
Bi-DCA: Bi-directional Dual Contrastive Adapting for Alleviating
Hallucination in Multimodal Large Language Models

Anonymous ACL submission

Abstract

Multimodal Large Language Models (MLLMs)001
demonstrate excellent performance across vari-002
ous multimodal tasks. However, they still tend003
to generate text with hallucinations in certain004
scenarios. Previous efforts to alleviate hallu-005
cinations approach this issue from fine-tuning,006
dataset, and inference perspectives. Despite007
these efforts, there are two existing challenges008
in MLLMs particularly the confusing image ob-009
jects and generating persistent hallucinations.010
In this paper, we propose a novel training-free011
method called Bi-directional Dual Contrastive012
Adapting (Bi-DCA) to alleviate the hallucina-013
tions in MLLMs that can integrate seamlessly014
into the existing decoding methods. We first015
design a bi-directional attention mechanism to016
expand the visual receptive field to address the017
problem of confusing image objects. Build-018
ing on this, to alleviate the persistent halluci-019
nations in generated sentences, we propose a020
dual contrastive adapting strategy to enhance021
the positive effect of images during the next022
token prediction stage. We conduct extensive023
experiments using various evaluation methods024
and benchmarks for hallucination. The exper-025
imental results demonstrate that our Bi-DCA026
not only alleviates the above challenges but027
achieves superior performance compared with028
previous methods.029

1 Introduction030

Multimodal Large Language Models (MLLMs)031

demonstrate their strong comprehension and gener-032

ation abilities in many tasks (Cho et al., 2022; Shao033

et al., 2023; Kim et al., 2023). Despite their impres-034

sive performance, MLLMs are found to struggle035

with the “hallucinations” problem. This means036

their output responses are often unrelated to the037

inputs, especially the visual content, leaving signif-038

icant challenges for practical applications such as039

medical imaging (Ma et al., 2024) and autonomous040

driving (Chib and Singh, 2023).041

Please describe this image in detail.

The image features a zebra and a rhino in a dirt field. The 
rhino is lying down, while the zebra is standing nearby. 
There are several trees in the background, and a few 
more trees can be seen in the foreground. The zebra and 
rhino seem to be in a natural sett ing, possibly in a 
savannah or grassland.

The image features a zebra and an elephant lying down 
in the grassy field. They are both facing each other, with 
one of them resting on its side while looking at another 
animal nearby that is standing up straight next to it or 
slightly behind. There's also some vegetation visible 
around their bodies such as bushes scattered throughout 
the scene. In addition to these animals interacting 
together near water sources like ponds located off-
screen left (left background), there may be more 
wildlife present within this natural environment.

Input text

persistent hallucinations!

hallucination

 From InstructBLIP-7B

From Bi-DCA

Figure 1: Illustration of the hallucinations when describ-
ing the image.

Previous approaches mitigate hallucination by 042

fine-tuning with specifically constructed training 043

data (Ben-Kish et al., 2023; Liu et al., 2023a) or em- 044

ploying reinforcement learning with human feed- 045

back (Gunjal et al., 2024), which require exter- 046

nal annotation costs and computational resources. 047

Consequently, researchers begin exploring hallu- 048

cination mitigation methods that do not require 049

additional training. Opera (Huang et al., 2024a) 050

optimizes the inference process by statistically an- 051

alyzing hallucination patterns from self-attention 052
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maps. At the same time, VCD (Leng et al., 2023)053

mitigates hallucinations through visual contrastive054

decoding caused by over-reliance on linguistic pri-055

ors and statistical biases.056

Despite their effectiveness, these methods still057

face two main challenges: (i) Confusing image ob-058

jects. During the inference stage of MLLMs, the059

use of causal attention leads to an incomplete re-060

ceptive field of the image, disrupting the integrity061

of image features and causing confusion among062

objects with similar local features. As shown in063

Figure 1, the response from InstructBLIP misidenti-064

fies a rhino as an elephant due to their similar local065

texture features. (ii) Generating persistent halluci-066

nations. As the length of the generated sequence067

increases, the positive effect of the image on the068

next token prediction phase gradually diminishes.069

Thus the model tends to generate a lot of persistent070

hallucinations in the end. As shown in Figure 1, the071

response from InstructBLIP introduced by "In ad-072

dition" in the latter part is significantly inconsistent073

with the content of the image.074

In this paper, we propose a novel approach called075

Bi-directional Dual Contrastive Adapting (Bi-076

DCA) that integrates seamlessly into the existing077

decoding methods to address above challenges and078

alleviate the hallucinations. Our method does not079

require additional training or data, it mainly focuses080

on two innovative mechanisms:081

(i) Expanding the Visual Receptive Field. To ad-082

dress the confusing objects, we are inspired by the083

need to improve the ability to capture directional084

dependencies within an image. By utilizing direc-085

tional masks based on relation-aware self-attention,086

we encode directional information and create a bi-087

directional attention mechanism when calculating088

image patches during the inference stage. As our089

inference stage shown in Figure 2, when the orange-090

marked patch is computed, it allows the model to091

consider both forward and backward dependencies,092

which we call the full visible state. So that it ef-093

fectively expands the visual receptive field and im-094

proves the integration of visual information into095

the inference process.096

(ii) Dual Contrastive Adapting in Predictions.097

Based on the first step, to alleviate the persistent098

hallucinations in generated sentences, we propose099

a dual contrastive adapting strategy to enhance the100

positive effect of the image on the next token pre-101

diction phase. By incorporating multiple prediction102

scores derived from different visual states such as103

partial visible, full visible, and full visible rotated104

Visible patch

Invisible patch

Text token

Visible patch

Text token

Our Inference Stage

Previous Autoregressive Inference

partia
l visible

full visible

full visible rotated

Figure 2: Illustration of expanding the visual receptive
field and the different visual state features.

state which are shown in Figure 2, we can adapt 105

the distribution of output score when predicting 106

each token. Specifically, we take the partial vis- 107

ible state as the foundation and combine it with 108

the visual receptive field information provided by 109

the full visible state and the visual spatial informa- 110

tion provided by the full visible rotated state, and 111

then, involve them in the above prediction process. 112

Hence, dual contrastive adapting in predictions acts 113

as a mechanism for supplementing visual features 114

and alleviating persistent hallucinations. 115

During the experiments on various MLLMs and 116

decoding methods, we evaluate the performance 117

of Bi-DCA in alleviating hallucination tasks us- 118

ing various evaluation methods and benchmarks 119

including CHAIR(Rohrbach et al., 2018), POPE(Li 120

et al., 2023b), MME(Yin et al., 2023a), and GPT- 121

4(Achiam et al., 2023). The results indicate that our 122

method has significantly improved performance 123

compared to previous approaches. 124

In summary, our contributions are as follows: 125

• We design a bi-directional attention mecha- 126

nism to address the confusing image objects 127

by expanding the visual receptive field. 128

• We propose a dual contrastive adapting in pre- 129

dictions strategy for supplementing visual fea- 130

tures and alleviating persistent hallucinations. 131

• Through comprehensive experiments on vari- 132

ous benchmarks, we demonstrate the effective- 133

ness of our proposed training-free Bi-DCA. 134
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2 Related Work135

2.1 Multimodal Large Language Models136

Multimodal Large Language Models (MLLMs),137

also referred to as Large Vision Language Mod-138

els (LVLMs), aim to enhance the visual capabilities139

of Large Language Models (LLMs). The integra-140

tion of visual and textual modalities is mainly based141

on off-the-shelf pre-trained unimodal models (Bai142

et al., 2024). Specifically, these MLLMs usually in-143

corporate a learnable interface between pre-trained144

visual encoders and LLMs, which can be further145

categorized into (i) projection layer-based interface146

and (ii) learnable query-based interface. Projec-147

tion layer-based methods, which are widely im-148

plemented in models such as LLaVA (Liu et al.,149

2023b) and Shikra (Chen et al., 2023), involve150

training a linear projection layer or a Multi-Layer151

Perceptron (MLP) module to transform extracted152

visual features. On the other hand, learnable query-153

based methods, exemplified by Q-Former (Li et al.,154

2023a), as utilized in InstructBLIP (Dai et al., 2024)155

and MiniGPT-4 (Zhu et al., 2023), employ a set of156

learnable query tokens to capture visual signals157

through cross-attention mechanisms. Both types of158

interfaces aim to map pre-trained visual features159

into the input space of pre-trained LLMs, thereby160

facilitating the integration of visual and textual in-161

formation.162

In our paper, we conduct experiments on the four163

aforementioned MLLMs to validate the robustness164

of our proposed Bi-DCA.165

2.2 Hallucination in MLLMs166

The hallucination of MLLMs generally refers to167

the problem where the generated text response is168

not consistent with the given visual content (Huang169

et al., 2024b). State-of-the-art studies in this field170

primarily focus on object hallucination, which171

can be categorized into object-level category and172

attribute-level category. The object-level meanings173

identify nonexistent object categories or incorrect174

categories in the given image, and attribute-level175

refers to the descriptions of the attributes on these176

objects such as color, position, etc. are wrong.177

Current methods for evaluating hallucinations in178

MLLMs focus on assessing the cognitive perfor-179

mance of the model, with two primary aspects: non-180

hallucinatory generation and hallucination discrim-181

ination. The former involves a detailed analysis of182

the hallucinatory elements in the text response and183

quantifying their proportion. The latter requires a184

binary judgment of whether the response comprises 185

any hallucinatory content. 186

In our paper, we alleviate both two object halluci- 187

nations in the generated text and comprehensively 188

discuss these evaluating approaches based on our 189

Bi-DCA. 190

2.3 Decoding Method in Language Models 191

In constructing language models, the decoding 192

method plays a crucial role in the text generation 193

process. These methods are essential for ensur- 194

ing the accuracy, relevance, and fluency of the 195

generated text. A basic decoding method is the 196

greedy search, which selects the word with the 197

highest probability at each step. Although this 198

method is computationally efficient, it often results 199

in monotonous and less diverse content. In con- 200

trast, beam search (Graves, 2012; Lee et al., 2009) 201

maintains a certain number of candidate sequences 202

at each step and selects the optimal sequence from 203

them, thereby improving the quality and diversity 204

of the generated text. Nucleus sampling (Holtz- 205

man et al., 2019) involves randomly selecting from 206

a set of words, it is not simply choosing a fixed 207

number of words with the highest probabilities, but 208

determining the number of words to select based 209

on a cumulative probability value p. It achieves an 210

effective balance between randomness and text rel- 211

evance in text generation by adjusting the number 212

of selected words. 213

In our paper, the proposed Bi-DCA can inte- 214

grate seamlessly into the above decoding meth- 215

ods, thus, it can be represented as greedy-based 216

Bi-DCA, beam-based Bi-DCA, and sample-based 217

Bi-DCA, respectively. 218

3 Method 219

Our core objective is to alleviate hallucinations by 220

expanding the receptive field for visual features 221

while achieving dual contrastive adapting in the 222

prediction phase. Our method can be seamlessly in- 223

tegrated into existing mature decoding approaches. 224

In this section, we introduce the Inference Process 225

of MLLMs, followed by a detailed explanation of 226

Expanding the Visual Receptive Field and Dual 227

Contrastive Adapting in Predictions. 228

3.1 Inference Process of MLLMs 229

The key to the inference process is the visual 230

encoder and the decoder of the large language 231

model. Specifically, the model receives a given 232
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Figure 3: Illustration of our method. Given an image and text input, the model first extends the receptive field of the
image and combines image and text features with attention in two directions to form distinct features. Subsequently,
a dual contrastive decoding mechanism is employed to control the output scores for predicting the next token.

image V and text T as inputs, the text is trans-233

formed into a fixed dimensional vector represen-234

tation XT = {xN , xN+1, xN+M−1} after an em-235

bedding layer, the visual encoder encodes the im-236

age as XV = {x0, x1, xN−1} which fuses with237

the text vectors through an alignment such as a238

linear layer or a Qformer, and the fused vector239

X = XV ⊕XT = {x0, x1, ..., xN+M−1} is used240

as a prediction for the start of the target sequence.241

Here N and M are the length of visual and textual242

tokens that are a fixed value in most cases.243

Then, the decoder enters the loop generation244

phase, where for each time step t, it generates a245

new word vector from a predicted score logit(·) and246

aligns it to the next position of the target sequence.247

This process of auto-regressive can be formulated248

as:249

p(xt|x<t) = softmax(logit(xt|x<t)), (1)250

where xt is the t-th token which is conditioned on251

all previous tokens x<t.252

After getting the probability distribution of the253

next token, several decoding strategies are usually254

utilized to obtain the final output, such as greedy255

search, beam search, sampling, etc. Our method256

can be efficiently and easily added to these decod-257

ing methods.258

3.2 Expanding the Visual Receptive Field259

Inspired by Shen et al. (2018), to enhance the infor-260

mation integrity of the image in the decoding stage,261

we utilize different positional masks to encode the262

directional information in it based on Relation- 263

aware Self-Attention (Shen et al., 2018). It can 264

be represented by the following equation: 265

zi =
n∑

j=1

αij(xjW
V + aVij), (2) 266

αij = softmax(eij), (3) 267

eij =
xiW

Q(xjW
K + aKij )

T

√
dz

, (4) 268

where aVij , a
K
ij ∈ Rda are the edge between input 269

elements xi and xj , and these representations can 270

be shared across attention heads and da = dz . 271

We modify Eq. (4) to propagate directional in- 272

formation to the sublayer output: 273

eij =
xiW

Q(xjW
K + aKij )

T

√
dz

+Mij , (5) 274

where M ∈ {0,−∞}n×n, n is the image patch 275

numbers. In this paper, we use two positional 276

masks, i.e., forward mask Mfw and backward 277

mask Mbw when combining different modality fea- 278

tures. Together they form a bi-directional mask 279

through concatenation. 280

Mfw
ij =

{
0 if i < j,

−∞ otherwise,
(6) 281

Mbw
ij =

{
0 if i > j,

−∞ otherwise.
(7) 282

In forward mask Mfw
ij , there is the only attention 283

of later token j to early token i, and vice versa 284
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in the backward mask. As shown in Figure 3, we285

abstractly show the schematic of the bi-directional286

mask added to the input of the decoding layer, es-287

pecially in the image patch region. The idea of us-288

ing bi-directional attention is inspired by different289

types of image and text feature processing. Causal290

attention loses the information of the following291

patches when processing images. Unlike textual292

features which only need to focus on the tokens293

before the current token, it needs to encode long-294

range dependency from different directions, so that295

expanding the visual receptive field.296

3.3 Dual Contrastive Adapting in Predictions297

We have discussed the methods to enhance the vi-298

sual perceptual field. We further propose novel299

approaches to compensate for the spatial informa-300

tion and combine both to form a dual contrastive301

adapting strategy to achieve dynamic adaptation in302

the prediction phase.303

The original MLLMs assign the highest prob-304

ability score to the wrong token when it outputs305

factually incorrect information, in which case we306

observe that the score of the correct token is close307

to the highest probability score. It suggests that308

the model is less confident in the current decision.309

Whereas the output score has a large difference be-310

tween the token with the highest probability score311

and the token with the second highest probability312

score when it outputs the correct outcome. Since313

the MLLMs are trained with causal attention us-314

ing only forward masks, and when using backward315

masks, it does not learn the spatial information in316

the opposite direction. So we use the rotated image317

to compensate for this part of the spatial informa-318

tion.319

Based on the above analysis, our goal is to go320

against the decision scores in the incorrect case,321

both in terms of visual perceptual field and spatial322

information completeness.323

To operationalize this objective, in addition to324

the original state score p(xt|x<t), which we call the325

partial visible score calculated by original image326

and forward mask Mfw, denoted as e(xt, ϕρ, ϕθ),327

we introduce two other prediction scores, namely328

full visible score e(xt, cρ, ϕθ) and full visible ro-329

tated score e(xt, cρ, cθ). where cρ represents the330

Expansion of Visual Receptive Field introduced in331

Sec. 3.2, and cθ stands for spatial semantic infor-332

mation obtained after rotational correction of the333

image. In this paper we set θ to 180, meaning that334

the original image is rotated 180 degrees.335

As shown in Figure 3, these scores are derived 336

from the combination of two different image fea- 337

tures and positional masks, which are then pro- 338

cessed through the decoder layer. The final next 339

token score for step t can be derived from the fol- 340

lowing equation: 341

et = α1e(xt, ϕρ, ϕθ)

+ α2(e(xt, cρ, ϕθ)− e(xt, ϕρ, ϕθ))

+ α3(e(xt, cρ, cθ)− e(xt, cρ, ϕθ)),

(8) 342

where α1, α2, α3 are hyper-parameters in [0, 1]. we 343

set α1 = 1, α2 = 0.5, α3 = 0.5 throughout the 344

paper. Larger α2 entails more visual receptive field 345

and larger α3 means more visual spatial supple- 346

mentary information. However, their values are not 347

necessarily better when larger, as this can offset the 348

original state scores and cause the model to favor 349

additional states. 350

To tackle the aforementioned issue, following Li 351

et al. (2022); Leng et al. (2023), we utilize an adap- 352

tive plausibility constraint Vhead that exploits the 353

confidence level of the original state score to re- 354

strict the effect of the rest objective: 355

Vhead = {xt ∈ V :

e(xt, cρ, ϕθ) ≥ max e(xt, cρ, ϕθ) + log(β)},
et = 0, if xt /∈ Vhead,

(9) 356

where β is a hyper-parameter ranging from 0 to 1 357

that controls the truncation of the next token score 358

distribution. Larger β signifies more aggressive 359

truncation, retaining only the tokens with the high- 360

est probabilities. 361

By incorporating adaptive plausibility constraint 362

into Eq. (8), we retained tokens with higher pre- 363

dicted probabilities, thereby altering the distribu- 364

tion of the final output scores. This increases 365

the confidence of the model in its output deci- 366

sions and reduces the emergence of low-probability 367

scores. Then we apply existing mature decoding 368

approaches such as search-based greedy search, 369

beam search, and sample-based nucleus sampling 370

to optimize et and select a token with a higher 371

probability. 372

4 Experiments 373

This section provides a detailed overview of our 374

experimental validation of decoding strategies em- 375

ployed in different MLLMs. 376
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LLaVA-1.5 Shikra InstructBLIP MiniGPT-4

CHAIRs↓ CHAIRi↓ Len CHAIRs↓ CHAIRi↓ Len CHAIRs↓ CHAIRi↓ Len CHAIRs↓ CHAIRi↓ Len

Opera 45.6 13.3 94.2 52.2 13.8 99.5 48.8 14.9 91.6 26.8 8.9 63.0

VCD 48.8 14.1 98.0 56.2 15.1 101.2 46.4 14.7 96.8 33.2 10.5 83.3

Greedy
✗ 46.4 12.4 97.8 54.8 14.8 101.5 49.3 22.6 108.8 32.4 10.1 83.5

✓ 43.6 11.9 94.2 53.6 13.5 99.4 48.4 14.6 93.6 32.6 10.9 91.8

Beam
✗ 49.4 14.0 96.9 52.2 13.8 99.5 56.8 15.3 98.2 31.2 10.0 78.5

✓ 42.2 11.7 93.3 50.4 13.1 93.3 44.4 13.8 97.8 32.4 10.7 81.6

Sample
✗ 54.2 15.8 99.8 60.2 16.4 102.3 50.0 24.5 118.4 33.8 10.6 83.9

✓ 43.2 11.5 94.4 56.2 15.1 101.2 45.4 14.4 96.1 29.6 9.0 88.4

Table 1: CHAIR metrics across four different MLLMs. ✗symbol represents the original decoding method, while
✓indicates our proposed Bi-DCA based on the respective decoding strategy. Len represents the average length of
the generated sentences and is provided for reference. The best performances within each setting are bolded.

4.1 Settings377

4.1.1 Baselines & Dataset378

Following Huang et al. (2024a), we evaluate the379

effectiveness of Bi-DCA on four MLLMs, includ-380

ing LLaVA-1.5-7B (Liu et al., 2023b), Shikra-381

7B (Chen et al., 2023), InstructBLIP-7B (Dai et al.,382

2024), and MiniGPT-4-7B (Zhu et al., 2023). All383

the models employ pre-trained LLMs, efficient im-384

age encoders, and different visual feature alignment385

modules. The first is LLaVA-1.5 and Shikra which386

use a linear MLP as the image-text feature align-387

ment module, the numbers of the image patches are388

576 and 256. While the InstructBLIP and Minigpt4389

both map the image features into the textual space390

using the Q-former (Li et al., 2023a) structure. The391

pre-trained LLMs they used are LLaMA-7B (Tou-392

vron et al., 2023) and Vicuna-7B (Chiang et al.,393

2023) respectively, and the image encoders used394

are CLIP ViT (Radford et al., 2021) or EVA-CLIP395

ViT (Fang et al., 2023). During the inference phase,396

we select five decoding methods as baseline ap-397

proaches. These include three common strategies:398

greedy search, beam search, and nucleus sampling,399

as well as two methods designed to alleviate hal-400

lucinations: OPERA (Huang et al., 2024a) and401

VCD (Leng et al., 2023).402

We conduct experiments on the MSCOCO403

dataset, in which the images contain 80 categories404

and corresponding annotations. Specifically, fol-405

lowing Huang et al. (2024a), we select 500 images406

from the COCO14 (Lin et al., 2014) validation set407

and then prompt different models to obtain descrip-408

tions of the input images and evaluate the perfor-409

mance of the models by assessing the quality of the410

outputs.411

4.1.2 Implementation Details 412

we utilize the default settings for these models and 413

decoding methods during the experiments. Specif- 414

ically, we set the beam search parameter Nbeam 415

to 5 and the top-p = 0.9 for nucleus sampling. 416

For the VCD, we set α = 1, β = 0.1, γ = 0.1. 417

And for the OPERA, we configure them as follows: 418

Nbeam = 5, θ = 50, Ncan = 5, α = 1, β = 5 and 419

r = 15. Unless otherwise specified, we set α1 = 1, 420

α2 = 0.5, α3 = 0.5, θ = 180, and β = 0.5 across 421

all models in our Bi-DCA. 422

4.2 Experimental Results 423

we evaluate the performance of Bi-DCA in allevi- 424

ating hallucination tasks using various evaluation 425

methods, including two primary hallucination eval- 426

uation approaches: (i) Assessing the ability of non- 427

hallucinatory content generation. (ii) Evaluating 428

the ability of hallucination discrimination. 429

4.2.1 Results on CHAIR 430

Evaluating non-hallucinatory generation is to mea- 431

sure the proportion of hallucinated content in the 432

outputs. CHAIR (Rohrbach et al., 2018) targets 433

evaluating object hallucinations of models in de- 434

scribing images by quantifying differences of ob- 435

jects between model generation and ground truth. 436

It comprises two metrics dimensions: CHAIRs cal- 437

culated at the sentence level, and CHAIRi calcu- 438

lated at the object level. These variables can be 439

expressed using the following formulas: 440

CHAIRs =
|{sentences with hallucinated object}|

|{all sentences}|
, 441

CHAIRi =
|{hallucinated objects}|

|{all objects mentioned}|
. 442
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Model Setting Decoding Accuracy↑ Precision↑ Recall↑ F1 Score↑

LLaVA-1.5

Random
✗Avg 0.875 0.899 0.858 0.877
✓Avg 0.884 0.875 0.904 0.890

Popular
✗Avg 0.848 0.845 0.858 0.850
✓Avg 0.850 0.816 0.904 0.858

Adversarial
✗Avg 0.767 0.710 0.904 0.795
✓Avg 0.779 0.733 0.879 0.799

Shikra

Random
✗Avg 0.821 0.949 0.691 0.800
✓Avg 0.829 0.944 0.712 0.811

Popular
✗Avg 0.809 0.904 0.692 0.784
✓Avg 0.819 0.906 0.711 0.796

Adversarial
✗Avg 0.792 0.867 0.690 0.769
✓Avg 0.799 0.863 0.711 0.780

InstructBLIP

Random
✗Avg 0.877 0.916 0.841 0.876
✓Avg 0.904 0.910 0.904 0.906

Popular
✗Avg 0.816 0.804 0.842 0.821
✓Avg 0.817 0.771 0.904 0.832

Adversarial
✗Avg 0.788 0.767 0.835 0.799
✓Avg 0.782 0.728 0.902 0.805

MiniGPT-4

Random
✗Avg 0.743 0.814 0.660 0.728
✓Avg 0.794 0.909 0.668 0.769

Popular
✗Avg 0.688 0.702 0.666 0.683
✓Avg 0.741 0.784 0.667 0.720

Adversarial
✗Avg 0.669 0.672 0.669 0.669
✓Avg 0.721 0.742 0.680 0.708

Table 2: POPE metrics across four different MLLMs.
Due to space constraints, we use ✗Avg to denote the av-
erage results of beam search, greedy search, and nucleus
sampling in different settings. ✓Avg reflects the average
of our method based on these three methods, with the
best result for each setting highlighted in bold.

In our experiments on the MSCOCO dataset,443

specifically aimed at obtaining detailed descrip-444

tions of input images, we utilized the same prompt445

"Please describe this image in detail." to get re-446

sponses from different MLLMs.447

As shown in Table 1, our CHAIR results on448

different MLLMs and baseline methods demon-449

strate a noticeable observation: our proposed Bi-450

DCA exhibits superior robustness. Specifically,451

our method outperforms the baselines across four452

different models. For the MiniGPT-4 model, our453

method based on nucleus sampling achieves the454

best results, with the outcomes of other decoding455

strategies also comparable. In models other than456

MiniGPT-4, the performance exceeds the baselines457

by 5% or more. This indicates that it plays a cru-458

cial role in simultaneously enhancing the visual re-459

ceptive field and improving the robustness against460

perturbations, thereby reducing the occurrence of461

object hallucinations.462

4.2.2 Results on POPE463

The Hallucination discrimination evaluation ap-464

proach aims to assess the hallucination discrimina-465

tion ability of MLLMs. The methods that follow466

this approach typically adopt a question-answering467

format, posing inquiries to MLLMs consisting of468

descriptions that agree or conflict with the provided469

content (Bai et al., 2024). POPE (Li et al., 2023b) 470

designs binary (Yes-or-No) questions about object 471

presence in images such as "Is there a <object> 472

in the image?" to evaluate the hallucination dis- 473

crimination ability of MLLMs. The objects asked 474

in questions are selected under three distinct sam- 475

pling strategies: random (selecting random absent 476

objects), popular (choosing the most frequent ob- 477

jects in the dataset but absent in the current im- 478

age), and adversarial (selecting absent objects of- 479

ten co-occurring with present ones). As shown 480

in Table 2, our proposed Bi-DCA demonstrates 481

a robust enhancement in the performance of four 482

MLLMs across various settings. The consistent 483

improvements in accuracy, recall, and F1 scores, 484

especially under challenging settings like Adver- 485

sarial and Popular, underline the effectiveness of 486

the hallucination discrimination ability of Bi-DCA. 487

The overall performance improvement of minigpt4 488

is attributed to the comprehensive improvement in 489

accuracy, precision, and recall, while the perfor- 490

mance of the other three models is mainly driven 491

by accuracy and recall. Notably, InstructBLIP and 492

MiniGPT4 exhibit more significant enhancements 493

in their F1 metrics compared to LLaVA1.5 and 494

SHIKRA. 495

4.2.3 Results on MME 496

We select four subsets related to hallucination from 497

MME benchmark (Yin et al., 2023a) for experi- 498

ments, specifically existence, count, position, and 499

color. These subsets surpass the evaluation scope 500

of POPE, providing a more comprehensive under- 501

standing of our proposed Bi-DCA. The results are 502

shown in Table 3. Overall, it indicates that our 503

method contributes to a consistent enhancement 504

of model performance when alleviating hallucina- 505

tion at the object and attribute levels. In addition, 506

Bi-DCA shows a significant improvement in its 507

ability to discern and alleviate hallucinations at the 508

attribute level, particularly regarding positional hal- 509

lucinations. This precisely demonstrates that the 510

integration of spatial information in our method has 511

achieved the desired effect. However, the scores 512

for position metrics are generally lower than the 513

other three metrics, indicating that the reasoning ca- 514

pabilities of MLLMs regarding position still need 515

improvement. When comparing different decoding 516

methods, our Bi-DCA shows the most significant 517

score improvement with nucleus sampling, achiev- 518

ing an average increase of 75.55% on LLaVA-1.5, 519

SHIKRA, and MiniGPT4. In contrast, the improve- 520
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Model Decoding
Object-level Attribute-level

Total Scores↑
Existence↑ Count↑ Position↑ Color↑

LLaVA-1.5

sample 175.00 110.00 95.00 135.00 515.00
Ours 190.00 130.00 123.33 165.00 608.33

greedy 195.00 146.67 121.67 170.00 633.33
Ours 195.00 153.33 131.67 170.00 650.00
beam 195.00 118.33 110.00 150.00 573.33
Ours 195.00 128.33 110.00 150.00 583.33

Shikra

sample 165.00 51.67 45.00 103.33 365.00
Ours 175.00 80.00 61.67 123.33 440.00

greedy 195.00 61.67 53.33 93.33 403.33
Ours 175.00 70.00 63.33 115.00 423.33
beam 195.00 83.33 60.00 88.33 426.67
Ours 175.00 78.33 63.33 108.33 425.00

InstructBLIP

sample 180.00 70.00 61.67 110.00 421.67
Ours 185.00 75.00 56.67 115.00 431.67

greedy 185.00 60.00 50.00 120.00 415.00
Ours 185.00 65.00 53.33 125.00 428.33
beam 185.00 55.00 50.00 120.00 410.00
Ours 185.00 65.00 53.33 125.00 428.33

MiniGPT-4

sample 65.00 48.33 25.00 46.67 185.00
Ours 95.00 61.67 66.67 95.00 318.33

greedy 115.00 56.67 60.00 85.00 316.67
Ours 120.00 51.67 71.67 93.33 336.67
beam 95.00 91.67 53.33 83.33 323.33
Ours 110.00 71.67 80.00 95.00 356.67

Table 3: MME metrics across four different MLLMs.
The best result for each setting is highlighted in bold.

Model Grammer↑ Fluency↑ Nature↑ PPL1 ↓ PPL2 ↓

InstructBLIP
✗ 7.34 7.35 6.58 68.08 51.78
✓ 8.38 8.32 7.56 12.10 9.61

MiniGPT-4
✗ 7.77 7.71 7.68 12.51 9.93
✓ 8.10 8.07 8.01 13.00 10.21

LLaVA-1.5
✗ 7.73 7.73 7.63 14.13 11.37
✓ 8.39 8.40 8.26 13.59 10.91

Shikra
✗ 7.75 7.74 7.67 16.61 13.38
✓ 8.43 8.43 8.31 15.20 12.19

Table 4: GPT-4 assisted evaluation results on COCO14.
✗denotes the average results of beam search, greedy
search, and nucleus sampling in different MLLMs. ✓re-
flects the average results of ours.

ments with other decoding methods are relatively521

modest.522

4.2.4 GPT-4 Assisted Evaluation523

Following Zhao et al. (2023); Huang et al. (2024a),524

to evaluate the quality of the generated text from525

the traditional NLP perspective, we use GPT-4 to526

score the image descriptions, specifically assess-527

ing their grammar, fluency, and nature from 0-10.528

Additionally, we adopt perplexity (ppl) to evalu-529

ate the generated sentences, with ppl1 and ppl2530

calculated by gpt-2 and gpt-2-medium models, re-531

spectively. We calculate the above metrics based532

on the CHAIR metric, and Table 4 lists the aver-533

age scores for various decoding methods and our534

method. Detailed prompt templates are provided535

in the Appendix A. The result in Table 4 indicates536

that the quality of the generated text also improves537

in various aspects.538

Decoding InstructBLIP MiniGPT-4 LLaVA-1.5 Shikra
C D C D C D C D

Sample 2.286 3.242 3.816 4.560 3.796 4.584 3.904 4.482
Greedy 3.092 3.502 4.476 4.548 5.092 4.830 4.446 4.526
Beam 4.536 4.900 4.362 4.900 4.462 5.034 4.552 4.970
Ours 5.38 4.936 4.964 5.04 5.418 4.988 5.484 4.843

Table 5: GPT-4V assisted evaluation results on
COCO14. C stands for correctness and D refers to
detailness, ours reflects the sampling-based Bi-DCA.

4.2.5 GPT-4V Assisted Evaluation 539

Following Yin et al. (2023b), we adapt the state- 540

of-the-art gpt-4-vision-preview further to evaluate 541

the presence of hallucinations in the output text. 542

It can compensate for the attribute-level hallucina- 543

tions that the CHAIR metric cannot detect and has 544

strong capabilities in handling both image and text 545

information. Implementation details and prompt 546

templates are provided in the Appendix B. 547

The results of four MLLMs using different de- 548

coding methods and our methods are presented in 549

Table 5. Overall, our method achieves an 18.6% 550

quality improvement in terms of correctness and 551

is comparable to other leading decoding methods 552

in describing image content in detail. Due to the 553

strong perception and reasoning abilities of gpt-4- 554

vision-preview, which is close to those of humans, 555

the evaluation results to some extent reflect human 556

perspectives on hallucination mitigation. 557

5 Conclusion 558

In this paper, we propose a novel training-free 559

method called Bi-directional Dual Contrastive 560

Adapting (Bi-DCA) to alleviate the hallucinations 561

in MLLMs that can integrate seamlessly into the 562

existing decoding methods. It mainly focuses on 563

two innovative mechanisms: Expanding the Visual 564

Receptive Field and Dual Contrastive Adapting in 565

Predictions. First, we employ directional masks 566

to capture the bi-directional dependency of visual 567

information when calculating image patches dur- 568

ing the inference stage, which effectively expands 569

the visual receptive field. Building on this, we 570

design a dual contrastive adapting strategy to en- 571

hance the confidence of MLLMs in the next token 572

prediction phase, which acts as a mechanism for 573

supplementing visual features and alleviating per- 574

sistent hallucinations. We conduct comprehensive 575

experiments on various metrics and benchmarks 576

and experimental results show our significant supe- 577

riority in generating high-quality text and alleviat- 578

ing hallucinations. 579
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Limitations580

Our Bi-DCA does not require training and is581

constrained by the inherent performance of the582

MLLMs, including the components of the LLM,583

the visual encoder, and the adapter. When MLLMs584

respond to questions, the score gap between hal-585

lucinated and correct text is small due to their in-586

herent limitations. Although our method can alter587

this difference and mitigate the hallucinations, the588

extent of improvement is relatively limited. We589

hope our approach will inspire researchers so that590

can prompt further enhancements in model perfor-591

mance. Lastly, due to limited resources, we have592

not evaluated the most recent larger MLLMs.593

Ethics Statement594

We affirm that our work here does not exacerbate595

the biases already inherent in the large language596

models and does not have ethics problems.597
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A Details for GPT-4754

GPT-4 Prompt Template
You are an AI language assessment expert tasked with evaluating the quality of text sum-
maries generated by four assistants based on the following criteria:
You are required to score the performance of the quality of these four text summaries, Please
rate the responses of the assistants on a scale of 0 to 10, where a higher score indicates better
performance, according to the following criteria:
1. Grammar: Evaluates whether the text adheres to standard grammatical conventions.
2. Fluency: Assesses the smoothness and coherence of the text.
3. Naturalness: Evaluates how naturally the text reads.
Please provide scores for each criterion for each summary containing only four values
indicating the scores for Assistant 1 and Assistant 2 respectively. The four scores are
separated by a space. Avoid any potential bias and ensure that the order in which the
responses were presented does not affect your judgment.

[Assistant 1]
{}
[End of Assistant 1]

[Assistant 2]
{}
[End of Assistant 2]

Scoring format:

Grammar: <Scores of the four answers>
Fluency: <Scores of the four answers>
Naturalness: <Scores of the four answers>

Table 6: The prompt template for GPT-4.

B Details for GPT-4V755

GPT-4V(ision) Prompt Template
You are required to score the performance of two AI assistants in describing a given image.
You should pay extra attention to the hallucination, which refers to the part of descriptions
that are inconsistent with the image content, such as claiming the existence of something not
present in the image or describing incorrectly in terms of the counts, positions, or colors of
objects in the image. Please rate the responses of the assistants on a scale of 1 to 10, where a
higher score indicates better performance, according to the following criteria:
1: Accuracy: whether the response is accurate with respect to the image content. Responses
with fewer hallucinations should be given higher scores.
2: Detailedness: whether the response is rich in necessary details. Note that hallucinated
descriptions should not count as necessary details.
Please output the scores for each criterion, containing only two values indicating the scores
for Assistant 1 and 2, respectively. The two scores are separated by a space. Following the
scores, please provide an explanation of your evaluation, avoiding any potential bias and
ensuring that the order in which the responses were presented does not affect your judgment.

[Assistant 1]
{}
[End of Assistant 1]

[Assistant 2]
{}
[End of Assistant 2]

Output format:
Accuracy: <Scores of the two answers>
Reason:

Detailedness: <Scores of the two answers>
Reason:

Table 7: The prompt template for GPT-4V(ision).

Specifically, we use 500 images randomly se-756

lected from COCO14 and their descriptions gen-757

erated by various MLLMs and our sample-based758

Bi-DCA. The prompt provided to the MLLMs is759

"Please describe this image in detail." To ensure760

a fair comparison, we follow Yin et al. (2023b);761

Huang et al. (2024a) and provide gpt-4-vision-762

preview with both an image and corresponding763

outputs from different MLLMs, then prompt it to764

evaluate these generation texts. The template is765

shown in Table 7 It is asked to score these texts766

from 0 to 10, based on our defined criteria of cor- 767

rectness and detailness. Correctness refers to the 768

consistency between the text content and the image, 769

while detailness refers to the comprehensiveness 770

of the text description, i.e., whether the image con- 771

tent is completely and accurately described. The 772

score is low if gpt-4-vision-preview determines that 773

the given text does not match the provided image, 774

indicating a hallucination. 775

C Ablation Study 776

α1 α2 α3 β Accuracy↑ Precision↑ Recall↑ F1 Score↑

1 0 0 0 83.35 82.70 85.57 84.11

β

1 0.5 0.5 0.1 84.36 82.88 87.76 85.25
1 0.5 0.5 0.3 86.11 84.91 88.82 86.82
1 0.5 0.5 0.5 87.90 87.00 89.95 88.45
1 0.5 0.5 0.7 88.56 87.59 90.63 89.09
1 0.5 0.5 0.9 88.64 87.50 90.94 89.19

α1

0 0.5 0.5 0.5 86.38 84.79 89.65 87.15
0.1 0.5 0.5 0.5 86.30 84.71 89.58 87.18
0.3 0.5 0.5 0.5 86.50 85.02 89.58 87.24
0.5 0.5 0.5 0.5 86.65 85.21 89.65 87.38
0.7 0.5 0.5 0.5 87.28 86.04 89.88 87.92
0.9 0.5 0.5 0.5 87.35 86.22 89.80 87.98
1 0.5 0.5 0.5 87.90 87.00 89.95 88.45

α2

1 0 0.5 0.5 87.51 86.42 89.88 88.12
1 0.1 0.5 0.5 87.63 86.67 89.80 88.20
1 0.3 0.5 0.5 87.78 86.86 89.88 88.34
1 0.5 0.5 0.5 87.90 87.00 89.95 88.45
1 0.7 0.5 0.5 87.39 86.18 89.95 88.45
1 0.9 0.5 0.5 87.16 86.01 89.65 87.80

α3

1 0.5 0 0.5 87.47 86.25 90.03 88.10
1 0.5 0.1 0.5 87.51 86.26 90.11 88.14
1 0.5 0.3 0.5 87.70 86.57 90.11 88.30
1 0.5 0.5 0.5 87.90 89.00 89.95 88.45
1 0.5 0.7 0.5 87.59 86.55 89.88 88.18
1 0.5 0.9 0.5 87.43 86.45 89.65 88.02

Table 8: Ablation study on POPE Random setting using
sample-based Bi-DCA on LLaVA-1.5.

In this section, we present a detailed ablation 777

study of the hyper-parameters, which are intro- 778

duced in detail in Sec. 3.3. These hyper-parameters 779

include the weight for partial visible scores α1, the 780

weight for full visible scores α2, the weight for 781

full visible rotated scores α3, and the truncation 782

parameter β that controls the distribution of token 783

scores. 784

Despite minor differences in the optimal hy- 785

perparameter settings across various MLLMs, the 786

trends remain consistent. Thus, we conduct our 787

experiment on LLaVA-1.5 using sample-based Bi- 788

DCA. As shown in Tab. 8, for ease of analysis, the 789

first row presents the results under the original con- 790

ditions. The experimental results demonstrate that 791

our Bi-DCA generally outperforms the baselines. 792

To minimize discrepancies in performance across 793

different MLLMs, we set the default parameters in 794

our paper to α1 = 1, α2 = 0.5, and α3 = 0.5. 795
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Specifically, as β increases, fewer low-score to-796

kens are included in the truncated probability distri-797

bution, leading to the output of higher confidence798

tokens. As shown in Tab. 8, this principle is re-799

flected in the metrics, our F1 score increases when800

β changes from 0.1 to 0.9. However, to ensure there801

are enough tokens for other decoding methods, we802

set β=0.5 by default in our paper.803

When α1 is set to 0, it indicates that partial vis-804

ible image features do not participate in the infer-805

ence stage, and the performance lies between the806

original results and the best results. This suggests807

that the image features we designed provide richer808

image information but can introduce some noise in809

the absence of original image constraints.810

The α2 and α3 respectively control the extent811

of image receptive fields and image spatial infor-812

mation. When either one acts alone, the overall813

performance does not reach optimal levels. How-814

ever, optimal performance is achieved when both815

are utilized simultaneously.816

D Case Study817
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Is the car on the left side of 
the fire hydrant in the picture? 
Please answer yes or no.

Input Text：

MiniGPT-4

Position

Yes.

Bi-DCA
No.

16.2031 16.1875
15.5156

13.9844

12.8359

12.5

13.5

14.5

15.5

16.5

Yes No The I There

Sc
or
e

Candidate Tokens

15.6484 15.5312

1 1 1
12.5

13.5

14.5

15.5

16.5

No Yes </s> <s> <unk>

Sc
or
e

Candidate Tokens

Figure 4: Comparison between greedy-based Bi-DCA
and MiniGPT-4 on Position.

16.1719 16.0781

14.3594 14.2578 13.8203

12
13
14
15
16
17

No Yes The There I

Sc
or
e

Candidate Tokens

Is there a brown giraffe in 
the image?  
Please answer yes or no.

Input Text：
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Figure 5: Comparison between greedy-based Bi-DCA
and MiniGPT-4 on Color.

Is there a toilet in this image? 
Please answer yes or no.
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Figure 6: Comparison between greedy-based Bi-DCA
and MiniGPT-4 on Existence.

Is there a dog in the picture? 
Please answer yes or no.
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Figure 7: Comparison between beam-based Bi-DCA
and MiniGPT-4 on Count.
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Input Text：

LLaVA-1.5：

Please describe this image in detail.

In the image, a young man is playing with a frisbee in a fenced-in area. He 
is holding the frisbee in his hand and appears to be preparing to throw it. 
The fenced-in area seems to be a playground or a designated space for 
recreational activities.
There are a few other people in the background, but they are not the 
main focus of the scene. The young man with the frisbee is the center 
of attention as he enjoys his outdoor activity.

OPERA：

In the image, a young man is playing with a frisbee in a fenced-in area. He is holding the frisbee in his hand and appears to 
be preparing to throw it. The fenced-in area is likely a playground or a designated space for recreational activities.
There are a few other people present in the background, but they are not the main focus of the scene. The young 
man with the frisbee is the center of attention, enjoying his time outdoors and engaging in a fun activity.

Bi-DCA：

In the image, a young man is playing tennis on a court, holding a tennis racket and preparing to hit a tennis ball. He 
is wearing a striped shirt and appears to be focused on the game. The tennis ball is positioned close to one of his 
feet, while the racket is held in his other hand.
The tennis court is surrounded by a chain-link fence, providing a secure boundary for the game. The scene captures 
the essence of an outdoor recreational activity, showcasing the man's athleticism and dedication to the sport.

Input Text：

LLaVA-1.5：

Please describe this image in detail.

The image features a man standing in a bathroom, taking a selfie with his 
cell phone. He is holding the phone in front of his face, capturing a picture of 
himself. The man is wearing a green shirt and appears to be smiling as he 
takes the photo.

In the background, there is a toilet visible on the left side of the image, and 
a sink can be seen on the right side. Additionally, there is a toothbrush 
placed near the sink, suggesting that the bathroom is well-equipped 
for daily hygiene routines.

OPERA：

The image features a man standing in a bathroom, holding a cell phone in his hand. He is taking a selfie, capturing his 
reflection in the mirror. The man appears to be wearing a green shirt and has a beard.

The bathroom is equipped with a sink and a toilet. The sink is located on the left side of the bathroom, while the toilet 
is situated on the right side. The man's reflection can be seen in the mirror, which is positioned above the sink.
Bi-DCA：

The image features a man standing in a bathroom, holding a cell phone in his hand. He is taking a picture of himself 
in the mirror, capturing a selfie. The man is wearing a green shirt and appears to be focused on the task at hand.
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