a model may fail when confronted with a particular selected spurious association.

[Class name | Uncommon backgrounds |
Sea lion Desert, Rain forests, Urban Areas, Polar Ice Caps,
Caves, Grasslands, Volcanic Areas
Siberian Husky Jungle Canopies, In the Sky, Caves, Underwater,
Indoor Spaces, Marshlands, Tropical Rainforests
croquet ball Mountain Peaks, Busy Streets, Frozen Lakes,
Underneath Building Foundations, Subway Tunnels, in a restaurant
lipstick, lip rouge Gyms and Fitness Centers, Swimming Pools,
Medical Facilities, Construction Sites, Sports Events, Military Training

Table 1: Examples of suggested uncommon backgrounds for a class of data by ChatGPT

4.3 Generating synthetic data

By leveraging CLIP’s detected backgrounds of failures, we can interpret them and use them to refine models.
For instance, in the case of the ImageNet class "tench," errors predominantly occur when the fish is held by a
person’s hand, a scenario rarely encountered during training. To address this, a generative model like Stable

Under review as submission to TMLR

Tenchon aplate Tenchinahand Tenchonasofa Tench inagarden Perfume on a table Perfume in jungle

. . Perfume in a .
Lemononsnow Lemononaleat Lemoninwater Lemon on soil restaurant Perfume in bed

Figure 2: Examples of generated data by Stable Diffusion

Diffusion [Rombach et al.| (2021) can create images that familiarize the model with diverse object contexts.
We generate data for the "tench" class by inputting the prompt "tench in hand" to the Stable Diffusion.
Examples of such generated data are presented in Figure [2]

4.4 Retraining the linear head

After collecting the additional synthetic data for the failed scenarios, which we call DebugTrain, we can
use it along with our original_train_ set to refine our models. To achieve this, we only need to train a linear
head on top of the model’s feature extractor for classification purposes, not the whole model. We must note
that we assign different weights to the data points from the original train_ set and the DebugTrain set in
our linear head training loss This parameter is called lambda, and in our experiments shown in [5, we
report its effect on the overall performance of the model. By incorporating the additional DebugTrain data
and carefully tuning the lambda parameter, we can potentially improve the performance of our models.

Lo = Lo (Original_train__set) + A x Lo (DebugTrain) (1)

5 Experiments

5.1 Setting

We conducted experiments on 40 pretrained models, including ResNets [He et al.| (2016]), EfficientNets
& Le| (2019), DenseNets [Huang et al. (2017), Vision Transformer (ViT) Dosovitskiy et al| (2021), SwAVs
Caron et al.| (2020)), MoCos He et al.| (2019), DINOs |Caron et al| (2021), and CLIPs Radford et al. (2021)).
The complete list of models is available in Table[6]in the appendix. For brevity, we present results for DINO
and ResNet models, and additional experiments for other models are provided in Appendix ?77.

For each dataset, we input the data into the models to obtain extracted features. A linear head was then
trained on top of these features. In the case of ImageNet, the linear head was trained using 30 data points
per class from the overall 30,000 training images. We designated 30,000 images from the ImageNet validation
set as our DebugSet (30 per class), with the remaining 20,000 samples used for testing. The images had a
resolution of 224 x 224, and the task was ImageNet classification.

The hyperparameters and other settings are detailed in Table [§]in the appendix.

Under review as submission to TMLR

¢

a) ResNet18 b) ResNet26 c) ResNet34 g) DINO_vits8 h) DINO_ResNet50 i) DINO_vitb16

Correct_class: refrigerator Correct_class: T-shirt Correct_class: wallet Correct_class: accordion Correct_class: bell or wind chime Correct_class: wine bottle
Prediction before refinement: Prediction before refinement: Prediction before refinement: Prediction before refinement: Prediction before refinement: Prediction before refinement:
filling cabinet sleeping bag mushroom space heater traffic light soda bottle
Prediction after refinement: Prediction after refinement: Prediction after refinement: Prediction after refinement: Prediction after refinement: Prediction after refinement:
refrigerator T-shirt wallet accordion bell or wind chime wine bottle

it/ 2 |

~
e

¥

d) ResNet50 e) ResNet101 f) ResNet152 j) DINO_vitb8 k) DINO_vits16
Correct_class: poncho Correct_class: shopping basket Correct_class: holster Correct_class: farm plow Correct_class: scarf
Prediction before refinement: Prediction before refinement: Prediction before refinement: Prediction before refinement: Prediction before refinement:
T-shirt candy store cowboy hat cannon poncho
Prediction after refinement: Prediction after refinement: Prediction after refinement: Prediction after refinement: Prediction after refinement:
poncho shopping basket holster farm plow scarf

Figure 3: Some examples of failure modes of ResNets and DINOs

To address detected failures in the DebugSet, we split them in half. The first half, DebugSeed, was used
for refinement. Uncommon backgrounds were generated using ChatGPT 3.5. The CLIP model used for
selecting backgrounds for data points was ViT-B/32 CLIP. For synthetic data generation, we utilized Stable
Diffusion V1-5 imported from the diffusers package [von Platen et al.l

5.2 Failure inspection

The initial stage of our framework involves analyzing how various models fail to classify objects in different
datasets. To accomplish this, we use the CLIP model to identify backgrounds on which models struggle to
classify objects. This results in captions that describe failures related to rare backgrounds. In the following
stage, we examine these identified failures and explore how the generated captions help us to recover from
them. We investigate results for both individual and collective failure inspection.

5.2.1 Individual Failure Inspection

In Figure [3] we show some instances where ResNet and DINO models have failed and see that these failures
are due to wrong background association. In this Figure, the six images on the left (a-f) are examples of
Resnets’ failures, and the five images on the right (g-k) are failure modes’ of DINO models. For example,
image ¢ shows "a wallet in jungle”, which can be regarded as an uncommon background for this object. As
a result, the ResNet34 model is unable to classify it accurately and instead predicts a "mushroom" which is
more likely to be found "in jungle’, especially under a plant, despite having no resemblance to the actual
object in the image. Similarly, image h illustrates "a bell or wind chime in sky', which is uncommon since
"bell" is more likely to be seen with other backgrounds such as "a door, a building or a wall". Therefore, the
DINO__reset50 model mispredicts as "traffic light” because "traffic light” is more common to be seen "in a
sky background’.

In general, our approach is capable of addressing failure scenarios originating from uncommon backgrounds
of objects or any other spurious correlation (We provide another instance demonstrating how our framework
can be applied to analyze another type of spurious correlation, such as color, in|5 . Analyzing the relevant
backgrounds allows us to readily understand the cause of such failure instances.

Under review as submission to TMLR

ResNet34 ResNet50 ResNet101 ResNet1 52

ResNets

Home 11.83%
EfficientNets

DenseNets
Vision

Hand 10.08% Transformers

SWaVs
MoCo

DINOs
Jungle 9.26% |

CLIPs

H_J%’—Ll_l—f_L\’_*TJh\’_H_J

Dense Vision SWavs DINOs CLIPs
Nets Transformers MaCo

ResNets EfficientNets

(a) (b)

Figure 4: a) The most three common failure backgrounds in ResNets pretrained on ImageNet. The numbers
in the image show the percentage of the shared failures that are related to the mentioned background. b)
Comparing failures of all models (Intersection/Union).We observe that models belonging to the same
categories tend to exhibit more comparable failures.

5.2.2 Collective Failure Inspection

Within this section, we will compare the failure modes for all models to assess their alignment. We aim to
determine the extent to which failures are consistent across models. While numerous studies have focused
on analyzing similarities in the learning process and representations of different models, such as
that demonstrated the similarity between convolutional neural networks (convnets) and other
convnets, as well as the similarity between vision transformers (ViTs) and other ViTs int the way they learn
features, our focus is on investigating whether models also fail in similar ways. This will enable us to gain
a deeper understanding of how to address the issue of failures in a more generalized manner without taking
the specific model into consideration.

The failures of different models in various categories are compared in Figure] by computing the intersection
over union of the failures. It can be observed that models within the same category fail in more similar
samples. Typically, the failures between models from the same category are over 80% similar (e.g., CLIPs
and EfficientNets). Among all 40 models, the intersection of failure modes is above 40%, indicating that
models tend to fail in very similar ways, even with different architectures. Some examples of the shared
failures relted to backgrounds can be found in[d] This will raise the question of "how to utilize this similarity
in failures to enhance a group of models’ performance?" which we will explore more in section [5.3.2]

It is pertinent to mention that Wiles et al. (2022) has also recognized patterns of consistencies in failures
among models within the same category. However, we take a step further and leverage these consistencies
to mitigate shared failure modes systematically.

5.3 Failure Mitigation
5.3.1 Individual Failure Mitigation

The outcomes from employing our framework are presented in Table 2] We only included the results for
ResNets and DINOs, but we have results for other models (EfficientNets, DenseNets, ViTs, SWaVs, MoCo,
and CLIPs) in the appendix. In Table (2] we constructed DebugSeed and DebugHeldout sets to yield zero
accuracy for the model, as they are composed of model failures. Post refinement and utilizing DebugSeed,
we observe substantial improvements in DebugHeldout data that we did not use for refinement, ensuring an

Under review as submission to TMLR

H Models | Accuracies H
Model model Individual Refinement Random Refinement
category name (ours)

Clean | Failure | Seed | Heldout Seed Heldout
ResNet18 | 0.9891 | 0.0651 | 0.2636 | 0.2128 0.1134 0.1129
ResNet26 | 0.9783 | 0.0649 | 0.2856 0.228 0.09539 0.0904
ResNet34 | 0.9879 | 0.0781 | 0.3061 | 0.2531 | 0.09856 0.08615

ResNet | p <Net50 | 0.9864 | 0.0607 | 0.3444 | 0.2717 | 0.1102 | 0.1072
ResNet101 | 0.9790 | 0.113 | 0.3574 | 0.2656 | 0.1132 | 0.1181
ResNet152 | 0.9901 | 0.0863 | 0.3609 | 0.2817 | 0.08207 | 0.08804

ViT-S/8 | 0.9812 | 0.0536 | 0.3117 | 0.2494 | 0.1134 | 0.1129
ViT-S/16 | 0.9855 | 0.0462 | 0.2922 | 0.2379 | 0.09539 | 0.0904
DING | VIT-B/8 | 0.9782 | 0.0655 | 0.3325 | 0.2518 | 0.09856 | 0.08615

ViT-B/16 | 0.9848 | 0.0388 | 0.3067 | 0.2477 0.1102 0.1072

Table 2: Our approach significantly outperforms Random Refinement, leading to an approximate ~ 21%
improvement in accuracy across all models on the DebugHeldout dataset. This underscores the effective-
ness of our method in rectifying errors attributed to incorrect background associations. Clean and Failure
accuracies reflect the post-refinement performance of correctly and incorrectly classified data, respectively,
which show that our method do not harm the clean accuracy by incorporating additional data. Prior to
refinement, models exhibited zero accuracy on DebugSeed and DebugHeldout datasets.

unbiased evaluation. This improvement underscores that many failure modes stem from incorrect associations
models make between objects and backgrounds. Some might argue that this gain results from the additional
data. Thus, we present results for a baseline we term Random refinement. This baseline similarly
uses DebugSeed and DebugHeldout, then generates synthetic data using only class names (prompts are
structured as "A photo of [class_name]"). This comparison illustrates that the improvement of our method
arises from considering background information. In the outcomes of Random refinement, the improvement
over DebugSeed and DebugHeldout is roughly equivalent since no information from the background
association of either set was utilized. Random refinement solely employs class names to generate data.
However, this improvement is not on par with the gain achieved by incorporating background information
when generating new data. We also include results for Color spurious associations on CIFAR-100 in table
to further support our claim. Results for iNaturalist-2018 can also be found in table

It’s worth noting that despite incorporating Stable Diffusion-generated data, which could be seen as out-
of-distribution samples, a positive impact on model performance remains. This is primarily attributed to
the parameter lambda that controls the contribution of the generated images in our training process. The
influence of this parameter is depicted in Figure

Another crucial hyper-parameter is the number (#) of generated synthetic data per class. The effect of this
hyper-parameter, denoted as k, is illustrated in Figure

The improvement observed in DebugHeldout surpasses ~ 21% for all models, highlighting the tendency
of models to fail in associating backgrounds with objects and utilizing this association to predict objects,
neglecting object-specific features. This can be contrasted with the accuracy gain achieved by the Random
refinement baseline, which is significantly smaller than our method. We also include results of comparing
our framework with other methods such as|Jain et al.| (2023); [Yun et al.[(2019)); Singla et al.| (2024) in section
[B] in appendix. The results show the superiority of our spurious correlation identification and mitigation
framework comparing to other related work.

5.3.2 Collective Failure Mitigation

As discussed in section [5.2.2] since models from the same categories have very similar failures, we have
considered the possibility of using a single set of generated data, called Collective DebugTrain, to refine

Under review as submission to TMLR

H Models | Accuracies H
Model model Individual Refinement Random Refinement

category name (ours)

Clean | Failure | Seed | Heldout | Seed Heldout

ResNet18 | 0.9892 | 0.1305 | 0.3323 | 0.2818 | 0.1901 0.1878

ResNet34 | 0.9952 | 0.1560 | 0.3586 | 0.2923 | 0.1902 0.1947

ResNet ResNet50 | 0.9931 | 0.1394 | 0.3614 | 0.3008 | 0.1971 0.1858

ResNet101 | 0.9991 | 0.169 | 0.3877 | 0.3249 | 0.2001 0.1930

ResNet152 | 0.9943 | 0.1525 | 0.3842 | 0.3184 | 0.2139 0.2152

Table 3: Accuracy of our method compared to the Random refinement on CIFAR-100 considering color
spurious correlations. The prompt used in the above table to input ChatGPT is "What is an uncommon
color that <class_ name> may possess?", and the prompt for generating more data with Stable Diffusion is "A
photo of a <color> <class_name>.". Note that the accuracy of models on DebugSeed and DebugHeldout
was zero before refinement. After applying our method, we gain above ~ 28% improvements in accuracies
for all models, showcasing that more than ~ 28% of model errors in the heldout set come from wrong color
associations.

00
0125 025 05 075 10 125 1 2 3 4 5 6

(a) Effect of hyper parameter lambda on
both test and heldout accuracies.

(b) Effect of hyper-parameter k (# cho-
-sen backgrounds per class) on heldout
accuracy

Figure 5: a) As the value of lambda increases, the accuracy on DebugHeldout improves while the accuracy
on the test set (containing both clean and failure examples) decreases, meaning increasing lambda by a certain
value will harm the clean accuracy. However, there is a specific point (0.5) on the plot where the accuracy
of the models on both the test and heldout sets stabilizes. b) Increasing the number of chosen backgrounds
per class enhances the accuracy on the DebugHeldout. Considering the high cost of generating additional
data, we opt for k = 3, where the plot exhibits a significant slope, and the few-shot generation of additional
data will help in accuracy improvement.

all models within the same categories. To achieve this, we have devised two different settings: 1) we get the
failure modes of all models in the same category (e.g. ResNets), and we select k samples from all the failures
in each class. Therefore, background failures that occurred more have a higher probability of being chosen
for the Collective _DebugTrain. We then use this data to refine individual models in this category. 2)
We get the failure modes of only one of the models in a category and then use this to refine all models. This
approach is more efficient in terms of time and memory, as it requires running only one model per category.
The results for this experiment are shown in table [d Based on our observations in section having
the same DebugTrain data for refinement (Collective_DebugTrain), improves the accuracies among all
models in the same category. This approach offers greater efficiency as it eliminates the need to generate
DebugTrain data for each individual model. Consequently, it saves us both time and memory that would
otherwise be required for storing such data.

In an overview, the collective refinement approach showcases the capability to resolve above 75% of
failures corrected by individual refinement [6]

10

Under review as submission to TMLR

H Models | Accuracies H
Model model Before Collective refinement-type 1 | Collective refinement-type 2
category name debugging (ours) (ours)
Test Test seed heldout Test seed heldout
ResNet18 0.6236 0.6364 | 0.2291 0.2078 0.6413 | 0.2636 0.2128
ResNet26 0.6593 0.6655 | 0.2396 0.2192 0.6669 | 0.2185 0.1853
ResNet ResNet34 0.7017 0.7149 | 0.2312 0.2188 0.7135 | 0.2391 0.2178
ResNet50 0.7631 0.7644 | 0.2419 0.2217 0.7641 | 0.2325 0.2105
ResNet101 0.796 0.8001 | 0.2474 0.2226 0.7999 | 0.2244 0.2045
ResNet152 0.816 0.8182 | 0.2509 0.2317 0.8188 | 0.2253 0.2081
ViT-S/8 0.6977 0.70001 | 0.2729 0.2488 0.70008 | 0.3117 0.2494
ViT-S/16 0.649 0.6522 | 0.2673 0.2394 0.6504 | 0.2563 0.2267
DINO ViT-B/8 0.7101 0.7125 | 0.2913 0.2509 0.7117 | 0.2903 0.2540
ViT-B/16 0.6832 0.6840 | 0.2985 0.2467 0.6833 | 0.2855 0.2488

Table 4: Collective refinement results.

—e— Collective_debugging (Sampling from failures of all models in each category) R . —
—e— Collective_debugging (Using the first model's failures in each category) < 7' *
-\ v
.\.\

resnet18 resnet26 resnet34 resnet50 resnet101 resnet152 dino_vits8 dino_vits16 dino_vitb8 dino_vitb16

relative accuracy
o o o =
s © © g
& 8 8 8

o
%
3

o
3
a

Figure 6: Comparison of resolved failures between collective refinement and individual refinement as a
percentage. Relative accuracy is the ratio of the collective refinement’s accuracy over individual refinement’s
accuracy on each specific model. Our collective refinement method is able to resolve more than 75% of
individual model’s failures.

6 Conclusion

In this project, we have developed a technique to identify failure modes by focusing on a specific category
of spurious correlations. We then leverage these detected failures to generate additional samples, allowing
the model to learn from and address its shortcomings. We have illustrated the resemblance of failures
within a particular model category, highlighting that models with the same architecture share more similar
failures. Exploiting this insight, we have devised a method to alleviate failures across all models in a
category using a single set of generated data based on the failures of just one model in that category. Our
results indicate that collective refinement approach can resolve over 75% of failures addressed through
individual refinement efforts. Our framework empowers users to select the spurious correlation to identify
and mitigate, facilitating the simultaneous refinement of a subset of models with a single (small) auxiliary
set of additional data, thereby saving both time and resource.

7 Discussion

Failure modes of Stable Diffusion: Prior work have investigated failure modes of diffusion-based models.
Liu et al.| (2023) proposes SAGE, an adversarial search method that explores failure modes in Text-Guided
Diffusion Models (TDMs), revealing issues like generating inaccurate images and identifying misalignments
between latent and prompt spaces. Some other work explore the problem of compositionality in Text-Guided
generative models by using manually crafted prompts, including |Gokhale et al.| (2022); Marcus et al.| (2022));
Conwell & Ullman| (2023). Another line of work have studied biases in generative models including societal

11

Under review as submission to TMLR

biases |Luccioni et al.| (2023); [Saravanan et al.| (2023)) and gender biases Wu et al.| (2023)). While these studies
highlight significant challenges and shortcomings in text-to-image generative models, it is important to note
that, for the practical purpose of automatic generation, these models remain a widely adopted approach,
and are currently represent the most effective solution available for automated content generation.

References

Devansh Arpit, Stanistaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S Kan-
wal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at memorization
in deep networks. In International conference on machine learning, pp. 233—242. PMLR, 2017.

Hritik Bansal and Aditya Grover. Leaving reality to imagination: Robust classification via generated datasets.
arXiv preprint arXiv:2302.02503, 2023.

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh Tenen-
baum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the limits of object
recognition models. Advances in neural information processing systems, 32, 2019.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image editing
instructions. In Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern Recognition,
pp- 18392-18402, 2023.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, and Piotr Bojanowski. Unsupervised learning
of visual features by contrasting cluster assignments. In European Conference on Computer Vision, pp.
116-132. Springer, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 9650-9660, 2021.

Xiaozhi Chen, Kaustav Kundu, Zhiqgiang Zhang, Huimin Ma, Sanja Fidler, and Raquel Urtasun. 3d object
proposals for accurate object class detection. In Advances in Neural Information Processing Systems, pp.
2146-2156, 2018.

Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, and Steven Euijong Whang. Slice finder:
Automated data slicing for model validation. In 2019 IEEFE 35th International Conference on Data Engi-
neering (ICDE), pp. 1550-1553. IEEE, 2019.

Colin Conwell and Tomer Ullman. A comprehensive benchmark of human-like relational reasoning for text-
to-image foundation models. In ICLR 2023 Workshop on Mathematical and Empirical Understanding of
Foundation Models, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10687-10698, 2021.

Sabri Eyuboglu, Maya Varma, Khaled Saab, Jean-Benoit Delbrouck, Christopher Lee-Messer, Jared Dunn-
mon, James Zou, and Christopher Ré. Domino: Discovering systematic errors with cross-modal embed-
dings. International Conference on Learning Representations (ICLR), 2022.

Tejas Gokhale, Hamid Palangi, Besmira Nushi, Vibhav Vineet, Eric Horvitz, Ece Kamar, Chitta Baral,
and Yezhou Yang. Benchmarking spatial relationships in text-to-image generation. arXiv preprint
arXiv:2212.10015, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016.

12

Under review as submission to TMLR

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9729-9738, 2019.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. International Conference on Learning Representations (ICLR), 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of out-
of-distribution generalization. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 8340-8349, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial ex-
amples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15262-15271, 2021b.

Chunsan Hong, Byunghee Cha, Bohyung Kim, and Tae-Hyun Oh. Enhancing classification accuracy on lim-
ited data via unconditional gan. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1057-1065, 2023.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convo-
lutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4700-4708, 2017.

Saachi Jain, Hannah Lawrence, Ankur Moitra, and Aleksander Madry. Distilling model failures as directions
in latent space. International Conference on Learning Representation (ICLR), 2023.

Lu Jiang, Dong Meng, loannis Mitliagkas, and J. Zico Kolter. Mentornet: Learning data-driven curriculum
for very deep neural networks on corrupted labels. In Advances in Neural Information Processing Systems,
pp- 10154-10163, 2018.

Priyatham Kattakinda and Soheil Feizi. Focus: Familiar objects in common and uncommon settings. arXiv
preprint arXiv:2110.03804, 2021.

Priyatham Kattakinda, Alexander Levine, and Soheil Feizi. Invariant learning via diffusion dreamed distri-
bution shifts. arXiv preprint arXiv:2211.10370, 2022.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and Michal
Irani. Imagic: Text-based real image editing with diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 6007-6017, 2023.

Soroush Abbasi Koohpayegani, Anuj Singh, KL. Navaneet, Hadi Jamali-Rad, and Hamed Pirsiavash. Genie:
Generative hard negative images through diffusion. arXiv preprint arXiv:2312.02548, 2023.

Qihao Liu, Adam Kortylewski, Yutong Bai, Song Bai, and Alan Yuille. Intriguing properties of text-guided
diffusion models. arXiv preprint arXiv:2306.00974, 2023.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks. In Advances in Neural Information Processing Systems, pp.
13-23, 2019.

Alexandra Sasha Luccioni, Christopher Akiki, Margaret Mitchell, and Yacine Jernite. Stable bias: Analyzing
societal representations in diffusion models. arXiv preprint arXiv:2303.11408, 2023.

Lorenzo Luzi, Ali Siahkoohi, Paul M Mayer, Josue Casco-Rodriguez, and Richard Baraniuk. Boomerang:
Local sampling on image manifolds using diffusion models. arXiv preprint arXiv:2210.12100, 2022.

Gary Marcus, Ernest Davis, and Scott Aaronson. A very preliminary analysis of dall-e 2. arXiv preprint
arXiv:2204.15807, 2022.

13

Under review as submission to TMLR

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit:
Guided image synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073,
2021.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model editing
at scale. arXiv preprint arXiv:2110.11509, 2021.

Nilaksh Mithun, Soubhik Biswas, and CV Jawahar. Neural modular network for visual reasoning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13306-13315,
2020.

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for editing
real images using guided diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6038-6047, 2023.

Besmira Nushi, Ece Kamar, and Eric Horvitz. Towards accountable ai: Hybrid human-machine analyses
for characterizing system failure. In Proceedings of the AAAI Conference on Human Computation and
Crowdsourcing, volume 6, pp. 126-135, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from

natural language supervision. In International conference on machine learning, pp. 8748-8763. PMLR,
2021.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy. Do vision
transformers see like convolutional neural networks? Advances in Neural Information Processing Systems,
34:12116-12128, 2021.

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari,
and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. arXiv preprint
arXiw:2205.09739, 2022.

Scott Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and Andrew Rabinovich.
Training deep neural networks on noisy labels with bootstrapping. In International Conference on Learning
Representations (ICLR), 2015.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 1135-1144, 2016.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjérn Ommer. High-resolution
image synthesis with latent diffusion models. 2022 icee. In CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 10674-10685, 2021.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust neural
networks for group shifts: On the importance of regularization for worst-case generalization. International
Conference on Learning Representations (ICLR), 2020.

Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango, David Bau, Antonio Torralba, and Aleksander
Madry. Editing a classifier by rewriting its prediction rules. Advances in Neural Information Processing
Systems, 34:23359-23373, 2021.

Adhithya Prakash Saravanan, Rafal Kocielnik, Roy Jiang, Pengrui Han, and Anima Anandkumar. Ex-
ploring social bias in downstream applications of text-to-image foundation models. arXiv preprint
arXiw:2312.10065, 2023.

Sahil Singla and Soheil Feizi. Salient imagenet: How to discover spurious features in deep learning? Inter-
national Conference on Learning Representations (ICLR), 2022.

14

Under review as submission to TMLR

Sahil Singla, Besmira Nushi, Shital Shah, Ece Kamar, and Eric Horvitz. Understanding failures of deep
networks via robust feature extraction. In Proceedings of the IEEE/CVFE Conference on Computer Vision
and Pattern Recognition, pp. 12853-12862, 2021.

Sahil Singla, Atoosa Malemir Chegini, Mazda Moayeri, and Soheil Feizi. Data-centric debugging: mitigating
model failures via targeted image retrieval. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 63-74, 2024.

Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, and Rob Fergus. Training convolutional networks with
noisy labels. In Advances in Neural Information Processing Systems (NIPS), pp. 468-476, 2014.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
arXiv preprint arXiv:1905.11946, 2019.

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul, Mishig
Davaadorj, and Thomas Wolf. Diffusers: State-of-the-art diffusion models. URL https://github.com/
huggingface/diffusers.

Olivia Wiles, Isabela Albuquerque, and Sven Gowal. Discovering bugs in vision models using off-the-shelf
image generation and captioning. arXiv preprint arXiv:2208.08831, 2022.

Eric Wong, Shibani Santurkar, and Aleksander Madry. Leveraging sparse linear layers for debuggable deep
networks. In International Conference on Machine Learning, pp. 11205-11216. PMLR, 2021.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel S Weld. Errudite: Scalable, reproducible, and
testable error analysis. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 747-763, 2019.

Yankun Wu, Yuta Nakashima, and Noa Garcia. Stable diffusion exposed: Gender bias from prompt to
image. arXiv preprint arXiv:2312.03027, 2023.

Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal: The role of image
backgrounds in object recognition. International Conference on Learning Representations (ICLR), 2021.

Moon Ye-Bin, Nam Hyeon-Woo, Wonseok Choi, Nayeong Kim, Suha Kwak, and Tae-Hyun Oh. Exploit-
ing synthetic data for data imbalance problems: Baselines from a data perspective. arXiv preprint
arXiv:2308.00994, 2023.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:
Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 6023-6032, 2019.

Jianguo Zhang, Marcin Marszalek, Svetlana Lazebnik, and Cordelia Schmid. Local features and kernels for
classification of texture and object categories: A comprehensive study. International journal of computer
vision, 73:213-238, 2007.

Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and David S Ebert. Manifold: A model-agnostic frame-
work for interpretation and diagnosis of machine learning models. IEEFE transactions on visualization and
computer graphics, 25(1):364-373, 2018a.

Min-Ling Zhang, Xingquan Wu, and Zhi-Hua Zhou. Multi-label learning with missing labels: A probabilistic
perspective. IEEE Transactions on Knowledge and Data Engineering, 30(3):504-517, 2018Db.

Zhixing Zhang, Ligong Han, Arnab Ghosh, Dimitris N Metaxas, and Jian Ren. Sine: Single image editing
with text-to-image diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 6027-6037, 2023.

Chenyu Zheng, Guogiang Wu, and Chongxuan Li. Toward understanding generative data augmentation.
arXiv preprint arXiv:2505.17476, 2023.

15

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

Under review as submission to TMLR

Bowen Zhou, Yanhua Wu, Bingbing Ni, Xueying Zhou, Jing Wen, and Jie Zou. Towards mitigating bias in
deep learning-based automated skin lesion classification with balanced groups and label correction. IEEE
Journal of Biomedical and Health Informatics, 24(10):2803-2813, 2020.

Yongchao Zhou, Hshmat Sahak, and Jimmy Ba. Training on thin air: Improve image classification with
generated data. arXiv preprint arXiv:2305.15316, 2023.

16

Under review as submission to TMLR

A Appendix

3 stole.

Noisy labeled images:

Correct class: 824
Correct class name: stole

Multiple labeled images:

Correct class: 461
Correct class name: breastplate

Predicted class: 533
Predicted class name: dishrag *

This is an image of dishrag not

Unseen or rarely seen background:
Correct class: 357

Correct class name: mink
Predicted class: 338

Predicted class name: guinea pig

Mink is rarely seen in a cage in
¥ imagenet training set unlike guinea pig.

Predicted class: 501
Predicted class name: cloak

This image contains both
breastplate and cloak.

Figure 7: examples of 3 most common failure modes of deep learning models

Parameter \ Value H
Leearning rate 0.2
Epochs 1000
Momentum 0.9
Weight decay 0.0005
Chosen common BGs 3
lambda 0.5

Table 5: Shared parameters among all dataset.

Models
Model__category Model_name
ResNet18 ResNet26 ResNet34
ResNet
ResNet50 ResNet101 ResNet152
efficientnet_ b0 efficientnet_ bl efficientnet_ b2
EfficientNet efficientnet b3 efficientnet b4 efficientnet bb
efficientnet_ b6 efficientnet b7 efficientnet_ b8
efficientnet 12
DenseNet densenet121 densenet161
vit_ base_patchl16_ 224 vit_ base_patch32_ 224 vit_large patchl16_ 224
ViT vit_ large patch32_224 | vit_base_resnet26d_ 224 | vit_ base resnet50d_ 224
SWaV resnet50 resnetb0w?2 resnetb0w4
resnet50wb
MoCo moco_ v2_ 800ep
dino_resnet50 dino_ vitb16 dino_ vitb8
DINO dino_ vits16 dino_ vits8
ViT-B32 RN50 RN101
CLIP ViT-L14

Table 6: List of models we tested our refinement framework on.

17

Under review as submission to TMLR

H Models | Accuracies H
Model model before Individual refinement Random refinement
category name refinement (ours)

Test Test seed heldout Test seed heldout

b0 0.715 0.7198 | 0.2034 | 0.1842 | 0.7134 | 0.0894 | 0.0883

bl 0.7373 0.74415 | 0.2154 | 0.1885 | 0.7399 | 0.1003 | 0.1011

b2 0.7525 0.7591 | 0.2283 | 0.1909 | 0.7448 | 0.0957 | 0.0942

b3 0.7634 0.7730 | 0.2318 | 0.1991 | 0.7669 | 0.1066 | 0.1010

Efficient Net b4 0.7701 0.7780 | 0.2398 | 0.2068 | 0.7719 | 0.0955 | 0.0960

b5 0.7821 0.7819 | 0.2405 | 0.2055 | 0.7761 | 0.0893 | 0.0915

b6 0.7884 0.7886 | 0.2561 | 0.2083 | 0.7863 | 0.0941 | 0.0914

b7 0.7895 0.7903 | 0.2600 | 0.2126 | 0.7898 | 0.0951 | 0.0972

b8 0.7928 0.7951 | 0.2653 | 0.2147 | 0.7932 | 0.0972 | 0.0934

DenseNet 121 0.6792 0.6869 | 0.2138 | 0.1592 | 0.6773 | 0.0651 | 0.0664

161 0.7254 0.7332 | 0.2418 | 0.1833 | 0.7249 | 0.0779 | 0.0771

base patchl6_ 224 0.739 0.7477 | 0.2501 | 0.2193 | 0.7399 | 0.1047 | 0.1044

base patch32 224 0.7456 0.7493 | 0.2574 | 0.2199 | 0.7469 | 0.1078 | 0.1072

ViT large patchl6_ 224 0.7493 0.7539 | 0.2644 | 0.2263 | 0.7468 | 0.0952 | 0.0957

large patch32 224 0.7535 0.7545 | 0.2674 | 0.2274 | 0.7553 | 0.1023 | 0.1041

resnet50 0.4254 0.4384 | 0.1403 | 0.1274 | 0.4267 | 0.0662 | 0.0624

SWaV resnetb0w?2 0.4317 0.4328 | 0.1583 | 0.1294 | 0.4319 | 0.0683 | 0.0652

resnetb0w4 0.4402 0.4477 | 0.1592 | 0.1304 | 0.4416 | 0.0672 | 0.0617

resnetb50wb 0.4526 0.4589 | 0.1633 | 0.1363 | 0.4552 | 0.0696 | 0.0703

MoCo v2_ 800ep 0.6931 0.6946 | 0.2041 | 0.1584 | 0.6937 | 0.0943 | 0.0917

ViT-B32 0.5388 0.5582 | 0.1794 | 0.1635 | 0.5407 | 0.0776 | 0.0763

CLIP ViT-L14 0.7427 0.7694 | 0.2174 | 0.2068 | 0.7505 | 0.0893 | 0.0981

RN50 0.5928 0.6129 | 0.1980 | 0.1833 | 0.6004 | 0.0964 | 0.0946

RN101 0.7532 0.7751 | 0.2566 | 0.2142 | 0.7570 | 0.1084 | 0.1115

Table 7: Accuracy of our method comparing to Random refinement. Note that the accuracy of models
on DebugSeed and DebugHeldout was zero before refinement.

H Models | Accuracies H
Accuracy Accuracy of Accuracy of
Model model before Individual Debugging Random debugging
category name debugging (ours)
Test Test seed | heldout | Test seed | heldout
ResNetb0 0.7581 0.7852 | 0.3612 | 0.3082 | 0.7614 | 0.1348 | 0.1352
ResNet | ResNet101 0.7863 0.8148 | 0.3910 | 0.3173 | 0.7899 | 0.1377 | 0.1384
ResNet152 0.7996 0.8252 | 0.3916 | 0.3194 | 0.8015 | 0.1485 | 0.1463

Table 8: Accuracy of our method compared to the Random refinement on iNaturalist-2018 considering
background spurious correlations. Note that the accuracy of models on DebugSeed and DebugHeldout
was zero before refinement.

To better compare the superiority of using ChatGPT for uncommon spurious correlation suggestion, we
include the accuracy improvement on ImageNet for mitigating background associations when using a pre-
defined set of backhgrounds which contain ["in a blur background', "on a leaf", "in water", "on soil", "on a
plate", "in a hand", "on a sofa", "in garden', "in jungle"', "in cave", "on snow", "in a plane background', "in
yard", "outdoor", "in shore", "in the sky", "indoor", "on a wall", "on a tree", "on a table", "in a street", "on
n ns n ns n n:

a rock", "in a airplane”, "in cage', "with sun", "in a mountain", "in metro", "on grass", "in shelf", "on rails",

18

Under review as submission to TMLR

H Models | Accuracies H
Accuracy of
Model model Individual Debugging
category name (ours)

seed heldout
ResNet18 | 0.2260 0.1690
ResNet26 | 0.2295 0.1751
ResNet ResNet34 | 0.2294 0.1788
ResNetb50 | 0.2354 0.1806
ResNet101 | 0.2384 0.1847
ResNet152 | 0.2402 0.1857
ViT-S/8 0.2310 0.2073
ViT-S/16 | 0.2231 0.2044
ViT-B/8 | 0.2492 0.2271
DINO ViT-B/16 | 0.2359 0.2118

Table 9: Accuracy of our method when using a set of pre-defined backgrounds to mitigate background spu-
rious correlations in ImageNet dataset. Results show the superiority of using ChatGPT for rare background
suggestion.

"with a person”, "on bed", "in a playground", "in a kitchen", "on floor", "on glass", "on wood", "at a party",

n ns

"in a wardrobe', "in a restaurant', "in a bucket']. The results for this experiment can be seen in table @

B Comparing to baselines

B.1 CutMix Yun et al. (2019)

Method: The CutMix augmentation strategy is proposed to improve regional dropout methods for training
convolutional neural network classifiers. Instead of removing informative pixels with patches of black pixels
or random noise, CutMix involves cutting and pasting patches among training images, with ground truth
labels mixed proportionally to the patch area. This approach efficiently utilizes training pixels while retaining
the regularization effect of regional dropout.

Setting: We employ the implementation provided by the authors of the paper. The pretrained models were
trained using the below configuration:

Parameter | Value
net_type resnet
dataset imagenet
batch_size 256

1r 0.1
depth 50
epochs 300
expname ResNet50
J 40

beta 1.0
cutmix_prob | 1.0
verbose No

Table 10: CutMix experiment configuration on ImageNet (e.g., ResNet50)

19

Under review as submission to TMLR

B.2 |Jain et al.| (2023)

Method: They automatically distill failure modes in machine learning models to offer a global understanding
of datasets. The method involves representing failure modes as directions in a feature space by training linear
classifiers. This allows for the automatic detection, interpretation, and intervention of model failures. Shared
vision/language embeddings like CLIP are leveraged to ensure consistency.

Setting: We use the official GitHub implementation provided by the paper. All the settings, including the
percentage of validation set and DebugSet, are the same as ours. We compare their result with ours on
DebugHeldout in table

B.3 DCD Singla et al.| (2024)

Method: DCD addresses model failures in deep neural networks, particularly in scenarios where the training
set inadequately covers diverse deployment settings. Focusing on image classification, DCD leverages a
small set of samples from an error distribution (Esample) and a large pool of weakly labeled data (F). The
framework systematically improves model performance on the error distribution while maintaining accuracy
on the original test set. DCD strategically selects visually similar images from F by using the [2 distance in
the penultimate layer activations of various models.

Comparison: Since the paper’s code is not available, the frameworks are compared based on their methods
to find and mitigate failures.

e The identified failures lack interpretability, a crucial aspect for sanity checks and gaining deeper
insights into the models’ behaviors.

e The method involves a time-consuming manual process, including the selection of a subset of classes
with low accuracy, gathering synsets, and performing a Flickr search for synonyms. This results in
collecting a substantial number of image URLs (e.g., 952,951 across 160 ImageNet classes) and adds
complexity by removing common URLs across classes. In contrast, our method only adds 3 images
per class, significantly reducing the additional data burden.

In table we compare our results with |Jain et al.| (2023)); [Yun et al.| (2019). Note that the final models are
all tested on the same DebugHeldout for a fair comparison.

H Models | Accuracies on DebugHeldout H
Model model Ours | [Jain et al.|(2023) [[Yun et al|(2019) |
Category name CutMix
ResNet18 | 0.2128 0.0923 0.0642
ResNet26 | 0.228 0.1023 0.0527
ResNet ResNet34 | 0.2531 0.0839 0.0655
ResNet50 | 0.2717 0.1185 0.0738
ResNet101 | 0.2656 0.1147 0.0870
ResNet152 | 0.2817 0.1275 0.0941

Table 11: Comparison of our framework with some baselines.

20

	Introduction
	Our contribution
	Related work
	Failure mode detection
	Mitigation of Hard Subpopulations and Interpretability of Models
	Synthetic data as data augmentation

	Main method
	Failure-mode detection
	Failure-mode textualization
	Generating synthetic data
	Retraining the linear head

	Experiments
	Setting
	Failure inspection
	Individual Failure Inspection
	Collective Failure Inspection

	Failure Mitigation
	Individual Failure Mitigation
	Collective Failure Mitigation

	Conclusion
	Discussion
	Appendix
	Comparing to baselines
	CutMix yun2019cutmix
	jain2023distilling
	DCD singla2024data

