
Thickness-aware E(3)-Equivariant 3D Mesh Neural Networks

Sungwon Kim 1 Namkyeong Lee 2 Yunyoung Doh 3 Seungmin Shin 3 Guimok Cho 3

Seung-Won Jeon 3 Sangkook Kim 3 Chanyoung Park 1 2

Abstract
Mesh-based 3D static analysis methods have re-
cently emerged as efficient alternatives to tradi-
tional computational numerical solvers, signif-
icantly reducing computational costs and run-
time for various physics-based analyses. How-
ever, these methods primarily focus on surface
topology and geometry, often overlooking the in-
herent thickness of real-world 3D objects, which
exhibits high correlations and similar behavior
between opposing surfaces. This limitation arises
from the disconnected nature of these surfaces and
the absence of internal edge connections within
the mesh. In this work, we propose a novel frame-
work, the Thickness-aware E(3)-Equivariant 3D
Mesh Neural Network (T-EMNN), that effectively
integrates the thickness of 3D objects while main-
taining the computational efficiency of surface
meshes. Additionally, we introduce data-driven
coordinates that encode spatial information while
preserving E(3)-equivariance or invariance proper-
ties, ensuring consistent and robust analysis. Eval-
uations on a real-world industrial dataset demon-
strate the superior performance of T-EMNN in
accurately predicting node-level 3D deformations,
effectively capturing thickness effects while main-
taining computational efficiency.

1. Introduction
Advances in static analysis have become essential across var-
ious fields, including structural engineering (Whalen et al.,
2021), materials science (Panthi et al., 2007; Wei et al.,
2019), and geophysics (Ren & Tang, 2010; Schwarzbach
et al., 2011). These analyses enable detailed physics-based
predictions, such as deformation, stress distribution, and
load testing, which are critical for designing and optimizing
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Figure 1. The left figures show a mesh, with two different target
nodes (•), their thickness paired nodes (•), thickness distance (−),
and nearby nodes within a radius (•). The right figures compare
Pearson correlation and L2 Norm between the target node’s defor-
mation and its thickness paired / nearby nodes within a radius.

complex systems. Traditionally, computational numerical
solvers like finite element methods (FEM) (Klocke et al.,
2002; Felippa, 2004) have been the primary tools for such
tasks. While accurate, these solvers often involve high com-
putational costs and extended runtimes, limiting their scala-
bility for real-time or large-scale applications.

In recent years, mesh-based 3D analysis methods (Pfaff
et al., 2020; Suk et al., 2021; Trang et al., 2024) have
emerged as a promising alternative to traditional numerical
solvers. By employing a graph-based representation of 3D
object surfaces, these methods facilitate enhanced computa-
tional efficiency while accurately modeling and preserving
the intricate surface topology and geometric properties of
the objects. However, existing mesh-based methods focus
solely on modeling the surfaces of 3D objects, overlooking
their thickness. Real-world objects such as plates, baskets,
and layered materials inherently possess thickness, where in-
teractions between opposing surfaces significantly influence
one another. This is because many surface-related physical
behaviors (e.g., deformation and bending) are directly in-
fluenced by bending, shear, and buckling stiffness, all of
which depend on thickness (Okafor & Oguaghamba, 2009;
Wang, 2010; Renton, 1991; Gürdal et al., 2008). Without
internal interactions to model the empty space enclosed by
these surfaces, these methods fail to capture the coupled dy-
namics and correlations between opposing surfaces, leading
to inaccuracies when applied to objects with thickness.

To quantitatively illustrate the significance of these inter-
actions, we present an analysis in Fig. 1, highlighting the
strong relationship between opposing surfaces that collec-
tively define the thickness of an object. On these surfaces,
we identify two nodes that are positionally aligned on each
opposing surface (i.e., with coinciding normal vectors) as a
thickness node pair. To verify the highly correlated and simi-
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lar behavior of thickness node pair, we compare the Pearson
correlation and L2 Norm between the deformation of the tar-
get node (• in Fig. 1) and its thickness paired node (•). We
also include comparisons in terms of the mean deformation
of nodes within a defined radius1 (•), as existing mesh-based
methods rely on radius-based aggregation (Pfaff et al., 2020;
Anandkumar et al., 2020). As shown in Fig. 1, thickness
node pairs exhibit significantly higher correlation and simi-
larity compared to the mean of nearby nodes within a radius,
demonstrating that the modeling relationship among thick-
ness node pairs would be beneficial in accurately modeling
the behavior of 3D objects with thickness. However, mesh-
based objects, which represent the geometry and topology
of surfaces, face challenges in accurately modeling these in-
teractions due to the lack of connections between opposing
surfaces within the mesh.

Motivated by these findings, this work presents a novel
framework that effectively incorporates the inherent thick-
ness of 3D objects, enhancing mesh-based methods by en-
abling precise interaction modeling between opposing sur-
faces while maintaining computational efficiency.

In addition, while considering thickness helps capture geo-
metric properties that influence structural behavior, learning
spatial information (i.e., coordinates) is also important, as it
enables the accurate representation of the spatial continuity
inherent in field variables such as stress distribution and
deformation. Therefore, incorporating spatial information
in learning-based surrogate models would further enhance
their ability to generalize physical behavior patterns by cap-
turing spatial relationships. However, when utilizing spatial
information, it is crucial to consider that preserving E(3)-
equivariance is essential in static analysis, as transforma-
tions such as rotation, translation, and reflection (i.e., the
E(3)-group) do not alter material properties.

To ensure the E(3)-equivariance of spatial information
in a mesh neural network, we consider leveraging E(3)-
equivariant graph neural network approaches. These meth-
ods often transform the original coordinate system into
higher-dimensional representations or utilize specialized
equivariant functions, such as spherical harmonics (Worrall
& Brostow, 2018; Gasteiger et al., 2020; Brandstetter et al.,
2021; Batatia et al., 2023; Batzner et al., 2022). Although
effective, these techniques typically introduce substantial
computational overhead, making them less suitable for real-
world industrial applications, particularly for large-scale
meshes with a high number of nodes and edges. In con-
trast, methods that avoid such computationally intensive
techniques often adopt constrained representations, rely-
ing solely on local geometric properties (e.g., relative dis-
placements, cross products) (Satorras et al., 2021; Trang
et al., 2024; Du et al., 2022) or excluding directional and

1The radius was set to the average thickness of the shape for
consistency.

coordinate-based information altogether. However, these
simplifications limit their ability to capture global spatial
contexts and interactions, which are critical for accurate and
comprehensive analysis.

To address these challenges, we employ data-driven coor-
dinates, allowing the model to directly use 3D coordinate
features as neural network inputs. This approach allows for
robust and expressive representations of object geometry
while effectively capturing global spatial contexts across
the entire shape. Specifically, our proposed data-driven co-
ordinates ensure invariance to E(3)-transformations. This
approach guarantees consistent spatial information, achieves
computational efficiency, and preserves the richness of spa-
tial representation.

The key contributions of this study are as follows:

• Thickness-Aware Framework: We propose a Thickness-
aware E(3)-Equivariant 3D Mesh Neural Networks (T-
EMNN) that accurately models interactions between op-
posing surfaces while retaining computational efficiency.

• Data-Driven Coordinates: Our framework incorporates
data-driven coordinates to ensure consistent and robust
spatial representation of 3D objects.

• E(3)-Equivariance or Invariance: The proposed model
preserves E(3)-equivariance or invariance, ensuring ro-
bustness to transformations such as translations, rotations,
and reflections.

• Validation on Real-World 3D Objects: We validate our
approach on real-world 3D objects in industry, demon-
strating accurate node-level 3D deformation predictions
in practical scenarios.

2. Related Work
2.1. Mesh-Based 3D Representation

Meshes (Kato et al., 2018; Pfaff et al., 2020; Feng et al.,
2019; Trang et al., 2024; Rubanova et al., 2021; Li et al.,
2018b) encode both surface and volumetric characteristics
through vertices, edges, and faces, facilitating geometric and
topological analysis. Recent neural architectures (Smirnov
& Solomon, 2021; Li et al., 2023; Singh et al., 2021; La-
hav & Tal, 2020) leverage mesh structures for enhanced 3D
analysis by incorporating geometric and topological features.
For instance, MGN (Pfaff et al., 2020) models physical inter-
actions via graph-based message passing with distances, dis-
placements, and world distances between connected nodes.
MeshNet (Feng et al., 2019) captures structural information
from mesh faces through kernel-based operations, while
Milano et al. (Milano et al., 2020) incorporate both edge
and face geometries using attention mechanisms.

Beyond learning mesh geometry and topology, several meth-
ods address the limitations of message-passing, where lo-
cal communication is constrained by mesh density (Gao
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& Ji, 2019; Han et al., 2022; Fortunato et al., 2022). To
enhance global information exchange, hierarchical pooling
techniques have been introduced to extend message propa-
gation beyond immediate neighbors (Cao et al., 2022; Han
et al., 2022; Janny et al., 2023; Yu et al., 2023).

Furthermore, the geometric and topological richness of
mesh graphs has driven research into equivariant representa-
tions. Many approaches (Shakibajahromi et al., 2024; Trang
et al., 2024) build on E(n)-equivariant graph neural networks
(EGNN) (Satorras et al., 2021), leveraging their efficiency
for large-scale mesh data. EGNN ensures E(3)-equivariance
via message passing while avoiding direct nonlinear spa-
tial encoding. EMNN (Trang et al., 2024) extends EGNN
by generating E(3)-invariant messages that incorporate ge-
ometric features like face areas and normal magnitudes,
enhancing equivariant modeling while preserving efficiency.
However, both approaches struggle to capture global spatial
relationships, as they rely on relative positions and direc-
tional updates rather than fully embedding spatial features.

3. Preliminaries
3.1. Notations

A shape is represented as a mesh M = (V,E), where the
nodes V correspond to unique coordinates in 3D space, and
the edges E define the connectivity between nodes. Let
the coordinate of a node vi ∈ V be denoted as xi ∈ R3,
representing its position in 3D space. In this work, we de-
note the mesh as the surface mesh, where its nodes and
edges are only located on the surface of the shape, ensur-
ing that the mesh is water-tight. Each shape is associated
with experimental conditions C, which influence the results
of simulation. The goal of this study is to predict the de-
formation of each node along the x, y, and z axes, given
the shape and the experimental condition c ∈ C as inputs.
Formally, the deformation at a node vi is represented as
∆xi = [∆xi,∆yi,∆zi], which is the output of the model.

Each face in the mesh is defined as a triangle consisting
of three connected nodes, and the outward-facing normal
vector of a face fk is denoted as nface

k . A node vi ∈ V is sur-
rounded by a set of faces forming a local disk-like structure,
ensuring geometric continuity. The normal vector of a node
nnode
i is defined as the average of the normal vectors of its

surrounding faces: nnode
i = 1

|F(vi)|
∑

fk∈F(vi)
nface
k , where

F(vi) is the set of faces adjacent to node vi, and |F(vi)| is
the number of such faces.

3.2. E(3)-Equivariance and Invariance

E(3)-equivariance ensures that a function’s output trans-
forms consistently under transformations from the Eu-
clidean group E(3), which includes translations, rotations,
and reflections. For a mapping ϕ : X → Y , ϕ is E(3)-

equivariant if the following holds for all g ∈ E(3):

ϕ(Tg(x)) = T ′
g(ϕ(x)),

where Tg : X → X and T ′
g : Y → Y are transformations

applied to x ∈ X and y ∈ Y , respectively.

Invariance, on the other hand, is a special case of equivari-
ance where the output remains unchanged under transfor-
mations, satisfying: ϕ(Tg(x)) = ϕ(x).

3.3. Thickness in the Mesh

Since traditional meshes lack explicit thickness information,
we first define thickness node pair as a pair of nodes where
one resides on one side of the surface and the other on the
opposing side, aligned along the normal direction of the
origin node. The thickness paired node of vi is denoted as
T (vi) ∈ V , where T (vi) ̸= vi, and is defined as:

T (vi) = argmin
vj∈V,vj ̸=vi

∥xj − (xi − d · nnode
i )∥, (1)

subject to (xj − xi) · nnode
i < 0, where nnode

i is the unit
outward normal vector at node vi, d > 0 is a scalar for the
ray projection distance, and ∥ · ∥ is the Euclidean distance.
This definition ensures that T (vi) lies on the opposing side
of the surface by requiring (xj − xi) · nnode

i < 0, avoiding
the selection of nodes on the same surface.

The distance between thickness node pair is then defined as
the thickness of the mesh at node vi. Formally, the thickness
t(vi) at node vi is given by:

t(vi) = ∥xi − xT (vi)∥. (2)

This definition enables the quantification of mesh thickness
at any node, providing a geometric measure of the spatial
separation between opposing surfaces.

4. Methodology
Our method, T-EMNN, extends the encode-process-decode
framework of MGN (Pfaff et al., 2020), introducing key
innovations for handling 3D shapes with thickness while in-
corporating spatial information in an E(3)-equivariant man-
ner. We employ a data-driven coordinate transformation
(Sec. 4.1) to integrate spatial information. T-EMNN consists
of an encoder (Sec. 4.2.1), a surface processor (Sec. 4.2.2), a
thickness processor (Sec. 4.2.3), and a decoder (Sec. 4.2.4),
effectively processing surfaces with thickness. The overall
framework is shown in Fig. 2.

4.1. Coordinate Transformation: E(3)-Invariant
Data-driven Coordinate System

Each node vi ∈ V has an original coordinate xorig
i , rep-

resenting its position in the input coordinate system. To
ensure E(3)-invariance, we transform the coordinates into a
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Figure 2. Overview of T-EMNN.
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Figure 3. Our proposed data-driven coordinate system.

system defined by the shape itself, independent of its orien-
tation or alignment in the original coordinate system. This
transformation is achieved through the following steps:

Step 1: Adjust Coordinates to Center of Mass. The center
of mass xcm of the shape is calculated as:

xcm =
1

|V |
∑
vi∈V

xorig
i , (3)

where |V | is the total number of nodes in the mesh. Each
node’s coordinate is adjusted relative to the center of mass:

x̃i = xorig
i − xcm. (4)

Step 2. Principal Axis Generation. As shown in Fig. 3, we
obtain three orthogonal basis vectors b1,b2,b3, each in R3,
by applying Principal Component Analysis (PCA) to X̃ ∈
RN×3, where X̃ is composed of x̃ defined in Eq. 4, and N
is the number of nodes within the mesh. These basis vectors
form the principal axes of the shape and are combined into
a rotation matrix R =

[
b1 b2 b3

]
∈ R3×3.

Step 3. Direction of Principal Axes. To ensure consistent
alignment of the principal axes, the direction of each basis
vector bi∈{1,2,3} is determined using a reference vector v,
which connects the center of the bounding box xbbox to the
center of mass xcm. The direction is adjusted as follows:

bi ←

{
bi, if bi · v ≥ 0,

−bi, if bi · v < 0,
(5)

where bi · v determines whether the basis vector bi aligns
with the direction of v, and v = xcm−xbbox is the reference
vector. The center of the bounding box xbbox is computed
as xbbox = xmin+xmax

2 , where

xmin =

[
minv∈V xv

minv∈V yv
minv∈V zv

]
, xmax =

[
maxv∈V xv

maxv∈V yv
maxv∈V zv

]
, (6)

are the minimum and maximum coordinates of the point
cloud along each axis. This adjustment maintains consistent

principal axis orientation, regardless of the shape’s initial
alignment or transformations.

Step 4. Coordinate Transformation. The adjusted coordi-
nates x̃i are transformed into the E(3)-invariant coordinate
system using the rotation matrix R:

xinv
i = R⊤x̃i. (7)

Preserving Original Coordinate Mapping. For each shape,
the center of mass xcm and the rotation matrix R are stored
to enable the output predictions to be transformed back into
the original coordinate system. During the inverse transfor-
mation, the predicted invariant coordinates xinv

i are mapped
back to the original system as:

xorig
i = Rxinv

i + xcm. (8)

This ensures that the predictions remain consistent with the
original coordinate system while benefiting from the E(3)-
invariant representation during processing. The transformed
coordinates xinv

i , along with the stored xi and R, allow
seamless mapping between the input and output spaces.

We provide a formal proof of the invariance in Appendix H.

4.2. Thickness-aware Mesh Neural Network (T-EMNN)

4.2.1. ENCODER

For every node vi ∈ V and edge eij ∈ E within the sur-
face mesh M = (V,E), we encode their features using
respective MLP encoders.

Geometric Encoder. To preserve E(3)-invariance during
processing, T-EMNN utilizes only invariant features for ge-
ometric encoding (e.g., distance from the center mass or
neighboring node) that remain robust under any transforma-
tion of the E(3) group. Formally, the encoded features for a
node vi and an edge eij are given as:

z
(0)
i = ϕnode(fi), e

(0)
ij = ϕedge(fij), (9)

where fi ∈ Rnf and fij ∈ Ref represent the initial feature
embeddings of node vi and edge eij . ϕnode and ϕedge are
MLP-based encoders designed for nodes and edges. The
specific initial features utilized are detailed in Tab. 1.

The outputs of the geometric encoders, z(0)i ∈ Rd and e(0)ij ∈
Rd, are later used as the input embeddings for the first layer
(l = 0) of the processor modules.
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Spatial Encoder. To incorporate spatial information (i.e., co-
ordinates) into the analysis, T-EMNN utilizes an MLP-based
spatial encoder to derive the spatial embedding zcoord

i ∈ Rd:

zcoord
i = ϕcoord(x

inv
i ), (10)

where xinv
i ∈ R3 represents the transformed coordinates of

node vi.

Condition Encoder. The condition embedding hc ∈ Rd is
encoded as:

hc = ϕcond(c), (11)

where ϕcond processes the experimental condition vector
c ∈ Rcf, where cf is the number of experimental conditions
such as temperature and pressure.

Note that while the initial geometric embedding of node
z
(0)
i and edge e

(0)
ij are passed through the processor, the

spatial embedding zcoord
i and the condition embedding hc

are integrated with the processed geometric embeddings by
the decoder after the processor. This allows the processor to
focus on capturing the geometric features of the shape.

4.2.2. SURFACE PROCESSOR

The surface processor in T-EMNN focuses exclusively on
the edges eij ∈ E of the surface mesh M , without con-
sidering interactions between thickness node pairs. This
processor updates the embeddings of the surface edges and
nodes, capturing the geometric and topological relationships
of the mesh surface. The update rule for the edge embed-
dings e(l)ij ∈ Rd is defined as:

e
(l+1)
ij ← fM

surf(e
(l)
ij , z

(l)
i , z

(l)
j ), (12)

where fM
surf is an MLP with residual connections, which

updates the edge embeddings e(l)ij based on the embeddings
of the connected nodes vi and vj . Then, the update rule for
the node embeddings z(l)i ∈ Rd is defined as:

z
surf,(l)
i ← fV

surf(z
(l)
i ,

∑
j∈N (i)

e
(l+1)
ij ), (13)

where fV
surf is another MLP with residual connections and

N (i) denotes the set of neighboring nodes of vi. It updates
the node embeddings z(l)i by aggregating the updated edge
embeddings e(l+1)

ij from its neighboring edges.

The updated node embeddings z
surf,(l)
i ∈ Rd serve as the

input for the corresponding l-th layer of the thickness pro-
cessor. This ensures that the geometric relationships refined
by the surface processor are directly utilized by the thickness
processor to model interactions between opposing surfaces.

4.2.3. THICKNESS PROCESSOR

The concept of thickness in meshes, and the methodology
for identifying thickness node pair, has been detailed in

(a) Thickness (b) Width

Figure 4. The concept of thickness (left) and width (right).

Sec 3.3. In brief, thickness is characterized by the spatial
separation between opposing surfaces, with thickness paired
node T (vi) of node vi defined as the closest node on the op-
posing surface along the inward normal direction of a given
node vi. The thickness t(vi) defined in Eq. 2 represents the
distance between opposing surfaces.

In addition, to account for thickness-related interactions, we
introduce a thickness edge ei,thick connecting vi to T (vi),
with its feature fi,thick ∈ R2 defined as:

fi,thick = [t(vi),ni · niT ], (14)

where ni ·niT is the dot product between the normal vectors
at vi and T (vi). Including ni · niT ensures that the model
accounts for the alignment of normal vectors between thick-
ness pair nodes. This additional attribute complements the
thickness t(vi), providing a more comprehensive represen-
tation of pairwise interactions for improved processing of
geometric relationships.

Thickness Threshold. However, an important observation
we had is that not all thickness node pair inherently rep-
resent the real-world meaning of thickness. For example,
in the case of a wide flat plate (Fig. 4), the thickness node
pairs on the side surfaces (Fig. 4(b)) are more representative
of the width rather than the actual thickness of the object
(Fig. 4(a)). The distinction between these two concepts is
not discrete but rather ambiguous.

To address this, we define a Thickness threshold τ that dy-
namically regulates the interactions between nodes. Specifi-
cally, thickness edges are incorporated only for nodes whose
distance to their thickness paired node is within the thresh-
old (t(vi) ≤ τ ), ensuring meaningful interactions between
opposing surfaces with strong dynamic relationships. It is
important to note that the thickness threshold τ is not pre-
defined but instead learned in a data-driven manner. By
training on real-world data, the model dynamically adapts
to identify the optimal threshold τ that captures interac-
tions between opposing surfaces without relying on manual
tuning or prior assumptions. This data-driven approach en-
hances the framework’s robustness and adaptability across
various applications.

Thickness Activation Function. The thickness activation
value Ii is calculated for each node vi to determine the
contribution of its thickness edge in the propagation process.
The activation is defined as:

Ii =
1

1 + eα(t(vi)−τ)
(15)
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where t(vi) represents the thickness of node vi, τ is a learn-
able threshold, and α is a scaling factor set to 3, controlling
transition sharpness. By doing so, edges with t(vi) ≤ τ are
assigned weights close to 1, while edges with t(vi) > τ are
excluded from the propagation process.

Weighted Message Passing. In the thickness processor,
each node vi is connected to its thickness paired node T (vi)
through a single thickness edge ei,thick. The embedding for
this thickness edge ei,thick ∈ Rd is initialized in the first
layer using a dedicated encoder, ϕthick, which maps the thick-
ness edge feature fi,thick to its embedding:

e
(0)
i,thick ← ϕthick(fi,thick), (16)

where fi,thick is defined in Eq. 14. For subsequent layers,
e
(l)
i,thick ∈ Rd is updated using the output from the previous

layer e(l−1)
i,thick. This ensures effective propagation of thickness

and normal alignment information through the layers.

The updated embedding for edge e
(l+1)
i,thick at each layer is

computed as:

e
(l+1)
i,thick ← Ii · fM

thick(e
(l)
i,thick, z

surf,(l)
i , z

surf,(l)
T (vi)

), (17)

where fM
thick is an MLP that processes the features of the

thickness edge ei,thick, as well as the node embeddings
z

surf,(l)
i and z

surf,(l)
T (vi)

. The activation value Ii ensures that
only relevant thickness interactions contribute during mes-
sage propagation. Then, the updated embedding of node vi,
z
(l+1)
i ∈ Rd, is then computed as:

z
(l+1)
i ← fV

thick(z
surf,(l)
i , e

(l+1)
i,thick), (18)

where fV
thick is another MLP that combines the current node

embedding z
surf,(l)
i with the updated edge embedding e

(l+1)
i,thick.

By focusing on a single thickness edge per node, this
message-passing scheme maintains computational effi-
ciency while retaining the ability to model relationships
between opposing surfaces. The architecture of the thickness
processor ensures seamless integration of both surface-level
and thickness-based geometric information.

4.2.4. DECODER

In the decoder, T-EMNN produces the final node-level pre-
dictions by combining the geometric embedding zi, spatial
embedding zcoord

i , and experimental conditions hc.

First, the geometric and spatial embeddings are concate-
nated and processed as follows:

zfinal
i = ϕcombine([zi, z

coord
i ]) ∈ Rd, (19)

where ϕcombine integrates geometric and spatial features.
Then, the combined embedding zfinal

i is concatenated with
hc and passed through the decoder:

pinv
i = ϕdecode([z

final
i ,hc]), (20)

producing the node-level prediction pinv
i ∈ R3 in the trans-

formed E(3)-invariant data-driven coordinate system.

Inverse Transformation. To map the prediction back to
the original coordinate system, the stored center of mass
xcm and rotation matrix R for the shape are used. The final
deformation in the original system is calculated as:

porig
i = R · pinv

i + xcm.

This ensures that the predicted deformations are consistent
with the input shape’s original orientation and alignment,
while benefiting from the E(3)-invariant processing during
model computation.

5. Experiment
5.1. Dataset Description

We evaluate T-EMNN using a dataset from real-world in-
jection molding applications. Injection molding, a common
manufacturing process, involves injecting molten plastic or
metal into a mold, letting it solidify, and then taking the fin-
ished product out of the mold. Product quality depends on
factors like temperature, geometry, and gate design, with de-
formation being critical. This dataset is well-suited for eval-
uating T-EMNN as its geometries exhibit thickness across
all surfaces, enabling thickness-related interaction modeling.
Additionally, node spatial positions significantly influence
deformation, underscoring the importance of geometric and
spatial information. The predominantly “basket-like” struc-
tures capture both surface-level and thickness-based inter-
actions well. More details, including data split and initial
features, are provided in the Appendix A.

5.2. Baselines

As baselines, we include multiple graph-based neural net-
work methods to evaluate T-EMNN against existing tech-
niques. MGN (Pfaff et al., 2020) models physical interac-
tions using graph-based message passing but lacks E(3)-
equivariance. EGNN (Satorras et al., 2021) ensures E(3)-
equivariance through message passing while maintaining
computational efficiency by avoiding direct nonlinear en-
coding of spatial features. Building upon EGNN, EMNN
(Trang et al., 2024) optimizes this framework for mesh data
by generating E(3)-invariant messages that incorporate geo-
metric information from mesh faces.

5.3. Evaluation Settings

We assess the models under two distinct conditions: 1) in-
distribution, where the test data retains the same aligned
coordinate system as the training data, and 2) out-of-
distribution, where the original coordinate system is ran-
domly rotated, resulting in a misalignment with the train-
ing data. Note that the out-of-distribution scenario is de-
signed to assess how well the methods adapt to objects

6



Thickness-aware E(3)-Equivariant 3D Mesh Neural Networks

Table 1. Model Performance in In-Distribution and Out-of-Distribution Settings, averaged over 3 seeds with standard deviation (in
parentheses). Bold indicates the best performance among the methods. Descriptions of each feature are provided in Appendix A.

Model Equivariance Spatial
information

Thickness
edges

Input of
ϕcoord

Edge Feature
fij

Node Feature
fi

In Distribution (Original) Out of Distribution (Rotated)
RMSE (↓) MAE (↓) R2 (↑) RMSE (↓) MAE (↓) R2 (↑)

(a) MLP × ✓ × - - xorig 0.2818 (0.0061) 0.1164 (0.0035) 0.8984 (0.0029) 0.4789 (0.0181) 0.1939 (0.0070) 0.7393 (0.0248)
(b) MLP ✓ ✓ × - - xinv 0.2546 (0.0015) 0.1043 (0.0008) 0.9154 (0.0016) 0.2545 (0.0015) 0.1071 (0.0007) 0.9385 (0.0009)

(c) MGN × × × - xij , ∥xij∥ ni, gi, ri 1.2608 (0.0107) 0.5607 (0.0041) 0.0782 (0.0315) 1.3188 (0.0164) 0.6199 (0.0064) -0.0903 (0.0315)
(d) MGN × ✓ × xorig xij , ∥xij∥ ni, gi, ri 0.2854 (0.0046) 0.1176 (0.0017) 0.8724 (0.0037) 0.4514 (0.0190) 0.1938 (0.0067) 0.7917 (0.0180)
(e) MGN ✓ ✓ × xinv xij , ∥xij∥ ni, gi, ri 0.2241 (0.0042) 0.0938 (0.0029) 0.9113 (0.0099) 0.2241 (0.0042) 0.0965 (0.0024) 0.9446 (0.0033)

(f) EGNN ✓ × × - ∥xij∥ gi, ri 153.051 (4.2992) 54.363 (2.1000) -14341.0 (1214.1) 196.343 (1.6422) 89.049 (1.2804) -32260.9 (1039.3)
(g) EGNN × ✓ × xorig ∥xij∥ gi, ri 0.2944 (0.0045) 0.1220 (0.0021) 0.8680 (0.0056) 0.4576 (0.0184) 0.1958 (0.0064) 0.8074 (0.0206)
(h) EGNN ✓ ✓ × xinv ∥xij∥ gi, ri 0.2270 (0.0019) 0.0963 (0.0008) 0.9129 (0.0026) 0.2271 (0.0019) 0.0987 (0.0009) 0.9443 (0.0012)

(i) EMNN ✓ × × - ∥xij∥ gi, ri 166.077 (1.5226) 58.467 (2.0000) -16034.0 (975.8) 201.450 (1.7433) 92.237 (1.3366) -34302.7 (644.62)
(j) EMNN × ✓ × xorig ∥xij∥ gi, ri 0.3056 (0.0246) 0.1284 (0.0131) 0.8626 (0.0052) 0.4668 (0.0180) 0.2024 (0.0092) 0.7972 (0.0097)
(k) EMNN ✓ ✓ × xinv ∥xij∥ gi, ri 0.2210 (0.0057) 0.0937 (0.0034) 0.9149 (0.0034) 0.2210 (0.0057) 0.0963 (0.0052) 0.9473 (0.0012)

(l) T-EMNN ✓ ✓ ✓ xinv ∥xij∥ gi, ri 0.2132 (0.0046) 0.0892 (0.0025) 0.9228 (0.0063) 0.2131 (0.0046) 0.0918 (0.0023) 0.9513 (0.0031)

Epoch

Figure 5. Learning curve of the thickness threshold τ during train-
ing across three seeds (left), and the distribution of thickness values
t(vi) with the cutoff threshold (red dotted line, t(vi) = τ ) used
for message passing in the thickness processor (right).

with E(3)-transformed coordinates, where maintaining E(3)-
equivariance becomes essential.

We assess the model performance using three metrics: 1)
RMSE, which evaluates the effectiveness of handling out-
liers, 2) MAE, which measures the consistency and accuracy
of the model’s predictions, and 3) R2, which quantifies the
model’s ability to explain variance, ensuring reliability for
real-world industrial applications.

5.4. Experiment Results

To evaluate data-driven coordinates, we modify the base-
lines to use spatial embeddings (i.e., zcoord

i ) derived from
either the original (xorig

i ) or proposed (xinv
i ) coordinates

(Sec. 5.4.1). Additionally, we assess whether the learned
thickness threshold τ optimally facilitates message passing
between opposing surfaces (Sec. 5.4.2).

5.4.1. MAIN RESULTS

In Tab. 1, we observe T-EMNN, which incorporates spa-
tial information into the model while enabling propagation
between opposing surfaces with strong relationships, out-
performs other methods. The detailed analysis is as follows:

Impact of Spatial Information. Spatial information plays
a critical role in capturing localized patterns, which are es-
sential for accurate interpretation in downstream tasks. To
evaluate the isolated impact of spatial information, we first
evaluate the performance of MLPs that use only vertex co-
ordinates as input ((a) and (b) in Tab. 1). The results demon-
strate that spatial information alone is sufficient to achieve
strong performance in terms of R2 score, highlighting its
importance in representing meaningful relationships and

Figure 6. Performance comparison of T-EMNN with a fixed thick-
ness threshold. The value 5.68 corresponds to the learned thickness
threshold in T-EMNN when using a learnable threshold.

patterns in the data. However, when the coordinate system
lacks E(3)-equivariant properties, performance significantly
deteriorates when testing data exhibits a different coordinate
distribution (i.e., out-of-distribution results of (a) in Tab. 1).
This underscores the critical role of E(3)-equivariance in
ensuring the robustness of the coordinate system.

Moreover, for baselines that do not explicitly leverage la-
tent spatial embeddings (e.g., (c) MGN, (f) EGNN, and (i)
EMNN in Tab. 1), they solely rely on geometric relation-
ships between neighboring edges or faces within the mesh
graph. However, when observing R2 values, relying solely
on local geometric relations (e.g., coordinate differences,
distances) proves insufficient for accurately predicting re-
gional behavior across the entire shape.

Impact of Data-driven Coordinate. To address the miss-
ing spatial information in baseline methods, we incorpo-
rate an additional spatial encoder, as defined in Eq. 10,
and combine it with the geometric embedding via concate-
nation, as described in Eq. 19. When integrating our pro-
posed data-driven coordinate system into the baselines, an
inverse transformation of the outputs is applied to ensure
E(3)-equivariance.

In Tab. 1, methods utilizing our data-driven coordinates ((e)
MGN, (h) EGNN, and (k) EMNN) consistently outperform
their counterparts using the original coordinate system ((d)
MGN, (g) EGNN, and (j) EMNN). The enhanced alignment
provided by our proposed data-driven coordinate system
significantly improves the representation of spatial relation-
ships, leading to superior performance in downstream tasks.
Furthermore, the data-driven coordinate system achieves
this not only by preserving E(3)-equivariance ((h) EGNN
and (k) EMNN) but also by enabling E(3)-equivariance in
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(a) Ground Truth (b) MLP +	𝐱!"# (c) MGN +	𝐱!"# (e) EMNN +	𝐱!"#(d) EGNN +	𝐱!"# (f) T-EMNN (g) Thickness Edge

Figure 7. Visualization of error magnitude (RMSE). The ground truth shows deformation magnitude (a), while (b–f) illustrate prediction
errors. Additional examples are in Fig. 15 (Appendix). In (g), (•) and (•) represent a thickness node pair, (−) its thickness edge, and (−)
the shortest path within the mesh of length 6.
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Figure 8. Comparison of baselines with xinv and their extension
with our thickness edges.

models that originally lacked it, such as (e) MGN. This ca-
pability transforms previously limited models into robust
systems capable of handling transformations effectively,
thereby greatly enhancing their ability to capture and repre-
sent spatial relationships.

5.4.2. IMPACT OF THICKNESS-AWARE FRAMEWORK

To assess the effectiveness of the thickness-aware frame-
work, we examine whether the learned thickness threshold τ
optimizes message passing between opposing surfaces and
distinguishes ‘thickness’ from ‘width.’ As shown in Fig. 5,
τ converges to 5.68 across three seeds with low variance, fil-
tering out 3.83% of thickness edges exceeding this threshold
(Sec. 3.3). In this section, we verify whether the thickness
threshold learned by our model impacts performance and
accurately captures the actual thickness.

Performance Impact of Thickness Edges. To confirm that
τ = 5.68 is optimal, we compare the performance of T-
EMNN using fixed thresholds ranging from 0 to 20 (Fig. 6).
The results show that performance peaks when the thresh-
old is near 5.68. Moreover, when the threshold is set to
zero—removing thickness edges—performance degrades
significantly. Similarly, thresholds above 10 introduce noisy
information from irrelevant nodes representing ‘width,’ lead-
ing to performance deterioration.

To further examine the importance of thickness edges, we
incorporate them, along with our thickness processor, into
the baseline models. As shown in Fig. 8, all baseline models
exhibit improved performance when incorporating thickness
edges compared to their counterparts without them. This
result validates the importance of the thickness in 3D ob-
jects, and its effective integration can improve the models’
capability in static analysis.

Ablation Study of Thickness Edge Features. In Tab. 2, we
analyze the performance impact of the proposed thickness
edge features, fi,thick, comprising two components: the thick-

Table 2. Ablation study on the thickness edge feature, fi,thick.

Method RMSE MAE R2

w/o thickness 0.2156 (0.0064) 0.0908 (0.0027) 0.9148 (0.0089)
w/o dot product 0.2191 (0.0143) 0.0912 (0.0067) 0.9134 (0.0163)

T-EMNN 0.2132 (0.0046) 0.0892 (0.0025) 0.9228 (0.0063)

(a) Below the threshold 𝜏 (b) Above the threshold 𝜏

Figure 9. Visualization of thickness edges with t(vi) below the
learned threshold τ (left) and those above τ , filtered out by the
thickness processor (right). Detailed in Fig. 16 (Appendix).

ness t(vi) and the dot product of normal vectors ni·niT . The
thickness feature encodes the weight of the edges based on
the distance between thickness pairs, while the dot product
of normal vectors imposes geometric alignment by quan-
tifying the directional consistency between the normals of
the paired nodes. By jointly leveraging these features, the
model effectively learns edge weights that promote high-
quality message passing between opposing surfaces, thereby
enhancing overall performance.

Qualitative Analysis. Fig. 9 illustrates that the learned
thickness threshold effectively filters out noisy thickness
edges while retaining meaningful ones, thereby enhancing
the model’s ability to process relevant interactions.

In Fig. 7 (b-e), we observe baselines struggle to predict
around edges, where stress concentration leads to distinct
physical behavior. This is because the inherent locality of
surface-mesh, where it requires GNN-based methods to take
at least six propagation steps along the shortest path (−
in Fig. 7(g)). In contrast, T-EMNN facilitates single-hop
interactions between opposing surface neighbors through
thickness edges (− in Fig. 7(g)), allowing for broader mes-
sage passing and improving performance in these crucial
regions in Fig. 7(f).

5.4.3. EVALUATION UNDER DYNAMIC SETTING

To evaluate the dynamic capabilities of our frame-
work—particularly the thickness processor—we conduct
next-timestep deformation prediction using the Deforming
Plate dataset (Pfaff et al., 2020). This experiment demon-
strates how the thickness processor enhances the model’s
ability to handle dynamic scenarios.
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Table 3. Performance evaluation on the Deforming Plate dataset
for predicting deformation at the next timestep.

Method Input of ϕcoord RMSE (×103) MAE (×103) R2

T-EMNN
w/o thickness xorig 17.420

(3.022)
6.830
(1.039)

0.7007
(0.0524)

T-EMNN xorig 14.903
(0.671)

5.851
(0.195)

0.7579
(0.0220)

Figure 10. Visualization of thickness edges in the Deforming Plate
dataset: edges with t(vi) below the learned threshold τ (left), and
edges with t(vi) above τ , which are filtered out by the thickness
processor (right).

We first construct thickness edges based on the mesh at the
initial timestep and keep them fixed throughout all subse-
quent timesteps. The prediction task is to estimate the defor-
mation of each node at the next timestep. As our data-driven
coordinate system is designed for static analysis and to miti-
gate misalignment within the dataset, we instead adopt the
original coordinate system for dynamic analysis. Further-
more, because our method assumes a single material, we
incorporate an additional node feature: the shortest distance
from each node to the actuator in the global coordinate sys-
tem. This allows the model to capture external interactions
applied by the actuator on the deforming plate.

As shown in Tab. 3, integrating the thickness edges con-
structed by our thickness processor leads to better perfor-
mance by accounting for the real-world thickness of the
plate. Fig. 10 illustrates that our thickness processor ef-
fectively forms edges between nodes that represent true
material thickness (left) while effectively removing noisy
connections that do not conform to the thickness criteria
defined by our framework (right).

6. Conclusion
We introduced T-EMNN, a thickness-aware E(3)-
equivariant 3D mesh neural network that captures complex
geometric interactions, including thickness, by integrating a
learnable thickness threshold for effective message passing
while filtering irrelevant connections. By leveraging a
data-driven coordinate system and a transformation mecha-
nism that preserves E(3)-equivariance, T-EMNN achieves
state-of-the-art performance in predicting node-level 3D
deflection with high accuracy and computational efficiency.
Comprehensive evaluations on real-world industrial datasets
validate its robustness and practicality, making it an
effective solution for applications like injection molding.
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A. Data Details
The dataset consists of 504 valid samples derived from 28 unique geometries, each with 18 experimental conditions (i.e.,
28× 18 = 504). The training and validation sets include 23 geometries, with 80% of the samples used for training and the
rest for validation. One geometry from the training set was entirely reserved for validation. The test set comprises all 18
experimental conditions for 5 geometries and the 18th experimental condition for the remaining 23 geometries, resulting in
113 test samples. The average mesh consists of approximately 54,127 nodes and 324,771 edges.

Figure 11. Examples of Dataset Shapes.

The experimental conditions consist of eight types for each shape: pack pressure, pack time, projected area, gate size,
injection value, volume, melt temperature, and mold temperature. By varying these combinations, a total of 18 experimental
conditions are generated.

MGN utilizes the coordinate difference between nodes i and j (i.e., xij) and their distance (i.e., ∥xij∥) as edge features. For
node features, MGN incorporates the normal vector of node i (i.e., ni), the geodesic distance from the gate (the injection
position of molten plastic or metal) to node i (i.e., gi), and the radius from the center of mass to node i (i.e., ri). EGNN,
EMNN and T-EMNN, which ensure E(3)-equivariance, use only ∥xij∥ as edge features and gi and ri as node features.

B. Implementation and Experimental Setup
Our model is implemented using Python 3.10.13, PyTorch 2.0.1, Torch-Geometric 2.4.0, and trimesh 3.23.5. All experiments
were conducted on an NVIDIA GeForce RTX 4090 with CUDA 12.2.

Each experiment was run for 200 epochs per seed with a learning rate of 0.001 and a weight decay of 5e-4. To ensure stable
optimization of the learnable thickness threshold τ , we employ an adaptive learning rate scheduling strategy. Specifically,
we utilize the ReduceLROnPlateau algorithm, which dynamically adjusts the learning rate when a monitored metric plateaus.
We set the patience to 5, the initial threshold to 1, and the reduction factor to 0.5, applying it exclusively to the learnable
thickness threshold.

C. Baseline Details
In this work, we compare three prominent graph-based methods. MGN (Pfaff et al., 2020) utilizes iterative message-passing
steps, while EGNN (Satorras et al., 2021) and EMNN (Trang et al., 2024) are designed for E(3)-equivariance. To ensure
consistency, we rely on the official codes provided by the original authors for all baselines.

• MGN: https://github.com/google-deepmind/deepmind-research/ tree/master/meshgraphnets

• EGNN: https://github.com/vgsatorras/egnn

• EMNN: https://github.com/HySonLab/EquiMesh

To ensure a fair comparison, we configure all baselines and our proposed method, T-EMNN, with three message-passing
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layers and 32 hidden dimensions. All results are reported based on the performance of the best validation model selected
within 200 epochs across 3 different seeds. The spatial and condition encoders consist of two linear layers with ReLU
activations. Since our task involves static analysis without time-step predictions, all baselines directly predict the target field
variables, specifically the 3D deformation.

D. Hyperparameter Details
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Figure 12. Analysis of Hyperparameter α.

Hyperparameter α is a scaling factor that influences the transition sharpness. Specifically, as α increases, the thickness
activation value Ii in Eq. 15 discretely masks the thickness edges whose thickness values are near the threshold. In contrast,
when α is small, Ii smoothly attenuates the weight of thickness edges, gradually approaching zero beyond the threshold.

A smaller α ensures more stable learning of the thickness threshold by providing a smoother transition. However, it may
introduce noise from softly masked thickness edges, potentially degrading the overall model performance. As shown in
Fig. 12, when α is between 3 and 10, the thickness threshold converges within the range of 4 to 6. Conversely, when
α = 1, longer edges contribute to message passing, leading to less precise control over edge masking. When α is large (e.g.,
α = 10), edges around the thickness threshold are strictly masked, but the convergence becomes unstable due to discrete
masking effects, resulting in fluctuations.

Based on these observations, we set α to 3, which provides stable convergence for learning the thickness threshold while
maintaining acceptable performance.

E. Computational Efficiency

Model Input of ϕcoord Speed (it/s) GPU Memory (MB)
MLP - 32.51 693
MLP - 32.72 693
MGN - 21.18 1,656
MGN xorig 22.58 3,954
MGN xinv 22.29 3,952
EGNN - 23.85 5,700
EGNN xorig 23.59 5,740
EGNN xinv 23.66 5,740
EMNN - 18.99 7,250
EMNN xorig 19.75 7,488
EMNN xinv 19.99 7,322

T-EMNN xinv 20.21 3,714

Table 4. Comparison of training speed (iteration/sec) and GPU memory usage (MB) across different models.

Our model is based on MGN, with an additional thickness edges module that introduces minimal computational overhead.
This ensures that the computational cost remains similar to MGN while improving structural representation.

Training Speed (it/s). T-EMNN achieves 20.21 it/s, comparable to MGN and slightly higher than EMNN (18.99–19.99 it/s).
This indicates that the added module does not significantly impact training speed.
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GPU Memory Usage. T-EMNN consumes 3,714 MB of GPU memory, much lower than EMNN (7,250–7,488 MB) and
similar to MGN. This shows that our approach maintains efficiency while reducing memory overhead.

F. Result Details

Figure 13. R2 scores for all test data. In the shape IDs, ‘s’ indicates seen shapes included in the training data, while ‘us’ refers to
unseen shapes. The number following ‘s’ or ‘us’ represents the shape type, and ‘c’ denotes the experimental condition, followed by its
corresponding type (e.g., ‘s02 c18’).

In Figure 13, we present the detailed results for each test dataset under Out-of-Distribution (OOD) settings. While GNN-
based methods incorporating our proposed data-driven coordinate system (e.g., MGN w/ inv. coord., EGNN w. inv. coord.,
EMNN w. inv. coord., and T-EMNN) generally exhibit superior performance across all shapes, methods that utilize the
original coordinate system (e.g., MGN w. coord., EGNN w. coord., and EMNN w. coord.) perform significantly worse.
Furthermore, MGN, EGNN, and EMNN, which rely solely on deep representations of geometric features, fail to accurately
predict the target deformation.

G. Surface Mesh vs. Volume Mesh

Volume mesh

Surface mesh

0.11×

0.19×

1.82×

Figure 14. Comparisons between volume mesh and surface mesh. The methods used for comparison are based on the MGN framework
with coordinate embeddings from our proposed coordinate system. GPU memory usage represents the average GPU consumption across
the test dataset, and inference time reflects the total time required to process the test dataset.

Mesh representations can be categorized into surface and volume meshes, each with unique strengths and limitations.
Surface meshes, representing only the outer boundary of 3D objects, are computationally efficient and excel at capturing
geometric and topological properties. However, they cannot model internal structures, which are critical for analyzing
physical interactions within the object.
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Volume meshes, in contrast, extend to the interior of objects, enabling high-fidelity analyses such as FEM for properties
like density, thermal gradients, and stress. However, as shown in Figure 14, they are computationally expensive and require
significant effort to preprocess CAD models into high-quality meshes. Additionally, their dense internal connectivity poses
challenges for tasks focused on understanding geometry and topology. In GNN-based methods, nodes in volume meshes
receive messages from all surrounding nodes, which are processed based on relative distances and directions. This excessive
connectivity complicates the network’s ability to clearly capture the overall shape and structure, ultimately hindering
performance in geometry-driven tasks.

Surface meshes, with their simplified representation of outer boundaries, are better suited for tasks prioritizing geometry and
topology. However, they lack edges that connect opposing surfaces to represent thickness and capture critical correlations.
This limitation challenges GNNs to effectively model interactions between these surfaces, often necessitating extended
message-passing steps. Such methods can lead to issues like over-smoothing (Li et al., 2018a) or over-squashing (Alon &
Yahav, 2020), limiting their overall effectiveness.

To overcome these limitations, we propose the Thickness-Aware Mesh Neural Network (T-EMNN), which combines the
computational efficiency of surface meshes with enhanced modeling of internal interactions. By incorporating a thickness-
aware message-passing mechanism, our method captures correlations between opposing surfaces while preserving the
geometric and topological strengths of surface meshes. This enables robust and efficient analysis of 3D objects with intrinsic
thickness, effectively bridging the gap between surface and volume meshes.

Ground Truth MLP +	𝐱!"# MGN +	𝐱!"# EMNN +	𝐱!"#EGNN +	𝐱!"# T-EMNN

Figure 15. Visualization of error magnitude (RMSE). The ground truth represents the magnitude of deformation, while each method’s
figure illustrates the prediction error (RMSE) relative to the ground truth.
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Figure 16. Detailed visualization of thickness edges with t(vi) below the learned threshold τ (left) and those above τ , filtered out by the
thickness processor (right).
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H. Invariance/Equivariance Proof of the Proposed Data-driven Coordinate System
Note: Depending on whether the ‘Inverse transformation’ in Sec. 4.2.4 is applied or not, we can choose between E(3)-
equivariance and invariance.

First, we will prove that our transformation algorithm T is invariant to translations g ∈ R3 and to rotations and reflections
for any orthogonal matrix Q ∈ R3×3. Specifically, we aim to show that the function T satisfies the following property,
demonstrating its invariance. We will then discuss how applying the inverse transformation leads to equivariance.

xinv = T(Qxorig + g) (21)

We seek to demonstrate that xinv is the same for any Q and g, proving that the transformation T yields a consistent result
regardless of the specific values of Q and g. The transformation algorithm T consists of four main steps:

Step 1: Center of Mass Adjustment

The center of mass of the original coordinates is given by (Eq. 3):

xcm =
1

|V |
∑
vi∈V

xorig
i

The adjusted coordinates of the original points are then (Eq. 4):

x̃i = xorig
i − xcm

After applying the translation vector g and the orthogonal matrix Q, the center of mass of the transformed coordinates
becomes:

xcm,T =
1

|V |
∑
vi∈V

(Qxorig
i + g) (22)

Thus, the adjusted coordinates in the transformed space are:

x̃i,T = Qxorig
i + g − xcm,T = Qxorig

i + g −

(
1

|V |
∑
vi∈V

(Qxorig
i + g)

)
= Qx̃i (23)

Note that the translation vector g cancels out in the final expression. This shows that the transformation is invariant to the
translation g. Therefore, after Step 1, the adjusted coordinates x̃i are unaffected by the translation g, and subsequent steps
only consider the effects of the orthogonal matrix Q.

Step 2: Principal Axis Generation

To generate the principal axes, we compute the covariance matrix CX of the coordinate matrix X using the formula:

CX =
1

|V | − 1
XTX (24)

After applying the orthogonal matrix Q to the coordinate matrix, the covariance matrix of the transformed coordinates CQX

becomes:

CQX =
1

|V | − 1
(QX)T (QX) =

1

|V | − 1
XTX = CX (25)
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Thus, the orthogonal matrix does not affect the principal axis directions within the data; it only alters the basis. Let Rorig be
the rotation matrix corresponding to the three principal basis vectors of the original coordinate matrix Xorig, such that:

Rorig = [b1,b2,b3] ∈ R3×3 (26)

Then, the rotation matrix RT for the adjusted coordinates becomes:

RT = QRorig (27)

Step 3: Determining the Direction of Principal Axes

It is important to note that the basis vectors generated by the PCA algorithm do not have an explicit sign convention, meaning
a basis vector could be represented as [1,−1, 1] or [−1, 1,−1]. To resolve this ambiguity, we introduce a data-driven
criterion to determine the consistent sign of the basis vectors, such as using a reference vector that connects the center of the
bounding box to the center of mass, as described in Section 4.1, Step 3.

While the proposed criterion in Step 3 generally yields consistent signs for the basis vectors across most real-world meshes,
it has a limitation in cases where the shape exhibits perfect symmetry with respect to the three principal axes. Specifically, if
the dot product between a principal axis bi and the reference vector v is zero (i.e., bi · v = 0) in Eq. 5, the sign of that
axis cannot be deterministically aligned. However, such perfectly symmetric meshes are rare in practice, especially for
constructed real-world geometries.

For the proof, we assume that the signs of the basis vectors are already aligned.

Step 4: Coordinate Transformation

For the final transformation, we apply the rotation matrix Rorig to the adjusted coordinates x̃i to obtain the data-driven
invariant coordinate xinv:

xinv = RT
T x̃i,T = (QRorig)TQx̃i = RorigT x̃i (28)

Thus, xinv is invariant to the translation vector g and the orthogonal matrix Q. This shows that the transformation results in a
data-driven invariant coordinate system that possesses E(3)-invariance.

Final Prediction and Equivariance

When we further process the ‘inverse transformation’ after decoding in Section 4.2.4, the final prediction pinv
i ∈ R3 in the

invariant coordinate system is inverse-transformed as follows:

pi = Rpinv
i + xcm,T = (QRorig)(RorigT p̃i) + xcm,T = Q(porig − xcm) +

1

|V |
∑
vi∈V

(Qxorig
i + g) (29)

This simplifies to:

pi = Q(porig − 1

|V |
∑
vi∈V

xorig
i ) +

1

|V |
∑
vi∈V

(Qxorig
i + g) (30)

Thus, we have:

pi = Qporig + g (31)

This shows that the final prediction preserves the E(3)-equivariance. Therefore, depending on whether the ‘inverse
transformation’ is applied or not, we can choose between E(3)-equivariance and invariance.

18


