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Abstract

Mobile manipulation tasks such as opening a door, pulling open a drawer, or lifting1

a toilet seat require constrained motion of the end-effector under environmental2

and task constraints. This, coupled with partial information in novel environments,3

makes it challenging to employ classical motion planning approaches at test time.4

Our key insight is to cast it as a learning problem to leverage past experience5

of solving similar planning problems to directly predict motion plans for mobile6

manipulation tasks in novel situations at test time. To enable this, we develop a7

simulator, ArtObjSim, that simulates articulated objects placed in real scenes. We8

then introduce IIK+θ0, a fast and flexible representation for motion plans. Finally,9

we learn models that use IIK+θ0 to quickly predict motion plans for articulating10

novel objects at test time. Experimental evaluation shows improved speed and11

accuracy at generating motion plans than pure search-based methods.12

1 Introduction13

As humans, when faced with everyday articulated objects as shown in Figure 1, we draw upon our14

vast past experience to successfully articulate them. We know to stand on the side as we pull open a15

oven, and where to lean on a door to push it open. Very rarely do we pull open a door onto our feet,16

or bump into the toilet while lifting a toilet seat. In this paper, we develop techniques that enable17

robots to similarly use past experience to mine and quickly predict strategies for articulating everyday18

objects in cluttered real environments.19

Current work on articulating objects casts it as a motion planning problem: given a full scan of20

the environment, find a robot joint trajectory that leads the end-effector to track the trajectory that21

the grasp-point on the object should follow. This suffers from both a high-sensing cost and a high-22

planning cost. Building a full articulable 3D reconstruction of the environment for collision checking23

and planning is expensive and time consuming. At the same time, finding paths that conform to tight24

constraints on the end-effector trajectory while not colliding with self or surrounding obstacles or the25

articulating object is computationally hard. States that adhere to the given constraint form a measure26

zero set among the set of all states. This creates issues for sampling-based motion planners which27

can fail to sample states that satisfy the constraint, or must incur computation cost to project states to28

the constraint manifold [19, 4].29

Rather than re-solving, from scratch, how to open a door every time we encounter one, our proposal30

is to build a repertoire of strategies based on past experience. This replaces the search in the high-31

dimensional motion plan space with the much simpler problem of selecting from a small family of32

good strategies, leading to gains in efficiency. Furthermore, this simpler search can be driven by33

whatever observation is readily available from on-board sensors through the use of machine learning.34

Our experiments demonstrate the effectiveness of casting this as a learning problem. Given a single35

RGB-D observation of an articulated object in cluttered real world scenes and associated end-effector36
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Figure 1: Household robots need to articulate everyday objects (e.g. pull open drawers, swing open cupboards,
lift toilet seats). Such articulation involves applying forces onto the environment while maintaining relevant
contact, such as with the drawer handle as we pull it open. This requires reasoning about the feasibility of
the entire trajectory (i.e. points along the trajectory should not just be reachable, but it must be possible to
continuously go from one point to the next). This paper develops datasets and techniques for learning models
that can predict motion plans for such constrained motion planning problems with low sensing and planning
costs.

pose trajectory to track, we can output motion plans that track the end-effector trajectory to within 137

cm error with just a few inverse kinematic calls. This, by far, outperforms the constrained motion38

planning implementation for the projected state space method from the OMPL library [19, 42] which39

fails to find any motion plans with less than 1cm tracking error even when given 15 minutes of40

planning time. Our impressive performance is enabled by the following three key innovations.41

First, we construct, ArtObjSim, a lightweight kinematic simulator for everyday articulated objects42

placed in real scenes. Crucially, this simulator is derived from scans of real-world environments43

(from HM3D dataset [35]). This retains the appearance and the cluttered environmental context of the44

articulated objects. The simulator not only provides the experience to build the repertoire of strategies,45

but also serves as the first of its kind benchmark for generating plans for articulating objects in real46

environments. Our dataset consists of 2914 articulated object instances across 4 articulation types47

(prismatic e.g. drawers, vertical hinge e.g. cabinets, horizontal up-hinge e.g. toilet lids, horizontal48

down-hinge e.g. dishwashers) across 10 object categories in 97 scenes.49

Second, rather than predicting a motion plans, that must conform to tight task constraints and are50

hence hard to directly predict, we instead predict a strategy that can be efficiently decoded into a51

motion plan using the articulation geometry. Our decoding process consists of synchronously solving52

inverse kinematics (IK) problems for end-effector waypoints sampled along the given end-effector53

trajectory. This synchronization is done by warm starting IK for the tth time-step using solution54

from the (t − 1)th time-step. We call this decoding process Incremental Inverse Kinematics or55

IIK. By directly optimizing to reduce end-effector pose error, IIK leads to low tracking errors. The56

initialization for the first time step, θ0, serves as the strategy. Changing θ0 changes the strategy and57

generates a different motion plan. We find that this representation, IIK+θ0, is fast (motion plans58

can be quickly decoded) and flexible (with the right θ0 it can produce high-quality motion plans for59

diverse objects in diverse situations).60

Not all initializations would work well for all situations. Some might not be able to track the61

end-effector accurately enough, some may lead to collisions, and others yet might violate the task62

constraint when joint angles are interpolated for smooth execution. Thus, we need to find good63

initializations for IIK+θ0 at test time. Our third innovation, the use of a convolutional neural64

network to predict good initializations for IIK+θ0 (or equivalently, good strategies) from RGB image65

observations, speeds up test time inference. We train this model on a dataset of object images labeled66

with good initializations, as generated using our proposed ArtObjSim simulator. We are able to find67

good solutions with only a few IK calls. This is much faster than sampling-based planning at test68

time which would make tens of thousands of IK calls to project sampled states to the constraint set.69

We also show that our method can work with predicted end-effector waypoints. Collected dataset,70

ArtObjSim, and code will be made publicly available upon acceptance.71
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2 Related Work72

Motion planning under constraints [19, 4] has been used to tackle object articulation problems,73

e.g. [36, 7, 34, 5, 27, 6, 44] among numerous other works. Researchers have tackled many aspects:74

design of task-space regions for expressing constraints on end-effectors [5], planning for base and arm75

motion separately [27], considering whole-body manipulation [6], reasoning about good locations to76

position the base through inverse reachability maps [44], and even casting it instead as a trajectory77

optimization or optimal control problem [9, 33, 40, 28]. All these approaches solve a new object78

articulation problem, from scratch, every time they encounter one. Consequently, they incur a high79

sensing and planning costs. Different from these works, our interest is in techniques to leverage80

experience with similar articulation problems in the past to quickly predict motion plans with low81

sensing and planning cost. Online system identification approaches [18, 16, 32, 31] that adapt plans82

using feedback have also been studied.83

Perception of articulated objects. A body of work [47, 25, 17, 50, 29, 46, 45, 37, 1, 30, 21, 3, 2] has84

tackled the perception of articulation geometry for articulated objects. Given raw sensory input (RGB85

images, RGB-D images, depth images, point clouds, or meshes) the goal is to predict articulation86

parameters: e.g. articulation type (prismatic vs. hinge), segmentation of parts that independently87

articulate, axis of rotation / translation, points of interaction. Researchers have a) investigated the use88

of different input modalities [38, 29, 17, 25], b) built datasets for training models [30], c) designed89

unified output parameterizations [17], and d) designed novel neural architectures and representation90

[25, 50]. Researchers have also studied directly predicting sites for interaction [29] and trajectories91

that the robot end-effector should follow [47] to articulate the object. Our work is complementary,92

and focuses on converting articulation geometry, possibly predicted from any of these past models,93

into motion plans.94

Simulators for studying object articulation have been challenging to build. Most past efforts use95

manually created synthetic scenes: AI2-THOR [22], Sapeins [49], ManipulaTHOR [8], ThreeD-96

World [10]. Habitat 2.0 [43] and iGibson [39] improve realism by manually aligning 3D models to97

real scenes, but are small in size (92 objects in 1 home and 500 objects in 15 homes respectively).98

Our proposed ArtObjSim simulator is unique in its focus, studying prediction of motion plans for99

everyday articulated objects, and scale, having 2900 articulated objects spread across 97 unique real100

world scenes. To our knowledge, ArtObjSim is the largest dataset, to date, for the study of motion101

planning performance for articulating everyday objects in everyday scenes.102

End-to-end RL approaches can also be used to leverage prior experience for fast execution under103

partial information at test time [24, 48, 13]. However, the large sample complexity of learning policies104

through RL and the small number of environments available for training has prevented past works to105

show generalization results in novel environments. By leveraging classical components and scaling106

up learning, we are able to learn models that generalize to novel objects.107

Learning for motion planning has been used to reduce the runtime of motion planning algorithms:108

[14, 41, 15]. Strudel et al. [41] learn obstacles representations for motion planning, while Ichter109

et al. [15, 14] use learning to bias sampling of states for motion planners. Our use of learning is110

similarly motivated, but we learn to predict low-dimensional strategies (that can be decoded into full111

motion plans) for constrained motion planning problems from visual input.112

3 ArtObjSim: A Simulator for Everyday Articulated Objects in Real Scenes113

We introduce ArtObjSim, a lightweight kinematic simulator for articulated objects placed in real114

scenes. ArtObjSim is built upon the HM3D dataset [35]. HM3D consists of 3D scans of real world115

environments. It offers both, realistic image renderings from real scenes, and access to the underlying116

3D scene geometry. ArtObjSim is made possible through 2D annotations of articulation geometry117

on images, which are then lifted to 3D to allow for a kinematic simulation of the articulated objects.118

To our knowledge, ArtObjSim is the first simulator that enables a systematic large-scale study of119

articulation of everyday objects in real world environments. We describe the steps involved in the120

construction of ArtObjSim.121

Annotating Articulation Geometry on Images. The first step is to annotate 2D articulation geometry122

on images. 2D articulation geometry includes marking the extent, axis of articulation, articulation123

type, and interaction locations (handles). We collect annotations in two phases.124
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b) 3D scan associated with the RGB image, with 
annotation for articulations overlaid.

a) RGB Image with annotation for cupboard 
face and handle.

c) Lightweight kinematic simulator with real 
world object placement, clutter & appearance.

90∘

Figure 2: Simulator development. (a) We annotate RGB images inside 3D scans with 2D articulation geometry.
(b) This is lifted to 3D using the underlying 3D geometry. (c) As a result we get simulators that can simulate
articulated objects in realistic scenes.

In the first phase, we manually walk through the HM3D scenes to find kitchens and bathrooms and125

identify locations that show articulation objects. We render out images from different viewpoints126

from these locations for labeling.127

In the second phase, we use an annotation service to obtain the necessary 2D labels. We obtain128

annotations for the segmentation mask for the front face, handle locations, and articulation type129

(prismatic vs. left hinge vs. right hinge t’op hinge vs. bottom hinge). See Figure 2(a) for an example130

annotation. For most rectangular objects (e.g. drawers, cupboards, refrigerators) these three together131

with the underlying 3D information from the mesh are sufficient to deduce the axis of articulation.132

This doesn’t work for toilets and we get additional labels for the axis of rotations (location where the133

lid is attached). Toilet lids also don’t have handles, we annotate and use the lid tip as the interaction134

point.135

We manually verify the annotation quality after each phase and fix or reject bad annotations. The136

annotation procedure is fast and cost effective ($0.5 per object instance).137

Extracting 3D Articulation Geometry from 2D Annotations. We use the collected 2D annotations,138

combined with the 3D scene geometry, to obtain a 3D simulation for each articulated object. For each139

object, we fit a plane to the points within the segmentation mask on the depth image corresponding140

to the RGB image. This gives us a 3D representation (a 3D rectangle) for the object face that141

will undergo articulation. We project the 2D handle location onto this 3D plane to obtain the 3D142

handle location. Articulation parameters are obtained from this 3D representation. We assume that143

the prismatic objects pull out perpendicular to the face, and the hinged objects rotate about the144

corresponding edge (top, bottom, left or right) of the 3D rectangle. As noted, toilet lids can’t be145

approximated as rectangles. We project the annotated 2D axis to the 3D plane. All annotations are146

converted into the mesh coordinate frame using the transformations for the camera used to render out147

the image. This defines all that we need to simulate the articulating object in 3D, see Figure 2(c).148

ArtObjSim Simulator. As a result of the above two steps, we obtain kinematic simulations for149

thousands of unique object instances placed in real 3D scenes. Not only can we can simulate the object150

(i.e. how the collision geometry will change as the object articulates or how will the end-effector need151

to move), we also have a sense of the surrounding 3D geometry of the scene (i.e. the counter below152

the cabinet), and can render out the RGB appearance of the object from multiple different views.153

Table 1 shows dataset statistics. The dataset is diverse with close to 3000 object instances from across154

97 scenes across 10 object categories and 4 articulation types. The dataset also includes a large155

geometric variety e.g. cabinets high up above the counter and oven drawers very close to the ground.156

This diversity, along with the fact that these objects are immersed in real scenes makes up problem157

instances which have not been tackled extensively in the literature.158

In Section 4, we will use ArtObjSim to design, train, and evaluate models for predicting motion plans159

for articulating everyday objects. However, we anticipate ArtObjSim will be useful for many other160

tasks. For example, predicting articulation parameters or end-effector waypoints from RGB images,161

or for mining statistics about placement of articulated objects in kitchens to build generative models162

for scene layout, or for building policies for mobile manipulation.163
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Table 1: Statistics for objects and scenes in Simulator for Everyday Articulated Objects in Context (ArtObjSim).

Train Val Test Total

# Scenes 70 17 10 97
# Unique Object Instances 2137 459 318 2914
# Prismatic (e.g. Drawer) 719 137 107 963
# Vertical Hinge (e.g. Cabinet) 1255 282 188 1725
# Horizontal Down-hinge (e.g. Oven) 163 40 23 226
# Horizontal Up-hinge (e.g. Toilet lid) 70 12 14 96
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Figure 3: Overview of MPAO (Motion Plans for Articulating Objects). Given an RGB-D image of the object
to be articulated (denoted with a red marker), we use a CNN to predicts good initializations for incremental
inverse kinematics (IIK). IIK uses end-effector trajectories to generate motion plans corresponding to each
returned high-scoring initializations. Generated plans are tested for deviations from the intended trajectory, and
collisions using the depth image. The first plan that succeeds these internal checks is returned.

4 Representing and Predicting Motion Plans164

Given a single RGB-D image pair [I,D] of an articulated object, and a sequence of end-effector poses165

necessary to articulate the object [. . . , wt, . . .], our next goal is to predict a motion plan, i.e. sequence166

of joint angles [. . . , θt, . . .] that bring the end-effector in the necessary pose to conduct the desired167

articulation. Rather than re-solving each new problem instance from scratch using motion planning168

under partial information, we pursue a machine learning approach that leverages past experience to169

directly predict motion plans. A straight-forward application of machine learning doesn’t work as the170

predicted plans need to satisfy tight task constraints. Instead, we use machine learning to predict a171

strategy which is decoded into a complete motion plan that adheres to the task constraints at hand.172

We first describe what strategies are and how they are decoded in Section 4.1 and then describe how173

we use them to predict motion plans from RGB images in Section 4.2.174

4.1 Representing and Decoding Motion Plans175

We represent motion plans as the initialization of a deterministic gradient-based solver that optimizes176

joint angles to get the end-effector in the desired pose.177

Our motion plan representation builds upon numerical inverse kinematics methods [26]. Inverse178

kinematics (IK) is the process of obtaining joint angles that get the end-effector to a given desired179

pose. Starting from some initial joint angles, a numerical IK solver iteratively updates the joint180

angles using the Jacobian of the forward kinematics till a solution is found. As we are interested in181

not one but a sequence of joint angles that track the given end-effector trajectory, we incrementally182

θ0

θ1 θ2 θ10

w1 w2 w10

IK IK IK

End-effector 
Waypoints

Joint Angles

IIK 
Initialization

IK

θ3

w3

Figure 4: Incremental Inverse Kinematics (IIK). Given an initial configuration (θ0), and a sequence of
end-effector pose waypoints, IIK uses inverse kinematics (IK) to generate configurations that achieve the given
end-effector waypoints. IK for subsequent steps is warm-started with IK solutions from the previous time step.
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solve a sequence of inverse kinematic problems by initializing the inverse kinematic solver for the tth183

time-step with the solution from the (t− 1)th time-step. We call this process, Incremental Inverse184

Kinematics or IIK, and show a block diagram in Figure 4.185

Thus, IIK can be viewed as a deterministic process that converts a sequence of end-effector waypoints186

and an initial joint configuration θ0 into a sequence of joint angles that realize the end-effector poses.187

θ0 can be thought of as knob that controls the motion plans that IIK generates. Varying θ0 varies the188

motion plan generated. We use (IIK, θ0) as our representation for strategies that generate motion189

plans. Our experiments demonstrate that it is a flexible and efficient way to generate motion plans for190

articulating everyday objects, and outperforms both unconstrained and constrained motion planning191

approaches.192

Note that IIK+θ0, shorthand for (IIK, θ0), may not generate feasible motion plans for all inputs193

θ0. Initializing from some θ0 may not get the end-effector to where we want it to be, others might194

cause the end-effector to deviate too much from the desired trajectory when interpolating between195

waypoints, yet others might cause collisions with self or with the environment. We address this196

issue by predicting good θ0’s from the RGB image showing the articulated object as we describe in197

Section 4.2.198

4.2 Predicting Motion Plans from Images199

Our next step is to predict good initializations θ0’s for IIK+θ0 from RGB images. As there can be200

more than one good θ0 for each image, we adopt a classification approach. We work with a set of201

initializations Θ. We train a function f(I, θ0) that classifies whether or not the use of θ0 serves as a202

good initialization for IIK to achieve end-effector waypoints w without collisions. We provide details203

about the initialization set Θ, function f , training data, and loss function to train f .204

Initialization set Θ comes from the Cartesian product of a set of robot base positions in R3 and a set205

of 10 arm configurations. We use 704 base positions (sampled in a uniform 1m× 1.5m 2D grid of206

base positions at a 10cm resolution at 4 different heights) and 10 arm configurations, resulting in Θ207

having 7040 elements. To acquire the 10 arm configurations, we sample 20 random configurations208

which satisfy the joint limits, and then select the 10 which give us the most successes across the209

dataset.210

Function f is realized through a CNN with an ImageNet pre-trained ResNet-34 backbone [12]. We211

add 2 fully connected layers on the conv5 output to produce a 7040 dimensional representation. This212

is reshaped into an 80-dimensional spatial output of size 11× 16. This is processed through another213

3 convolutional layers to produce a (10 · 4)× 11× 16 tensor containing 11× 16 spatial output logits214

for each of the 10 arm configurations at each of the 4 heights.215

Training labels are generated by decoding each candidate θ0 into motion plans using IIK, and216

testing them for end-effector pose deviation, self-collision, collision with the static environment, and217

collision with the articulating object in our simulator from Section 3. Note that while testing the218

decoded motion plans, we interpolate between consecutive states to simulate how the plan will be219

executed in practice. This process generates a binary success label for each of the 7040 candidates in220

Θ. This is used to supervise the logits predicted by f via a binary cross-entropy loss.221

Training details. Each articulated object instance in ArtObjSim comes with waypoints and ground222

truth labels as described above. We render multiple views for each articulated object to generate 30K223

images to train the function f .224

Our full method, Motion Plans for Articulating Objects (MPAO), uses the learned function f to rank225

candidate initialization in Θ. We go down the ranked list, decode them into motion plans using226

IIK, and return the first feasible plan (feasible meaning: accurately tracks the given waypoints and227

also doesn’t collide with self or with the geometry visible in the depth image). See Figure 3 for an228

overview.229

5 Experiments230

Our experiments evaluate two aspects: a) the flexibility and decoding efficiency of our proposed231

motion plan representation from Section 4, and b) how effectively can we leverage RGB images to232

quickly convert end-effector poses to motion plans. For the former, we make comparisons to motion233
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Figure 5: Result plots. We show success rate as a function of number of tries for the different articulation
types. Our method, MPAO, that predicts good strategies based on visual input, achieves a higher success rate
and generates solutions faster than pure search methods.

(a) (b) (c) (d) (e)

Figure 6: (a) One of the ten arm joint configurations from Θ used for initialization. (b) Example of a cabinet
from the dataset (indicated by the yellow marker), along with predictions for the configuration shown in (a)
overlaid onto the image (warmer colors mean higher score). (c, d, e) Visualizations of a successful execution
from one of the high-scoring locations.

planning, and for the latter we compare against variations that don’t use the RGB image. We also234

evaluate how our method works with predicted end-effector waypoints.235

Experimental Setup. We leverage the geometry and appearance of articulated objects in real scenes236

in our proposed ArtObjSim simulator for evaluation. We adopt the train, val, and test splits as noted237

in Table 1. All instances from the same scene are in the same set. This allows us to measure how well238

our models perform on novel held-out object instances. We work with the 7DOF Franka Emika Panda239

robot. We assume that it can take one of 4 discrete heights (0.25m, 0.5m, 1.0m and 1.5m). While we240

reason about where the base should be to conduct the motion, we assume that the base remains fixed241

during execution. Leveraging base motion to better articulate objects is left to future work.242

5.1 Motion Plan Representation243

We evaluate the flexibility and decoding efficiency of our proposed motion planning representation.244

More specifically, given a 10 time-step end-effector trajectory and complete collision geometry of the245

situation, this evaluation measures the quality of the joint angle trajectory produced by our method.246

We search for a good initialization θ0 ∈ Θ for IIK and spits out the first solution that doesn’t have247

collisions (to self, surrounding environment, or the articulating object) and conforms to the given248

tolerance in end-effector pose.249

Metric. A predicted trajectory is considered successful if: a) it conveys the end-effector to the goal250

pose within 1 cm and 0.01 radian, b) the resulting end-effector trajectory violates the task constraint251

by less than 1 cm in translation and 0.01 radians in rotation for each time step, and c) it doesn’t252

cause collisions with self, the static environment, or the object as it articulates. Before measuring253

deviations and collision-checking, we linearly interpolate the joint angle trajectories to bring all joint254

angle changes to ≤ 0.1 radians.255

Results. We report the success rate and time taken by our method for different articulation types in256

Table 2. Prismatic drawers are easy: we can find solutions for 98.5% of the instances to within 0.01257

cm, in as little as 2s of compute while only needing to try a median of 15 initializations. Vertical258

hinged and horizontal down-hinged objects are harder: we are only able to solve 75% instances while259

also needing to sample many more initializations, taking around 100s. Toilets are by far the hardest260

because of the tight space in bathrooms.261

Comparison with other methods. We also compared IIK+θ0 to two other class of methods:262
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Table 2: Motion planning for articulating objects under full information. We measure the success rate and
quality of successful plans generated by the different motion planning methods we considered. We note that
IIK+θ0 is able to successfully generate plans quickly. Motion planning, both unconstrained and constrained,
obtained a 0% success rate, and hence are omitted from the table, see Section 5.1 for more details.

Articulation Type Performance Speed

Success % Deviation (cm) #inits. Time (s)

Prismatic (e.g. Drawers) 98.5 0.01 15 2.48
Vertical Hinge (e.g. Cabinets) 73.8 0.16 306 111.09
Horizontal Down-Hinge (e.g. Dishwasher) 75.0 0.28 171 91.32
Horizontal Up-Hinge (e.g. Toilet lid) 50.0 0.13 255 432.31

unconstrained and constrained motion planning, neither of which were able to find any successful263

solutions in a tractable amount of time. For unconstrained motion planning, we used RRT-264

connect [23] to find a path between a start and end joint configuration obtained using inverse265

kinematics. While this always found a path, without any constraint on the intervening end-effector266

poses, the path would always violate the 1-DOF constraint imposed by articulated object. This is267

not surprising as the two poses are quite far from one another. To our surprise, even when these268

poses are brought close to one another, by sampling 10 way-points along the trajectory, unconstrained269

motion planning would still only return solutions that would wildly swing the end-effector around.270

For constrained motion planning, we used the projected state space method from the OMPL271

library [19, 42, 20]. It would find motion plans that conformed to the task constraint to some extent.272

However, the minimum deviation was 2 cm, much more than the tolerance level needed for our273

tasks, resulting again in a 0% success rate. We experimented with many different hyper-parameter274

settings. Some worked better than others, but none were able to return any plans with lower than 2275

cm deviations.276

In summary, IIK+θ0 is effective at producing joint angles that conform to a given end-effector trajec-277

tory. Finding a solution is still computationally expensive as it requires testing many initializations.278

We address this using the prediction network f . We evaluate it next.279

5.2 Motion Plan Prediction with Known Waypoints280

Our next evaluation seeks to measure how quickly and accurately, we can predict motion plans for281

articulated objects places in novel contexts as observed through RGB-D images. More specifically,282

given an RGB-D image along with an end-effector trajectory, we measure the success rate of283

predicting motion plans as a function of planning time. As in Section 5.1, we call a predicted motion284

plan successful if it reaches the goal while violating the task constraint by less than 1 cm, 0.01 radians285

and not colliding with self, the environment, and the articulating object. While the metric is the same,286

the focus of this evaluation is to assess how well methods can cope with partial information from287

RGB-D observations and their speed of generating solutions.288

Comparisons. We compare against other search schemes for finding good θ0 for IIK. These baseline289

schemes employ the same overall structure as our method (IIK decoding followed by filtering based290

on feasibility), but don’t use any past experience (learned model) to rank initializations. We consider291

two variants. Random Order uses the same set of initializations Θ as our method, but evaluates them292

in a random order. IK initialization conducts IK with 100 different initializations to generate arm293

joint angles and base locations that reach the first end-effector waypoint.294

Results. Figure 5 presents the success rate for different methods as a function of total number of295

solutions tried for novel object instances in the test set. Across all articulation types, our method296

dominates pure search baselines in success rate and speed. We are able to match baseline performance297

for prismatic joints with 3× fewer tries, and obtain 2.58× the success rate of the baselines for vertical298

hinges. This establishes the effectiveness of the learned model at predicting good initializations from299

just RGB image observations. Figure 6 shows an example visualization. We also experimented with300

a pure imitation learning approach that directly predicts the entire motion plan but weren’t able to301

train a model that generalized to novel instances in preliminary experiments.302
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5.3 Motion Plan Prediction with Unknown Waypoints303

As a proof-of-concept, we have also integrated MPAO into an overall pipeline that doesn’t require304

known waypoints. We experimented with drawers. We adapt Mask RCNN [11] to detect and305

predict drawer faces (segmentation mask) and handle locations (keypoints) using annotations from306

ArtObjSim. We converted them into end-effector waypoints using the depth image. This by itself307

gave an median error of 1.6cm. When using MPAO to track these predicted waypoints, we are able to308

predict plans that solve 39% drawers to within 1 cm error and 70% to within 5cm error.309

6 Conclusion310

We pursued a learning approach that uses past experience to quickly predict motion plans for311

articulating objects. We collected ArtObjSim, a large dataset that enables a kinematic simulation312

of everyday objects placed in real scenes. We designed IIK+θ0, a fast and flexible way to represent313

motion plans under end-effector constraints, and trained neural network models that leverage IIK+θ0314

to quickly predict plans for articulating novel objects.315
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