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Abstract

Multimodal Large Language Models (MLLMs)
demonstrate excellent performance across vari-
ous multimodal tasks. However, they still tend
to generate text with hallucinations in certain
scenarios. Previous efforts to alleviate hallu-
cinations approach this issue from fine-tuning,
dataset, and inference perspectives. Despite
these efforts, there are two existing challenges
in MLLMs particularly the confusing image ob-
jects and generating persistent hallucinations.
In this paper, we propose a novel training-free
method called Bi-directional Dual Contrastive
Adapting (Bi-DCA) to alleviate the hallucina-
tions in MLLMs that can integrate seamlessly
into the existing decoding methods. We first
design a bi-directional attention mechanism to
expand the visual receptive field to address the
problem of confusing image objects. Build-
ing on this, to alleviate the persistent halluci-
nations in generated sentences, we propose a
dual contrastive adapting strategy to enhance
the positive effect of images during the next
token prediction stage. We conduct extensive
experiments using various evaluation methods
and benchmarks for hallucination. The exper-
imental results demonstrate that our Bi-DCA
not only alleviates the above challenges but
achieves superior performance compared with
previous methods.

1 Introduction

Multimodal Large Language Models (MLLMs)
demonstrate their strong comprehension and gener-
ation abilities in many tasks (Cho et al., 2022; Shao
etal., 2023; Kim et al., 2023). Despite their impres-
sive performance, MLLMs are found to struggle
with the “hallucinations” problem. This means
their output responses are often unrelated to the
inputs, especially the visual content, leaving signif-
icant challenges for practical applications such as
medical imaging (Ma et al., 2024) and autonomous
driving (Chib and Singh, 2023).

@ Input text

Please describe this image in detail.

The image features a zebra and an elephant lying down
in the grassy field. They are both facing e kwith
one of them resting on its side while loo ha""cinatio;,
animal nearby that is standing up straight next to it

slightly behind. There's also some vegetation visible
around their bodies such as bushes scattered throughout
the scene. In addition to these animals interacting
together near water sources like ponds located off-
screen left (left background), there may be more
wildlife present within this natural environment.

persistent hallucinations) Q
From Bi-DCA

The image features a zebra and a rhino in a dirt field. The
rhino is lying down, while the zebra is standing nearby.
There are several trees in the background, and a few
more trees can be seen in the foreground. The zebra and
rhino seem to be in a natural setting, possibly in a
savannah or grassland.

Figure 1: Illustration of the hallucinations when describ-
ing the image.

Previous approaches mitigate hallucination by
fine-tuning with specifically constructed training
data (Ben-Kish et al., 2023; Liu et al., 2023a) or em-
ploying reinforcement learning with human feed-
back (Gunjal et al., 2024), which require exter-
nal annotation costs and computational resources.
Consequently, researchers begin exploring hallu-
cination mitigation methods that do not require
additional training. Opera (Huang et al., 2024a)
optimizes the inference process by statistically an-
alyzing hallucination patterns from self-attention



maps. At the same time, VCD (Leng et al., 2023)
mitigates hallucinations through visual contrastive
decoding caused by over-reliance on linguistic pri-
ors and statistical biases.

Despite their effectiveness, these methods still
face two main challenges: (i) Confusing image ob-
Jjects. During the inference stage of MLLMs, the
use of causal attention leads to an incomplete re-
ceptive field of the image, disrupting the integrity
of image features and causing confusion among
objects with similar local features. As shown in
Figure 1, the response from InstructBLIP misidenti-
fies a rhino as an elephant due to their similar local
texture features. (ii) Generating persistent halluci-
nations. As the length of the generated sequence
increases, the positive effect of the image on the
next token prediction phase gradually diminishes.
Thus the model tends to generate a lot of persistent
hallucinations in the end. As shown in Figure 1, the
response from InstructBLIP introduced by "In ad-
dition" in the latter part is significantly inconsistent
with the content of the image.

In this paper, we propose a novel approach called
Bi-directional Dual Contrastive Adapting (Bi-
DCA) that integrates seamlessly into the existing
decoding methods to address above challenges and
alleviate the hallucinations. Our method does not
require additional training or data, it mainly focuses
on two innovative mechanisms:

(i) Expanding the Visual Receptive Field. To ad-
dress the confusing objects, we are inspired by the
need to improve the ability to capture directional
dependencies within an image. By utilizing direc-
tional masks based on relation-aware self-attention,
we encode directional information and create a bi-
directional attention mechanism when calculating
image patches during the inference stage. As our
inference stage shown in Figure 2, when the orange-
marked patch is computed, it allows the model to
consider both forward and backward dependencies,
which we call the full visible state. So that it ef-
fectively expands the visual receptive field and im-
proves the integration of visual information into
the inference process.

(ii) Dual Contrastive Adapting in Predictions.
Based on the first step, to alleviate the persistent
hallucinations in generated sentences, we propose
a dual contrastive adapting strategy to enhance the
positive effect of the image on the next token pre-
diction phase. By incorporating multiple prediction
scores derived from different visual states such as
partial visible, full visible, and full visible rotated
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Figure 2: Illustration of expanding the visual receptive
field and the different visual state features.

state which are shown in Figure 2, we can adapt
the distribution of output score when predicting
each token. Specifically, we take the partial vis-
ible state as the foundation and combine it with
the visual receptive field information provided by
the full visible state and the visual spatial informa-
tion provided by the full visible rotated state, and
then, involve them in the above prediction process.
Hence, dual contrastive adapting in predictions acts
as a mechanism for supplementing visual features
and alleviating persistent hallucinations.

During the experiments on various MLLMs and
decoding methods, we evaluate the performance
of Bi-DCA in alleviating hallucination tasks us-
ing various evaluation methods and benchmarks
including CHAIR(Rohrbach et al., 2018), POPE(Li
et al., 2023b), MME(Yin et al., 2023a), and GPT-
4(Achiam et al., 2023). The results indicate that our
method has significantly improved performance
compared to previous approaches.

In summary, our contributions are as follows:

* We design a bi-directional attention mecha-
nism to address the confusing image objects
by expanding the visual receptive field.

* We propose a dual contrastive adapting in pre-
dictions strategy for supplementing visual fea-
tures and alleviating persistent hallucinations.

* Through comprehensive experiments on vari-
ous benchmarks, we demonstrate the effective-
ness of our proposed training-free Bi-DCA.



2 Related Work

2.1 Multimodal Large Language Models

Multimodal Large Language Models (MLLMs),
also referred to as Large Vision Language Mod-
els (LVLMs), aim to enhance the visual capabilities
of Large Language Models (LLMs). The integra-
tion of visual and textual modalities is mainly based
on off-the-shelf pre-trained unimodal models (Bai
et al., 2024). Specifically, these MLLMs usually in-
corporate a learnable interface between pre-trained
visual encoders and LLLMs, which can be further
categorized into (i) projection layer-based interface
and (ii) learnable query-based interface. Projec-
tion layer-based methods, which are widely im-
plemented in models such as LLaVA (Liu et al.,
2023b) and Shikra (Chen et al., 2023), involve
training a linear projection layer or a Multi-Layer
Perceptron (MLP) module to transform extracted
visual features. On the other hand, learnable query-
based methods, exemplified by Q-Former (Li et al.,
2023a), as utilized in InstructBLIP (Dai et al., 2024)
and MiniGPT-4 (Zhu et al., 2023), employ a set of
learnable query tokens to capture visual signals
through cross-attention mechanisms. Both types of
interfaces aim to map pre-trained visual features
into the input space of pre-trained LLMs, thereby
facilitating the integration of visual and textual in-
formation.

In our paper, we conduct experiments on the four
aforementioned MLLMs to validate the robustness
of our proposed Bi-DCA.

2.2 Hallucination in MLLMs

The hallucination of MLLMs generally refers to
the problem where the generated text response is
not consistent with the given visual content (Huang
et al., 2024b). State-of-the-art studies in this field
primarily focus on object hallucination, which
can be categorized into object-level category and
attribute-level category. The object-level meanings
identify nonexistent object categories or incorrect
categories in the given image, and attribute-level
refers to the descriptions of the attributes on these
objects such as color, position, etc. are wrong.
Current methods for evaluating hallucinations in
MLLMs focus on assessing the cognitive perfor-
mance of the model, with two primary aspects: non-
hallucinatory generation and hallucination discrim-
ination. The former involves a detailed analysis of
the hallucinatory elements in the text response and
quantifying their proportion. The latter requires a

binary judgment of whether the response comprises
any hallucinatory content.

In our paper, we alleviate both two object halluci-
nations in the generated text and comprehensively
discuss these evaluating approaches based on our
Bi-DCA.

2.3 Decoding Method in Language Models

In constructing language models, the decoding
method plays a crucial role in the text generation
process. These methods are essential for ensur-
ing the accuracy, relevance, and fluency of the
generated text. A basic decoding method is the
greedy search, which selects the word with the
highest probability at each step. Although this
method is computationally efficient, it often results
in monotonous and less diverse content. In con-
trast, beam search (Graves, 2012; Lee et al., 2009)
maintains a certain number of candidate sequences
at each step and selects the optimal sequence from
them, thereby improving the quality and diversity
of the generated text. Nucleus sampling (Holtz-
man et al., 2019) involves randomly selecting from
a set of words, it is not simply choosing a fixed
number of words with the highest probabilities, but
determining the number of words to select based
on a cumulative probability value p. It achieves an
effective balance between randomness and text rel-
evance in text generation by adjusting the number
of selected words.

In our paper, the proposed Bi-DCA can inte-
grate seamlessly into the above decoding meth-
ods, thus, it can be represented as greedy-based
Bi-DCA, beam-based Bi-DCA, and sample-based
Bi-DCA, respectively.

3 Method

Our core objective is to alleviate hallucinations by
expanding the receptive field for visual features
while achieving dual contrastive adapting in the
prediction phase. Our method can be seamlessly in-
tegrated into existing mature decoding approaches.
In this section, we introduce the Inference Process
of MLLMs, followed by a detailed explanation of
Expanding the Visual Receptive Field and Dual
Contrastive Adapting in Predictions.

3.1 Inference Process of MLLMs

The key to the inference process is the visual
encoder and the decoder of the large language
model. Specifically, the model receives a given
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Figure 3: Illustration of our method. Given an image and text input, the model first extends the receptive field of the
image and combines image and text features with attention in two directions to form distinct features. Subsequently,
a dual contrastive decoding mechanism is employed to control the output scores for predicting the next token.

image V and text T' as inputs, the text is trans-
formed into a fixed dimensional vector represen-
tation Xy = {xn,TN+1,TN+a—1]) after an em-
bedding layer, the visual encoder encodes the im-
age as Xy = {xo,x1,zy_1} which fuses with
the text vectors through an alignment such as a
linear layer or a Qformer, and the fused vector
X=Xy o Xr= {xo,xl, ...,.CUN+M_1} is used
as a prediction for the start of the target sequence.
Here N and M are the length of visual and textual
tokens that are a fixed value in most cases.

Then, the decoder enters the loop generation
phase, where for each time step ¢, it generates a
new word vector from a predicted score logit(-) and
aligns it to the next position of the target sequence.
This process of auto-regressive can be formulated
as:

p(w¢|r <) = softmax(logit(z¢|r<¢)), (1)

where z; is the ¢-th token which is conditioned on
all previous tokens = ;.

After getting the probability distribution of the
next token, several decoding strategies are usually
utilized to obtain the final output, such as greedy
search, beam search, sampling, etc. Our method
can be efficiently and easily added to these decod-
ing methods.

3.2 Expanding the Visual Receptive Field

Inspired by Shen et al. (2018), to enhance the infor-
mation integrity of the image in the decoding stage,
we utilize different positional masks to encode the

directional information in it based on Relation-
aware Self-Attention (Shen et al., 2018). It can
be represented by the following equation:

z; = Z Oéij(.%'jWV + al‘g), 2)
j=1
Qij = softmax(eij), 3)
2, W (z,WE 4 ofHT
iy = 2D 2w

V.
vV K

where a;;, a;; € R% are the edge between input
elements x; and x;, and these representations can
be shared across attention heads and d, = d.

We modify Eq. (4) to propagate directional in-

formation to the sublayer output:
WO (x,WE + afj(-)T
Vi

where M € {0, —00}"*", n is the image patch
numbers. In this paper, we use two positional
masks, i.e., forward mask M/* and backward
mask M®" when combining different modality fea-
tures. Together they form a bi-directional mask
through concatenation.

eij =

0 ifi<j
M = ’ 6
*J —oo otherwise, ©)

0 ifi>j
M = (7)

—oo otherwise.

In forward mask M ,ijw, there is the only attention
of later token j to early token ¢, and vice versa



in the backward mask. As shown in Figure 3, we
abstractly show the schematic of the bi-directional
mask added to the input of the decoding layer, es-
pecially in the image patch region. The idea of us-
ing bi-directional attention is inspired by different
types of image and text feature processing. Causal
attention loses the information of the following
patches when processing images. Unlike textual
features which only need to focus on the tokens
before the current token, it needs to encode long-
range dependency from different directions, so that
expanding the visual receptive field.

3.3 Dual Contrastive Adapting in Predictions

We have discussed the methods to enhance the vi-
sual perceptual field. We further propose novel
approaches to compensate for the spatial informa-
tion and combine both to form a dual contrastive
adapting strategy to achieve dynamic adaptation in
the prediction phase.

The original MLLMs assign the highest prob-
ability score to the wrong token when it outputs
factually incorrect information, in which case we
observe that the score of the correct token is close
to the highest probability score. It suggests that
the model is less confident in the current decision.
Whereas the output score has a large difference be-
tween the token with the highest probability score
and the token with the second highest probability
score when it outputs the correct outcome. Since
the MLLMs are trained with causal attention us-
ing only forward masks, and when using backward
masks, it does not learn the spatial information in
the opposite direction. So we use the rotated image
to compensate for this part of the spatial informa-
tion.

Based on the above analysis, our goal is to go
against the decision scores in the incorrect case,
both in terms of visual perceptual field and spatial
information completeness.

To operationalize this objective, in addition to
the original state score p(z¢|z <), which we call the
partial visible score calculated by original image
and forward mask M/", denoted as e(z+, ¢, Bg),
we introduce two other prediction scores, namely
full visible score e(z¢, c,, ¢p) and full visible ro-
tated score e(xy, c,, cg). where c, represents the
Expansion of Visual Receptive Field introduced in
Sec. 3.2, and cg stands for spatial semantic infor-
mation obtained after rotational correction of the
image. In this paper we set 6 to 180, meaning that
the original image is rotated 180 degrees.

As shown in Figure 3, these scores are derived
from the combination of two different image fea-
tures and positional masks, which are then pro-
cessed through the decoder layer. The final next
token score for step ¢ can be derived from the fol-
lowing equation:

et = are(rt, dp, dy)
+C¥2<€($t,cp,¢9) - e(xt7¢p7¢9)) (8)

+ 043<6($t7 Cp, CG) - e(xtv Cps ¢9))7

where a1, g, vz are hyper-parameters in [0, 1]. we
set a1 = 1, ag = 0.5, ag = 0.5 throughout the
paper. Larger ap entails more visual receptive field
and larger a3 means more visual spatial supple-
mentary information. However, their values are not
necessarily better when larger, as this can offset the
original state scores and cause the model to favor
additional states.

To tackle the aforementioned issue, following Li
et al. (2022); Leng et al. (2023), we utilize an adap-
tive plausibility constraint Vj.q that exploits the
confidence level of the original state score to re-
strict the effect of the rest objective:

Vhead = {xt €V :
e(l't, Cps QSG) > maxe(:nt, Cp ¢9) + 1Og(ﬁ)}7 (9)
ey = 0,if 74 ¢ Vheads

where [ is a hyper-parameter ranging from O to 1
that controls the truncation of the next token score
distribution. Larger 3 signifies more aggressive
truncation, retaining only the tokens with the high-
est probabilities.

By incorporating adaptive plausibility constraint
into Eq. (8), we retained tokens with higher pre-
dicted probabilities, thereby altering the distribu-
tion of the final output scores. This increases
the confidence of the model in its output deci-
sions and reduces the emergence of low-probability
scores. Then we apply existing mature decoding
approaches such as search-based greedy search,
beam search, and sample-based nucleus sampling
to optimize e; and select a token with a higher
probability.

4 Experiments

This section provides a detailed overview of our
experimental validation of decoding strategies em-
ployed in different MLLMs.



LLaVA-1.5 Shikra InstructBLIP MiniGPT-4

CHAIRs| CHAIRi] Len | CHAIRs] CHAIRi/ Len | CHAIRs] CHAIRi] Len | CHAIRs| CHAIRi/ Len
Opera 45.6 13.3 94.2 522 13.8 99.5 48.8 14.9 91.6 26.8 8.9 63.0
VCD 48.8 14.1 98.0 56.2 15.1 101.2 46.4 14.7 96.8 332 10.5 83.3
X 46.4 12.4 97.8 54.8 14.8 101.5 49.3 22.6 108.8 324 10.1 83.5

Greedy
v 43.6 11.9 94.2 53.6 13.5 99.4 484 14.6 93.6 32.6 10.9 91.8
B X 494 14.0 96.9 52.2 13.8 99.5 56.8 153 98.2 31.2 10.0 78.5

eam

v 42.2 11.7 93.3 50.4 13.1 93.3 444 13.8 97.8 32.4 10.7 81.6
X 54.2 15.8 99.8 60.2 16.4 102.3 50.0 24.5 118.4 33.8 10.6 83.9

Sample
v 43.2 11.5 94.4 56.2 15.1 101.2 454 14.4 96.1 29.6 9.0 88.4

Table 1: CHAIR metrics across four different MLLMs. Xsymbol represents the original decoding method, while
v'indicates our proposed Bi-DCA based on the respective decoding strategy. Len represents the average length of
the generated sentences and is provided for reference. The best performances within each setting are bolded.

4.1 Settings

4.1.1 Baselines & Dataset

Following Huang et al. (2024a), we evaluate the
effectiveness of Bi-DCA on four MLLMs, includ-
ing LLaVA-1.5-7B (Liu et al., 2023b), Shikra-
7B (Chen et al., 2023), InstructBLIP-7B (Dai et al.,
2024), and MiniGPT-4-7B (Zhu et al., 2023). All
the models employ pre-trained LLMs, efficient im-
age encoders, and different visual feature alignment
modules. The first is LLaVA-1.5 and Shikra which
use a linear MLP as the image-text feature align-
ment module, the numbers of the image patches are
576 and 256. While the InstructBLIP and Minigpt4
both map the image features into the textual space
using the Q-former (Li et al., 2023a) structure. The
pre-trained LLMs they used are LLaMA-7B (Tou-
vron et al., 2023) and Vicuna-7B (Chiang et al.,
2023) respectively, and the image encoders used
are CLIP ViT (Radford et al., 2021) or EVA-CLIP
ViT (Fang et al., 2023). During the inference phase,
we select five decoding methods as baseline ap-
proaches. These include three common strategies:
greedy search, beam search, and nucleus sampling,
as well as two methods designed to alleviate hal-
lucinations: OPERA (Huang et al., 2024a) and
VCD (Leng et al., 2023).

We conduct experiments on the MSCOCO
dataset, in which the images contain 80 categories
and corresponding annotations. Specifically, fol-
lowing Huang et al. (2024a), we select 500 images
from the COCO14 (Lin et al., 2014) validation set
and then prompt different models to obtain descrip-
tions of the input images and evaluate the perfor-
mance of the models by assessing the quality of the
outputs.

4.1.2 Implementation Details

we utilize the default settings for these models and
decoding methods during the experiments. Specif-
ically, we set the beam search parameter Npeqr,
to 5 and the top-p = 0.9 for nucleus sampling.
For the VCD, we seta = 1, § = 0.1, v = 0.1.
And for the OPERA, we configure them as follows:
Npeam = 5,0 =50, Negn, =5, =1, 5 =5 and
r = 15. Unless otherwise specified, we set a1l = 1,
a2 =0.5,a3 =0.5,0 = 180, and 3 = 0.5 across
all models in our Bi-DCA.

4.2 Experimental Results

we evaluate the performance of Bi-DCA in allevi-
ating hallucination tasks using various evaluation
methods, including two primary hallucination eval-
uation approaches: (i) Assessing the ability of non-
hallucinatory content generation. (ii) Evaluating
the ability of hallucination discrimination.

4.2.1 Results on CHAIR

Evaluating non-hallucinatory generation is to mea-
sure the proportion of hallucinated content in the
outputs. CHAIR (Rohrbach et al., 2018) targets
evaluating object hallucinations of models in de-
scribing images by quantifying differences of ob-
jects between model generation and ground truth.
It comprises two metrics dimensions: CHAIRs cal-
culated at the sentence level, and CHAIRI calcu-
lated at the object level. These variables can be
expressed using the following formulas:

CHAIR, — [{sentences with hallucinated object}l

I{all sentences}!

halluci i
CHAIR, = [{hallucinated objects}|

[{all objects mentioned}|’

)



Model Setting Decoding Accuracy? PrecisionT Recallt | F1 Scorel
Xavg 0.875 0.899 0.858 0.877
Random
vV Avg 0.884 0.875 0.904 0.890
Xavg 0.848 0.845 0.858 0.850
LLaVA-1.5 Popular :
v Avg 0.850 0.816 0.904 0.858
. Xavg 0.767 0.710 0.904 0.795
Adversarial
v Avg 0.779 0.733 0.879 0.799
Xavg 0.821 0.949 0.691 0.800
Random :
v Avg 0.829 0.944 0.712 0.811
) . .904 .692 784
Shikra Popular Xavg 0-809 0.90 0.69 0
v Avg 0.819 0.906 0.711 0.796
. Xavg 0.792 0.867 0.690 0.769
Adversarial
v Avg 0.799 0.863 0.711 0.780
Xavg 0.877 0.916 0.841 0.876
Random b
v Avg 0.904 0.910 0.904 0.906
InstructBLIP Popular Xavg 0.816 0.804 0.842 0.821
v Avg 0.817 0.771 0.904 0.832
. Xavg 0.788 0.767 0.835 0.799
Adversarial
v Avg 0.782 0.728 0.902 0.805
Xavg 0.743 0.814 0.660 0.728
Random ;
v Avg 0.794 0.909 0.668 0.769
MiniGPTA Popular Xavg 0.688 0.702 0.666 0.683
v Avg 0.741 0.784 0.667 0.720
. Xavg 0.669 0.672 0.669 0.669
Adversarial ;
v Avg 0.721 0.742 0.680 0.708

Table 2: POPE metrics across four different MLLM:s.
Due to space constraints, we use X 4,4 to denote the av-
erage results of beam search, greedy search, and nucleus
sampling in different settings. v/ 4,4 reflects the average
of our method based on these three methods, with the
best result for each setting highlighted in bold.

In our experiments on the MSCOCO dataset,
specifically aimed at obtaining detailed descrip-
tions of input images, we utilized the same prompt
"Please describe this image in detail." to get re-
sponses from different MLLMs.

As shown in Table 1, our CHAIR results on
different MLLMs and baseline methods demon-
strate a noticeable observation: our proposed Bi-
DCA exhibits superior robustness. Specifically,
our method outperforms the baselines across four
different models. For the MiniGPT-4 model, our
method based on nucleus sampling achieves the
best results, with the outcomes of other decoding
strategies also comparable. In models other than
MiniGPT-4, the performance exceeds the baselines
by 5% or more. This indicates that it plays a cru-
cial role in simultaneously enhancing the visual re-
ceptive field and improving the robustness against
perturbations, thereby reducing the occurrence of
object hallucinations.

4.2.2 Results on POPE

The Hallucination discrimination evaluation ap-
proach aims to assess the hallucination discrimina-
tion ability of MLLMs. The methods that follow
this approach typically adopt a question-answering
format, posing inquiries to MLLMs consisting of
descriptions that agree or conflict with the provided

content (Bai et al., 2024). POPE (Li et al., 2023b)
designs binary (Yes-or-No) questions about object
presence in images such as "Is there a <object>
in the image?" to evaluate the hallucination dis-
crimination ability of MLLMs. The objects asked
in questions are selected under three distinct sam-
pling strategies: random (selecting random absent
objects), popular (choosing the most frequent ob-
jects in the dataset but absent in the current im-
age), and adversarial (selecting absent objects of-
ten co-occurring with present ones). As shown
in Table 2, our proposed Bi-DCA demonstrates
a robust enhancement in the performance of four
MLLMs across various settings. The consistent
improvements in accuracy, recall, and F1 scores,
especially under challenging settings like Adver-
sarial and Popular, underline the effectiveness of
the hallucination discrimination ability of Bi-DCA.
The overall performance improvement of minigpt4
is attributed to the comprehensive improvement in
accuracy, precision, and recall, while the perfor-
mance of the other three models is mainly driven
by accuracy and recall. Notably, InstructBLIP and
MiniGPT4 exhibit more significant enhancements
in their F1 metrics compared to LLaVA1.5 and
SHIKRA.

4.2.3 Results on MME

We select four subsets related to hallucination from
MME benchmark (Yin et al., 2023a) for experi-
ments, specifically existence, count, position, and
color. These subsets surpass the evaluation scope
of POPE, providing a more comprehensive under-
standing of our proposed Bi-DCA. The results are
shown in Table 3. Overall, it indicates that our
method contributes to a consistent enhancement
of model performance when alleviating hallucina-
tion at the object and attribute levels. In addition,
Bi-DCA shows a significant improvement in its
ability to discern and alleviate hallucinations at the
attribute level, particularly regarding positional hal-
lucinations. This precisely demonstrates that the
integration of spatial information in our method has
achieved the desired effect. However, the scores
for position metrics are generally lower than the
other three metrics, indicating that the reasoning ca-
pabilities of MLLMs regarding position still need
improvement. When comparing different decoding
methods, our Bi-DCA shows the most significant
score improvement with nucleus sampling, achiev-
ing an average increase of 75.55% on LLaVA-1.5,
SHIKRA, and MiniGPT4. In contrast, the improve-



Modl  Decoding _ OPiectevel Attributedevel gt Decoding  MSUrUCtBLIP - MiniGPT-4  LLaVA-LS Shikra
Existencet Countf Position? Color} C D C D C D C D
sample 175.00 110.00 95.00 135.00 515.00 Sample 2286 3.242 3.816 4.560 3.796 4.584 3904 4.482
Ous 19000  130.00 12333 16500 60833 Greedy 3.092 3.502 4476 4.548 5092 4.830 4446 4.526
LLavals Eeedy 19500 14667 12167 17000 63333 Beam 4536 4900 4362 4900 4.462 5034 4.552 4970
° Ous 19500 15333 13167 17000  650.00 Ours 538 4936 4964 5.04 5418 4988 5484 4.843
beam 195.00 118.33 110.00 150.00 573.33
O 195.00 128.33 110.00 150.00 583.33 . .
o Table 5: GPT-4V assisted evaluation results on
sample 165.00 51.67 45.00 103.33 365.00
Ours 17500 8000 6L67 12333 440.00 COCO14. C stands for correctness and D refers to
Shikra greedy 19500 6167 5333 9333 403.33 detailness, ours reflects the sampling-based Bi-DCA.
Ours 175.00 70.00 63.33 115.00 423.33
beam 195.00 83.33 60.00 88.33 426.67
Ours 175.00 78.33 63.33 108.33 425.00
sample 180.00 7000  61.67  110.00 421.67 4.2.5 GPT-4V Assisted Evaluation
Ours 185.00 75.00 56.67 115.00 431.67 . .
acedy 18500 6000 5000 12000 41500 Following Yin et al. (2023b), we adapt the state-
InstructBLIP
Ours 185.00 6500 5333 12500 42833 of-the-art gpt-4-vision-preview further to evaluate
beam 185.00 55.00 50.00 120.00 410.00 . . .
Ous 18500 6500 5333 12500  428.33 the presence of hallucinations in the output text.
sample 6500 4833 2500 4667 18500 It can compensate for the attribute-level hallucina-
Ours 95.00 61.67 66.67 95.00 318.33 . .
oon,  medy 1500 S66T 000 8500 31667 tions that the CHAIR metric cannot detect and has
Ous 12000 5L67 7167 9333 336.67 strong capabilities in handling both image and text
beam 9500  91.67 5333 8333 32333 i k R .
Ours 110.00 71.67 80.00 95.00 356.67 information. Implementatlon details and prompt

Table 3: MME metrics across four different MLLM:s.
The best result for each setting is highlighted in bold.

Model Grammer?! Fluency? Naturet PPL;| PPL; |

] X 734 735 658  68.08 5178
InstructBLIP ) g 3¢ 8.32 756 1210 961
- X 777 771 768 1251 993
MiniGPT-4 8.10 8.07 8.01 13.00 1021
X 773 773 763 1413 1137

LLavA-LS 8.39 8.40 826 1359 1091
Shikre X 775 774 767 1661 1338
s 843 8.43 831 1520 1219

Table 4: GPT-4 assisted evaluation results on COCO14.
Xdenotes the average results of beam search, greedy
search, and nucleus sampling in different MLLMs. v're-
flects the average results of ours.

ments with other decoding methods are relatively
modest.

4.2.4 GPT-4 Assisted Evaluation

Following Zhao et al. (2023); Huang et al. (2024a),
to evaluate the quality of the generated text from
the traditional NLP perspective, we use GPT-4 to
score the image descriptions, specifically assess-
ing their grammar, fluency, and nature from 0-10.
Additionally, we adopt perplexity (ppl) to evalu-
ate the generated sentences, with ppl; and ppls
calculated by gpt-2 and gpt-2-medium models, re-
spectively. We calculate the above metrics based
on the CHAIR metric, and Table 4 lists the aver-
age scores for various decoding methods and our
method. Detailed prompt templates are provided
in the Appendix A. The result in Table 4 indicates
that the quality of the generated text also improves
in various aspects.

templates are provided in the Appendix B.

The results of four MLLMs using different de-
coding methods and our methods are presented in
Table 5. Overall, our method achieves an 18.6%
quality improvement in terms of correctness and
is comparable to other leading decoding methods
in describing image content in detail. Due to the
strong perception and reasoning abilities of gpt-4-
vision-preview, which is close to those of humans,
the evaluation results to some extent reflect human
perspectives on hallucination mitigation.

5 Conclusion

In this paper, we propose a novel training-free
method called Bi-directional Dual Contrastive
Adapting (Bi-DCA) to alleviate the hallucinations
in MLLMs that can integrate seamlessly into the
existing decoding methods. It mainly focuses on
two innovative mechanisms: Expanding the Visual
Receptive Field and Dual Contrastive Adapting in
Predictions. First, we employ directional masks
to capture the bi-directional dependency of visual
information when calculating image patches dur-
ing the inference stage, which effectively expands
the visual receptive field. Building on this, we
design a dual contrastive adapting strategy to en-
hance the confidence of MLLMs in the next token
prediction phase, which acts as a mechanism for
supplementing visual features and alleviating per-
sistent hallucinations. We conduct comprehensive
experiments on various metrics and benchmarks
and experimental results show our significant supe-
riority in generating high-quality text and alleviat-
ing hallucinations.



Limitations

Our Bi-DCA does not require training and is
constrained by the inherent performance of the
MLLMs, including the components of the LLM,
the visual encoder, and the adapter. When MLLMs
respond to questions, the score gap between hal-
lucinated and correct text is small due to their in-
herent limitations. Although our method can alter
this difference and mitigate the hallucinations, the
extent of improvement is relatively limited. We
hope our approach will inspire researchers so that
can prompt further enhancements in model perfor-
mance. Lastly, due to limited resources, we have
not evaluated the most recent larger MLLMs.

Ethics Statement

We affirm that our work here does not exacerbate
the biases already inherent in the large language
models and does not have ethics problems.
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A Details for GPT-4

GPT-4 Prompt

You are an Al language assessment expert tasked with evaluating the quality of text sum-
maries generated by four assistants based on the following criteria:

You are required to score the performance of the quality of these four text summaries, Please
rate the responses of the assistants on a scale of 0 to 10, where a higher score indicates better
performance, according to the following criteria:

1. Grammar: Evaluates whether the text adheres to standard grammatical conventions.

2. Fluency: Assesses the smoothness and coherence of the text.

3. Naturalness: Evaluates how naturally the text reads.

Please provide scores for each criterion for each summary containing only four values
indicating the scores for Assistant 1 and Assistant 2 respectively. The four scores are
separated by a space. Avoid any potential bias and ensure that the order in which the
responses were presented does not affect your judgment.

[Assistant 1]

{
[End of Assistant 1]

[Assistant 2]

()
[End of Assistant 2]

Scoring format:
Grammar: <Scores of the four answers>

Fluency: <Scores of the four answers>
Naturalness: <Scores of the four answers>

Table 6: The prompt template for GPT-4.

B Details for GPT-4V

GPT-4V(ision) Prompt

You are required to score the performance of two Al assistants in describing a given image.
You should pay extra attention to the hallucination, which refers to the part of descriptions
that are inconsistent with the image content, such as claiming the existence of something not
present in the image or describing incorrectly in terms of the counts, positions, or colors of
objects in the image. Please rate the responses of the assistants on a scale of 1 to 10, where a
higher score indicates better performance, according to the following criteria:

1: Accuracy: whether the response is accurate with respect to the image content. Responses
with fewer hallucinations should be given higher scores.

2: Detailedness: whether the response is rich in necessary details. Note that hallucinated
descriptions should not count as necessary details.

Please output the scores for each criterion, containing only two values indicating the scores
for Assistant 1 and 2, respectively. The two scores are separated by a space. Following the
scores, please provide an explanation of your evaluation, avoiding any potential bias and
ensuring that the order in which the responses were presented does not affect your judgment.

[Assistant 1]
)
[End of Assistant 1]

[Assistant 2]

{
[End of Assistant 2]

Output format:
Accuracy: <Scores of the two answers>
Reason:

Detailedness: <Scores of the two answers>
Reason:

Table 7: The prompt template for GPT-4V (ision).

Specifically, we use 500 images randomly se-
lected from COCO14 and their descriptions gen-
erated by various MLLMs and our sample-based
Bi-DCA. The prompt provided to the MLLMs is
"Please describe this image in detail." To ensure
a fair comparison, we follow Yin et al. (2023b);
Huang et al. (2024a) and provide gpt-4-vision-
preview with both an image and corresponding
outputs from different MLLMs, then prompt it to
evaluate these generation texts. The template is
shown in Table 7 It is asked to score these texts
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from O to 10, based on our defined criteria of cor-
rectness and detailness. Correctness refers to the
consistency between the text content and the image,
while detailness refers to the comprehensiveness
of the text description, i.e., whether the image con-
tent is completely and accurately described. The
score is low if gpt-4-vision-preview determines that
the given text does not match the provided image,
indicating a hallucination.

C Ablation Study

a e az B ‘ Accuracy! Precisiont Recallt F1 Scoref
1 0o 0 O ‘ 83.35 82.70 85.57 84.11
1 05 05 0.1 84.36 82.88 87.76 85.25
1 05 05 03 86.11 84.91 88.82 86.82
6 1 05 05 05 87.90 87.00 89.95 88.45
1 05 05 07 88.56 87.59 90.63 89.09
1 05 05 09 88.64 87.50 90.94 89.19
0 05 05 05 86.38 84.79 89.65 87.15
0.1 05 05 05 86.30 84.71 89.58 87.18
03 05 05 05 86.50 85.02 89.58 87.24
ap 05 05 05 05 86.65 85.21 89.65 87.38
07 05 05 05 87.28 86.04 89.88 87.92
09 05 05 05 87.35 86.22 89.80 87.98
1 05 05 05 87.90 87.00 89.95 88.45
1 0 05 05 87.51 86.42 89.88 88.12
1 01 05 05 87.63 86.67 89.80 88.20
1 03 05 05 87.78 86.86 89.88 88.34
a1 05 05 05 87.90 87.00 89.95 88.45
1 07 05 05 87.39 86.18 89.95 88.45
I 09 05 05 87.16 86.01 89.65 87.80
1 05 0 05 87.47 86.25 90.03 88.10
1 05 01 05 87.51 86.26 90.11 88.14
o 1 05 03 05 87.70 86.57 90.11 88.30
1 05 05 05 87.90 89.00 89.95 88.45
1 05 07 05 87.59 86.55 89.88 88.18
1 05 09 05 87.43 86.45 89.65 88.02
Table 8: Ablation study on POPE Random setting using

sample-based Bi-DCA on LLaVA-1.5.

In this section, we present a detailed ablation
study of the hyper-parameters, which are intro-
duced in detail in Sec. 3.3. These hyper-parameters
include the weight for partial visible scores 1, the
weight for full visible scores as, the weight for
full visible rotated scores a3, and the truncation
parameter 3 that controls the distribution of token
scores.

Despite minor differences in the optimal hy-
perparameter settings across various MLLMs, the
trends remain consistent. Thus, we conduct our
experiment on LLaVA-1.5 using sample-based Bi-
DCA. As shown in Tab. 8, for ease of analysis, the
first row presents the results under the original con-
ditions. The experimental results demonstrate that
our Bi-DCA generally outperforms the baselines.
To minimize discrepancies in performance across
different MLLMs, we set the default parameters in
our paper to a; = 1, ag = 0.5, and a3 = 0.5.



Specifically, as ( increases, fewer low-score to-
kens are included in the truncated probability distri-
bution, leading to the output of higher confidence
tokens. As shown in Tab. 8, this principle is re-
flected in the metrics, our F1 score increases when
B changes from 0.1 to 0.9. However, to ensure there
are enough tokens for other decoding methods, we
set 5=0.5 by default in our paper.

When o is set to 0, it indicates that partial vis-
ible image features do not participate in the infer-
ence stage, and the performance lies between the
original results and the best results. This suggests
that the image features we designed provide richer
image information but can introduce some noise in
the absence of original image constraints.

The ais and a3 respectively control the extent
of image receptive fields and image spatial infor-
mation. When either one acts alone, the overall
performance does not reach optimal levels. How-
ever, optimal performance is achieved when both
are utilized simultaneously.

D Case Study
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Position
Input Text:
Is the car on the left side of
the fire hydrant in the picture?
Please answer yes or no.
MiniGPT-4
Yes.
165 16.2031 16.1875 T
15.5
©
g 145 13.9844
? s i 12.8359
125 J—
Yes The I There
Candidate Tokens
Bi-DCA
No.
165 156484 15.5312
15.5
@
g 145
S
1S 1 1 1
125
No Yes </s> <s> <unk>
Candidate Tokens

J

Figure 4: Comparison between greedy-based Bi-DCA

and MiniGPT-4 on Position.
~
Color
Input Text:
Is there a brown giraffe in
the image?
Please answer yes or no.
MiniGPT-4
No.
17 16.1719 16.0781
g 16
S 15 14.3594 14.2578 B GPE
14
; A N &
12
No Yes The There I
Candidate Tokens
Bi-DCA
Yes
17 16.0469 15.8359
16
o 15
5
& 14
13 1 1 1
12
Yes No </s> <s> <unk>
Candidate Tokens

Figure 5: Comparison between greedy-based Bi-DCA

and MiniGPT-4 on Color.

J

13

Existence - | |
Input Text:
Is there a toilet in this image?
Please answer yes or no.
MiniGPT-4
No.
16.9844 16.9844
17
15.875

L 16
A B i 14.7422

1 ™

No There This
Candidate Tokens
Bi-DCA
Yes.
16.9375 16.8125

17
£ 16
&

15

1 1 1
14 —_—
Yes No </s> <s> <unk>
\_ Candidate Tokens Y,

Figure 6: Comparison between greedy-based Bi-DCA
and MiniGPT-4 on Existence.

Count

Input Text:

Is there a dog in the picture?
Please answer yes or no.

MiniGPT-4
No.

16 15.6016 15.4453

15 14.3984
o
§ 1 13.6016 13.5859
a
° i i
12
No Yes There 1 The
Candidate Tokens
Bi-DCA
Yes.
16 15.3906 15.1875
15
° 14.0163
S 14 13.5547 13.4645
a
N i i i
12
Yes No There 1 The
Candidate Tokens
& J

Figure 7: Comparison between beam-based Bi-DCA
and MiniGPT-4 on Count.



Input Text:
Please describe this image in detail.

LLaVA-1.5:

In the image, a young man is playing with a frisbee in a fenced-in area. He
is holding the frisbee in his hand and appears to be preparing to throw it.
The fenced-in area seems to be a playground or a designated space for
recreational activities.

There are a few other people in the background, but they are not the
main focus of the scene. The young man with the frisbee is the center
of attention as he enjoys his outdoor activity.

OPERA:

In the image, a young man is playing with a frisbee in a fenced-in area. He is holding the frisbee in his hand and appears to
be preparing to throw it. The fenced-in area is likely a playground or a designated space for recreational activities.

There are a few other people present in the background, but they are not the main focus of the scene. The young
man with the frisbee is the center of attention, enjoying his time outdoors and engaging in a fun activity.

Bi-DCA:

In the image, a young man is playing tennis on a court, holding a tennis racket and preparing to hit a tennis ball. He
is wearing a striped shirt and appears to be focused on the game. The tennis ball is positioned close to one of his
feet, while the racket is held in his other hand.

The tennis court is surrounded by a chain-link fence, providing a secure boundary for the game. The scene captures
the essence of an outdoor recreational activity, showcasing the man's athleticism and dedication to the sport.

Input Text:
Please describe this image in detail.

LLaVA-1.5:

The image features a man standing in a bathroom, taking a selfie with his
cell phone. He is holding the phone in front of his face, capturing a picture of
himself. The man is wearing a green shirt and appears to be smiling as he
takes the photo.

In the background, there is a toilet visible on the left side of the image, and
a sink can be seen on the right side. Additionally, there is a toothbrush
placed near the sink, suggesting that the bathroom is well-equipped
for daily hygiene routines.

OPERA:

The image features a man standing in a bathroom, holding a cell phone in his hand. He is taking a selfie, capturing his
reflection in the mirror. The man appears to be wearing a green shirt and has a beard.

The bathroom is equipped with a sink and a toilet. The sink is located on the left side of the bathroom, while the toilet
is situated on the right side. The man's reflection can be seen in the mirror, which is positioned above the sink.

Bi-DCA:

The image features a man standing in a bathroom, holding a cell phone in his hand. He is taking a picture of himself
in the mirror, capturing a selfie. The man is wearing a green shirt and appears to be focused on the task at hand.
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