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Abstract

The single shortest path algorithm is undefined001
for weighted finite-state automata over non-002
idempotent semirings because such semirings003
do not guarantee the existence of a shortest004
path. However, in non-idempotent semirings005
admitting an order satisfying a monotonicity006
condition (such as the plus-times or log semir-007
ings), the shortest string is well-defined. We008
describe an algorithm which finds the shortest009
string for a weighted non-deterministic automa-010
ton over such semirings using the backwards011
shortest distance of an equivalent deterministic012
automaton (DFA) as a heuristic for A* search013
performed over a companion idempotent semir-014
ing, which is proven to return the shortest string.015
There may be exponentially more states in the016
DFA, but the proposed algorithm needs to visit017
only a small fraction of them if determinization018
is performed “on the fly”.019

1 Introduction020

Weighted finite-state automata provide a compact021

representation of hypotheses in various speech022

recognition and text processing applications (e.g.,023

Mohri, 1997; Mohri et al., 2002; Roark and Sproat,024

2007; Gorman and Sproat, 2021). Under a wide025

range of assumptions, weighted finite-state lattices026

allow for efficient polynomial-time decoding via027

shortest-path algorithms (Mohri, 2002).028

The shortest path—and the algorithms that com-029

pute it—are well-defined when the weights of a030

lattice are idempotent and exhibit the path property.031

These properties are formalized below, but infor-032

mally they hold that the distance between any two033

states corresponds to a single path between those034

states, so that the shortest-path algorithm—having035

identified this path—does not need to consider the036

weights of competing paths between those states.037

However, when the weights of a lattice lack these038

two properties, there is no guarantee that a shortest039

path between any two states exists. This situa-040

tion arises in many speech and language technolo- 041

gies. For instance, generative models for speech 042

recognition and machine translation—and in many 043

unsupervised settings—many require one to learn 044

alignments between sequences using expectation 045

maximization (EM; Dempster et al., 1977). EM in- 046

ference may require one to consider multiple com- 047

peting paths between pairs of states, and this is 048

incompatible with these two properties. Thus, to 049

efficiently decode a lattice constructed using EM, 050

heuristics are required; one can decode approxi- 051

mately by interpreting the lattice weights as if they 052

were idempotent and had the path property, or can 053

construct the lattice itself using the Viterbi approx- 054

imation to EM.1 055

In non-idempotent semirings admitting an order 056

satisfying a monotonicity condition, the shortest 057

string is undefined but the closely related notion of 058

shortest string is well-defined. We show below that 059

it is still possible to efficiently determine the short- 060

est string for lattices defined over non-idempotent 061

monotonic negative semirings such as the plus- 062

times and log semirings, both used for expecta- 063

tion maximization. We propose a simple algorithm 064

for decoding the shortest string over such semir- 065

ings which combines shortest-path search with the 066

A* queue discipline (Hart et al., 1968) and “on the 067

fly” determinization (Mohri, 1997). After provid- 068

ing definitions and the algorithm, we describe an 069

implementation and evaluate it using word lattices 070

produced by a speech recognizer. The algorithm— 071

in contrast to a naïve algorithm—is observed to 072

scale well as a function of lattice size. 073

2 Definitions 074

Before we introduce the proposed decoding algo- 075

rithm we provide definitions of key notions. 076

1Both of these strategies are discussed in Brown et al. 1993;
see §4.3 and §6.2, respectively.
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2.1 Semirings077

Weighted automata algorithms operate with respect078

to an algebraic system known as a semiring, defined079

by the combination of two monoids.080

Definition 2.1. A monoid is a pair (K, •) where K081

is a set and • is a binary operator over K with the082

following properties:083

1. closure: ∀a, b ∈ K : a • b ∈ K.084

2. associativity: ∀a, b, c ∈ K : (a • b) • c =085

a • (b • c).086

3. identity: ∃e ∈ K : e • a = a • e = a.087

Definition 2.2. A monoid is commutative in the088

case that ∀a, b ∈ K : a • b = b • a.089

Definition 2.3. A semiring is a five-tuple090

(K,⊕,⊗, 0̄, 1̄) where:091

1. (K,⊕) is a commutative monoid with the092

identity element 0̄.093

2. (K,⊗) is a monoid with the identity element094

1̄.095

3. ∀a ∈ K : a⊗ 0̄ = 0̄⊗ a = 0̄.096

4. ∀a, b, c ∈ K : a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c).097

Definition 2.4. A semiring is zero-sum-free if non-098

0̄ elements cannot sum to 0̄; that is, ∀a, b ∈ K :099

a⊕ b =⇒ a = b = 0̄.100

Definition 2.5. A semiring is idempotent if ⊕ is101

idempotent; that is, ∀a ∈ K : a⊕ a = a.102

Definition 2.6. A semiring has the path property103

if ∀a, b ∈ K : a⊕ b ∈ {a, b}.104

Remark 2.1. If a semiring has the path property it105

is also idempotent.106

Definition 2.7. The natural order of an idempotent107

semiring is a boolean operator ⪯ such that ∀a, b ∈108

K : a ⪯ b if and only if a⊕ b = a.109

Remark 2.2. In a semiring with the path property,110

the natural order is a total order. That is, ∀a, b ∈ K,111

either a ⪯ b or b ⪯ a.112

Definition 2.8. A semiring is monotonic if and113

only if ∀a, b, c ∈ K, a ⪯ b implies:114

1. a⊕ c ⪯ b⊕ c.115

2. a⊗ c ⪯ b⊗ c.116

3. c⊗ a ⪯ c⊗ b.117

Definition 2.9. A semiring is negative if and only 118

if 1̄ ⪯ 0̄. 119

Remark 2.3. In a monotonic negative semiring, 120

∀a, b ∈ K : a ⪯ 0̄ and a⊕ b ⪯ b. 121

Some examples of monotonic negative semirings 122

are given in Table 1. 123

Definition 2.10. The companion semiring of a 124

monotonic negative semiring (K,⊕,⊗, 0̄, 1̄) with 125

total order ⪯ is the semiring (K, ⊕̂,⊗, 0̄, 1̄) where 126

⊕̂ is the minimum binary operator for ⪯: 127

a ⊕̂ b =

{
a if a ⪯ b

b otherwise
128

Remark 2.4. The max-times and tropical semir- 129

ings are companion semirings to the plus-times and 130

log semirings, respectively. 131

Remark 2.5. By construction a companion semir- 132

ing has the path property and natural order ⪯. 133

2.2 Weighted finite-state acceptors 134

Without loss of generality, we consider single- 135

source ϵ-free weighted finite-state acceptors.2 136

Definition 2.11. A weighted finite-state acceptor 137

(WFSA) is defined by a five-tuple (Q, s,Σ, ω, δ) 138

and a semiring (K,⊕,⊗, 0̄, 1̄) where: 139

1. Q is a finite set of states. 140

2. s ∈ Q is the initial state. 141

3. Σ is the alphabet. 142

4. ω ⊆ Q×K is the final weight function. 143

5. δ ⊆ Q×Σ×K×Q is the transition relation. 144

Definition 2.12. An WFSA is acyclic if there ex- 145

ists a topological ordering, an ordering of the states 146

such that if there is a transition from state q to r 147

where q, r ∈ Q, then q is ordered before r. Other- 148

wise, the WFSA is cyclic. 149

2.3 Shortest distance 150

Definition 2.13. A state q ∈ Q is final if ω(q) ̸= 0̄. 151

Definition 2.14. Let F = {q | ω(q) ̸= 0̄} denote 152

the set of final states. 153

Definition 2.15. A path through an acceptor p is a 154

triple consisting of: 155

2The definition provided here can easily be generalized to
automata with multiple initial states, a single final state, initial
or final weights, or ϵ-transitions (e.g., Roark and Sproat, 2007,
ch. 1, Mohri, 2009, Gorman and Sproat, 2021, ch. 1).
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K ⊕ ⊗ 0̄ 1̄ ⪯

Plus-times R+ + × 0 1 ≥
Max-times R+ max × 0 1 ≥
Log R ∪ {−∞,+∞} ⊕log + +∞ 0 ≤
Tropical R ∪ {−∞,+∞} min + +∞ 0 ≤

Table 1: Common monotonic negative semirings; a⊕log b = −ln(e−a + e−b).

1. a state sequence q[p] = q1, q2, . . . , qn ∈ Qn,156

2. a weight sequence k[p] = k1, k2, . . . , kn ∈157

Kn, and158

3. a string z[p] = z1, z2 . . . , zn ∈ Σn159

such that ∀i ∈ [1, n] : (qi, zi, ki, qi+1) ∈ δ; that is,160

each transition from qi to qi+1 must have label zi161

and weight ki.162

Definition 2.16. Let Pq→r be the set of all paths163

from q to r where q, r ∈ Q.164

Definition 2.17. The forward shortest distance165

α ⊆ Q × K is a partial function from a state166

q ∈ Q that gives the ⊕-sum of the ⊗-product of167

the weights of all paths from the initial state s to q:168

α(q) =
⊕

p∈Ps→q

⊗
ki∈k[p]

ki.169

Definition 2.18. The backwards shortest distance170

β ⊆ Q × K is a partial function from a state q ∈171

Q that gives the ⊕-sum of the ⊗-product of the172

weights of all paths from q to a final state, including173

the final weight of that final state:174

β(q) =
⊕
f∈F

 ⊕
p∈Pq→f

⊗
ki∈k[p]

ki ⊗ ω(f)

 .175

Remark 2.6. For a state q, α(q) and β(q) are de-176

fined if and only if q is accessible and coaccessible,177

respectively.178

Definition 2.19. The total shortest distance of an179

automaton is β(s).180

2.4 Shortest path181

Definition 2.20. A path is complete if182

1. (s, z1, k1, q1) ∈ δ.183

2. qn ∈ F .184

That is, a complete path must also begin with an185

arc from the initial state s to q1 with label z1 and186

weight k1, and halt in a final state.187

Definition 2.21. The weight of a complete path is 188

given by the ⊗-product of its weight sequence and 189

its final weight: 190

k̄ =

 ⊗
ki∈k[p]

ki

⊗ ω(qn). 191

Definition 2.22. A shortest path through an au- 192

tomaton is a complete path whose weight is equal 193

to the total shortest distance β(s). 194

Remark 2.7. Automata over non-idempotent 195

semirings do not necessarily have a shortest path 196

(Mohri, 2002, 322). Consider for example the NFA 197

shown in the left side of Figure 1. Let us assume 198

that k ⊕ k ⪯ k < k′. Then, the total shortest dis- 199

tance is k⊕ k but the shortest path is k. Definition- 200

ally, a non-idempotent semiring does not guarantee 201

that these two weights will be equal. Then there is 202

no complete path whose weight is that of the total 203

shortest distance, and thus no shortest path exists. 204

Remark 2.8. It is not generally impossible to find 205

the shortest path efficiently over non-monotonic 206

semirings.3 207

2.5 Determinization 208

Definition 2.23. A WFSA is deterministic if, for 209

each state q ∈ Q, there is at most one transition 210

with a given label z ∈ Σ from that state, and non- 211

deterministic otherwise. 212

Definition 2.24. A zero-sum-free semiring is 213

weakly divisible if 214

∀a, b ∈ K ∃c ∈ K : a = (a⊕ b)⊗ c. 215

Definition 2.25. A weakly divisible semiring is 216

cancellative if c is unique and can thus be denoted 217

by c = (a⊕ b)−1a (Mohri, 2009, 238). 218

Remark 2.9. All semirings in Table 1 are zero- 219

sum-free, weakly divisible, and cancellative. 220

3See Mohri (2002) for general conditions under which the
shortest path can be found in polynomial time.
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Remark 2.10. For every non-deterministic, acyclic221

WFSA (or NFA) over a zero-sum-free, weakly di-222

visible and cancellative semiring, there exists an223

equivalent deterministic WFSA (or DFA). How-224

ever, a DFA may be exponentially larger than an225

equivalent NFA (Hopcroft et al., 2008, §2.3.6).226

We now provide a brief presentation of the227

determinization algorithm for WFSAs. Proofs228

can be found in Mohri 1997. Given an WFSA229

A = (Q, s,Σ, ω, δ) over a zero-sum-free, weakly230

divisible and cancellative semiring (K,⊕,⊗, 0̄, 1̄),231

its equivalent DFA can be defined and constructed232

as the DFA Ad = (Qd, sd,Σ, ωd, δd) where Qd is233

a finite set whose elements are subsets of Q×K,234

recursively defined as follows:235

1. sd = {(s, 1̄)} ∈ Qd.236

2. κd ⊆ Qd × Σ × K is the weight transition237

function, defined as238

κd(q, z) =
⊕

(qi,ki)∈q

ki ⊗

 ⊕
(qi,z,kj ,rj)∈δ

kj

 .239

3. νd ⊆ Qd×Σ×Qd is the next-state transition240

function, defined as νd(q, z) =241 ⋃
(qi, ki) ∈ q

(qi, z, kj , rj) ∈ δ

{
(rj , κd(q, z)

−1lj)
}

242

where lj =
⊕

(qi,z,kj ,rj)∈δ ki ⊗ kj .243

4. Qd = ν∗d(sd,Σ) defines the set of states as the244

closure of the next-state transition function.245

The transition relation is then defined as246

δd = {(q, z, κd(q, z), νq(q, z))|(q, z) ∈ Qd × Σ}247

and the final weight function ωd ⊆ Qd ×K as248

ωd(q) =
⊕

(qi,ki)∈q

ki ⊗ ω(qi).249

The intuition underlying this construction is that250

a state q ∈ Qd encodes a set of states in Q that251

can be reached from s by some common strings.252

More precisely, let p′ be the unique path in Psd→q253

labeled by some z′ ∈ Σ∗, then for any (qi, ki) ∈ q:254

k[p′]⊗ ki =
⊕

p∈Ps→qi :z[p]=z′

k[p].255

Termination is guaranteed for acyclic WFSAs 256

(Mohri, 1997). 257

Figure 1 gives an example of an NFA and an 258

equivalent DFA. States 0 and 1 in the DFA corre- 259

spond respectively to the subsets (0, 1̄) and (1, 1̄) 260

and κd(0, a) = k ⊗ k. 261

Remark 2.11. Given a NFA A with backwards 262

shortest distance β, the backwards shortest distance 263

βd over the equivalent DFA Ad can be computed 264

from β: 265

βd(q) =
⊕

(qi,ki)∈q

ki ⊗ β(qi) 266

for any q ∈ Qd (Mohri and Riley, 2002). 267

Since A is assumed to be acyclic, β can be com- 268

puted in O(|Q|) time (Mohri, 2002, §4.1), and 269

once β has been computed, βd(q) can also be com- 270

puted in linear time in |q| ≤ |Q| for any q ∈ Qd. 271

This computation can be performed on-demand 272

(“on-the-fly”) as soon as the existence of q ∈ Qd 273

is known, without requiring Ad to be fully con- 274

structed. 275

2.6 Shortest string 276

Definition 2.26. Let Pz be a set of paths with string 277

z ∈ Σ∗, and let the weight of Pz be 278

σ(z) =
⊕
p∈Pz

k̄[p]. 279

Definition 2.27. A shortest string z is one such 280

that ∀z′ ∈ Σ∗, σ(z) ⪯ σ(z′). 281

Lemma 2.1. In an idempotent semiring, a shortest 282

path’s string is also a shortest string. 283

Proof. Let p be a shortest path. By definition, 284

k̄[p] ⪯ k̄[p′] for all complete paths p′. It follows 285

that ∀z′ ∈ Σ∗ 286

σ(z[p]) =
⊕
p∈Pz

k̄[p] ⪯ σ(z′[p′]) 287

=
⊕
p′∈Pz

k̄[p′] 288

so z[p] is the shortest string. 289

Lemma 2.2. In a DFA over a monotonic semiring, 290

a shortest string is the string of a shortest path in 291

that DFA viewed as an WFSA over the correspond- 292

ing companion semiring. 293
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Figure 1: State diagrams showing a weighted NFA (left) and an equivalent DFA (right).

Proof. Determinism implies that for all complete294

path p′, k̄[p′] = σ(z[p′]). Let z be the shortest295

string in the DFA and p the unique path admitting296

the string z. Then297

k̄[p] = σ(z) ⪯ σ(z[p′]) = k̄[p′]298

for any complete path p′. Hence299

k̄[p] =
⊕̂

p′∈Ps→F

k̄[p′].300

Thus p is a shortest path in the DFA viewed over301

the companion semiring.302

2.7 A* search303

A* search (Hart et al., 1968) is a common shortest-304

first search strategy for computing the shortest path305

in a WFSA over an idempotent semiring. It can be306

thought of as a variant of Dijkstra’s (1959) algo-307

rithm, in which exploration is guided by a shortest-308

first priority queue discipline. At every iteration,309

the algorithm explores the state q which minimizes310

α(q), the shortest distance from the initial state s311

to q, until all states have been visited. In A* search,312

priority is instead a function of 𭟋 ⊆ Q×K, known313

as the heuristic, which gives an estimate of the314

weight of paths from some state to a final state.315

At every iteration, A* instead explores the state q316

which minimizes α(q)⊗𭟋(q).4317

Definition 2.28. An A* heuristic is admissible if it318

never overestimates the shortest distance to a state319

(Hart et al., 1968, 103). That is, it is admissible if320

∀q ∈ Q : 𭟋(q) ⪯ β(q).321

Definition 2.29. An A* heuristic is consistent if it322

never overestimates the cost of reaching a successor323

state. That is, it is consistent if ∀q, r ∈ Q such that324

𭟋(q) ⪯ k ⊗ 𭟋(r) if (q, z, k, r) ∈ δ, i.e., if there325

4One can view Dijkstra’s algorithm as a special case of
A* search with the uninformative heuristic 𭟋 = 1̄.

is a transition from q to r with some label z and 326

weight k. 327

Remark 2.12. If 𭟋 is admissible and consistent, 328

A* search is guaranteed to find a shortest path (if 329

one exists) after visiting all states such that 𭟋[q] ⪯ 330

β[s] (Hart et al., 1968, 104f.). 331

3 The algorithm 332

Consider an acyclic, ϵ-free WFSA over a mono- 333

tonic negative semiring (K,⊕,⊗, 0̄, 1̄) with total 334

order ⪯ for which we wish to find the shortest 335

string. The same WFSA can also be viewed as a 336

WFSA over the corresponding companion semir- 337

ing (K, ⊕̂,⊗, 0̄, 1̄), and we denote by β̂ the back- 338

ward shortest-distance over this companion semir- 339

ing. We prove two theorems, and then introduce an 340

algorithm for search. 341

Theorem 3.1. The backwards shortest distance of 342

an WFSA over a monotonic negative semiring is 343

an admissible heuristic for the A* search over its 344

companion semiring. 345

Proof. In a monotonic negative semiring, the ⊕- 346

sum of any n terms is upper-bounded by each of 347

the n terms and hence by the ⊕̂-sum of these n 348

terms. It follows that 349

𭟋(q) = β(q) 350

=
⊕

p∈Pq→F

k̄[p] ⪯
⊕̂

p∈Pq→F

k̄[p] 351

= β̂(q), 352

and this shows that 𭟋 = β is an admissible heuris- 353

tic for β̂. 354

Theorem 3.2. The backwards shortest distance of 355

an WFSA over a monotonic negative semiring is 356

a consistent heuristic for the A* search over its 357

companion semiring. 358
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Proof. Let (q, z, k, r) be a transition in δ. Lever-359

aging again the property that an ⊕-sum of any n360

terms is upper-bounded by any of these terms, we361

show that362

𭟋(q) = β(q)363

=
⊕

p∈Pq→F

k̄[p]364

=
⊕

(q,z′,k′,r′)∈δ

k′ ⊗ β(r′) ⪯ k ⊗ β(r)365

= k ⊗𭟋(r)366

showing 𭟋 = β is a consistent heuristic.367

Having established that this is an admissible and368

consistent heuristic for A* search over the compan-369

ion semiring, a naïve algorithm then suggests itself,370

following Lemma 2.2 and Remark 2.12. Given a371

non-deterministic WFSA over the monotonic neg-372

ative semiring (K,⊕,⊗, 0̄, 1̄), apply determiniza-373

tion to obtain an equivalent DFA, compute βd, the374

backwards shortest distance over the resulting DFA375

over (K,⊕,⊗, 0̄, 1̄) and then perform A* search376

over the companion semiring using βd as the377

heuristic. However, as mentioned in Remark 2.10378

above, determinization has an exponential worse-379

case complexity in time and space and is often pro-380

hibitive in practice. Yet determinization—and the381

computation of elements of βd—only need to be382

performed for states actually visited by A* search.383

Let βn denote backwards shortest distance over a384

non-deterministic WFSA over the monotonic nega-385

tive semiring (K,⊕,⊗, 0̄, 1̄). Then, the algorithm386

is as follows:387

1. Compute βn over (K,⊕,⊗, 0̄, 1̄).388

2. Lazily determinize the WFSA, lazily comput-389

ing βd from βn over (K,⊕,⊗, 0̄, 1̄).390

3. Perform A* search for the shortest string over391

(K, ⊕̂,⊗, 0̄, 1̄) with βd as the heuristic.392

4 Evaluation393

We evaluate the proposed algorithm using non-394

idempotent speech recognition lattices.395

4.1 Data396

We search for the shortest string in a sample of 700397

word lattices derived from Google Voice Search398

traffic. This data set was previously used by Mohri399

and Riley (2015) and Gorman and Sproat (2021,400

ch. 4) for evaluating related WFSA algorithms. 401

Each path in these lattices is a single hypothesis 402

transcription produced by a production-grade au- 403

tomatic speech recognizer, here treated as a black 404

box. The exact size of each input lattice size is 405

determined by a probability threshold, so paths 406

with probabilities below a certain threshold have 407

been pruned. These lattices are acyclic, ϵ-free, 408

non-deterministic WFSAs over the log semiring, a 409

monotonic non-idempotent semiring. 410

4.2 Implementation 411

The above algorithm is implemented as part of 412

an open-source C++17 library released under the 413

Apache-2.0 license.5 This toolkit includes a 414

command-line tool which implements the above 415

algorithm over the log semiring, using the tropical 416

semiring as a companion semiring. This implemen- 417

tation depends in turn on implementations of de- 418

terminization, shortest distance, and shortest path 419

algorithms provided by OpenFst (Allauzen et al., 420

2007). This command-line tool, along with vari- 421

ous OpenFst command-line utilities, were used to 422

conduct the following experiment. 423

4.3 Methods 424

We compare the proposed algorithm to the naïve 425

algorithm mentioned in (§3). The naïve algo- 426

rithm first exhaustively constructs the equivalent 427

DFA by applying weighted determinization—as 428

implemented by OpenFst’s fstdeterminize 429

command-line tool—then performs A* search on 430

the DFA over the companion semiring. Its com- 431

plexity is bounded by the number of states in the 432

full DFA. In contrast, the complexity of the pro- 433

posed algorithm is bounded by the number of DFA 434

states dynamically constructed—i.e., when they are 435

visited—during search. As an additional measure, 436

we also compare the number of states visited by 437

the proposed algorithm to the number of states in 438

the original NFA lattice. 439

4.4 Results 440

Figure 2 compares the proposed algorithm to the 441

naïve algorithm. One can see that the naïve algo- 442

rithm may in some cases have to construct upwards 443

of 100,000 states for word lattices where the pro- 444

posed algorithm need only construct hundreds of 445

states. This demonstrates that the proposed algo- 446

rithm is substantially more efficient than the naïve 447

5https://redacted.org
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algorithm. Figure 3 visualizes the number of states448

visited by the proposed algorithm as a function of449

the size of the input NFA.450

Figure 2: Comparison of word lattice decoding with
the proposed algorithm vs. the naïve algorithm. The
x-axis shows the number of states in the full DFA; the y-
axis shows the number of states visited by the proposed
algorithm. Both axes are in logarithmic scale.

5 Related work451

Several prior studies use A* search for decoding452

speech lattices over idempotent semirings. For ex-453

ample, Mohri and Riley (2002) describe a related454

algorithm for computing n-best lists over an idem-455

potent WFSA. Like the algorithm proposed here,456

they use A* search and on-the-fly determinization;457

however, they do not consider decoding over non-458

idempotent semirings. We note that the algorithm459

proposed here could, in a generalization of Mohri460

and Riley’s algorithm, be easily used to compute461

the n shortest strings over a non-monotonic WFSA.462

Specifically, one would perform A* search over463

the companion semiring using βd as the heuristic464

just as described in §3, but would solve for the n465

shortest strings (Mohri, 2002, §6) rather than the466

single shortest string.6467

6 Conclusions468

We propose an algorithm which allows for efficient469

shortest string decoding of weighted automata over470

non-idempotent semirings using A* search and on-471

the-fly determinization. We find that A* search472

6We thank an anonymous reviewer for drawing our atten-
tion to this point.

Figure 3: Comparison of word lattice decoding with the
proposed algorithm to the size of the input NFA. The
x-axis shows the number of states in the input NFA;
the y-axis shows the number of states visited by the
proposed algorithm. Both axes are in logarithmic scale.

results in a substantial reduction in the number of 473

DFA states visited during decoding, which in turn 474

minimizes the degree of determinization required 475

to find the shortest path. 476

We envision several possible applications for the 477

proposed algorithm. It could be used to exactly 478

decode noisy channel “decipherment” models (e.g., 479

Knight et al., 2006) of the form 480

P̂ (p | c) ∝ P (p)P (c | p) 481

estimated with expectation maximization, as well 482

as training scenarios which mix ordinary and 483

Viterbi EM (e.g., Spitkovsky et al., 2011). 484

The decoding algorithm could also be used for 485

exact decoding of lattices scored with interpolated 486

language models (e.g., Jelinek and Mercer, 1980) 487

of the form 488

P̂ (w | h) = λhP̃ (w | h) + (1− λh)P̂ (w | h′) 489

where λh is estimated using ordinary EM. 490

7 Limitations 491

While the evaluation (§4) finds the proposed algo- 492

rithm to be substantially more efficient than the 493

naïve algorithm on real-world data, it has the same 494

exponential worst-case complexity as exhaustive 495

determinization of acyclic WFSAs. This worst case 496

dominates the linear-time operations used to com- 497

pute βn, and βd and to solve for the single shortest 498

7



path. However, we conjecture the worst case is un-499

likely to arise for topologies encountered in speech500

and language processing applications.501

8 Broader impacts502

We are aware of no ethical issues raised by the503

proposed algorithm beyond issues of dual use, bias,504

etc., which are inherent to all known speech and505

language technologies.506
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