A Comprehensive Analysis for Visual Object Hallucination
in Large Vision-Language Models

Anonymous ACL submission

Abstract

Large Vision-Language Models (LVLMs)
demonstrate remarkable capabilities in multi-
modal tasks, but visual object hallucination re-
mains a persistent issue. It refers to scenar-
ios where models generate inaccurate visual
object-related information based on the query
input, potentially leading to misinformation
and concerns about safety and reliability. Previ-
ous works focus on the evaluation and mitiga-
tion of visual hallucinations, but the underlying
causes have not been comprehensively inves-
tigated. In this paper, we analyze each com-
ponent of LLaVA-like LVLMs—the large lan-
guage model, the vision backbone, and the pro-
jector, to identify potential sources of error and
their impact. Based on our observations, we
propose methods to mitigate hallucination for
each problematic component. Additionally, we
developed two hallucination benchmarks: QA-
VisualGenome, which emphasizes attribute and
relation hallucinations, and QA-FB15k, which
focuses on cognition-based hallucinations.

1 Introduction

Large Language Models (LLMs), such as GPT-
3 (Brown, 2020) and ChatGPT (OpenAl, 2022),
have showcased remarkable proficiency in lan-
guage tasks, yet they encounter significant chal-
lenges when it comes to processing multimodal
inputs. This limitation has driven a shift in re-
search towards Large Vision-Language Models
(LVLMs) (Liu et al., 2023e; Ye et al., 2023;
Sun et al., 2023b), which integrate advanced
LLMs (Touvron et al., 2023; Chiang et al., 2023)
with Vision Foundation Models (VEMs) (Doso-
vitskiy et al., 2021; Bommasani et al., 2021) to
enhance multimodal understanding. LVLMs have
demonstrated impressive capabilities across vari-
ous tasks that require visual and textual integration,
including Visual Question Answering (Antol et al.,
2015), Image Captioning (Lin et al., 2014), and
Visual Entailment (Zhang et al., 2025).
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Figure 1: An overview of our paper. We first investigate
the sources of hallucination from a component-level
perspective within the LVLM architecture. Based on the
identified causes, we then design targeted methods to
mitigate hallucinations effectively.

Despite these advances, visual hallucination re-
mains a persistent issue in LVLMs (Rohrbach et al.,
2018; Liu et al., 2023b,a; Yin et al., 2023; Zhang
et al., 2024b). This phenomenon occurs when mod-
els generate inaccurate or misleading information
unrelated to the actual visual input, potentially lead-
ing to misinformation and raising concerns about
safety and reliability in real-world applications (Li
et al., 2023e). Visual object hallucination, includ-
ing object existence, attribute, and relation, has
garnered significant attention due to its widespread
occurrence in images. Current works on visual
object hallucination mainly focus on evaluation
and mitigation. For example, Li et al. (2023e) ex-
tends CHAIR (Rohrbach et al., 2018) and proposes
POPE, a polling-based query technique for probing
object-level hallucination. For hallucination miti-
gation, Sun et al. (2023a) introduce new alignment
algorithm called Factually Augmented RLHF that
augments the reward model with additional factual
information such as image captions and ground-
truth multi-choice options, which alleviates the re-
ward hacking phenomenon in RLHF and further
improves the performance.

While existing works have achieved notable suc-



cess in visual object hallucination, they lack a
comprehensive component-level analysis of the
model architecture to pinpoint where and how hal-
lucinations occur. In this work, we focus on vi-
sual object-related hallucination and LLaVA-like
LVLMs, which typically consist of three modules:
the large language model (LLM), the vision back-
bone, and the projector. Errors in any of these mod-
ules can lead to issues in the overall performance
or functionality of the model. Therefore, we con-
duct an independent analysis of each component to
identify potential sources of error and their impact.
From our study, we have the following findings.
1) The LLM in LVLM is able to generate faithful
content when captions of images are provided as
input. 2) Hallucinations exist in the perception pro-
cess of the vision backbone. 3) Projector is able to
preserve visual features, but has trouble aligning
between visual and textual spaces.

Based on our observations, we propose meth-
ods for the two problematic components to mit-
igate their hallucination issue. To improve the
vision backbone, we propose to finetune CLIP
with fine-grained data and fine-grained perception-
based visual instruction tuning, and find that both
of them can reduce hallucination caused by the vi-
sion backbone. For the projector, we propose a
contrastive alignment objective with three varia-
tions, which can all be integrated into the original
training pipeline with minimal additional costs.

To conduct a comprehensive hallucination eval-
uation, we develop a fine-grained hallucination
benchmark named QA-VisualGenome, which
is built upon the Visual Genome dataset (Kr-
ishna et al., 2017). Unlike existing object-
oriented hallucination benchmarks (e.g., POPE),
QA-VisualGenome emphasizes the detailed at-
tribute and relationship hallucinations. Further-
more, existing hallucination benchmarks primarily
focus on perception-based hallucinations for gen-
eral objects, neglecting cognition-based hallucina-
tions such as the names of people and famous build-
ings. To address this gap, we construct a cognition-
based hallucination benchmark named QA-FB15K,
which is based on the FB-15K dataset (Bordes et al.,
2013), a multimodal knowledge graph with textual
entities, image entities, and textual relations. QA-
FB15K presents challenges for models in leverag-
ing world knowledge to solve the questions.

Our main content is shown in Figure 1. Our con-
tributions can be summarized as follows: 1) We an-

alyze the hallucination caused by each component
in LVLMs and provide component-wise takeaway
messages. 2) Based on our observation, we pro-
pose several methods to improve each hallucinated
component. 3) We construct a fine-grained halluci-
nation benchmark based on Visual Genome and a
cognition-based hallucination benchmark based on
FB15k for evaluation. 4) We extensively evaluate
our proposed methods on various benchmarks, and
provide in-depth analysis'.

2 Hallucination Analysis

LVLMs consist of three components: language
decoder D, projector vision encoder V, and P. We
first introduce the datasets for evaluation and then
provide in-depth analysis for each component.

2.1 Settings

We select two benchmarks to benchmark the per-
formance of each component. 1) POPE (Li et al.,
2023e). POPE is a benchmark designed for eval-
uating object existence hallucinations in LVLMs,
incorporating three sampling methods for generat-
ing negative samples: random, popular, and adver-
sarial. In the random setting, objects not present
in the image are randomly selected. In the popular
setting, negative samples are drawn from a pool
of frequently occurring objects. In the adversarial
setting, the sampling focuses on objects that fre-
quently co-occur with present objects but do not ex-
ist in the image. 2) QA-VisualGenome. To further
investigate the hallucination issue on relations and
attributes of objects, we construct a fine-grained
evaluation benchmark based on the VisualGenome
dataset (Krishna et al., 2017), which collects dense
annotations of attributes and relationships of ob-
jects for each image. Specifically, we design two
types of Yes-or-No questions to evaluate models:
attributes and relations. For example, an attribute
question could be “Is the dog red in the image?” A
relational question would ask, “Is the dog standing
on the table?”. Similar to previous work (Wang
et al., 2020), we exclude uncommon relations and
attributes. We randomly select relations/attributes
to generate negative samples.

2.2 Language Decoder

Conjecture 1. LLM in LVLM is able to gen-
erate faithful content when image captions are

'All benchmark datasets, code, and models will be re-
leased.



Table 1: Performance (%) of LLMs across different datasets when visual information is provided in textual format.
LLaVA: image+text query as input on original LLaVA model; Vicuna: caption+text query as input on Vicuna-1.5;
Vicunaypr,va: caption+text query as input on the Vicuna model in LLaVA (LLM undergone visual instruction tuning).

| POPE | QA-VisualGenome
Model ‘ Random ‘ Popular ‘ Adversarial ‘ Attribute ‘ Relation

| Acc F1 | Acc F1 | Acc F1 | Acc Fl | Acc FI
LLaVA-7B 8742 86.36 | 86.63 85.25 | 85.13 83.88 | 64.67 66.60 | 67.57 74.81
Vicuna-7B 92.67 92.09 | 92.67 92.09 | 93.00 92.47 | 57.23 69.83 | 79.50 80.79
Vicuna-7Byaya 100.00 100.00 | 100.00 100.00 | 99.67 99.67 | 68.29 7592 | 63.2 73.06
LLaVA-13B 91.33 91.72 | 8833 89.16 | 84.33 85.97 | 55.99 68.86 | 56.40 69.38
Vicuna-13B 87.90 89.15 | 95.00 95.24 | 90.00 90.91 | 87.90 89.15 | 87.90 89.25
Vicuna-13Byrava | 99.67  99.67 | 99.67 99.60 | 99.33 99.33 | 7541 80.10 | 84.30 84.29

provided as input. To validate this conjecture,
we use the POPE dataset to evaluate the perfor-
mance of LLMs. Instead of providing images to
the LVLMs, we only input text descriptions of
the images. For POPE, we obtain objects from
the MSCOCO (Lin et al., 2014) dataset and feed
the LVLM with objects in the image and the tex-
tual query from POPE to generate the response.
For QA-VisualGenome, we feed the LVLM with
objects, object attributes, and relations presented
in the image to replace visual information. This
helped assess the model’s ability to hallucinate
when provided with accurate textual descriptions
of the image. In addition, we also test the original
Vicuna as a baseline.

We show the performance of LLMs in Table 1.
From the results, we found that the performance
will be improved largely if we provide the correct
visual information in a textual format. This indi-
cates the current main reason for hallucination is
caused by a vision encoder or projector. Specif-
ically, the model could achieve an accuracy of
99.67% when provided with complete object de-
scriptions for the random setting of POPE, which
shows the LLM is robust when given the correct
information about the whole image. In addition,
we also found that the LLM after the pertaining
and instruction tuning of LLaVA performs better
than the original LLM. LLaVA fine-tuning likely
enhances the model’s object recognition, memory
of object-specific features, instruction-following
ability, and contextual understanding of visual de-
scriptions, enabling it to accurately identify com-
mon objects within text descriptions even without
actual images.

2.3 Vision Encoder

Conjecture 2. There are hallucinations in the
perception process of the vision encoder. To
verify this factor, we conducted experiments using

Table 2: Performance of CLIP in the text-image match-
ing across different datasets measured by Accuracy (%).

POPE ‘ QA-VisualGenome

Random Popular Adversarial ‘ Attribute  Relation

83.33 87.30 86.00 ‘ 61.57 60.22

CLIP on a text-image matching task. Specifically,
we designed a template of the form "There is a/an
{object} in the image," where {object} corresponds
to various objects in the input images. For each
image, we assigned one ground-truth object and
a hallucinated object for the template. We use ac-
curacy as the evaluation metric. We show all the
experimental results in Table 2. Overall, we found
that the performance of CLIP on the text-matching
task is not good. For example, the performance of
CLIP on the text-image matching task is 83.33%
accuracy on the random setting of POPE, indicat-
ing the presence of hallucinations within the vision
encoder’s perception process.

Another interesting phenomenon is that the accu-
racy of CLIP in recognizing objects is worse than
LLaVA, even the LLaVA adopts CLIP as the vision
encoder. Specifically, the accuracy of LLaVA is
91.33% on the random setting of POPE, but CLIP
only achieves 83.33% accuracy. This indicates that
the hallucination caused by CLIP can be allevi-
ated to a certain extent after the pre-training feature
alignment and instruction tuning. The potential rea-
son may be that LLaVA’s training uses diverse ques-
tions aligned with specific image features, optimiz-
ing for generative loss. This fine-grained alignment
helps the model better understand and describe vi-
sual content with greater accuracy and detail.

2.4 Projector

We analyze the projector module from two perspec-
tives corresponding to its two roles in the LVLM:
preserving visual information and aligning visual



and textual spaces.

Conjecture 3. The projector should not re-
sult in significant visual information loss. We
formalize the hypothesis using the notion of V-
information (Hewitt et al., 2021). Let ®,,(X)
and ®,,,(X) represent the pre-projector and post-
projector representations, respectively. We com-
pare the V-information between these representa-
tions and a target property Y (e.g., a classification
label).

We define the V-information for pre- and post-
projector representations as

Iy(Ppre(X) = Y) = Hy(Y) — Hy(Y|®pre (X))

Iy(Ppost(X) = Y) = Hy(Y) — Hy(Y[Ppos (X))

where Hy is the V-entropy (Hewitt et al., 2021).
Hy(Y) is the entropy of Y, which reflects the in-
herent uncertainty of Y without any conditioning
on the representations. Hy (Y |®(X)) represents
the uncertainty we have in predicting Y after ob-
serving the representation ®(X), using functions
from the family V. It is formally defined as:

Hy(Y[®(X)) = inf Be(x).y [—log f(®(X))(Y)]

This expression measures the best performance that
afunction f from the function family V can achieve
when predicting Y given the representation ®(X).
The lower this value, the more predictive power the
representation ®(X) has regarding Y.

The goal is to determine whether information
loss occurs in the projection layer. If the projection
layer introduces no information loss, then the V-
information of the pre-projector and post-projector
representations should be approximately equal:

IV((I)pre(X) — Y) = Iv(q)pnst(X) — Y)

We compare the V-information accessible from
both the pre-projector and post-projector represen-
tations. The performance of a probe (e.g., classi-
fier) trained on @, (X) and ®p..(X) provides an
empirical estimate of these quantities:

Perf,,, = m3XE[10gP(Y‘fgre(q)pre(X)))]

Perfyo, = maxEllog P Y1157 (@post (X)))]

To determine if information loss occurs, we com-
pute the difference in performance:

APerf = Perf,,, — Perf,,

If APerf = 0, this implies that no information
loss has occurred and the information available in
). (X) is fully retained in ®,,,(X ). However, if
APerf > 0, this indicates that the post-projector
representation has lost some information present
in the pre-projector representation, leading to a
decrease in predictive power for Y.

With the hypothesis grounded to V-information,
we conduct a probing experiment on LLaVA-
7B to verify it. We linear-probe the pre- and
post-projector feature with image classification
tasks on CIFAR10 (Krizhevsky et al., 2009), CI-
FAR100 (Krizhevsky et al.) and ImageNet (Deng
et al., 2009). Results in Table 3 shows that for the
13B LLaVA model, performance percentage drop
of post-projection features is less than 2%, indicat-
ing that the visual features are well preserved by
the projectors in both models.

Table 3: Performance of linear probing using pre- and
post-projector image features on CIFAR10, CIFAR100
and ImageNet. Accuracy% is used as the metric.

Dataset LLaVA-13B
Perfpre Pe'f}mst
CIFARIO | 96.27 96.15 0.12%
CIFARI00 | 81.78  81.02.9.93%
ImageNet | 71.97 70.83 589

Conjecture 4. The projector should align the
visual and textual spaces. As its name suggests,
the projector should be able to project the source
(visual) space to the target (textual) space. To probe
the alignment between two spaces, we collect cap-
tion data from MSCOCO (Lin et al., 2014), LLaVA-
Caption (Liu et al., 2023d), ALLaVA (Chen et al.,
2024a) and compute the similarity between a pro-
jected image feature and the textual embedding of
its caption. The rationale of using cosine similarity
is that, based on the findings in Section 2.2, a large
performance boost is observed if we replace an im-
age with its caption. Therefore, if the projected
image feature is similar enough to its caption em-
bedding (i.e. cosine similarity=1), then an LVLM
should gain similar performance to the case where
an image is replaced by its caption as input.

Results in Table 4 show that the cosine simi-
larities of the two features are fairly low, indicat-
ing nearly independent relationships. This find-
ing is consistent with the existing work (Huang
et al., 2024b; Li et al., 2025), which reveals that
visual and textual representations are apart from
each other in the embedding space. Therefore, the



Table 4: Cosine similarity between projected image
features and the caption embedding. Captions are pro-
cessed by Vicuna (Chiang et al., 2023) tokenizer.

Cos. Sim.
Dataset ‘ Token Length  Image Res. 7B 13B
MSCOCO 15.16 (575,488) 0.03 0.04
LLaVA Caption 15.09 (412,366) 0.03 0.04
ALLaVA 222.83 (1020, 923) 0.05 0.06

projector in LLaVA models may not function as
an alignment module as well as expected, which
could be one of the causes of hallucination for the
entire model.

3 Mitigating Object Hallucination
Caused by Different Modules

Based on the analysis in Section 2, we further de-
vised different methods to mitigate the object hal-
lucination in different components in LVLMs.

3.1 How to alleviate the hallucination caused
by CLIP?

As previously noted, the vision backbone within
LVLMs also contributes to hallucinations. The
CLIP model, as the vision encoder of LLaVA, is
trained on massive image-caption pairs from the
internet with a contrastive loss objective. However,
these captions are typically brief and noisy, and
negative pairs often differ substantially from pos-
itive ones. Therefore, it is likely that the model
can distinguish them without needing to capture
the finer details in the images. Consequently, the
model may achieve high accuracy while lacking a
nuanced understanding of the visual content (Liu
et al., 2024b). To address this issue, we propose
two methods to reduce hallucination caused by the
vision backbone, as shown in Figure 2.

Tuning CLIP with fine-grained data A direct
method to improve CLIP is to post-train CLIP with
more fine-grained samples. This is because the
CLIP is trained with massive images paired with
brief captions. In this method, we leverage GPT-
4 (OpenAl, 2022) to generate negative examples,
which are then used in a contrastive learning setup
to improve the discriminative ability of CLIP.

Generate Negative Examples: Inspired by prior
work indicating that LVLMs are more likely to
generate hallucinatory responses for frequently oc-
curring objects (Liu et al., 2024b), we devise two
strategies: inserting hallucinatory objects and re-
moving existing ones.

Please caption bounding boxes
in_the image.

" Negative
EDy 6 A
Cows sits on
ground.
G aL’ @LVLM

Fine-grained Perception-based
Instruction Tunning

CLIP
Tuning CLIP with Fine-grained Data

Figure 2: Tuning CLIP with fine-grained data (left) and
fine-grained perception-based instruction tuning (right).

For the insertion strategy, we categorize objects
in images into three types—random, popular, and
adversarial—each containing three objects. Ran-
dom objects are sampled randomly, popular objects
are the top frequent objects in the whole dataset,
and adversarial objects are the top frequent objects
with the current objects. By inserting one to three
objects from each category into the correct captions
with the assistance of GPT-4, we create examples
with varying levels of hallucinations (i.e., negative
samples). For the removal strategy, we randomly
select one or two segmented objects from the cap-
tion and instruct GPT-4 to eliminate them from the
caption.

Contrastive Learning: We use these generated
negative examples in a contrastive learning frame-
work where CLIP is trained to correctly distinguish
between the positive and negative pairs. By ex-
posing the model to these fine-grained differences,
CLIP becomes better at understanding nuanced vi-
sual features.

First, let I represent an image embedding and T'
a text embedding. Let 7" be the text vector that
correctly matches I, and let 7'~ denote a collection
of negative texts not semantically aligned with I.
We also introduce /3 as a temperature parameter.

The fundamental image-to-text contrastive ob-
jective can be expressed as:

exp(l-T*/B)
ZT*G{TﬂL,T*} exp(I : T*//B)

).
ey

The symmetric term L;2; can be constructed for
text-to-image alignment. Combining them yields
the image-text contrastive loss:

Loy = — log(

Lite = 3(Liot + Li2:).- )

Next, consider that we introduce an additional
set of artificially generated negative texts {779 }.
Incorporating these into the image-to-text objective



gives:

exp(I - T/B)

Lizy = — log(

Yo+ 17— Tneay €Xp(L - T*/B)
3)
To further refine the separation between correct
matches and all classes of negative samples (both
standard and synthetic), we introduce a margin-
based term. Let 71 be the margin threshold enforc-
ing that a positive pair’s similarity should exceed
that of any negative pair by at least 7;:

L1 = max(0, 71 — (I-TH)+(I-T%)), 4
where T* = {T~,T™9} is the union of standard
and synthetic negatives.

Additionally, to encourage the model to dis-
tinguish synthetic negatives from standard nega-
tives—thus capturing subtle semantic cues—we
introduce another margin loss. Let 7o control the
required margin between these two types of nega-

tive samples:

Lo

= max(0, o — (I-T"9) 4+ (I-T7)). (5)

Finally, assigning weighting factors A; and A,
to the margin terms allows adaptive emphasis on
these constraints. The complete objective function
is:

L =

Lite + ML1 + AoLo. (6)

This integrated loss framework guides the model
to better discriminate correct image-text pairs from
both standard and refined negative samples.

Fine-grained perception-based visual instruc-
tion tuning As we mentioned, CLIP may not cap-
ture the finer details in the visual representation
from the vision encoder. Therefore, we attempt to
enable the LLM to perceive the fine-grained infor-
mation within the CLIP vision encoder. Meanwhile,
the method of enhancing CLIP and then replacing
it is time-consuming, as it requires additional steps
for feature alignment and instruction tuning after
replacing the vision encoder of LVLMs. As a result,
we explore a more efficient approach by directly
enabling the LLM to perceive the detailed visual
features during visual instruction tuning.

To achieve this, we propose fine-grained
perception-based visual instruction tuning. Specif-
ically, we randomly select two bounding boxes
from the image, and then use the object attributes
corresponding to these bounding boxes and their re-
lationships to generate the corresponding captions.

).

We then create instruction tuning data (17, T, Ry),
where T’ is the textual prompt: “Please caption the
content in the bounding box”, Iy is the image with
bounding boxes, and R is the corresponding cap-
tion. This approach allows the model to perceive
fine-grained information, such as region-level de-
tails, within the image.

3.2 How to reduce hallucination caused by the
projector?

In Section 2.4, we reveal that hallucination intro-
duced by the projector may be due to the inability
of aligning visual and textual spaces, manifested
by the low cosine similarity of caption embeddings
and projected image features. Therefore, a straight-
forward remedy would be to explicitly bridge the
image and caption representation during LLaVA’s
alignment stage.

3.2.1 Loss Objectives

Besides autoregressive image-text generation loss
Litg = —p(R|I,T), we introduce an in-batch con-
trastive alignment loss L;;. similar to Equation 2,
where we maximize the similarity between a pro-
jected image feature and the corresponding text
embedding for its caption. We only focus on the
alignment stage and design three settings that in-
volve the contrastive loss in different fashions.

Integrated Alignment Loss ¢ % The training pro-
cess consists of two stages: alignment and visual
instruction tuning. The contrastive loss is inte-
grated to the alignment stage with a learnable (¢ “)
weight A. The alignment objective is given by:
minp  Litg + ALjtc. The visual instruction tuning
stage is identical to LLaVA’s.

Integrated Alignment Loss “ All settings are
the same as above except that the weight \ is
fixed (*+). The alignment objective is given by:
minp »Citg + ALljte.

Separate Contrastive Alignment Loss We
prepend a contrastive alignment stage solely for
the projector P. Namely, the first stage objective
is given by: minp L;;.. The second stage and
third stage correspond to the original autoregres-
sive alignment and visual instruction tuning stage.

4 Results and Analysis

We first introduce the benchmarks on which our
methods to be evaluated, which are shown as fol-
lows. 1) Object-based benchmarks: testing the
object perception of LVLMs. POPE and POPE-
NoCaps (Liu et al., 2024b) are adopted, where the



Table 5: Performance of different methods across different benchmarks. The best results in each column are
made bold. w-ECLIP: LLaVA with enhanced CLIP trained on fine-grained data; w-Finelns: LLaVA trained on

fine-grained visual instruction tuning data.

| POPE | POPE-NoCaps | QA-VisualGenome
Method ‘ Random ‘ Popular ‘Adversarial‘ Random ‘ Popular ‘Adversarial‘ Attribute ‘ Relation

| Acc F1 | Acc F1 | Acc F1 | Acc F1 | Acc F1 | Acc F1 | Acc Fl | Acc F1
LLaVA-7B | 8540 86.36 | 86.63 8525 | 85.13 83.88 | 84.80 82.97 | 79.40 78.30 | 74.77 74.69 | 64.67 66.60 | 67.57 74.81
w-ECLIP | 87.80 86.87 | 87.30 86.04 | 85.87 84.70 | 8527 83.50 | 81.00 79.69 | 75.77 7546 | 67.67 68.79 | 67.00 74.11
w-Finelns | 87.77 86.78 | 86.80 85.51 | 85.53 84.33 | 85.53 84.00 | 81.73 80.61 | 76.50 76.37 | 69.01 70.12 | 69.75 76.17

Table 6: Performance of different projector alignment methods across different benchmarks. The best results in each
column are made bold. Int. Align.: Integrated Alignment Loss with trainable ("‘) / frozen(**) weighting parameter;

Sep. Ctrs. Align.: Separate Contrastive Alignment Loss.

| POPE | POPE-NoCaps QA-VisualGenome
Method | Random | Popular | Adversarial | Random | Popular | Adversarial Attribute |  Relation

| Acc F1 | Acc F1 | Acc F1 | Acc F1 | Acc F1 | Acc F1 | Acc F1 | Acc FIl
LLaVA-7B 87.42 86.36 | 86.63 85.25 | 85.13 83.88 | 84.80 82.97 | 79.40 78.30 | 74.77 74.69 | 64.67 66.60 | 67.57 74.81
Int. Align. & 88.21 87.41 | 86.70 85.65 | 84.27 83.46 | 85.57 84.46 | 77.27 77.58 | 72.23 7391 | 60.95 61.97 | 66.67 74.60
Int. Align. 88.04 87.20 | 86.67 85.56 | 84.50 83.60 | 84.90 83.28 | 79.37 78.47 | 74.57 74.76 | 63.84 65.21 | 66.73 74.26
Sep. Ctrs. Align. | 88.56 87.86 | 87.33 86.38 | 84.57 83.88 | 85.57 84.24 | 80.07 79.42 | 75.13 75.54 | 64.26 64.77 | 69.60 76.06

latter is built on NoCaps (Agrawal et al., 2019) fol-
lowing a similar manner as in POPE. 2) Attribute-
and relation-based benchmark: QA-VisualGenome
is constructed and adopted (detailed in Sec. 2.1).
We provide an in-depth analysis of our methods
for improving the vision encoder and the projec-
tor. We call object-, attribute- and relation-based
benchmarks as perception-based benchmarks.

For a fair comparison, we only use the LLaVA-
Caption dataset for alignment. All experiments
are conducted on 4*A100 GPUs. For the align-
ment stage, we set per-GPU batch size to 64, which
is also the batch size contrastive alignment. We
choose the well-known LLaVA-v1.5-7B model as
our baseline. All three settings introduce no ex-
tra learnable parameters (except for the weighting
parameter A in Integrated Alignment Loss & set-
ting). Under our setting, both the original and
integrated alignment stage take 6 hours, and visual
instruction tuning stage takes 24 hours. Notably,
the prepended contrastive alignment stage takes
only 12 minutes to train since only the vision en-
coder V, projector P and the embedding layer of
LLM D are involved in the forward process. For
the two integrated loss settings, we empirically ini-
tialize A with 5, make it learnable for ¢ % while keep
it fixed for “*. A1 and A9 are set to 1.

Can our methods reduce hallucination caused
by the vision encoder? Table 5 presents the com-
prehensive experimental results of various settings
across different testing benchmarks. From this ta-

ble, several key observations can be drawn: 1) Our
proposed w-ECLIP method demonstrates supe-
rior performance compared to LLaVA-7B on
perception-based benchmarks. This result un-
derscores the effectiveness of our approach in re-
ducing visual object hallucinations by enhancing
the fine-grained perception capabilities of CLIP.
2) w-Finelns exhibits better performance than
baseline on perception-based benchmarks. This
finding suggests that our fine-grained instruction
data can augment the fine-grained perception abili-
ties of LLaVA by leveraging region-level captions
during training. 3) Compared to w-Finelns, w-
ECLIP demonstrates comparable or even better
performance on perception-based benchmarks.
Notably, w-Finelns offers efficiency advantages as
it only requires the final training stage—instruction
tuning—for the LVLM, simplifying the overall
training process.

Can our methods reduce hallucination caused
by the projector? We benchmark our methods
in Table 6. For object-oriented benchmarks POPE
and POPE-NoCaps, the model trained with Sepa-
rate Contrastive Alignment Loss outperforms oth-
ers on most splits of benchmarks, though the im-
provement over baseline seems marginal. For QA-
VisualGenome benchmark, we only observe im-
provement on the “Relation” split with Separate
Contrastive Alignment Loss, whereas slight perfor-
mance drops are observed for others. These obser-
vations provide insights for the alignment process.



Table 7: Performance on QA-FB15K.

Method ‘ Entity ‘ Relation

| Acc F1 | Acc FI
LLaVA-7B 78.39 73.14 | 56.79 48.79
Int. Align. () 84.28 83.03 | 59.16 58.07
Int. Align. 84.05 81.76 | 59.16 56.97
Sep. Ctrs. Align. | 83.94 81.65 | 59.39 57.41
LLaVA-7B 78.39 73.14 | 56.79 48.70
w-ECLIP 77.60 71.47 | 56.79 45.58
w-Finelns 7647 69.86 | 5545 49.10

Firstly, object hallucinations may not be directly
related to alignment in LVLM, where vision en-
coder is mostly responsible for the perception pro-
cess. Secondly, perception-based attribute and
relation hallucination can hardly be mitigated
by contrastive training of projector. Similar to
object hallucination, better visual representations
may be needed as a remedy.

Can our method influence other hallucina-
tions? To further investigate the influence of our
method on other kinds of hallucination, we intro-
duced the Cognition-based benchmark: necessitat-
ing world knowledge in LVLMs for problem solv-
ing. We construct a cognition-based benchmark
QA-FB15k based on the knowledge graph FB15K
(Bordes et al., 2013). We show the results in Table
7. Contrastive alignment objective is beneficial for
cognition-based knowledge, as evidenced by the
performance boost on QA-FB15K. By better align-
ing between vision encoder and LLM, the LVLM
is able to leverage the ability of LLM to answer
the question that requires world knowledge, which
is typically stored in LLMs pretrained on moun-
tains of data. Nevertheless, performance boosts
are found on QA-FB15K for all three settings over
baselines. Neither w-Finelns nor w-ECLIP shows
any improvement on the cognition-based bench-
mark. This may be attributed to the fact that, un-
like perception-based benchmarks, cognition-based
benchmarks necessitate not only the ability to iden-
tify objects but also the comprehension and appli-
cation of relevant associated knowledge. The two
methods primarily focus on improving perception,
may not cater for the knowledge-intensive require-
ments of cognition-based benchmarks.

More Analysis: In addition, we add more ex-
perimental results on the hallucination benchmark
and general benchmark, ablation study, and per-
formance comparison with more baselines in Ap-
pendix B, E, F, and D.

5 Related Work

Large Vision-Language Model. The multi-
modal learning field has recently pivoted its
focus towards Large Vision-Language Models
(LVLMs) (Awadalla et al., 2023; Li et al., 2023a).
Current advanced LVLMs primarily comprise three
essential components: a language encoder, a vi-
sual encoder, and a cross-modal alignment mecha-
nism (Rohrbach et al., 2018). To achieve compre-
hensive visual understanding, LVLMs generally un-
dergo a series of training stages (Gong et al., 2023;
Zhu et al., 2023; Liu et al., 2023d,e; Ye et al., 2023;
Dai et al., 2023; Liu et al., 2023e). Despite signif-
icant advancements, LVLMs still face challenges
with hallucination, which significantly affects per-
formance across various multimodal applications.

Hallucinations in Large Vision-language Mod-
els. Since hallucination issues and mitigation tech-
niques have been extensively explored in text gen-
eration (Ji et al., 2023; Min et al., 2023), research
on hallucinations in LVLMs (Dai et al., 2023; Liu
et al., 2023e; Jing and Du, 2024) attracts more
attention. To evaluate the hallucination in the
LVLMs, several researchers propose metrics and
benchmarks (Rohrbach et al., 2018; Li et al., 2023e;
Lovenia et al., 2023; Lu et al., 2023; Jing et al.,
2024). Recently, various methods have been pro-
posed to mitigate hallucinations in LVLMs, lever-
aging a range of techniques including decoding
strategies (Leng et al., 2023; Huang et al., 2023),
post-processing methods (Zhou et al., 2023; Chang
et al., 2024; Yin et al., 2023), the development of
higher-quality datasets (Liu et al., 2023c; Li et al.,
2023d), and modality alignment(Li et al., 2023c;
Yu et al., 2023; Zhou et al., 2024; Jing and Du,
2024; Sun et al., 2023a; Gunjal et al., 2023). De-
spite the success of the existing works, there lacks
a comprehensive study of what causes visual hallu-
cinations in LVLMs.

6 Conclusion

Our study delves into the visual hallucination
problem in LVLMs, identifying its sources within
the model’s components. By independently an-
alyzing the LLM, vision backbone, and projec-
tor, we propose targeted mitigation strategies. We
introduce fine-grained hallucination benchmarks,
QA-VisualGenome and QA-FB15k, to comprehen-
sively evaluate hallucinations. Our methods demon-
strate effectiveness in reducing hallucinations, con-
tributing to the reliability and accuracy of LVLMs.



Limitations

Our work primarily focuses on analyzing and im-
proving hallucinations of general objects, such as
tables and people, while neglecting the research
topic of how to mitigate cognition-level hallucina-
tions, such as the names of individuals and famous
buildings.
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A Hallucinations in Different
Components

We show the potential hallucinations of each com-
ponent of LVLMs, and the corresponding mitiga-
tion methods in Table 8

B More Experiments on Hallucination
Benchmark

We further add experiments on another hallucina-
tion benchmark, Amber. The experimental results
of Table 9 show the effectiveness of our method.

C Case Study

We showed some hallucinated examples in Figure
3. We can see that the hallucination caused by
CLIP can be further input to the LVLM, causing
the hallucination in the LVLM.

Question: Is there a bed in the image?

LLaVA output: There is a bed in the image.

Text 1: a bird is in the image.
CLIP probobility: 0.1848

Text 2: a bed is in the image.
CLIP probobility: 0.8154

Figure 3: The illustration of the hallucinated case for
CLIP and LLaVA.

D Comparison with the Existing
Hallucination Mitigation Method

To verify the effectiveness or our methods, we fur-
ther add more baselines on POPE, as shown in
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Component ‘ Hallucination? ‘ Mitigation

Vision Backbone v w-ECLIP & w-Finelns
Projector v Int. Align. & & Int. Align. “+ & Sep. Ctrs. Align.
LLM X N/A

Table 8: Illustration of potential hallucinations in the components of LVLMs, and the corresponding mitigation
methods

Table 10. From this table, our methods show com-
petitive performance with the best baseline (i.e.,
Less is more). This further demonstrates the effec-
tiveness of our method.

E Experiment on General Benchmark

To verify the impact of the proposed method on gen-
eral capabilities, we further conduct experiments
on the general benchmark LLaVA-Bench (Liu et al.,
2023e). The results of Table 11 show the effective-
ness of our method.

F Ablation Study

In this section, we conduct ablation experiments to
assess the contribution of each component in the
loss function by individually removing the weights
A1 and \g. The results are shown in the Table 12.
These results demonstrate that both components
play meaningful roles in enhancing model perfor-
mance.
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Dataset LLaVA-7B  w-ECLIP w-Finelns Int. Align. &

Int. Align. Sep. Ctrs. Align.

Existence 83 93 92
Attribute 64 81 81
Relation 65 69 70
All 71 73 81

88
75
57
73

91 87
78 76
62 59
77 74

Table 9: Performance on the Amber dataset across different model variants. Bold indicates best scores per row.

Method F1 Score
DoLa (Chuang et al., 2024) 80.2
ITT (Li et al., 2023b) 83.7
VCD (Leng et al., 2023) 83.2
AGLA (An et al., 2025) 84.6
OPERA (Huang et al., 2024a) 85.2
DOPRA (Wei and Zhang, 2024) 85.6
HALC (Chen et al., 2024c) 83.9
FastV (Chen et al., 2024b) 81.3
Less is more (Yue et al., 2024) 86.0
CCA-LLAVA (Xing et al., 2024) 85.5
LRV (Liu et al., 2024a) 80.0
Amber (Wang et al., 2023) 81.6
EAH (Zhang et al., 2024a) 85.7
w-ECLIP 85.9
w-Finelns 85.5
Int. Align. & 85.5
Int. Align. 85.5
Sep. Ctrs. Align 86.0

Table 10: POPE F1 scores for baselines and proposed

methods. Bold indicates the highest score.

Model Conv Detail Complex Full
LLaVA-7B 92 75 75 81
w-ECLIP 93 84 87 88
w-Finelns 94 86 86 89
Int. Align. & 95 87 83 89
Int. Align. 93 84 82 86
Sep. Ctrs. Align 99 85 87 90

Table 11: Model performance comparison on different

categories and the full set on LLaVA-Bench.

POPE

Method Random Popular Adversarial

Acc F1 Acc F1 Acc F1

w-ECLIP 87.80 86.87 87.30 86.04 85.87 84.70
A =0 87.50 86.38 86.93 85.84 85.62 83.97
A2 =0 87.52 86.47 86.79 85.88 8547 84.11

Table 12: Ablation study on the impact of loss function
components \; and Ay across different POPE test sub-

sets.
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