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Abstract

Large Vision-Language Models (LVLMs)001
demonstrate remarkable capabilities in multi-002
modal tasks, but visual object hallucination re-003
mains a persistent issue. It refers to scenar-004
ios where models generate inaccurate visual005
object-related information based on the query006
input, potentially leading to misinformation007
and concerns about safety and reliability. Previ-008
ous works focus on the evaluation and mitiga-009
tion of visual hallucinations, but the underlying010
causes have not been comprehensively inves-011
tigated. In this paper, we analyze each com-012
ponent of LLaVA-like LVLMs—the large lan-013
guage model, the vision backbone, and the pro-014
jector, to identify potential sources of error and015
their impact. Based on our observations, we016
propose methods to mitigate hallucination for017
each problematic component. Additionally, we018
developed two hallucination benchmarks: QA-019
VisualGenome, which emphasizes attribute and020
relation hallucinations, and QA-FB15k, which021
focuses on cognition-based hallucinations.022

1 Introduction023

Large Language Models (LLMs), such as GPT-024

3 (Brown, 2020) and ChatGPT (OpenAI, 2022),025

have showcased remarkable proficiency in lan-026

guage tasks, yet they encounter significant chal-027

lenges when it comes to processing multimodal028

inputs. This limitation has driven a shift in re-029

search towards Large Vision-Language Models030

(LVLMs) (Liu et al., 2023e; Ye et al., 2023;031

Sun et al., 2023b), which integrate advanced032

LLMs (Touvron et al., 2023; Chiang et al., 2023)033

with Vision Foundation Models (VFMs) (Doso-034

vitskiy et al., 2021; Bommasani et al., 2021) to035

enhance multimodal understanding. LVLMs have036

demonstrated impressive capabilities across vari-037

ous tasks that require visual and textual integration,038

including Visual Question Answering (Antol et al.,039

2015), Image Captioning (Lin et al., 2014), and040

Visual Entailment (Zhang et al., 2025).041
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Figure 1: An overview of our paper. We first investigate
the sources of hallucination from a component-level
perspective within the LVLM architecture. Based on the
identified causes, we then design targeted methods to
mitigate hallucinations effectively.

Despite these advances, visual hallucination re- 042

mains a persistent issue in LVLMs (Rohrbach et al., 043

2018; Liu et al., 2023b,a; Yin et al., 2023; Zhang 044

et al., 2024b). This phenomenon occurs when mod- 045

els generate inaccurate or misleading information 046

unrelated to the actual visual input, potentially lead- 047

ing to misinformation and raising concerns about 048

safety and reliability in real-world applications (Li 049

et al., 2023e). Visual object hallucination, includ- 050

ing object existence, attribute, and relation, has 051

garnered significant attention due to its widespread 052

occurrence in images. Current works on visual 053

object hallucination mainly focus on evaluation 054

and mitigation. For example, Li et al. (2023e) ex- 055

tends CHAIR (Rohrbach et al., 2018) and proposes 056

POPE, a polling-based query technique for probing 057

object-level hallucination. For hallucination miti- 058

gation, Sun et al. (2023a) introduce new alignment 059

algorithm called Factually Augmented RLHF that 060

augments the reward model with additional factual 061

information such as image captions and ground- 062

truth multi-choice options, which alleviates the re- 063

ward hacking phenomenon in RLHF and further 064

improves the performance. 065

While existing works have achieved notable suc- 066
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cess in visual object hallucination, they lack a067

comprehensive component-level analysis of the068

model architecture to pinpoint where and how hal-069

lucinations occur. In this work, we focus on vi-070

sual object-related hallucination and LLaVA-like071

LVLMs, which typically consist of three modules:072

the large language model (LLM), the vision back-073

bone, and the projector. Errors in any of these mod-074

ules can lead to issues in the overall performance075

or functionality of the model. Therefore, we con-076

duct an independent analysis of each component to077

identify potential sources of error and their impact.078

From our study, we have the following findings.079

1) The LLM in LVLM is able to generate faithful080

content when captions of images are provided as081

input. 2) Hallucinations exist in the perception pro-082

cess of the vision backbone. 3) Projector is able to083

preserve visual features, but has trouble aligning084

between visual and textual spaces.085

Based on our observations, we propose meth-086

ods for the two problematic components to mit-087

igate their hallucination issue. To improve the088

vision backbone, we propose to finetune CLIP089

with fine-grained data and fine-grained perception-090

based visual instruction tuning, and find that both091

of them can reduce hallucination caused by the vi-092

sion backbone. For the projector, we propose a093

contrastive alignment objective with three varia-094

tions, which can all be integrated into the original095

training pipeline with minimal additional costs.096

To conduct a comprehensive hallucination eval-097

uation, we develop a fine-grained hallucination098

benchmark named QA-VisualGenome, which099

is built upon the Visual Genome dataset (Kr-100

ishna et al., 2017). Unlike existing object-101

oriented hallucination benchmarks (e.g., POPE),102

QA-VisualGenome emphasizes the detailed at-103

tribute and relationship hallucinations. Further-104

more, existing hallucination benchmarks primarily105

focus on perception-based hallucinations for gen-106

eral objects, neglecting cognition-based hallucina-107

tions such as the names of people and famous build-108

ings. To address this gap, we construct a cognition-109

based hallucination benchmark named QA-FB15K,110

which is based on the FB-15K dataset (Bordes et al.,111

2013), a multimodal knowledge graph with textual112

entities, image entities, and textual relations. QA-113

FB15K presents challenges for models in leverag-114

ing world knowledge to solve the questions.115

Our main content is shown in Figure 1. Our con-116

tributions can be summarized as follows: 1) We an-117

alyze the hallucination caused by each component 118

in LVLMs and provide component-wise takeaway 119

messages. 2) Based on our observation, we pro- 120

pose several methods to improve each hallucinated 121

component. 3) We construct a fine-grained halluci- 122

nation benchmark based on Visual Genome and a 123

cognition-based hallucination benchmark based on 124

FB15k for evaluation. 4) We extensively evaluate 125

our proposed methods on various benchmarks, and 126

provide in-depth analysis1. 127

2 Hallucination Analysis 128

LVLMs consist of three components: language 129

decoder D, projector vision encoder V , and P . We 130

first introduce the datasets for evaluation and then 131

provide in-depth analysis for each component. 132

2.1 Settings 133

We select two benchmarks to benchmark the per- 134

formance of each component. 1) POPE (Li et al., 135

2023e). POPE is a benchmark designed for eval- 136

uating object existence hallucinations in LVLMs, 137

incorporating three sampling methods for generat- 138

ing negative samples: random, popular, and adver- 139

sarial. In the random setting, objects not present 140

in the image are randomly selected. In the popular 141

setting, negative samples are drawn from a pool 142

of frequently occurring objects. In the adversarial 143

setting, the sampling focuses on objects that fre- 144

quently co-occur with present objects but do not ex- 145

ist in the image. 2) QA-VisualGenome. To further 146

investigate the hallucination issue on relations and 147

attributes of objects, we construct a fine-grained 148

evaluation benchmark based on the VisualGenome 149

dataset (Krishna et al., 2017), which collects dense 150

annotations of attributes and relationships of ob- 151

jects for each image. Specifically, we design two 152

types of Yes-or-No questions to evaluate models: 153

attributes and relations. For example, an attribute 154

question could be “Is the dog red in the image?” A 155

relational question would ask, “Is the dog standing 156

on the table?”. Similar to previous work (Wang 157

et al., 2020), we exclude uncommon relations and 158

attributes. We randomly select relations/attributes 159

to generate negative samples. 160

2.2 Language Decoder 161

Conjecture 1. LLM in LVLM is able to gen- 162

erate faithful content when image captions are 163

1All benchmark datasets, code, and models will be re-
leased.
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Table 1: Performance (%) of LLMs across different datasets when visual information is provided in textual format.
LLaVA: image+text query as input on original LLaVA model; Vicuna: caption+text query as input on Vicuna-1.5;
VicunaLLaVA: caption+text query as input on the Vicuna model in LLaVA (LLM undergone visual instruction tuning).

Model
POPE QA-VisualGenome

Random Popular Adversarial Attribute Relation

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

LLaVA-7B 87.42 86.36 86.63 85.25 85.13 83.88 64.67 66.60 67.57 74.81
Vicuna-7B 92.67 92.09 92.67 92.09 93.00 92.47 57.23 69.83 79.50 80.79
Vicuna-7BLLaVA 100.00 100.00 100.00 100.00 99.67 99.67 68.29 75.92 63.2 73.06

LLaVA-13B 91.33 91.72 88.33 89.16 84.33 85.97 55.99 68.86 56.40 69.38
Vicuna-13B 87.90 89.15 95.00 95.24 90.00 90.91 87.90 89.15 87.90 89.25
Vicuna-13BLLaVA 99.67 99.67 99.67 99.60 99.33 99.33 75.41 80.10 84.30 84.29

provided as input. To validate this conjecture,164

we use the POPE dataset to evaluate the perfor-165

mance of LLMs. Instead of providing images to166

the LVLMs, we only input text descriptions of167

the images. For POPE, we obtain objects from168

the MSCOCO (Lin et al., 2014) dataset and feed169

the LVLM with objects in the image and the tex-170

tual query from POPE to generate the response.171

For QA-VisualGenome, we feed the LVLM with172

objects, object attributes, and relations presented173

in the image to replace visual information. This174

helped assess the model’s ability to hallucinate175

when provided with accurate textual descriptions176

of the image. In addition, we also test the original177

Vicuna as a baseline.178

We show the performance of LLMs in Table 1.179

From the results, we found that the performance180

will be improved largely if we provide the correct181

visual information in a textual format. This indi-182

cates the current main reason for hallucination is183

caused by a vision encoder or projector. Specif-184

ically, the model could achieve an accuracy of185

99.67% when provided with complete object de-186

scriptions for the random setting of POPE, which187

shows the LLM is robust when given the correct188

information about the whole image. In addition,189

we also found that the LLM after the pertaining190

and instruction tuning of LLaVA performs better191

than the original LLM. LLaVA fine-tuning likely192

enhances the model’s object recognition, memory193

of object-specific features, instruction-following194

ability, and contextual understanding of visual de-195

scriptions, enabling it to accurately identify com-196

mon objects within text descriptions even without197

actual images.198

2.3 Vision Encoder199

Conjecture 2. There are hallucinations in the200

perception process of the vision encoder. To201

verify this factor, we conducted experiments using202

Table 2: Performance of CLIP in the text-image match-
ing across different datasets measured by Accuracy (%).

POPE QA-VisualGenome

Random Popular Adversarial Attribute Relation

83.33 87.30 86.00 61.57 60.22

CLIP on a text-image matching task. Specifically, 203

we designed a template of the form "There is a/an 204

{object} in the image," where {object} corresponds 205

to various objects in the input images. For each 206

image, we assigned one ground-truth object and 207

a hallucinated object for the template. We use ac- 208

curacy as the evaluation metric. We show all the 209

experimental results in Table 2. Overall, we found 210

that the performance of CLIP on the text-matching 211

task is not good. For example, the performance of 212

CLIP on the text-image matching task is 83.33% 213

accuracy on the random setting of POPE, indicat- 214

ing the presence of hallucinations within the vision 215

encoder’s perception process. 216

Another interesting phenomenon is that the accu- 217

racy of CLIP in recognizing objects is worse than 218

LLaVA, even the LLaVA adopts CLIP as the vision 219

encoder. Specifically, the accuracy of LLaVA is 220

91.33% on the random setting of POPE, but CLIP 221

only achieves 83.33% accuracy. This indicates that 222

the hallucination caused by CLIP can be allevi- 223

ated to a certain extent after the pre-training feature 224

alignment and instruction tuning. The potential rea- 225

son may be that LLaVA’s training uses diverse ques- 226

tions aligned with specific image features, optimiz- 227

ing for generative loss. This fine-grained alignment 228

helps the model better understand and describe vi- 229

sual content with greater accuracy and detail. 230

2.4 Projector 231

We analyze the projector module from two perspec- 232

tives corresponding to its two roles in the LVLM: 233

preserving visual information and aligning visual 234
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and textual spaces.235

Conjecture 3. The projector should not re-236

sult in significant visual information loss. We237

formalize the hypothesis using the notion of V-238

information (Hewitt et al., 2021). Let Φpre(X)239

and Φpost(X) represent the pre-projector and post-240

projector representations, respectively. We com-241

pare the V-information between these representa-242

tions and a target property Y (e.g., a classification243

label).244

We define the V-information for pre- and post-245

projector representations as246

IV(Φpre(X) → Y ) = HV(Y )−HV(Y |Φpre(X))247

248
IV(Φpost(X) → Y ) = HV(Y )−HV(Y |Φpost(X))249

where HV is the V-entropy (Hewitt et al., 2021).250

HV(Y ) is the entropy of Y , which reflects the in-251

herent uncertainty of Y without any conditioning252

on the representations. HV(Y |Φ(X)) represents253

the uncertainty we have in predicting Y after ob-254

serving the representation Φ(X), using functions255

from the family V . It is formally defined as:256

HV(Y |Φ(X)) = inf
f∈V

EΦ(X),Y [− log f(Φ(X))(Y )]257

This expression measures the best performance that258

a function f from the function family V can achieve259

when predicting Y given the representation Φ(X).260

The lower this value, the more predictive power the261

representation Φ(X) has regarding Y .262

The goal is to determine whether information263

loss occurs in the projection layer. If the projection264

layer introduces no information loss, then the V-265

information of the pre-projector and post-projector266

representations should be approximately equal:267

IV(Φpre(X) → Y ) = IV(Φpost(X) → Y )268

We compare the V-information accessible from269

both the pre-projector and post-projector represen-270

tations. The performance of a probe (e.g., classi-271

fier) trained on Φpre(X) and Φpost(X) provides an272

empirical estimate of these quantities:273

Perfpre = max
θ

E[logP (Y |fpre
θ (Φpre(X)))]274

275
Perfpost = max

θ
E[logP (Y |fpost

θ (Φpost(X)))]276

To determine if information loss occurs, we com-277

pute the difference in performance:278

∆Perf = Perfpre − Perfpost279

If ∆Perf = 0, this implies that no information 280

loss has occurred and the information available in 281

Φpre(X) is fully retained in Φpost(X). However, if 282

∆Perf > 0, this indicates that the post-projector 283

representation has lost some information present 284

in the pre-projector representation, leading to a 285

decrease in predictive power for Y . 286

With the hypothesis grounded to V-information, 287

we conduct a probing experiment on LLaVA- 288

7B to verify it. We linear-probe the pre- and 289

post-projector feature with image classification 290

tasks on CIFAR10 (Krizhevsky et al., 2009), CI- 291

FAR100 (Krizhevsky et al.) and ImageNet (Deng 292

et al., 2009). Results in Table 3 shows that for the 293

13B LLaVA model, performance percentage drop 294

of post-projection features is less than 2%, indicat- 295

ing that the visual features are well preserved by 296

the projectors in both models. 297

Table 3: Performance of linear probing using pre- and
post-projector image features on CIFAR10, CIFAR100
and ImageNet. Accuracy% is used as the metric.

Dataset
LLaVA-13B

Perfpre Perfpost
CIFAR10 96.27 96.15 -0.12%
CIFAR100 81.78 81.02 -0.93%
ImageNet 71.97 70.83 -1.58%

Conjecture 4. The projector should align the 298

visual and textual spaces. As its name suggests, 299

the projector should be able to project the source 300

(visual) space to the target (textual) space. To probe 301

the alignment between two spaces, we collect cap- 302

tion data from MSCOCO (Lin et al., 2014), LLaVA- 303

Caption (Liu et al., 2023d), ALLaVA (Chen et al., 304

2024a) and compute the similarity between a pro- 305

jected image feature and the textual embedding of 306

its caption. The rationale of using cosine similarity 307

is that, based on the findings in Section 2.2, a large 308

performance boost is observed if we replace an im- 309

age with its caption. Therefore, if the projected 310

image feature is similar enough to its caption em- 311

bedding (i.e. cosine similarity=1), then an LVLM 312

should gain similar performance to the case where 313

an image is replaced by its caption as input. 314

Results in Table 4 show that the cosine simi- 315

larities of the two features are fairly low, indicat- 316

ing nearly independent relationships. This find- 317

ing is consistent with the existing work (Huang 318

et al., 2024b; Li et al., 2025), which reveals that 319

visual and textual representations are apart from 320

each other in the embedding space. Therefore, the 321
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Table 4: Cosine similarity between projected image
features and the caption embedding. Captions are pro-
cessed by Vicuna (Chiang et al., 2023) tokenizer.

Dataset Token Length Image Res.
Cos. Sim.
7B 13B

MSCOCO 15.16 (575, 488) 0.03 0.04
LLaVA Caption 15.09 (412, 366) 0.03 0.04
ALLaVA 222.83 (1020, 923) 0.05 0.06

projector in LLaVA models may not function as322

an alignment module as well as expected, which323

could be one of the causes of hallucination for the324

entire model.325

3 Mitigating Object Hallucination326

Caused by Different Modules327

Based on the analysis in Section 2, we further de-328

vised different methods to mitigate the object hal-329

lucination in different components in LVLMs.330

3.1 How to alleviate the hallucination caused331

by CLIP?332

As previously noted, the vision backbone within333

LVLMs also contributes to hallucinations. The334

CLIP model, as the vision encoder of LLaVA, is335

trained on massive image-caption pairs from the336

internet with a contrastive loss objective. However,337

these captions are typically brief and noisy, and338

negative pairs often differ substantially from pos-339

itive ones. Therefore, it is likely that the model340

can distinguish them without needing to capture341

the finer details in the images. Consequently, the342

model may achieve high accuracy while lacking a343

nuanced understanding of the visual content (Liu344

et al., 2024b). To address this issue, we propose345

two methods to reduce hallucination caused by the346

vision backbone, as shown in Figure 2.347

Tuning CLIP with fine-grained data A direct348

method to improve CLIP is to post-train CLIP with349

more fine-grained samples. This is because the350

CLIP is trained with massive images paired with351

brief captions. In this method, we leverage GPT-352

4 (OpenAI, 2022) to generate negative examples,353

which are then used in a contrastive learning setup354

to improve the discriminative ability of CLIP.355

Generate Negative Examples: Inspired by prior356

work indicating that LVLMs are more likely to357

generate hallucinatory responses for frequently oc-358

curring objects (Liu et al., 2024b), we devise two359

strategies: inserting hallucinatory objects and re-360

moving existing ones.361

Caption Negative
Caption

Please caption bounding boxes
in  the image.

Cows sits on 
ground.

Fine-grained Perception-based 
Instruction TunningTuning CLIP with Fine-grained Data

LVLM
CLIP

Figure 2: Tuning CLIP with fine-grained data (left) and
fine-grained perception-based instruction tuning (right).

For the insertion strategy, we categorize objects 362

in images into three types—random, popular, and 363

adversarial—each containing three objects. Ran- 364

dom objects are sampled randomly, popular objects 365

are the top frequent objects in the whole dataset, 366

and adversarial objects are the top frequent objects 367

with the current objects. By inserting one to three 368

objects from each category into the correct captions 369

with the assistance of GPT-4, we create examples 370

with varying levels of hallucinations (i.e., negative 371

samples). For the removal strategy, we randomly 372

select one or two segmented objects from the cap- 373

tion and instruct GPT-4 to eliminate them from the 374

caption. 375

Contrastive Learning: We use these generated 376

negative examples in a contrastive learning frame- 377

work where CLIP is trained to correctly distinguish 378

between the positive and negative pairs. By ex- 379

posing the model to these fine-grained differences, 380

CLIP becomes better at understanding nuanced vi- 381

sual features. 382

First, let I represent an image embedding and T 383

a text embedding. Let T+ be the text vector that 384

correctly matches I , and let T− denote a collection 385

of negative texts not semantically aligned with I . 386

We also introduce β as a temperature parameter. 387

The fundamental image-to-text contrastive ob- 388

jective can be expressed as: 389

Li2t = − log(
exp(I · T+/β)∑

T ∗∈{T+,T−} exp(I · T ∗/β)
).

(1) 390

The symmetric term Lt2i can be constructed for 391

text-to-image alignment. Combining them yields 392

the image-text contrastive loss: 393

Litc = 1
2(Li2t + Lt2i). (2) 394

Next, consider that we introduce an additional 395

set of artificially generated negative texts {Tneg}. 396

Incorporating these into the image-to-text objective 397

5



gives:398

Li2t = − log(
exp(I · T+/β)∑

T ∗∈{T+,T−,Tneg} exp(I · T ∗/β)
).

(3)399

To further refine the separation between correct400

matches and all classes of negative samples (both401

standard and synthetic), we introduce a margin-402

based term. Let τ1 be the margin threshold enforc-403

ing that a positive pair’s similarity should exceed404

that of any negative pair by at least τ1:405

L1 = max
(
0, τ1 − (I · T+) + (I · T ⋆)

)
, (4)406

where T ⋆ = {T−, Tneg} is the union of standard407

and synthetic negatives.408

Additionally, to encourage the model to dis-409

tinguish synthetic negatives from standard nega-410

tives—thus capturing subtle semantic cues—we411

introduce another margin loss. Let τ2 control the412

required margin between these two types of nega-413

tive samples:414

L2 = max
(
0, τ2 − (I · Tneg) + (I · T−)

)
. (5)415

Finally, assigning weighting factors λ1 and λ2416

to the margin terms allows adaptive emphasis on417

these constraints. The complete objective function418

is:419

L = Litc + λ1L1 + λ2L2. (6)420

This integrated loss framework guides the model421

to better discriminate correct image-text pairs from422

both standard and refined negative samples.423

Fine-grained perception-based visual instruc-424

tion tuning As we mentioned, CLIP may not cap-425

ture the finer details in the visual representation426

from the vision encoder. Therefore, we attempt to427

enable the LLM to perceive the fine-grained infor-428

mation within the CLIP vision encoder. Meanwhile,429

the method of enhancing CLIP and then replacing430

it is time-consuming, as it requires additional steps431

for feature alignment and instruction tuning after432

replacing the vision encoder of LVLMs. As a result,433

we explore a more efficient approach by directly434

enabling the LLM to perceive the detailed visual435

features during visual instruction tuning.436

To achieve this, we propose fine-grained437

perception-based visual instruction tuning. Specif-438

ically, we randomly select two bounding boxes439

from the image, and then use the object attributes440

corresponding to these bounding boxes and their re-441

lationships to generate the corresponding captions.442

We then create instruction tuning data (If , Tf , Rf ), 443

where Tf is the textual prompt: “Please caption the 444

content in the bounding box”, If is the image with 445

bounding boxes, and Rf is the corresponding cap- 446

tion. This approach allows the model to perceive 447

fine-grained information, such as region-level de- 448

tails, within the image. 449

3.2 How to reduce hallucination caused by the 450

projector? 451

In Section 2.4, we reveal that hallucination intro- 452

duced by the projector may be due to the inability 453

of aligning visual and textual spaces, manifested 454

by the low cosine similarity of caption embeddings 455

and projected image features. Therefore, a straight- 456

forward remedy would be to explicitly bridge the 457

image and caption representation during LLaVA’s 458

alignment stage. 459

3.2.1 Loss Objectives 460

Besides autoregressive image-text generation loss 461

Litg = −p(R|I, T ), we introduce an in-batch con- 462

trastive alignment loss Litc similar to Equation 2, 463

where we maximize the similarity between a pro- 464

jected image feature and the corresponding text 465

embedding for its caption. We only focus on the 466

alignment stage and design three settings that in- 467

volve the contrastive loss in different fashions. 468

Integrated Alignment Loss The training pro- 469

cess consists of two stages: alignment and visual 470

instruction tuning. The contrastive loss is inte- 471

grated to the alignment stage with a learnable ( ) 472

weight λ. The alignment objective is given by: 473

minP,λ Litg + λLitc. The visual instruction tuning 474

stage is identical to LLaVA’s. 475

Integrated Alignment Loss All settings are 476

the same as above except that the weight λ is 477

fixed ( ). The alignment objective is given by: 478

minP Litg + λLitc. 479

Separate Contrastive Alignment Loss We 480

prepend a contrastive alignment stage solely for 481

the projector P . Namely, the first stage objective 482

is given by: minP Litc. The second stage and 483

third stage correspond to the original autoregres- 484

sive alignment and visual instruction tuning stage. 485

4 Results and Analysis 486

We first introduce the benchmarks on which our 487

methods to be evaluated, which are shown as fol- 488

lows. 1) Object-based benchmarks: testing the 489

object perception of LVLMs. POPE and POPE- 490

NoCaps (Liu et al., 2024b) are adopted, where the 491
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Table 5: Performance of different methods across different benchmarks. The best results in each column are
made bold. w-ECLIP: LLaVA with enhanced CLIP trained on fine-grained data; w-FineIns: LLaVA trained on
fine-grained visual instruction tuning data.

Method
POPE POPE-NoCaps QA-VisualGenome

Random Popular Adversarial Random Popular Adversarial Attribute Relation

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

LLaVA-7B 85.40 86.36 86.63 85.25 85.13 83.88 84.80 82.97 79.40 78.30 74.77 74.69 64.67 66.60 67.57 74.81
w-ECLIP 87.80 86.87 87.30 86.04 85.87 84.70 85.27 83.50 81.00 79.69 75.77 75.46 67.67 68.79 67.00 74.11
w-FineIns 87.77 86.78 86.80 85.51 85.53 84.33 85.53 84.00 81.73 80.61 76.50 76.37 69.01 70.12 69.75 76.17

Table 6: Performance of different projector alignment methods across different benchmarks. The best results in each
column are made bold. Int. Align.: Integrated Alignment Loss with trainable ( ) / frozen( ) weighting parameter;
Sep. Ctrs. Align.: Separate Contrastive Alignment Loss.

Method
POPE POPE-NoCaps QA-VisualGenome

Random Popular Adversarial Random Popular Adversarial Attribute Relation

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

LLaVA-7B 87.42 86.36 86.63 85.25 85.13 83.88 84.80 82.97 79.40 78.30 74.77 74.69 64.67 66.60 67.57 74.81
Int. Align. 88.21 87.41 86.70 85.65 84.27 83.46 85.57 84.46 77.27 77.58 72.23 73.91 60.95 61.97 66.67 74.60
Int. Align. 88.04 87.20 86.67 85.56 84.50 83.60 84.90 83.28 79.37 78.47 74.57 74.76 63.84 65.21 66.73 74.26
Sep. Ctrs. Align. 88.56 87.86 87.33 86.38 84.57 83.88 85.57 84.24 80.07 79.42 75.13 75.54 64.26 64.77 69.60 76.06

latter is built on NoCaps (Agrawal et al., 2019) fol-492

lowing a similar manner as in POPE. 2) Attribute-493

and relation-based benchmark: QA-VisualGenome494

is constructed and adopted (detailed in Sec. 2.1).495

We provide an in-depth analysis of our methods496

for improving the vision encoder and the projec-497

tor. We call object-, attribute- and relation-based498

benchmarks as perception-based benchmarks.499

For a fair comparison, we only use the LLaVA-500

Caption dataset for alignment. All experiments501

are conducted on 4*A100 GPUs. For the align-502

ment stage, we set per-GPU batch size to 64, which503

is also the batch size contrastive alignment. We504

choose the well-known LLaVA-v1.5-7B model as505

our baseline. All three settings introduce no ex-506

tra learnable parameters (except for the weighting507

parameter λ in Integrated Alignment Loss set-508

ting). Under our setting, both the original and509

integrated alignment stage take 6 hours, and visual510

instruction tuning stage takes 24 hours. Notably,511

the prepended contrastive alignment stage takes512

only 12 minutes to train since only the vision en-513

coder V , projector P and the embedding layer of514

LLM D are involved in the forward process. For515

the two integrated loss settings, we empirically ini-516

tialize λ with 5, make it learnable for while keep517

it fixed for . λ1 and λ2 are set to 1.518

Can our methods reduce hallucination caused519

by the vision encoder? Table 5 presents the com-520

prehensive experimental results of various settings521

across different testing benchmarks. From this ta-522

ble, several key observations can be drawn: 1) Our 523

proposed w-ECLIP method demonstrates supe- 524

rior performance compared to LLaVA-7B on 525

perception-based benchmarks. This result un- 526

derscores the effectiveness of our approach in re- 527

ducing visual object hallucinations by enhancing 528

the fine-grained perception capabilities of CLIP. 529

2) w-FineIns exhibits better performance than 530

baseline on perception-based benchmarks. This 531

finding suggests that our fine-grained instruction 532

data can augment the fine-grained perception abili- 533

ties of LLaVA by leveraging region-level captions 534

during training. 3) Compared to w-FineIns, w- 535

ECLIP demonstrates comparable or even better 536

performance on perception-based benchmarks. 537

Notably, w-FineIns offers efficiency advantages as 538

it only requires the final training stage—instruction 539

tuning—for the LVLM, simplifying the overall 540

training process. 541

Can our methods reduce hallucination caused 542

by the projector? We benchmark our methods 543

in Table 6. For object-oriented benchmarks POPE 544

and POPE-NoCaps, the model trained with Sepa- 545

rate Contrastive Alignment Loss outperforms oth- 546

ers on most splits of benchmarks, though the im- 547

provement over baseline seems marginal. For QA- 548

VisualGenome benchmark, we only observe im- 549

provement on the “Relation” split with Separate 550

Contrastive Alignment Loss, whereas slight perfor- 551

mance drops are observed for others. These obser- 552

vations provide insights for the alignment process. 553
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Table 7: Performance on QA-FB15K.

Method Entity Relation

Acc F1 Acc F1

LLaVA-7B 78.39 73.14 56.79 48.79
Int. Align. 84.28 83.03 59.16 58.07
Int. Align. 84.05 81.76 59.16 56.97
Sep. Ctrs. Align. 83.94 81.65 59.39 57.41
LLaVA-7B 78.39 73.14 56.79 48.70
w-ECLIP 77.60 71.47 56.79 45.58
w-FineIns 76.47 69.86 55.45 49.10

Firstly, object hallucinations may not be directly554

related to alignment in LVLM, where vision en-555

coder is mostly responsible for the perception pro-556

cess. Secondly, perception-based attribute and557

relation hallucination can hardly be mitigated558

by contrastive training of projector. Similar to559

object hallucination, better visual representations560

may be needed as a remedy.561

Can our method influence other hallucina-562

tions? To further investigate the influence of our563

method on other kinds of hallucination, we intro-564

duced the Cognition-based benchmark: necessitat-565

ing world knowledge in LVLMs for problem solv-566

ing. We construct a cognition-based benchmark567

QA-FB15k based on the knowledge graph FB15K568

(Bordes et al., 2013). We show the results in Table569

7. Contrastive alignment objective is beneficial for570

cognition-based knowledge, as evidenced by the571

performance boost on QA-FB15K. By better align-572

ing between vision encoder and LLM, the LVLM573

is able to leverage the ability of LLM to answer574

the question that requires world knowledge, which575

is typically stored in LLMs pretrained on moun-576

tains of data. Nevertheless, performance boosts577

are found on QA-FB15K for all three settings over578

baselines. Neither w-FineIns nor w-ECLIP shows579

any improvement on the cognition-based bench-580

mark. This may be attributed to the fact that, un-581

like perception-based benchmarks, cognition-based582

benchmarks necessitate not only the ability to iden-583

tify objects but also the comprehension and appli-584

cation of relevant associated knowledge. The two585

methods primarily focus on improving perception,586

may not cater for the knowledge-intensive require-587

ments of cognition-based benchmarks.588

More Analysis: In addition, we add more ex-589

perimental results on the hallucination benchmark590

and general benchmark, ablation study, and per-591

formance comparison with more baselines in Ap-592

pendix B, E, F, and D.593

5 Related Work 594

Large Vision-Language Model. The multi- 595

modal learning field has recently pivoted its 596

focus towards Large Vision-Language Models 597

(LVLMs) (Awadalla et al., 2023; Li et al., 2023a). 598

Current advanced LVLMs primarily comprise three 599

essential components: a language encoder, a vi- 600

sual encoder, and a cross-modal alignment mecha- 601

nism (Rohrbach et al., 2018). To achieve compre- 602

hensive visual understanding, LVLMs generally un- 603

dergo a series of training stages (Gong et al., 2023; 604

Zhu et al., 2023; Liu et al., 2023d,e; Ye et al., 2023; 605

Dai et al., 2023; Liu et al., 2023e). Despite signif- 606

icant advancements, LVLMs still face challenges 607

with hallucination, which significantly affects per- 608

formance across various multimodal applications. 609

Hallucinations in Large Vision-language Mod- 610

els. Since hallucination issues and mitigation tech- 611

niques have been extensively explored in text gen- 612

eration (Ji et al., 2023; Min et al., 2023), research 613

on hallucinations in LVLMs (Dai et al., 2023; Liu 614

et al., 2023e; Jing and Du, 2024) attracts more 615

attention. To evaluate the hallucination in the 616

LVLMs, several researchers propose metrics and 617

benchmarks (Rohrbach et al., 2018; Li et al., 2023e; 618

Lovenia et al., 2023; Lu et al., 2023; Jing et al., 619

2024). Recently, various methods have been pro- 620

posed to mitigate hallucinations in LVLMs, lever- 621

aging a range of techniques including decoding 622

strategies (Leng et al., 2023; Huang et al., 2023), 623

post-processing methods (Zhou et al., 2023; Chang 624

et al., 2024; Yin et al., 2023), the development of 625

higher-quality datasets (Liu et al., 2023c; Li et al., 626

2023d), and modality alignment(Li et al., 2023c; 627

Yu et al., 2023; Zhou et al., 2024; Jing and Du, 628

2024; Sun et al., 2023a; Gunjal et al., 2023). De- 629

spite the success of the existing works, there lacks 630

a comprehensive study of what causes visual hallu- 631

cinations in LVLMs. 632

6 Conclusion 633

Our study delves into the visual hallucination 634

problem in LVLMs, identifying its sources within 635

the model’s components. By independently an- 636

alyzing the LLM, vision backbone, and projec- 637

tor, we propose targeted mitigation strategies. We 638

introduce fine-grained hallucination benchmarks, 639

QA-VisualGenome and QA-FB15k, to comprehen- 640

sively evaluate hallucinations. Our methods demon- 641

strate effectiveness in reducing hallucinations, con- 642

tributing to the reliability and accuracy of LVLMs. 643
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Limitations644

Our work primarily focuses on analyzing and im-645

proving hallucinations of general objects, such as646

tables and people, while neglecting the research647

topic of how to mitigate cognition-level hallucina-648

tions, such as the names of individuals and famous649

buildings.650

References651

Harsh Agrawal, Peter Anderson, Karan Desai, Yufei652
Wang, Xinlei Chen, Rishabh Jain, Mark Johnson,653
Dhruv Batra, Devi Parikh, and Stefan Lee. 2019.654
nocaps: novel object captioning at scale. In 2019655
IEEE/CVF International Conference on Computer656
Vision, ICCV 2019, Seoul, Korea (South), October 27657
- November 2, 2019, pages 8947–8956. IEEE.658

Wenbin An, Feng Tian, Sicong Leng, Jiahao Nie, Hao-659
nan Lin, QianYing Wang, Ping Chen, Xiaoqin Zhang,660
and Shijian Lu. 2025. Mitigating object hallucina-661
tions in large vision-language models with assembly662
of global and local attention.663

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-664
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,665
and Devi Parikh. 2015. VQA: visual question answer-666
ing. In IEEE International Conference on Computer667
Vision, pages 2425–2433. IEEE Computer Society.668

Anas Awadalla, Irena Gao, Josh Gardner, Jack Hes-669
sel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,670
Yonatan Bitton, Samir Yitzhak Gadre, Shiori Sagawa,671
Jenia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel672
Ilharco, Mitchell Wortsman, and Ludwig Schmidt.673
2023. Openflamingo: An open-source framework for674
training large autoregressive vision-language models.675
CoRR, abs/2308.01390.676

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli,677
Russ B. Altman, Simran Arora, Sydney von Arx,678
Michael S. Bernstein, Jeannette Bohg, Antoine679
Bosselut, Emma Brunskill, Erik Brynjolfsson, Shya-680
mal Buch, Dallas Card, Rodrigo Castellon, Ni-681
ladri S. Chatterji, Annie S. Chen, Kathleen Creel,682
Jared Quincy Davis, Dorottya Demszky, Chris Don-683
ahue, Moussa Doumbouya, Esin Durmus, Stefano684
Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-685
Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie,686
Karan Goel, Noah D. Goodman, Shelby Grossman,687
Neel Guha, Tatsunori Hashimoto, Peter Henderson,688
John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,689
Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky,690
Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keel-691
ing, Fereshte Khani, Omar Khattab, Pang Wei Koh,692
Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi,693
and et al. 2021. On the opportunities and risks of694
foundation models. CoRR, abs/2108.07258.695

Antoine Bordes, Nicolas Usunier, Alberto García-696
Durán, Jason Weston, and Oksana Yakhnenko.697

2013. Translating embeddings for modeling multi- 698
relational data. In Advances in Neural Information 699
Processing Systems 26: 27th Annual Conference on 700
Neural Information Processing Systems 2013. Pro- 701
ceedings of a meeting held December 5-8, 2013, Lake 702
Tahoe, Nevada, United States, pages 2787–2795. 703

Tom B Brown. 2020. Language models are few-shot 704
learners. arXiv preprint arXiv:2005.14165. 705

Yue Chang, Liqiang Jing, Xiaopeng Zhang, and Yue 706
Zhang. 2024. A unified hallucination mitigation 707
framework for large vision-language models. CoRR, 708
abs/2409.16494. 709

Guiming Hardy Chen, Shunian Chen, Ruifei Zhang, 710
Junying Chen, Xiangbo Wu, Zhiyi Zhang, Zhihong 711
Chen, Jianquan Li, Xiang Wan, and Benyou Wang. 712
2024a. Allava: Harnessing gpt4v-synthesized data 713
for a lite vision-language model. arXiv preprint 714
arXiv:2402.11684. 715

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Jun- 716
yang Lin, Chang Zhou, and Baobao Chang. 2024b. 717
An image is worth 1/2 tokens after layer 2: Plug-and- 718
play inference acceleration for large vision-language 719
models. In Computer Vision - ECCV 2024 - 18th 720
European Conference, Milan, Italy, September 29- 721
October 4, 2024, Proceedings, Part LXXXI, volume 722
15139 of Lecture Notes in Computer Science, pages 723
19–35. Springer. 724

Zhaorun Chen, Zhuokai Zhao, Hongyin Luo, Huaxiu 725
Yao, Bo Li, and Jiawei Zhou. 2024c. Halc: Object 726
hallucination reduction via adaptive focal-contrast 727
decoding. 728

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 729
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 730
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 731
Stoica, and Eric P. Xing. 2023. vicuna: An open- 732
source chatbot impressing gpt-4 with 90 733

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon 734
Kim, James R. Glass, and Pengcheng He. 2024. Dola: 735
Decoding by contrasting layers improves factuality in 736
large language models. In The Twelfth International 737
Conference on Learning Representations, ICLR 2024, 738
Vienna, Austria, May 7-11, 2024. OpenReview.net. 739

Wenliang Dai, Junnan Li, Dongxu Li, Anthony 740
Meng Huat Tiong, Junqi Zhao, Weisheng Wang, 741
Boyang Li, Pascale Fung, and Steven C. H. Hoi. 742
2023. Instructblip: Towards general-purpose vision- 743
language models with instruction tuning. CoRR, 744
abs/2305.06500. 745

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, 746
and Li Fei-Fei. 2009. Imagenet: A large-scale hier- 747
archical image database. In 2009 IEEE conference 748
on computer vision and pattern recognition, pages 749
248–255. Ieee. 750

Alexey Dosovitskiy, Lucas Beyer, Alexander 751
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, 752
Thomas Unterthiner, Mostafa Dehghani, Matthias 753

9

https://doi.org/10.1109/ICCV.2019.00904
http://arxiv.org/abs/2406.12718
http://arxiv.org/abs/2406.12718
http://arxiv.org/abs/2406.12718
http://arxiv.org/abs/2406.12718
http://arxiv.org/abs/2406.12718
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://doi.org/10.48550/ARXIV.2409.16494
https://doi.org/10.48550/ARXIV.2409.16494
https://doi.org/10.48550/ARXIV.2409.16494
https://doi.org/10.1007/978-3-031-73004-7_2
https://doi.org/10.1007/978-3-031-73004-7_2
https://doi.org/10.1007/978-3-031-73004-7_2
https://doi.org/10.1007/978-3-031-73004-7_2
https://doi.org/10.1007/978-3-031-73004-7_2
http://arxiv.org/abs/2403.00425
http://arxiv.org/abs/2403.00425
http://arxiv.org/abs/2403.00425
http://arxiv.org/abs/2403.00425
http://arxiv.org/abs/2403.00425
https://openreview.net/forum?id=Th6NyL07na
https://openreview.net/forum?id=Th6NyL07na
https://openreview.net/forum?id=Th6NyL07na
https://openreview.net/forum?id=Th6NyL07na
https://openreview.net/forum?id=Th6NyL07na


Minderer, Georg Heigold, Sylvain Gelly, Jakob754
Uszkoreit, and Neil Houlsby. 2021. An image755
is worth 16x16 words: Transformers for image756
recognition at scale. In ICLR. OpenReview.net.757

Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang,758
Miao Zheng, Qian Zhao, Kuikun Liu, Wenwei Zhang,759
Ping Luo, and Kai Chen. 2023. Multimodal-gpt: A760
vision and language model for dialogue with humans.761
CoRR, abs/2305.04790.762

Anisha Gunjal, Jihan Yin, and Erhan Bas. 2023. De-763
tecting and preventing hallucinations in large vision764
language models. arXiv preprint arXiv:2308.06394.765

John Hewitt, Kawin Ethayarajh, Percy Liang, and766
Christopher D Manning. 2021. Conditional prob-767
ing: measuring usable information beyond a baseline.768
arXiv preprint arXiv:2109.09234.769

Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang,770
Conghui He, Jiaqi Wang, Dahua Lin, Weiming771
Zhang, and Nenghai Yu. 2023. OPERA: alleviating772
hallucination in multi-modal large language models773
via over-trust penalty and retrospection-allocation.774
CoRR, abs/2311.17911.775

Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang,776
Conghui He, Jiaqi Wang, Dahua Lin, Weiming777
Zhang, and Nenghai Yu. 2024a. Opera: Alleviating778
hallucination in multi-modal large language models779
via over-trust penalty and retrospection-allocation.780

Qidong Huang, Xiaoyi Dong, Pan Zhang, Yuhang781
Zang, Yuhang Cao, Jiaqi Wang, Dahua Lin, Weim-782
ing Zhang, and Nenghai Yu. 2024b. Deciphering783
cross-modal alignment in large vision-language mod-784
els with modality integration rate. arXiv preprint785
arXiv:2410.07167.786

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan787
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea788
Madotto, and Pascale Fung. 2023. Survey of halluci-789
nation in natural language generation. ACM Comput-790
ing Surveys, 55(12):1–38.791

Liqiang Jing and Xinya Du. 2024. FGAIF: aligning792
large vision-language models with fine-grained AI793
feedback. CoRR, abs/2404.05046.794

Liqiang Jing, Ruosen Li, Yunmo Chen, and Xinya Du.795
2024. Faithscore: Fine-grained evaluations of hallu-796
cinations in large vision-language models.797

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-798
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,799
Yannis Kalantidis, Li-Jia Li, David A. Shamma,800
Michael S. Bernstein, and Li Fei-Fei. 2017. Vi-801
sual genome: Connecting language and vision us-802
ing crowdsourced dense image annotations. Int. J.803
Comput. Vis., 123(1):32–73.804

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learn-805
ing multiple layers of features from tiny images.806

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.807
Cifar-100 (canadian institute for advanced research).808

Sicong Leng, Hang Zhang, Guanzheng Chen, Xin 809
Li, Shijian Lu, Chunyan Miao, and Lidong Bing. 810
2023. Mitigating object hallucinations in large vision- 811
language models through visual contrastive decoding. 812
CoRR, abs/2311.16922. 813

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, 814
Jingkang Yang, and Ziwei Liu. 2023a. Otter: A 815
multi-modal model with in-context instruction tuning. 816
CoRR, abs/2305.03726. 817

Kenneth Li, Oam Patel, Fernanda B. Viégas, Hanspeter 818
Pfister, and Martin Wattenberg. 2023b. Inference- 819
time intervention: Eliciting truthful answers from a 820
language model. In Advances in Neural Information 821
Processing Systems 36: Annual Conference on Neu- 822
ral Information Processing Systems 2023, NeurIPS 823
2023, New Orleans, LA, USA, December 10 - 16, 824
2023. 825

Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi 826
Wang, Liang Chen, Yazheng Yang, Benyou Wang, 827
and Lingpeng Kong. 2023c. Silkie: Preference dis- 828
tillation for large visual language models. CoRR, 829
abs/2312.10665. 830

Lei Li, Yuwei Yin, Shicheng Li, Liang Chen, Peiyi 831
Wang, Shuhuai Ren, Mukai Li, Yazheng Yang, 832
Jingjing Xu, Xu Sun, Lingpeng Kong, and Qi Liu. 833

2023d. M3it: A large-scale dataset towards 834
multi-modal multilingual instruction tuning. CoRR, 835
abs/2306.04387. 836

Qing Li, Jiahui Geng, Derui Zhu, Zongxiong Chen, 837
Kun Song, Lei Ma, and Fakhri Karray. 2025. In- 838
ternal activation revision: Safeguarding vision lan- 839
guage models without parameter update. In AAAI-25, 840
Sponsored by the Association for the Advancement of 841
Artificial Intelligence, February 25 - March 4, 2025, 842
Philadelphia, PA, USA, pages 27428–27436. AAAI 843
Press. 844

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, 845
Wayne Xin Zhao, and Ji-Rong Wen. 2023e. Eval- 846
uating object hallucination in large vision-language 847
models. In Proceedings of the 2023 Conference on 848
Empirical Methods in Natural Language Process- 849
ing, EMNLP 2023, Singapore, December 6-10, 2023, 850
pages 292–305. Association for Computational Lin- 851
guistics. 852

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James 853
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, 854
and C. Lawrence Zitnick. 2014. Microsoft COCO: 855
common objects in context. In ECCV, volume 8693 856
of Lecture Notes in Computer Science, pages 740– 857
755. Springer. 858

Fuxiao Liu, Tianrui Guan, Zongxia Li, Lichang Chen, 859
Yaser Yacoob, Dinesh Manocha, and Tianyi Zhou. 860
2023a. Hallusionbench: You see what you think? or 861
you think what you see? an image-context reasoning 862
benchmark challenging for gpt-4v (ision), llava-1.5, 863
and other multi-modality models. arXiv preprint 864
arXiv:2310.14566. 865

10

https://doi.org/10.48550/ARXIV.2311.17911
https://doi.org/10.48550/ARXIV.2311.17911
https://doi.org/10.48550/ARXIV.2311.17911
https://doi.org/10.48550/ARXIV.2311.17911
https://doi.org/10.48550/ARXIV.2311.17911
http://arxiv.org/abs/2311.17911
http://arxiv.org/abs/2311.17911
http://arxiv.org/abs/2311.17911
http://arxiv.org/abs/2311.17911
http://arxiv.org/abs/2311.17911
https://doi.org/10.48550/ARXIV.2404.05046
https://doi.org/10.48550/ARXIV.2404.05046
https://doi.org/10.48550/ARXIV.2404.05046
https://doi.org/10.48550/ARXIV.2404.05046
https://doi.org/10.48550/ARXIV.2404.05046
http://arxiv.org/abs/2311.01477
http://arxiv.org/abs/2311.01477
http://arxiv.org/abs/2311.01477
https://doi.org/10.1007/S11263-016-0981-7
https://doi.org/10.1007/S11263-016-0981-7
https://doi.org/10.1007/S11263-016-0981-7
https://doi.org/10.1007/S11263-016-0981-7
https://doi.org/10.1007/S11263-016-0981-7
http://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.48550/ARXIV.2311.16922
https://doi.org/10.48550/ARXIV.2311.16922
https://doi.org/10.48550/ARXIV.2311.16922
http://papers.nips.cc/paper_files/paper/2023/hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2312.10665
https://doi.org/10.48550/ARXIV.2312.10665
https://doi.org/10.48550/ARXIV.2312.10665
https://doi.org/10.48550/ARXIV.2306.04387
https://doi.org/10.48550/ARXIV.2306.04387
https://doi.org/10.48550/ARXIV.2306.04387
https://doi.org/10.1609/AAAI.V39I26.34954
https://doi.org/10.1609/AAAI.V39I26.34954
https://doi.org/10.1609/AAAI.V39I26.34954
https://doi.org/10.1609/AAAI.V39I26.34954
https://doi.org/10.1609/AAAI.V39I26.34954
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.20
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.20
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.20
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.20
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.20


Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser866
Yacoob, and Lijuan Wang. 2023b. Aligning large867
multi-modal model with robust instruction tuning.868
arXiv preprint arXiv:2306.14565.869

Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser870
Yacoob, and Lijuan Wang. 2023c. Aligning large871
multi-modal model with robust instruction tuning.872
CoRR, abs/2306.14565.873

Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser874
Yacoob, and Lijuan Wang. 2024a. Mitigating hal-875
lucination in large multi-modal models via robust876
instruction tuning.877

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae878
Lee. 2023d. Improved baselines with visual instruc-879
tion tuning. arXiv preprint arXiv:2310.03744.880

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae881
Lee. 2023e. Visual instruction tuning. CoRR,882
abs/2304.08485.883

Yufang Liu, Tao Ji, Changzhi Sun, Yuanbin Wu, and884
Aimin Zhou. 2024b. Investigating and mitigating885
object hallucinations in pretrained vision-language886
(CLIP) models. In Proceedings of the 2024 Con-887
ference on Empirical Methods in Natural Language888
Processing, EMNLP 2024, Miami, FL, USA, Novem-889
ber 12-16, 2024, pages 18288–18301. Association890
for Computational Linguistics.891

Holy Lovenia, Wenliang Dai, Samuel Cahyawijaya, Zi-892
wei Ji, and Pascale Fung. 2023. Negative object893
presence evaluation (nope) to measure object halluci-894
nation in vision-language models.895

Jiaying Lu, Jinmeng Rao, Kezhen Chen, Xiaoyuan896
Guo, Yawen Zhang, Baochen Sun, Carl Yang, and897
Jie Yang. 2023. Evaluation and mitigation of ag-898
nosia in multimodal large language models. CoRR,899
abs/2309.04041.900

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike901
Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,902
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023.903
Factscore: Fine-grained atomic evaluation of fac-904
tual precision in long form text generation. CoRR,905
abs/2305.14251.906

OpenAI. 2022. Chatgpt blog post.907

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns,908
Trevor Darrell, and Kate Saenko. 2018. Object hal-909
lucination in image captioning. In EMNLP, pages910
4035–4045. ACL.911

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu,912
Chunyuan Li, Yikang Shen, Chuang Gan, Liang-Yan913
Gui, Yu-Xiong Wang, Yiming Yang, Kurt Keutzer,914
and Trevor Darrell. 2023a. Aligning large mul-915
timodal models with factually augmented RLHF.916
CoRR, abs/2309.14525.917

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, 918
Yikang Shen, Chuang Gan, Liang-Yan Gui, Yu-Xiong 919
Wang, Yiming Yang, Kurt Keutzer, and Trevor Dar- 920
rell. 2023b. Aligning large multimodal models with 921
factually augmented RLHF. CoRR, abs/2309.14525. 922

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 923
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 924
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 925
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard 926
Grave, and Guillaume Lample. 2023. Llama: Open 927
and efficient foundation language models. CoRR, 928
abs/2302.13971. 929

Junyang Wang, Yuhang Wang, Guohai Xu, Jing Zhang, 930
Yukai Gu, Haitao Jia, Ming Yan, Ji Zhang, and Jitao 931
Sang. 2023. An llm-free multi-dimensional bench- 932
mark for mllms hallucination evaluation. CoRR, 933
abs/2311.07397. 934

Tan Wang, Jianqiang Huang, Hanwang Zhang, and 935
Qianru Sun. 2020. Visual commonsense R-CNN. 936
In 2020 IEEE/CVF Conference on Computer Vision 937
and Pattern Recognition, CVPR 2020, Seattle, WA, 938
USA, June 13-19, 2020, pages 10757–10767. Com- 939
puter Vision Foundation / IEEE. 940

Jinfeng Wei and Xiaofeng Zhang. 2024. DOPRA: 941
decoding over-accumulation penalization and re- 942
allocation in specific weighting layer. In Proceedings 943
of the 32nd ACM International Conference on Mul- 944
timedia, MM 2024, Melbourne, VIC, Australia, 28 945
October 2024 - 1 November 2024, pages 7065–7074. 946
ACM. 947

Yun Xing, Yiheng Li, Ivan Laptev, and Shijian Lu. 2024. 948
Mitigating object hallucination via concentric causal 949
attention. In Advances in Neural Information Pro- 950
cessing Systems 38: Annual Conference on Neural 951
Information Processing Systems 2024, NeurIPS 2024, 952
Vancouver, BC, Canada, December 10 - 15, 2024. 953

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming 954
Yan, Yiyang Zhou, Junyang Wang, Anwen Hu, 955
Pengcheng Shi, Yaya Shi, Chenliang Li, Yuanhong 956
Xu, Hehong Chen, Junfeng Tian, Qian Qi, Ji Zhang, 957
and Fei Huang. 2023. mplug-owl: Modularization 958
empowers large language models with multimodality. 959
CoRR, abs/2304.14178. 960

Shukang Yin, Chaoyou Fu, Sirui Zhao, Tong Xu, Hao 961
Wang, Dianbo Sui, Yunhang Shen, Ke Li, Xing Sun, 962
and Enhong Chen. 2023. Woodpecker: Hallucina- 963
tion correction for multimodal large language models. 964
CoRR, abs/2310.16045. 965

Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng 966
Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu, Hai-Tao 967
Zheng, Maosong Sun, and Tat-Seng Chua. 2023. 968
RLHF-V: towards trustworthy mllms via behavior 969
alignment from fine-grained correctional human feed- 970
back. CoRR, abs/2312.00849. 971

Zihao Yue, Liang Zhang, and Qin Jin. 2024. Less is 972
more: Mitigating multimodal hallucination from an 973

11

http://arxiv.org/abs/2306.14565
http://arxiv.org/abs/2306.14565
http://arxiv.org/abs/2306.14565
http://arxiv.org/abs/2306.14565
http://arxiv.org/abs/2306.14565
https://aclanthology.org/2024.emnlp-main.1016
https://aclanthology.org/2024.emnlp-main.1016
https://aclanthology.org/2024.emnlp-main.1016
https://aclanthology.org/2024.emnlp-main.1016
https://aclanthology.org/2024.emnlp-main.1016
http://arxiv.org/abs/2310.05338
http://arxiv.org/abs/2310.05338
http://arxiv.org/abs/2310.05338
http://arxiv.org/abs/2310.05338
http://arxiv.org/abs/2310.05338
https://doi.org/10.48550/ARXIV.2309.14525
https://doi.org/10.48550/ARXIV.2309.14525
https://doi.org/10.48550/ARXIV.2309.14525
https://doi.org/10.48550/ARXIV.2311.07397
https://doi.org/10.48550/ARXIV.2311.07397
https://doi.org/10.48550/ARXIV.2311.07397
https://doi.org/10.1109/CVPR42600.2020.01077
https://doi.org/10.1145/3664647.3681076
https://doi.org/10.1145/3664647.3681076
https://doi.org/10.1145/3664647.3681076
https://doi.org/10.1145/3664647.3681076
https://doi.org/10.1145/3664647.3681076
http://papers.nips.cc/paper_files/paper/2024/hash/a76ed4a8ef522c823d73925e7fff16d4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/a76ed4a8ef522c823d73925e7fff16d4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/a76ed4a8ef522c823d73925e7fff16d4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2312.00849
https://doi.org/10.48550/ARXIV.2312.00849
https://doi.org/10.48550/ARXIV.2312.00849
https://doi.org/10.48550/ARXIV.2312.00849
https://doi.org/10.48550/ARXIV.2312.00849
https://doi.org/10.18653/V1/2024.ACL-LONG.633
https://doi.org/10.18653/V1/2024.ACL-LONG.633
https://doi.org/10.18653/V1/2024.ACL-LONG.633
https://doi.org/10.18653/V1/2024.ACL-LONG.633


EOS decision perspective. In Proceedings of the974
62nd Annual Meeting of the Association for Compu-975
tational Linguistics (Volume 1: Long Papers), ACL976
2024, Bangkok, Thailand, August 11-16, 2024, pages977
11766–11781. Association for Computational Lin-978
guistics.979

Xiaofeng Zhang, Yihao Quan, Chaochen Gu, Chen980
Shen, Xiaosong Yuan, Shaotian Yan, Hao Cheng,981
Kaijie Wu, and Jieping Ye. 2024a. Seeing clearly982
by layer two: Enhancing attention heads to alleviate983
hallucination in lvlms. CoRR, abs/2411.09968.984

Yue Zhang, Liqiang Jing, and Vibhav Gogate. 2025.985
Defeasible visual entailment: Benchmark, evalua-986
tor, and reward-driven optimization. In AAAI-25,987
Sponsored by the Association for the Advancement of988
Artificial Intelligence, February 25 - March 4, 2025,989
Philadelphia, PA, USA, pages 25976–25984. AAAI990
Press.991

Yue Zhang, Jingxuan Zuo, and Liqiang Jing. 2024b.992
Fine-grained and explainable factuality evaluation993
for multimodal summarization. arXiv preprint994
arXiv:2402.11414.995

Yiyang Zhou, Chenhang Cui, Rafael Rafailov, Chelsea996
Finn, and Huaxiu Yao. 2024. Aligning modalities997
in vision large language models via preference fine-998
tuning. CoRR, abs/2402.11411.999

Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun1000
Zhang, Zhun Deng, Chelsea Finn, Mohit Bansal, and1001
Huaxiu Yao. 2023. Analyzing and mitigating object1002
hallucination in large vision-language models. CoRR,1003
abs/2310.00754.1004

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and1005
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing1006
vision-language understanding with advanced large1007
language models. CoRR, abs/2304.10592.1008

A Hallucinations in Different 1009

Components 1010

We show the potential hallucinations of each com- 1011

ponent of LVLMs, and the corresponding mitiga- 1012

tion methods in Table 8 1013

B More Experiments on Hallucination 1014

Benchmark 1015

We further add experiments on another hallucina- 1016

tion benchmark, Amber. The experimental results 1017

of Table 9 show the effectiveness of our method. 1018

C Case Study 1019

We showed some hallucinated examples in Figure 1020

3. We can see that the hallucination caused by 1021

CLIP can be further input to the LVLM, causing 1022

the hallucination in the LVLM. 1023

Question: Is there a bed in the image?

LLaVA output: There is a bed in the image.

Image

Text 1: a bird is in the image.  
CLIP probobility: 0.1848

Text 2: a bed is in the image. 
CLIP probobility: 0.8154

Figure 3: The illustration of the hallucinated case for
CLIP and LLaVA.

D Comparison with the Existing 1024

Hallucination Mitigation Method 1025

To verify the effectiveness or our methods, we fur- 1026

ther add more baselines on POPE, as shown in 1027
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Component Hallucination? Mitigation

Vision Backbone ✓ w-ECLIP & w-FineIns
Projector ✓ Int. Align. & Int. Align. & Sep. Ctrs. Align.

LLM % N/A

Table 8: Illustration of potential hallucinations in the components of LVLMs, and the corresponding mitigation
methods

Table 10. From this table, our methods show com-1028

petitive performance with the best baseline (i.e.,1029

Less is more). This further demonstrates the effec-1030

tiveness of our method.1031

E Experiment on General Benchmark1032

To verify the impact of the proposed method on gen-1033

eral capabilities, we further conduct experiments1034

on the general benchmark LLaVA-Bench (Liu et al.,1035

2023e). The results of Table 11 show the effective-1036

ness of our method.1037

F Ablation Study1038

In this section, we conduct ablation experiments to1039

assess the contribution of each component in the1040

loss function by individually removing the weights1041

λ1 and λ2. The results are shown in the Table 12.1042

These results demonstrate that both components1043

play meaningful roles in enhancing model perfor-1044

mance.1045
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Dataset LLaVA-7B w-ECLIP w-FineIns Int. Align. Int. Align. Sep. Ctrs. Align.
Existence 83 93 92 88 91 87
Attribute 64 81 81 75 78 76
Relation 65 69 70 57 62 59
All 71 73 81 73 77 74

Table 9: Performance on the Amber dataset across different model variants. Bold indicates best scores per row.

Method F1 Score
DoLa (Chuang et al., 2024) 80.2
ITT (Li et al., 2023b) 83.7
VCD (Leng et al., 2023) 83.2
AGLA (An et al., 2025) 84.6
OPERA (Huang et al., 2024a) 85.2
DOPRA (Wei and Zhang, 2024) 85.6
HALC (Chen et al., 2024c) 83.9
FastV (Chen et al., 2024b) 81.3
Less is more (Yue et al., 2024) 86.0
CCA-LLAVA (Xing et al., 2024) 85.5
LRV (Liu et al., 2024a) 80.0
Amber (Wang et al., 2023) 81.6
EAH (Zhang et al., 2024a) 85.7

w-ECLIP 85.9
w-FineIns 85.5
Int. Align. 85.5
Int. Align. 85.5
Sep. Ctrs. Align 86.0

Table 10: POPE F1 scores for baselines and proposed
methods. Bold indicates the highest score.

Model Conv Detail Complex Full
LLaVA-7B 92 75 75 81

w-ECLIP 93 84 87 88
w-FineIns 94 86 86 89
Int. Align. 95 87 83 89
Int. Align. 93 84 82 86
Sep. Ctrs. Align 99 85 87 90

Table 11: Model performance comparison on different
categories and the full set on LLaVA-Bench.

Method
POPE

Random Popular Adversarial

Acc F1 Acc F1 Acc F1
w-ECLIP 87.80 86.87 87.30 86.04 85.87 84.70
λ1 = 0 87.50 86.38 86.93 85.84 85.62 83.97
λ2 = 0 87.52 86.47 86.79 85.88 85.47 84.11

Table 12: Ablation study on the impact of loss function
components λ1 and λ2 across different POPE test sub-
sets.
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