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Abstract
We introduce a 1B-parameter transformer model
pre-trained from scratch on 2.25 T tokens from a
massive mixture of datasets centered around drug
discovery. These datasets are heterogeneous, com-
ing from dozens of sources and covering 15 data
modalities. We demonstrate the model’s capabil-
ity on various molecular assay prediction tasks,
including public benchmarks and internally gener-
ated holdouts from real-world drug discovery pro-
grams. Following parameter-efficient fine-tuning,
the multi-modal transformer excels at multi-task
predictions compared to strong molecular prop-
erty prediction baselines including XGBoost and
Chemprop.

1. Introduction
The process of discovering and developing new drugs is
long and complex, spanning many years and involving
many stages from initial target identification though clini-
cal trials. Each stage of the pipeline features a wide array
of experimental endpoints and generates diverse types of
data, ranging from chemical structures and physicochem-
ical properties to biological assay results and clinical out-
comes. The sheer complexity and heterogeneity of these
data make it challenging for practitioners to accurately de-
sign compounds and make informed decisions about which
compounds to prioritize for further development.

Machine learning has long promised to change the way we
discover drugs, and recently deep learning has seen enor-
mous interest (Askr et al., 2023). However, its success has
been limited by several key challenges related to the nature
and quality of available data. The first major obstacle is
the high cost of acquiring high-quality experimental data.
While there are some large public databases available, such
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as PubChem and ChEMBL, these resources often suffer
from low data quality and from heterogeneity (Landrum &
Riniker, 2024). The second major obstacle is the enormous
number of data modalities in the biomedical field, ranging
from assay measurements to x-ray crystal structures to clin-
icians’ notes. Previous approaches have addressed these
issues through careful data curation (Seidl et al., 2023) and
modality-specific architectures (Liu et al., 2023a; Edwards
et al., 2022; Liu et al., 2023b). However, the operational
complexity of these approaches has limited their respec-
tive scopes to a small number of data sources and/or data
modalities.

In this work, we propose to train a single model on dozens
of public and private data sources, and 15 data modalities.
We eschew careful data curation and bespoke model archi-
tecture, choosing instead to represent all data as strings of
tokens, and to train a large transformer model. We report re-
sults for a 1B-parameter multi-modal transformer (Vaswani
et al., 2017; Touvron et al., 2023a;b; Radford et al., 2018;
2019; Brown et al., 2020; Achiam et al., 2023; Chowdhery
et al., 2023; Black et al., 2022; Yasunaga et al., 2022) model
trained on 2.25T tokens.

2. Data Pipeline
Biomedical data is extremely heterogeneous. Pre-training
a large transformer model requires an enormous corpus of
data. To effectively train a large multi-modal transformer
model for drug discovery, we developed a data pipeline to
standardize, clean, and transform a large corpus of biomedi-
cal data from many sources and of various types into streams
of tokens suitable for model training. This data pipeline con-
sists of four main stages: (1) raw data aggregation, (2) data
type standardization and entity recognition, (3) modality
extraction, and (4) training token sequence assembly.

2.1. Raw Data Aggregation

First, data from various sources are gathered into an object
store in their raw, original form. This includes text from
ArXiv and Wikipedia (Together.ai, 2023), assay data from
ChEMBL (Gaulton et al., 2012) and the Therapeutic Data
Commons (Huang et al., 2021), quantum mechanics and
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Table 1. Pre-training Corpus.

Source Token Count (B)
Text

peS2o (Soldaini & Lo, 2023) 67.91
arXiv (Together.ai, 2023) 28.12

Wikipedia (Together.ai, 2023) 5.48
BioRxiv (marianna, 2023) 0.02

PubMed & USPTO (Gao et al., 2020) 72.98
ClinicalTrials (U.S. National Library of Medicine, 2014) 5.67

Assay Data
Biogen ADME (Fang et al., 2023) 0.04

Kinase200 (Luukkonen et al., 2023) 0.77
ChEMBL (Gaulton et al., 2012) 60.80

Internal assays 0.46
GOSTAR (Excelra, 2023) 86.63

Therapeutic Data Commons (Huang et al., 2021) 4.85
PubChem (Seidl et al., 2023) 84.46

QM Data
Misato QM (Siebenmorgen et al., 2023) 0.07

Orbnet (Christensen et al., 2021) 8.80
Knowledge Graph

PrimeKG (Chandak et al., 2023) 3.39
Genetic Data

DepMap (Broad-Institute, 2020) 73.76
NCBI Gene Database (NIH, 2004) 0.06

Protein Data
Protein Data Bank (wwp, 2019) 2.89

Misato MD (Siebenmorgen et al., 2023) 1.28
UniRef100 (Suzek et al., 2015) 147.10

Synthetic
Randomized SMILES 0.34

Synthetic SMILES 0.19
Total 656.07

molecular dynamics data from Misato (Siebenmorgen et al.,
2023), genetic data from DepMap (Broad-Institute, 2020),
protein structures from the Protein Data Bank (wwp, 2019),
and protein sequences from Uniref100 (Suzek et al., 2015).
In addition, synthetic datasets are generated corresponding
to different protomer and tautomer states of molecules from
ChEMBL as well as randomized SMILES strings using
RDKit (Landrum, 2023). Table 1 provides the complete list
of data sources included in the pre-training corpus.

2.2. Data Type Standardization and Entity Recognition

Second, each source of data is grouped by data type. For
each data type, all data of that type are converted to a stan-
dard file format (e.g. protein structure data are converted
to PDB format). Our data types include: assay descrip-
tions, assay values, text, protein structures, molecular struc-
tures, molecule graphs, SMILES strings (Weininger, 1988a),
FASTA sequences, knowledge graphs, JSON data, quantum
mechanical data, cancer cell line data, gene dependency
data, gene data, and molecular substance data.

During the same step, the data are tagged by the entities
contained within them. Our entity types include: molecules,
properties, assays, proteins, PDB codes, genes, diseases,
symptoms, taxonomy, tissues, cell lines, chemical reac-
tions, molecular functions, biological processes, cellular
components, and chemical synthesis batches. For example,
a protein-ligand structure datum containing the structure of

a CDK4–Cyclin-D3–abemaciclib complex is tagged with
the protein entities CDK4 and Cyclin D3, the molecule en-
tity abemaciclib, the PDB code 7SJ3, and the biological
process mitosis. Entities are assigned using either meta-
data or named entity recognition techniques (Yoon et al.,
2022). Additionally, numerical values corresponding to
dimensioned quantities are transformed and converted to
standard SI units.

2.3. Modality Extraction

Third, data are combined to form modality data. Modality
data are 1D strings of characters constructed in a specific
way for each modality in our multi-modal model. These
modalities closely follow the data types above but are dis-
tinct in some ways. The modalities include: text, molecule
graphs, molecule structures, atomic 3D coordinates, protein
structures in PDB format, protein structures in 3Di encod-
ing (van Kempen et al., 2022), protein ligand complexes
in PDB format, protein sequences, nucleotide sequences,
walks on knowledge graphs, knowledge graph neighbor-
hoods, tabular data, and raw data files.

2.4. Training Token Sequence Assembly

Finally, modality data are converted to token sequences us-
ing a Byte-Pair Encoding (BPE) tokenizer (Sennrich et al.,
2016) (Section 3.1). These token sequences are grouped into
training samples on the basis of their shared entities (Sec-
tion 2.2). Within a training sample, these token sequences
are concatenated together, each preceded by a delimiter to-
ken indicating its modality. This scheme of grouping the
token sequences is akin to RA-CM3 (Yasunaga et al., 2022).
The set of all assembled token sequences are grouped into
training data shards at random.

To prevent leakage of benchmark test data into pre-training,
an entity holdout system is used. First, all of the entities cor-
responding to benchmark test data are gathered. Then, when
assembling the pre-training token sequences, if a datum is
tagged with an entity that is in the benchmark set of enti-
ties, it is excluded from the pre-training data. This system
ensures that data from other sources closely related to the
benchmark test data also do not leak into the pre-training
corpus.

3. Model
3.1. Tokenizer

We start from the LLaMA-2 tokenizer which employs Byte
Pair Encoding (BPE) (Sennrich et al., 2016) implemented in
Sentence-Piece (Kudo & Richardson, 2018). We then add
uni-gram tokens for numbers similar to FP15 format from
Charton (2021), SMILES (Weininger, 1988b) tokens from
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SmilesPE (Li & Fourches, 2021), and protein structural
tokens from FoldSeek (van Kempen et al., 2022). See Sup-
porting Information for an example token sequence which
incorporates the special tokens described above.

3.2. Architecture

Our transformer model is based on the LLaMA-2 architec-
ture (Touvron et al., 2023a;b). We make no changes and
therefore use SwishGLU (Shazeer, 2020), Rotary Positional
Encoding (RoPE) (Su et al., 2024), and Multi Head Atten-
tion (Vaswani et al., 2017). The model has a context length
of 4096 tokens.

3.3. Pre-training

Our model implementation uses FLASH ATTENTION 2 (Dao
et al., 2022; Dao, 2023), FUSED SWIGLU from xForm-
ers (Lefaudeux et al., 2022), FULLY SHARDED DATA PAR-
ALLEL (FSDP) (Zhao et al., 2023) and automatic mixed pre-
cision training (Micikevicius et al., 2017) with bfloat16.
Our production training runs use Docker images from the
NVIDIA GPU Catalog (NGC), specifically the 23.09 tag
of the PYTORCH (Paszke et al., 2017) Docker image.

Our model has approximately 1 billion parameters (Zhang
et al., 2024) including token embedding and language mod-
elling head parameters. We use MOSAICML STREAM-
ING (Mosaic-ML-Team, 2022) for efficient sharded dat-
aloading. We use 256 A100-40G NVIDIA GPUs to train
the production model, totaling approximately 29,000 A100
hours of training time. The total training time includes time
spent on validation steps during training, checkpoint saving
and restarting from checkpoints between jobs. During the
production training run we observe sustained training Model
FLOPS utilization (MFU) of 0.61 using the PaLM estima-
tion formula (Chowdhery et al., 2023). We use a global
batch size of 4M tokens and AdamW optimizer (Loshchilov
& Hutter, 2017) with β1 = 0.9 and β2 = 0.95, gradient
clipping of 1.0 and weight decay of 0.1. We use cosine
annealing schedule (Loshchilov & Hutter, 2017) with a
maximum learning rate of 3.0 ∗ 10−4 after an initial linear
warm up of approximately 100B tokens.

We pre-train from scratch on the data curated in Section 2.
Our pre-training objective is a mix of RA-CM3 (Yasunaga
et al., 2022; Aghajanyan et al., 2022) and next token pre-
diction (Radford et al., 2018; 2019; Brown et al., 2020). In
total, we train the model using 2.25T tokens. We use the
last checkpoint as the base model for benchmarking and
downstream fine-tuning.

3.4. Fine-tuning

To fine-tune the model for assay prediction tasks, we use
mean squared error (MSE) loss with minor changes to the

model architecture. The language modelling head is re-
placed with a regression head that has a fully connected
layer with a single output (the numerical assay value predic-
tion). The embedding of the last token in the sequence is
used as the prompt embedding, which is fed to the regression
head to generate a prediction.

Low-rank adaptation (LoRA) (Hu et al., 2021) is used for
parameter-efficient fine-tuning of the base model using the
PEFT library (Mangrulkar et al., 2022) with a rank of 16
and alpha of 16. We use the AdamW optimizer (Loshchilov
& Hutter, 2017) with β1 = 0.9 and β2 = 0.999, a maximum
learning rate of 1.0 ∗ 10−4, a batch size of 8, and a cosine
annealing learning rate scheduler with linear warm-up for
the first 5% of total training steps.

Each benchmark test set is globally held out from training
(both pre-training and fine-tuning). The best model is se-
lected during fine-tuning which minimizes the MSE loss on
the validation set (random 15% split of the training data).

3.5. Benchmarking

We benchmark our models on our own internal assays as
well as 2 public benchmarks: Biogen ADME (Fang et al.,
2023) and Kinase200 (Luukkonen et al., 2023). Biogen
ADME contains 3,521 commercially available drug-like
compounds measured by Biogen across 6 in-vitro ADME
assays. Kinase200 is a large, but sparse, curated dataset
of 216,858 kinase inhibition measurements for 198 kinases
and 82,982 molecules. To save compute, we choose to
benchmark only on the dissimilarity-driven global balanced
clustering (DGBC) split of the 9 CDKs from Kinase200.
Our own internal benchmark consists of tasks across 4 drug
discovery domains including 6 absorption and distribution
endpoints, 6 protein inhibition assays corresponding to in-
ternal drug targets, 2 physical chemistry properties, and 4
metabolic clearance tasks. See Supporting Information for
detailed descriptions of all benchmark tasks.

When training on public datasets, data contamination is a
foremost concern (Sainz et al., 2023). The Biogen ADME
benchmark addresses data contamination by generating
fresh experimental data; at the time of its publication, its
3,521 molecules had no known public measurements for
its 6 ADME assays. Our internal benchmark contains data
for multiple real-world drug discovery programs. Due to
the proprietary nature of the molecules in this benchmark,
we can be confident that they are excluded from the pre-
training data corpus, and that the resulting benchmarks are
not contaminated.

A total of 6 multi-task multi-modal transformer models are
fine-tuned using the procedure described in Section 3.4: 1
for Biogen ADME, 1 for Kinase200 CDKs, and 4 for the
internal benchmark (1 per domain). To obtain an estimate of
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the uncertainty, performance metrics are average over five
models trained with different random seeds. The reported
uncertainty is the standard error of the mean (SEM = s√

5
)

over the five training runs.

These models are benchmarked against the base multi-
modal transformer model and two external baselines: XG-
Boost (Chen & Guestrin, 2016), a common tree-based
method, and Chemprop (Heid et al., 2024), a state-of-the-
art graph neural network. A single-task XGBoost model
is trained on each task with a Morgan fingerprint (Rogers
& Hahn, 2010) of size 2048 and radius 3. For Chemprop,
single-task and multi-task models are trained using the de-
fault hyperparameters. For training all external baselines,
the dataset is split 80/20 into training and validation parti-
tions, and all models are benchmarked on the same held-
out test set for each task. Predictions for the multi-modal
base model are obtained using autoregressive greedy decod-
ing. The model is prompted with the assay description and
molecule SMILES.

4. Results & Discussion
4.1. Scaling Laws

Table 2. Mean Absolute Error (MAE) and Pearson correlation coef-
ficient (Pearson R) of two base models trained on different numbers
of tokens for the Biogen ADME benchmark test set.

Task 870B training tokens 2.25T training tokens

MAE Pearson R MAE Pearson R

HLM 0.41 0.60 0.38 0.66
HPPB 0.87 0.48 0.66 0.71
MDR1-MDCK-ER 0.46 0.56 0.47 0.55
RLM 0.48 0.67 0.52 0.62
RPPB 0.82 0.55 0.56 0.74
SOLUBILITY 0.98 -0.05 0.43 0.55

Transformer models are known to exhibit scaling laws (Hoff-
mann et al., 2022; Kaplan et al., 2020) in downstream bench-
mark performance, where increased training compute results
in improved performance. In Table 2 we report performance
on the Biogen ADME benchmark set for two base model
checkpoints during pre-training. Specifically, we benchmark
model checkpoints trained on approximately 870B tokens
and 2.25T tokens. The model trained for 2.25T tokens sig-
nificantly outperforms the model trained for 870B tokens
in 4/6 tasks. In the remaining two tasks, the 870B-token
model slightly outperforms the 2.25T-token model. This re-
sults is consistent with previous findings: while pre-training
loss as a function of training compute behaves predictably,
downstream performance is only correlated to training com-
pute (Hoffmann et al., 2022; Du et al., 2024).

4.2. Benchmarks

Table 3. Pearson correlation coefficient (Pearson R) of the multi-
modal transformer models trained in this work (Base and LoRA-
finetuned) vs Chemprop and XGBoost on the Biogen ADME,
Internal, and Kinase200 benchmarks. The error for Chemprop and
LoRA is the standard error of the mean over 5 different random
seeds. See Supporting Information for detailed descriptions of the
tasks and a corresponding table reporting mean absolute errors.

Task XGBoost Chemprop Chemprop This work This work
Single-Task Multi-Task Single-Task Base LoRA

Biogen ADME
HLM 0.559 0.743 ± 0.005 0.748 ± 0.004 0.656 0.813 ± 0.006
HPPB 0.397 0.707 ± 0.015 0.712 ± 0.010 0.707 0.822 ± 0.003
MDR1-MDCK-ER 0.608 0.741 ± 0.014 0.713 ± 0.011 0.554 0.821 ± 0.004
RLM 0.560 0.767 ± 0.005 0.736 ± 0.005 0.617 0.818 ± 0.003
RPPB 0.423 0.671 ± 0.032 0.688 ± 0.024 0.742 0.842 ± 0.004
SOLUBILITY 0.403 0.580 ± 0.012 0.582 ± 0.012 0.547 0.680 ± 0.005

Internal absorption and distribution
FBS-PB 0.646 0.800 ± 0.006 0.751 ± 0.014 0.295 0.628 ± 0.028
HLM-PB 0.537 0.603 ± 0.019 0.418 ± 0.017 0.101 0.561 ± 0.016
HPPB 0.288 0.375 ± 0.051 0.236 ± 0.028 0.143 0.531 ± 0.044
MDCK-MDR1-ER 0.258 0.046 ± 0.035 0.207 ± 0.019 -0.148 0.492 ± 0.036
MPPB 0.696 0.829 ± 0.011 0.677 ± 0.047 0.243 0.855 ± 0.004
PAMPA PAPP -0.057 0.115 ± 0.011 0.047 ± 0.084 -0.050 0.617 ± 0.020

Internal inhibition assays (IC50)
PROTEIN 1 0.654 0.641 ± 0.022 0.584 ± 0.034 0.408 0.673 ± 0.016
PROTEIN 2 0.491 0.641 ± 0.026 0.703 ± 0.020 0.413 0.670 ± 0.008
PROTEIN 3 0.358 0.306 ± 0.023 0.342 ± 0.031 0.380 0.435 ± 0.015
PROTEIN 4 0.607 0.626 ± 0.031 0.490 ± 0.075 0.374 0.677 ± 0.014
PROTEIN 5 0.298 0.159 ± 0.021 0.235 ± 0.044 0.206 0.353 ± 0.016
PROTEIN 6 0.483 0.550 ± 0.023 0.576 ± 0.021 0.516 0.628 ± 0.012

Internal physical chemistry
SOLUBILITY 0.313 0.624 ± 0.008 0.629 ± 0.010 0.382 0.645 ± 0.009
LOGD 0.490 0.803 ± 0.009 0.737 ± 0.015 0.573 0.796 ± 0.018

Internal metabolic clearance
GSH -0.410 0.029 ± 0.018 -0.064 ± 0.027 0.175 0.307 ± 0.036
HUMAN HEP 0.365 0.145 ± 0.032 0.356 ± 0.060 -0.246 0.458 ± 0.097
MOUSE HEP 0.073 0.128 ± 0.008 0.043 ± 0.012 0.107 0.255 ± 0.038
RAT HEP -0.214 0.219 ± 0.024 0.130 ± 0.016 -0.148 0.269 ± 0.061

Kinase200
Median of 9 CDK tasks 0.240 0.412 0.383 0.275 0.565

The performance of the multi-modal transformer model
(base and fine-tuned) pre-trained for 2.25T tokens is re-
ported for all benchmarks in Table 3. Comparisons to XG-
Boost and Chemprop are also presented. The base model
performs poorly relative to XGBoost and Chemprop across
most tasks. However, fine-tuning the base model dramati-
cally improves its performance. The LoRA fine-tuned multi-
modal transformer has the highest Pearson R on all Biogen
ADME tasks and 10/18 internal assays. The fine-tuned
model only underperforms Chemprop by a significant mar-
gin on 2 tasks: fetal bovine serum protein binding (FBS-PB)
with a Pearson R of 0.628 vs 0.800 and human liver micro-
some protein binding (HLM-PB) with a Pearson R of 0.561
vs 0.603. It performs similarly to Chemprop on the inter-
nal physical chemistry tasks, and outperforms Chemprop
and XGBoost on most internal absorption and distribution,
protein inhibition, and clearance assays. The fine-tuned
multi-modal model is also the most accurate model in pre-
dicting CDK inhibition for the Kinase200 benchmark. It has
the highest median Pearson R and the lowest median mean
absolute error across the 9 Kinase200 CDKs (see Support-
ing Information for a corresponding table reporting MAE
values), demonstrating its capability to generalize over the
deliberate chemical dissimilarity between the training and
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test splits in Kinase200.

4.3. Comparison To Generalist LLMs

Table 4. Mean Absolute Error (MAE) and Pearson correlation co-
efficient (Pearson R) of the LoRA fine-tuned multi-modal trans-
former model trained in this work vs a LoRA fine-tuned LLaMA-2
7B model on the Biogen ADME benchmark test set. The pre-
trained model in this work outperforms on all tasks.
Task This work 1B LoRA LLaMA-2 7B LoRA

MAE Pearson R MAE Pearson R

HLM 0.279 ± 0.003 0.813 ± 0.006 0.333 0.751
HPPB 0.518 ± 0.008 0.822 ± 0.003 0.613 0.750
MDR1-MDCK-ER 0.317 ± 0.002 0.821 ± 0.004 0.381 0.771
RLM 0.319 ± 0.003 0.818 ± 0.003 0.374 0.754
RPPB 0.434 ± 0.007 0.842 ± 0.004 0.503 0.779
SOLUBILITY 0.330 ± 0.003 0.680 ± 0.005 0.342 0.648

We also test the effect of domain-specific pre-training by
comparing to the generalist language model GPT-3.5 (GPT)
and LLaMA-2 7B (Touvron et al., 2023b). We use OpenAI’s
fine-tuning API to fine-tune GPT-3.5-TURBO-0125 on the
Biogen ADME dataset using prompts formatted as in Sec-
tion 2. In comparison to both base and fine-tuned versions
of our model, we find that the performance of fine-tuned
GPT-3.5 is poor. Specifically, at a sampling temperature of
0, GPT-3.5-TURBO-0125 predicts a single value for each
task, regardless of the input molecule. See the Supporting
Information for more details.

We fine-tune LLaMA-2 7B on Biogen ADME using the
same regression fine-tuning procedure and hyperparameters
described in Section 3.4. Due to the increased training cost
of fine-tuning a 7B parameter model, we only fine-tune
a single multi-task LLaMA-2 model. Table 4 shows that,
despite having fewer parameters, our 1B parameter pre-
trained multi-modal model outperforms fine-tuned LLaMA-
2 7B on all tasks. This highlights the significance of our
domain-specific multi-modal pre-training in achieving state-
of-the-art results on assay benchmarks.

4.4. Multi-Task Learning Curve

To investigate if the multi-modal multi-task transformer is
an effective multi-task learner, we compute learning curves
using different amounts of HLM and RLM training data for
fine-tuning from the Biogen ADME benchmark. Specifi-
cally, we evaluate the Pearson correlation coefficient on the
HLM test set when varying the amount of HLM training
data from 50 to 200 samples and RLM training data from 0
to 200 samples. Figure 1 shows the performance on HLM
increases as more RLM training data is added. The model
achieves a Pearson R on HLM greater than 0.7 with 200
HLM data or only 50 HLM data and 200 RLM data. This
demonstrates that the multi-modal multi-task transformer ef-
fectively leverages training data from multiple tasks (HLM

Figure 1. Biogen ADME HLM/RLM Multi-task Learning Curve.
Adding RLM training data improves the model’s performance on
HLM.
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and RLM) to improve performance in the low-data regime.
This is critical in drug discovery programs where there may
be an abundance of some data and shortage of more critical
data that is expensive or difficult to obtain.

5. Conclusions
In this work, we have reported a multi-modal and multi-task
transformer model trained on a large variety of biomedi-
cal data sources and data modalities. When benchmarked
on assay prediction, this model outperforms representative
standard techniques and generalist LLMs. We have also
demonstrated how the model leverages multi-task data on
metabolic stability in rat liver microsomes to improve pre-
dictive performance on human liver microsomes.

Assay prediction benchmarks are legible, common, and
there are many ML techniques to address them. However,
the multi-modal transformer reported herein generalizes
naturally to other modalities and tasks. Future work could
include predictions involving multiple chemical entities,
such as reaction yields, and could further extend to include
structured data, as in retrosynthesis prediction. The model,
being generative, also lends itself naturally to generative
tasks, including inverse design of molecules with desired
properties.

Finally, it is well established that transformer models im-
prove as the number of training data and model parameters
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are increased. Our model is relatively small, and there is
headroom to explore significantly larger models. In addition,
the universe of public biomedical data is vast, and could
readily provide orders of magnitude more training tokens.
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