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Abstract

Markov Decision Processes (MDPs) deliver a formal framework for modeling1

and solving sequential decision-making problems. In this paper, we make several2

contributions towards the theoretical understanding of (stochastic) policy gradient3

methods for MDPs. The focus lies on proving convergence (rates) of softmax policy4

gradient towards global optima in undiscounted finite-time horizon problems, i.e.5

γ = 1, without regularization. Such problems are relevant for instance for optimal6

stopping or specific supply chain problems. Our estimates must differ significantly7

from several recent articles that involve powers of (1− γ)−1.8

The main contributions are the following. For undiscounted finite-time MDPs we9

prove asymptotic convergence of policy gradient to a global optimum and derive a10

convergence rate using a weak Polyak-Łojasiewicz (PL) inequality. In each decision11

epoch, the derived error bound depends linearly on the remaining duration of the12

MDP. In the second part of the analysis, we quantify the convergence behavior for13

the stochastic version of policy gradient. The analysis yields complexity bounds14

for an approximation arbitrarily close to the global optimum with high probability.15

As a by-product, our stochastic gradient arguments prove that the plain vanilla16

REINFORCE algorithm for softmax policies indeed approximates global optima17

for sufficiently large batch sizes.18

1 Introduction19

Policy gradient methods continue to enjoy great popularity in practice due to their model-free nature20

and high flexibility. Despite their far-reaching history (Williams, 1992; Sutton et al., 1999; Konda and21

Tsitsiklis, 1999; Kakade, 2001), there were no proofs for the global convergence of these algorithms22

for a long time. Nevertheless, they have been very successful in many applications, which is why23

numerous variants have been developed in the last few decades, whose convergence analysis, if24

available, is mostly limited to convergence to stationary points (Pirotta et al., 2013; Schulman et al.,25

2015; Papini et al., 2018; Clavera et al., 2018; Shen et al., 2019; Xu et al., 2020b; Huang et al., 2020;26

Xu et al., 2020a; Huang et al., 2022).27

In recent years, notable advancements have been achieved in the convergence analysis towards28

global optima (Fazel et al., 2018; Agarwal et al., 2021; Mei et al., 2020; Bhandari and Russo, 2021,29

2022; Cen et al., 2022; Xiao, 2022; Alfano and Rebeschini, 2023). These achievements are partially30

attributed to the utilization of (weak) gradient domination or Polyak-Łojasiewicz (PL) inequalities31

(Polyak, 1963). As examined in Karimi et al. (2016) a PL-inequality and smoothness implies a32

linear convergence rate for gradient descent methods. In certain cases, only a weaker form of the33

PL inequality can be derived, which states that it is only possible to limit the norm of the gradient34

instead of the squared norm of the gradient by the distance to the optimum. Despite this limitation,35

O(1/n)-convergence can still be achieved in some instances.36
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The research community has predominantly focused on discounted Markov decision processes37

(MDPs) with infinite time horizon: (S,A, p, r, γ) is an MDP, where S is a finite state space, A38

is a finite action space, p is a transition function such that p(s′|s, a) denotes the probability of39

transitioning from state s to state s′ under action a. The reward function is given by r : S ×A → R,40

where R ⊆ R is usually assumed to be bounded and positive, and γ ∈ (0, 1) is a discount factor. The41

value function under consideration takes the form42

V π(s) = ES0=s,At∼π(·|St),St+1∼p(·|St,At)

[ ∞∑
t=0

γtr(St, At)
]
, (1)

for all s ∈ S. Investigating a stationary policy applied in every time point suffices for discounted43

MDPs (Puterman, 2005, Theorem 6.1.1). Yet, in this paper, we focus on MDPs with finite-time44

horizons and without a discount factor, i.e., γ = 1. There is a prevailing argument that finite-time45

MDPs do not require additional scrutiny as they can be transformed into infinite horizon MDPs.46

However, specific challenges arise in certain scenarios, such as optimal stopping (Li et al., 2009) or47

finite-time inventory control problems (Bhandari and Russo, 2022), where a non-stationary policy48

becomes necessary. Unlike in infinite time horizon MDPs, reducing the problem to stationary policies49

is inadequate for finite-time MDPs, and a new policy must be trained recursively at each time step50

(Puterman, 2005). Our convergence analysis comprises two steps: firstly, we investigate convergence51

at each time step and secondly, we examine the error accumulation through backward induction. A52

detailed discussion of finite-time MDPs is presented in Section 2. There are some recent articles also53

studying policy gradient of finite-time horizon MDPs considering fictitious discount algorithms (Guo54

et al., 2022) or finite-time linear quadratic control problems (Hambly et al., 2021, 2022; Zhang et al.,55

2021).56

We begin with a discussion of relevant results for discounted MDPs that encourage our contributions.57

In Agarwal et al. (2021), the global asymptotic convergence of policy gradient is demonstrated under58

tabular softmax parametrization, and convergence rates are derived using log-barrier regularization59

and natural policy gradient. Building upon this work, Mei et al. (2020) showed the first convergence60

rates for policy gradient using non-uniform PL-inequalities (Mei et al., 2021), specifically for tabular61

softmax parametrization. However, this convergence rate is fundamentally dependent on the discount62

factor, (1−γ)−6, and cannot be readily extrapolated to undiscounted MDPs with finite-time horizons.63

To bridge this gap, we consider policy gradient under tabular softmax parametrization, but in64

undiscounted MDPs with finite-time horizons and non-stationary policies. In Section 3, we show65

asymptotic convergence to a global optimum and subsequently derive a global convergence rate using66

a weaker form of the PL-inequality. The convergence rate at a fixed time point is linearly depending67

on the remaining duration of the MDP, which is a better property compared to (1 − γ)−6. The68

issue of dependency on γ when it approaches 1 is a significant subject in the context of discounting,69

and various efforts have been made to mitigate this dependency. For instance, employing entropy70

regularization as demonstrated in Mei et al. (2020) or applying mirror descent as described in Xiao71

(2022) can enhance the rate of convergence.72

In the second part of the paper, we abandon the assumption that the exact gradient is known and focus73

on the model free stochastic policy gradient method. For this type of algorithm, very little is known74

even in the discounted case. Agarwal et al. (2021) discussed the approximate natural policy gradient75

for log-linear policies, and Ding et al. (2022) derived complexity bounds for entropy-regularized76

stochastic policy gradient. They use a well-chosen stopping time which measures the distance to the77

set of optimal parameters, and simultaneously guarantees convergence to the regularized optimum78

prior to the occurrence of the stopping time by using a small enough step size and large enough batch79

size. Similar to this idea, we construct a different stopping time in this work, which allows us to80

analyze convergence of the stochastic policy gradient method in the finite, non-stationary case and81

also in the infinite discounted case without regularization. The stopping time we propose measures82

the distance between the policy gradient and stochastic policy gradient trajectories and stops when the83

stochastic gradient differs too far from the exact gradient updates. This allows us to derive complexity84

bounds for an approximation arbitrarily close to the global optimum that does not require a set of85

optimal parameters, which is relevant when considering softmax parametrization.86

To the best of our knowledge, the results presented in this paper provide the first convergence analysis87

of softmax policy gradient in the undiscounted finite-time MDP setting without regularization. We88

note that discussions in Bhandari and Russo (2022) do not apply to softmax parametrization, as they89

assume the existence of optimal parameters in the parameter space.90
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The remainder of this manuscript is structured as follows: In Section 2, we discuss finite-time91

MDPs and explain how to solve them using backward induction. In Section 3, we show asymptotic92

convergence to a global optimum and derive the corresponding convergence rate. Moreover, in93

Section 4, we present the results pertaining to finite-time stochastic policy gradient and in Section 594

we analyze the error accumulation using backward induction for exact and stochastic gradients. In95

Section 6, we provide our findings regarding infinite discounted MDPs, where we derive complexity96

bounds for the REINFORCE algorithm.97

2 Finite-time horizon MDPs98

A finite-time MDP is defined by a tuple (H,S,A, r, p) withH = {0, . . . ,H − 1} decision epochs,99

finite state space S = S0 ∪ · · · ∪ SH−1, finite action space A =
⋃

s∈S As, a reward function100

r : S × A → R and transition function p : S × A → ∆(S) with p(Sh+1|s, a) = 1 for every101

h < H − 1, s ∈ Sh and a ∈ As. Let ∆(D) denote the set of all probability measures over a finite102

set D. Due to finite decision epochs, the choice of the action is time dependent, i.e. non-stationary103

policies π = (πh)
H−1
h=0 must be considered, where πh : Sh → ∆(A) for every h ∈ H is such that104

πh(As|s) = 1 for every s ∈ Sh. Denote by π(h) = (πk)
H−1
k=h the sub-policy of π form h to H − 1,105

and define the h-state value function under policy π for every s ∈ Sh by106

V
π(h)

h (s) := Eπ(h)
s

[H−1∑
k=h

r(Sk, Ak)
]
, h ∈ H, (2)

where Eπ(h)
s is the expectation under the measure such that Sh = s, Ak ∼ πk(·|Sk) and Sk+1 ∼107

p(·|Sk, Ak) for h ≤ k < H − 1. The h-state-action value function for every tuple (s, a) ∈ Sh ×As108

is defined by109

Q
π(h+1)

h (s, a) := r(s, a) +
∑

s′∈Sh+1

p(s′|s, a)V π(h+1)

h+1 (s′), h ≤ H − 2. (3)

Note that Qh is independent of policy πh and for H − 1, QH−1(s, a) := r(s, a) independently of110

any policy. Furthermore, define the h-state-action advantage function111

A
π(h)

h (s, a) := Q
π(h+1)

t (s, a)− V
π(h)

h (s), s ∈ Sh, a ∈ As. (4)

In the following, we will suppress the dependence of π(h) and write π in the superscripts of Vh, Qh112

and Ah, when the policy is clear out of context. We denote by113

V π
h (µh) := Es∼µh

[V π
h (s)]

the value function for an initial state distribution µh on Sh in epoch h ∈ H. The performance114

difference lemma (Kakade and Langford, 2002) is a useful identity to compare policies. It turns115

out to be very useful to prove convergence of policy gradient methods (Agarwal et al., 2021). For116

finite-time MDPs the following version is proved in the supplementary material:117

Lemma 2.1 (Performance difference lemma). For any h ∈ H and for any pair of policies π and π′118

the following holds true for every s ∈ Sh:119

V π
h (s)− V π′

h (s) =

H−1∑
k=h

Eπ(h)

Sh=s

[
Aπ′

k (Sk, Ak)
]
.

In order to address finite-time MDPs it becomes necessary to consider non-stationary policies because120

the optimal decision at each time point depends on the time horizon until the end of the problem.121

Thus, to solve finite-time MDPs with policy gradient a time-dependent parametrization of the policy122

is required. Consider a parameter space denoted by Θ = Θ0×· · ·×ΘH−1, where a policy parameter123

θ = (θ0, . . . , θH−1) ∈ Θ includes H different parameters. A parametric policy πθ = (πθh)H−1
h=0 is124

defined such that the policy in epoch h depends only on the parameter θh. It is worth noting that finite-125

time MDPs are typically solved using backward induction as known from dynamic programming126

theory (Puterman, 2005). In order to obtain the optimal solution for a finite-time MDP through127

backward induction the parametrization must have the capability to approximate any deterministic128

policy. This is because deterministic optimal policies exist for finite-time MDPs similar to discounted129

3



MDPs. These conditions have made the tabular softmax policy a subject of extensive research in130

the context of discounted MDPs, owing to its ability to meet these requirements (Mei et al., 2020;131

Agarwal et al., 2021; Ding et al., 2022). Let Θh = Rdh for all h ∈ H, where dh =
∑

s∈Sh
|As| the132

number of state-action pairs in epoch h. Then the tabular softmax parametrization is defined to be133

πθ(a|s) = exp(θ(s, a))∑
a′∈A exp(θ(s, a′))

, θ = (θ(s, a))s∈Sh,a∈As
∈ Rdh . (5)

In the forthcoming chapters, we will center our convergence analysis on this parametrization. Never-134

theless, we emphasize that the results presented in this section are also valid for any other parametriza-135

tion.136

To solve a finite-time MDP the problem is partitioned into h sub-problems, with each epoch being137

considered separately. Given any fixed policy π̃, the objective function in epoch h is defined to be the138

h-state value function in state s ∈ Sh under the policy (πθh , π̃(h+1)) := (πθh , π̃h+1, . . . , π̃H−1),139

Jh,s(θh) := E
(πθh ,π̃(h+1))

Sh=s

[H−1∑
k=h

r(Sk, Ak)
]
. (6)

An optimal parameter θ∗h is then sought such that Jh,s(θ∗h) = supθ∈Θh
Jh,s(θ), for all s ∈ Sh.140

In order to attain an optimal policy at each time point, this problem is approached via backward141

induction, and the parametrization π̃ in equation (6) is selected to be the pre-optimized one. Assuming142

that the parametrization is able to approximate an optimal policy (e.g. the softmax parametrization),143

then the backward induction yields optimal parameters θ∗h, . . . , θ
∗
H−1 in the sense that, see Puterman144

(2005, Sec. 4.5),145

Jh,s(θ
∗
h) = sup

θh∈Θh,...,θH−1∈ΘH−1

V πθ

h (s),

for all s ∈ Sh. To employ the policy gradient method, it is essential to compute the gradient of146

Jh,s(θ) with respect to θ for a given policy π̃. Notably, the forthcoming policy π̃ can be any policy,147

independent of the current parameter θ, which is trained during epoch h. This approach significantly148

deviates from the one used in discounted MDPs, such as in Sutton et al. (1999), where a stationary149

policy is parametrized and utilized at every time step. Despite the differences, a policy gradient150

theorem can still be attained, allowing the gradient of the objective function to be written as an151

expectation.152

Theorem 2.2. For a fixed policy π̃ and h ∈ H the gradient of Jh,s(θ) defined in (6) is given by153

∇Jh,s(θ) = ESh=s,Ah∼πθ(·|s)[∇ log(πθ(Ah|Sh))Q
π̃
h(Sh, Ah)].

As for the value function, we denote by Jh(θ) := Es∼µh
[Jh,s(θ)] the objective function under some154

initial state distribution µh on Sh. Algorithm 1 summarizes policy gradient in finite-time MDPs.

Algorithm 1: Policy Gradient for finite-time MDPs and non-stationary policies
Result: Approximate policy π̂∗ ≈ π∗

Initialize θ(0) = (θ
(0)
0 , . . . , θ

(0)
H−1) ∈ Θ

for h = H − 1, . . . , 0 do
Choose fixed step size ηh and number of training steps Nh

for n = 0, . . . , Nh − 1 do
Calculate∇Jh(θ(n)h ) with fixed policy π̂∗ after h
θ
(n+1)
h = θ

(n)
h + ηh∇Jh(θ(n)h )

end
Set π̂∗

h = πθ
(Nh)

h

end

155

Training each time point separately and having a fixed policy π̃ after h, we state a version of the156

performance difference lemma given this specific setting.157

Corollary 2.3. For any h ∈ H and two policies π and π′: If π(h+1) = π′
(h+1), it holds that158

V π
h (s)− V π′

h (s) = Eπ(h)

Sh=s

[
Aπ′

h (Sh, Ah)
]
.
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3 Convergence Analysis of Softmax Policy Gradient159

Before we combine all decision epochs as stated in Algorithm 1, we provide convergence results for160

each h ∈ H given that the policy after h is fixed and denoted by π̃. The error analysis over time is161

then employed in Section 5.162

Assumption 3.1. Throughout the remaining manuscript we assume that the rewards are bounded in163

[0, R∗], for some R∗ > 0.164

3.1 Asymptotic convergence165

The choice of tabular softmax parametrization is particularly convenient as derivatives are simple.166

Lemma 3.2. Let h ∈ H, then the partial derivatives of Jh with respect to θ take the following form167

∂Jh(θ)

∂θ(s, a)
= µ(s)πθ(a|s)A(πθ,π̃(h+1))

h (s, a).

Furthermore, Jh is a smooth function with respect to θ. The proof is based on a more general168

result which proves smoothness for all parametrizations with bounded gradient and Hessian of the169

log-policy.170

Proposition 3.3. Let h ∈ H and consider the objective function Jh(θ). If there exists G,M > 0171

such that172

||∇ log πθ(a|s)||2 ≤ G and ||∇2 log πθ(a|s)||2 ≤M,

for all s ∈ Sh, a ∈ As, then for any initial state distribution µh of Sh the function Jh(θ) is βh-smooth173

in θ with βh = (H − h)R∗(G2 +M).174

Smoothness under these assumptions in the discounted finite-time setting with stationary policy was175

shown for example in Xu et al. (2020b) and Xu et al. (2020a). We obtain the following smoothness176

parameter:177

Lemma 3.4. Let h ∈ H, then the h-state value function under softmax parametrization, θ 7→ Jh(θ),178

is βh-smooth with βh = 2(H − h)R∗|A|.179

We point out that the smoothness parameter is independent of the choice of π̃. A consequence of the180

smoothness is the asymptotic convergence of the objective function towards a global maximum. As181

each epoch is considered separately we just write θn instead of θ(n)h until Section 5.182

Theorem 3.5. Let h ∈ H and consider the gradient ascent updates183

θn+1 = θn + ηh∇Jh(θn) (7)

for arbitrary θ0 ∈ Rdh . We assume that µh(s) > 0 for all s ∈ Sh and 0 < ηh ≤ 1
βh

. Then, for all184

s ∈ Sh, Jh,s(θn) converges to J∗
h,s for n→∞, where J∗

h,s = supθ Jh,s(θ) <∞.185

The difficulties that arise from softmax parametrization are the same as discussed in Agarwal et al.186

(2021) for the infinite time setting: The softmax policy approximates an optimal deterministic policy.187

Therefore, parameters converge to−∞ for suboptimal actions and to∞ for optimal actions. The idea188

of the proof follows the outline of the discounted MDP setting except for one main distinction: the189

action-value function Qh is independent of the policy gradient updates such that no limiting process190

has to be constructed. A detailed proof is provided in B.1.191

Note that the assumption µh(s) > 0 for all s ∈ Sh is necessary for sufficient exploration. The192

same assumption is needed for the initial distribution of a discounted MDP in Agarwal et al. (2021,193

Thm. 10). Furthermore, Mei et al. (2020, Prop. 3) have demonstrated the necessity of this assumption.194

3.2 Convergence rate195

In order to derive a convergence rate for tabular softmax parametrized finite-time MDPs we will196

establish a weaker form of the PL-inequality. Therefore, consider for h ∈ H a deterministic optimal197

policy π∗
h, given that the policy after h is fixed by π̃, i.e. for all s ∈ Sh,198

π∗
h(·|s) = argmax

π(·|s): Policy
V

(π,π̃(h+1))

h (s).

Please note here that the optimal policy and also J∗
h,s depend on the choice of π̃.199
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Lemma 3.6 (weak PL-inequality). For the objective Jh it holds that200

∥∇Jh(θ)∥2 ≥ min
s∈Sh

πθ(a∗h(s)|s)(J∗
h − Jh(θ)),

where a∗h(s) = argmaxa∈As
π∗
h(a|s) and J∗

h = supθ Jh(θ).201

The term mins∈S πθ(a∗h(s)|s) also appears in similar form in the discounted setting in Mei et al.202

(2020). The main challenge is to bound this term from below uniformly in θ appearing in the gradient203

ascent updates. Due to asymptotic convergence this can be achieved, where it is necessary to assume204

µh(s) > 0 for all s ∈ Sh.205

Lemma 3.7. Let h ∈ H, µh(s) > 0 for all s ∈ Sh and consider the sequence (θn)n∈N0 generated by206

(7) for arbitrarily initialized θ0 ∈ Rdh . Then it holds that ch := infn≥0 mins∈Sh
πθn(a∗h(s)|s) > 0.207

We emphasize that the constant ch is influenced by the initial parameter θ0 thereby making it a208

parameter dependent on the model, as it is also for discounted MDPs in Mei et al. (2020).209

Theorem 3.8. Let h ∈ H, µh(s) > 0 for all s ∈ Sh and consider the sequence (θn)n∈N0
generated210

by (7) for arbitrarily initialized θ0 ∈ Rdh . Define ch := infn≥0 mins∈Sh
πθn(a∗h(s)|s) > 0 by211

Lemma 3.7 and choose step size ηh = 1
βh

with βh = 2(H − h)R∗|A|. Then it holds that212

J∗
h − Jh(θn) ≤

4(H − h)R∗|A|
c2hn

,

where J∗
h = supθ Jh(θ).213

The error bound depends on the time horizon up to the last time point, meaning intuitively that an214

optimal policy for earlier time points in the MDP (smaller h) is harder to achieve and requires a215

longer learning period then later time points (h near to H). Comparing this result to the convergence216

rate for discounted MPDs we note that the linear dependency on the time horizon is less aggressive217

than the factor (1 − γ)−1. In addition, the magnitude of the state space Sh does not have a direct218

impact on the rate. However, the constant ch indirectly introduces a dependency.219

4 Convergence Analysis of Stochastic Softmax Policy Gradient220

For the rest of this paper we drop the assumption of knowing ∇Jh(θ). In this model-free setting it is221

only assumed that trajectories of the finite-time MDP can be simulated. Stochastic policy gradient is222

used to train the parameters, where in each iteration the gradient of the objective is approximated223

using Monte Carlo estimates. Consider Kh trajectories (sik, a
i
k)

H−1
k=h , for i = 1, . . . ,Kh, generated224

by sih ∼ µh, aih ∼ πθ
h and aik ∼ π̃k for h < k < H . The estimator is defined by225

∇̂JK
h (θ) =

1

Kh

Kh∑
i=1

∇ log(πθ(aih|sih))Q̂h(s
i
h, a

i
h), (8)

where Q̂h(s
i
h, a

i
h) =

∑H−1
k=h r(sik, a

i
k) is an unbiased estimator of the h-state-action value function226

in (sih, a
i
h) under policy π̃. Then the stochastic policy gradient updates for training the parameter θ227

are given by228

θn+1 = θn + ηh∇̂JKh

h (θ). (9)
To train an optimal policy with backward induction, π̃ is chosen to be the already trained policies.229

As in Section 3 we first restrict our convergence analysis to one time point h given a fixed policy π̃230

after h. The entire stochastic policy gradient algorithm, often called REINFORCE, is summarized in231

Algorithm 2.232

Under the softmax parametrization it holds true that ∇̂JKh

h (θ) is an unbiased estimator with uniformly233

bounded variance due to the bounded reward assumption (see Lemma C.1).234

4.1 Asymptotic convergence to stationary point235

Using stochastic policy gradient, we obtain almost sure convergence of the value function to a236

stationary point for decreasing step sizes. Note that, except for this theorem we assume a constant237

step size.238
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Algorithm 2: REINFORCE with Backward Iteration
Result: Approximate policy π̂∗ ≈ π∗

Initialize θ(0) = (θ
(0)
0 , . . . , θ

(0)
H−1) ∈ Θ

for h = H − 1, . . . , 0 do
Choose step size ηh, number of training steps Nh and batch size Kh

for n = 0, . . . , Nh − 1 do
for i = 1, . . .Kh do

Sample trajectory (sik, a
i
k)

H−1
k=h , s.t. sih ∼ µh, aih ∼ πθ

(n)
h and aik ∼ π̂∗

k for k > h
end
θ
(n+1)
h = θ

(n)
h + ηh∇̂JKh

h (θ), where ∇̂JKh

h (θ) is defined in (8)
end
Set π̂∗

h := πθ
(Nh)

h

end

Theorem 4.1. For any h ∈ H consider the stochastic process (θn)n≥0 generated by239

θn+1 = θn + η
(n)
h ∇̂JKh

h (θ),

for arbitrary batch size Kh ≥ 1 and initial θ0 such that E[Jh(θ0)] <∞. Furthermore, suppose that240

η
(n)
h is decreasing, such that

∑
n≥0 η

(n)
h =∞ and

∑
n≥0

(
η
(n)
h

)2
<∞. Then∇Jh(θn)→ 0 almost241

surely for n→∞.242

With Lemma C.1 and the boundedness of the h-state value functions, this follows directly from the243

stochastic approximation theorem stated in Bertsekas and Tsitsiklis (2000) (see Proposition C.2 in244

the supplementary material).245

4.2 Complexity bounds to approximate to global optimum with high probability246

In the following denote by (θ̄n)n≥1 the deterministic sequence generated by policy gradient with247

exact gradients,248

θ̄n+1 = θ̄n + ηh∇Jh(θ̄n). (10)

Let (θn)n≥0 be the stochastic process from (9) such that the initial parameter agree, θ0 = θ̄0, and the249

step size ηh is the same for both processes. The natural filtration of (θn)n≥0 is denoted by (Fn)n≥0.250

Recall that ch = minn≥0 mins∈S πθ̄n(a∗(s)|s) is bounded away from 0 by Lemma 3.7. The idea of251

the convergence analysis for stochastic softmax policy gradient is to define the following stopping252

time253

τ := min{n ≥ 0 : ∥θn − θ̄n∥2 ≥
ch
4
}.

This means, τ is the first time when the stochastic process (θn)n≥0 is too far away from the policy254

gradient trajectory (θ̄n)n≥0. Hence, all challenges encountered in the deterministic case transfer to255

the stochastic context, indicating that the model dependent constant ch naturally appears in the error256

bounds of the stochastic case. We emphasize that τ is a stopping time with respect to the filtration257

(Fn)n≥0 by construction.258

First, consider the event {n ≤ τ}, i.e. ∥θn − θ̄n∥2 ≤ ch
4 . It follows by the

√
2-Lipschitz continuity259

of θ 7→ πθ(a∗(s)|s) (Lemma C.3) that min0≤k≤τ mins∈S πθk(a∗(s)|s) ≥ ch
2 > 0 (Lemma C.4).260

This allows us to use the weak PL-inequality of Lemma 3.6 to derive a convergence rate on the event261

{n ≤ τ} in the following sense:262

Lemma 4.2. Suppose µh(s) > 0 for all s ∈ Sh, the batch size K
(n)
h ≥ 9c2hCh

32β2
hN

3
2
h

(1 − 1
2
√
Nh

)n2 is263

increasing for some Nh ≥ 1 and the step size ηh = 1
βh

√
Nh

, for fixed h ∈ H. Then,264

E
[
(J∗

h − Jh(θn))1{n≤τ}
]
≤ 16

√
Nhβh

3(1− 1
2
√
Nh

)c2hn
.
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Secondly, consider the complementary event {τ ≤ n}. We can bound the probability of this event265

by δ for a large enough batch size Kh. The proof is based on a similar result obtained by Ding et al.266

(2022, Lem. 6.3) for discounted MDPs.267

Lemma 4.3. Suppose µh(s) > 0 for all s ∈ Sh. Then, for any δ > 0, we have P(τ ≤ n) < δ if268

Kh ≥ 16n3Ch

β2c2hδ
2 and ηh = 1√

nβh
.269

We are now ready to formulate the main result of this section.270

Theorem 4.4. Suppose the stochastic policy gradient updates are generated by (9) for arbitrary271

initialization θ0 ∈ Rdh . Suppose that µh(s) > 0 for all s ∈ Sh and choose for any δ, ϵ > 0,272

(i) the number of training steps Nh ≥
(
64βh

3δc2hϵ

)2
,273

(ii) the step size ηh = 1
βh

√
Nh

and the batch size Kh =
64N3

hCh

β2c2hδ
2 .274

Then, P
(
(J∗

h − Jh(θNh
)) ≥ ϵ

)
≤ δ.275

It should be noted that the choice of step size ηh and batch size Kh are closely connected and both276

strongly depend on the number of training steps Nh. Specifically, as Nh increases, the batch size277

increases, while the step size tends to decrease to prevent exceeding the stopping time with high278

probability. However, it is possible to increase the batch size even further and simultaneously benefit279

from choosing a larger step size, or vice versa.280

5 Error Analysis over Time281

In this section, we will first examine the accumulation of error over time for the policy gradient282

Algorithm 1, and secondly, for the stochastic policy gradient Algorithm 2. In both cases the error283

accumulates linearly such that an ϵ
H -error in each time point h results in an overall error of ϵ. This284

is due to the additive structure of the rewards and comes naturally from the backward induction of285

dynamic programming for finite-time MDPs.286

Theorem 5.1. Assume that µh(s) > 0 for all h ∈ H, s ∈ Sh. Let ϵ > 0, the step size ηh = 1
βh

and287

the batch size Nh = 4(H−h)HR∗|A|
c2hϵ

∥∥ 1
µh

∥∥
∞. Denote by π̂∗ = (πθ

N0
0 , . . . , πθ

NH−1
H−1 ) the final policy288

from Algorithm 1, then for all s ∈ S0,289

V ∗
0 (s)− V π̂∗

0 (s) ≤ ϵ.

For the stochastic policy gradient algorithm, we obtain the following main result:290

Theorem 5.2. Assume that µh(s) > 0 for all h ∈ H, s ∈ Sh. Let δ, ϵ > 0, the step size ηh = 1
βhNh

,291

number of training steps Nh =
(

64βhH
2
∥∥ 1

µh

∥∥
∞

3δc2hϵ

)2

and the batch size Kh =
64N2

hH
2Ch

βhc2hδ
2 . Denote by292

π̂∗ = (πθ
N0
0 , . . . , πθ

NH−1
H−1 ) the final policy from Algorithm 2, then293

P
(
∃s ∈ S0 : V ∗

0 (s)− V π̂∗

0 (s) ≥ ϵ
)
≤ δ.

In both results we observe that the number of training steps in each epoch depends on the constant294 ∥∥ 1
µh

∥∥
∞ = maxs∈S

1
µh(s)

. The proofs of Section D reveal that this constant occurs to ensure that the295

objective Jh,s(θ
(Nh)
h ) is close to J∗

h,s for every s ∈ Sh.296

6 Convergence Analysis of Stochastic Policy Gradient in Infinite Horizons297

In this final section, we show how to combine the results of Mei et al. (2020) with our stochastic298

gradient arguments to show that the plain vanilla REINFORCE algorithm without regularization299

can approximate global maxima if the batch sizes are chosen properly. Our theoretically derived300

batch sizes are clearly not of practical use but give a first insight why REINFORCE requires large301
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batch sizes to give reasonable approximations. In the following, we consider the discounted MDP302

setting from Equation (1) with rewards taking values in [0, 1], i.e. R∗ = 1, and tabular softmax303

parametrization πθ from (5) with θ ∈ Θ = R|S||A|. The objective function J(θ) := ES0∼µ[V
πθ

(S0)]304

is defined for an initial state distribution µ. It is important to highlight that πθ is now a stationary305

policy used in every epoch. Our arguments rely on the weak PL-inequality for the exact value306

function. Mei et al. (2020) proved that307 ∥∥∥∂V πθ

(µ)

∂θ

∥∥∥
2
≥

∥∥∥dπ∗

ρ

dπθ

µ

∥∥∥
∞

mins∈S πθ(a∗(s)|s)√
|S|

(V ∗(ρ)− V πθ

(ρ)),

where a∗(s) = argmaxπ∗(·|s) the optimal action in state s and
∥∥∥dπ∗

ρ

dπθ
µ

∥∥∥
∞

is the distribution mismatch308

coefficient introduced in Agarwal et al. (2021). We present an alternative version in Lemma E.2309

without the constant |S|−1/2. The typical approach to prove convergence of stochastic gradient310

schemes is to iteratively compare the stochastic gradient update to the deterministic one and then311

control the error. This is not always possible, but for stochastic softmax policy gradient we show312

that the error can be controlled for large enough batch sizes. We proceed in a manner similar to313

Section 4.2. Thus, to state the theorem let us denote by314

θ̄n+1 = θ̄n + η∇J(θ̄n), θn+1 = θn + η∇̂JK(θ) (11)

the policy gradient and stochastic policy gradient schemes. Also denote by c :=315

minn≥0 mins∈S πθ̄n(a∗(s)|s) the model dependent constant from the weak PL-inequality of (Mei316

et al., 2020, Lem. 8). For the algorithm we use the unbiased gradient estimator proposed by Zhang317

et al. (2020) which the authors used to prove convergence to a stationary point. Our main contribution318

is the following convergence result towards the global optimum:319

Theorem 6.1. Let (θ̄n)n≥0 and (θn)n≥0 be the (stochastic) policy gradient updates from (11) for320

arbitrary initial θ̄0 = θ0 ∈ Θ. Suppose µ(s) > 0 for all s ∈ S and choose for any δ, ϵ > 0,321

(i) the number of training steps N ≥
(

258
3ϵδc2(1−γ)3

)2
,322

(ii) step size η = (1−γ)3

8
√
N

323

(iii) batch size K = max
{

9(1−γ)4c2C
2048 (

√
N − 1

2 )
∥∥∥dπ∗

µ

µ

∥∥∥−2

∞
, 4(1−γ)6N3C

c2δ2

}
.324

Then, P
(
(J∗ − J(θN )) ≥ ϵ

)
≤ δ, where J∗ = supθ J(θ).325

We present more details on the algorithm and the proof in Section E of the supplementary material.326

We emphasize that the dependency on the distribution mismatch coefficient and the model dependent327

constant c are unavoidable since the stochastic gradient ascent is derived from the deterministic328

gradient ascent. To the best of our knowledge, this is the first convergence analysis for stochastic329

policy gradient with softmax parametrization without regularization. So far, Ding et al. (2022) derived330

complexity bounds for convergence of softmax policy gradient to the entropy-regularized optimum.331

7 Conclusion and Future Work332

In this paper, we have presented a convergence analysis of policy gradient methods for undiscounted333

MDPs with finite-time horizon in the tabular setting. Assuming exact gradients we have obtained an334

O(1/n)-convergence rate which is linearly dependent on the time horizon. In the model-free setting335

we have derived complexity bounds to approximate the error to global optima with high probability.336

Moreover, we were able to extend this result to discounted MDPs without regularization.337

In the finite-time case, it would be intriguing to explore policy parametrizations with a smaller338

parameter space as for example log-linear policies. Additionally, investigating modern policy339

gradient algorithms such as TRPO and natural policy gradient within the context of finite-time MDPs340

could further enhance the convergence rate. In the stochastic setting, it is desirable to eliminate the341

model-dependent parameter from the complexity bounds to construct a practicable algorithm. This342

would require an improved convergence analysis of policy gradient with exact gradients.343
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