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ABSTRACT

This paper proposes a feature selection framework for machine learning–based
bacterial genome-wide association studies aimed at uncovering resistance-causing
traits. Using a well-characterized Staphylococcus aureus pangenome as a ground
truth for causal-variant labels, we demonstrate improved control for population
structure and enhanced interpretability through the explicit incorporation of ge-
nomic context derived from graph-structured data, based on the compacted de
Bruijn graph for an assembled pangenome. Our framework successfully uncov-
ers resistance-causing traits for 9 of 14 antibiotics using a significantly reduced
feature set, while preserving genomic marker identifiability via unique mappings
between the encoded feature space and sequential representations that tag specific
genomic loci.

1 INTRODUCTION

Identifying an optimal subset of features from a labeled dataset is an essential property in many
biological domains, such as genomics, proteomics, and precision medicine, where treatment plans
and/or outcomes are guided by genetic profiles. Causal feature selection (identifying features hav-
ing a causal relationship with an outcome), or genetic fine-mapping, defines the main objective in
bacterial genome-wide association studies (bGWAS), which aim to find statistically significant asso-
ciations between genotypes and phenotypes through the modeling of observed genotype-phenotype
(GP) relationships. For example, antibiotic resistance phenotypes present a critical application
where computational prediction of causal genetic variants can inform diagnostic strategies and guide
targeted interventions to combat resistance.

Population structure, or ancestry, captures the genetic similarity between isolates due to clonal inher-
itance and shared lineages, and is the primary confounding factor in resistance bGWAS (Earle et al.,
2016). Ancestry confounding manifests as lineage-level differences (stratification of data points),
and linkage disequilibrium (LD) across large genomic blocks (multicollinearity) (Mosquera-Rendón
et al., 2023). In a machine learning (ML) setting, stratification affects the distribution of samples
and can lead to biases in the analysis if not properly accounted for, and multicollinearity affects
the model’s ability to disentangle the effects of individual predictors. When dealing with the high-
dimensional and multicollinear nature of bacterial data, the learning of the GP mapping is inherently
ill-posed: the optimization process may yield multiple solutions that equally satisfy the training data,
leading to non-unique and unstable mappings that do not generalize well to unseen data.

Accurate bacterial fine mapping requires minimizing the number of candidate variants falsely identi-
fied so that experimental studies on resistance remain feasible and focused, rather than overwhelmed
by spurious candidates. This necessitates robust control for confounding effects due to ancestry,
namely stratification and multicollinearity, however, strict feature selection methods can lead to a
reduction in power (Lees et al., 2020). Additionally, fine mapping demands interpretability: ge-
nomic sequences should be uniquely identifiable from candidates extracted from the model output.
In practice, however, this is typically a one-to-many relationship. Predictive models treating highly
correlated variables interchangeably exacerbates this issue, which when combined with the perva-
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sive nature of genome-wide LD in bacteria, leads to an inflation in the number of predictions where
candidate loci are scattered across the entire genome.

In response to this, we leverage graph-structured genomic data to constrain the function space for
the goal of reducing the severity of non-uniqueness in the learned mapping of a statistical model.
Specifically, we address identifiability concerns by assigning biological relevance based on genomic
structure to features. This then creates a paradigm to address the multicollinearity manifestation
of ancestry confounding via harsh feature selection under the assumption that interactions between
genetic variants are governed by a distance-based hierarchy.

To summarize, this paper offers the following contributions: (i) a general and scalable machine
learning bGWAS methodology for phenotype prediction-based bacterial fine mapping, (ii) an in-
formed feature selection framework based on graph structured genotype data for integration with
existing statistical learning bGWAS pipelines, (iii) an experimental ranking framework for selecting
subsets of genetic variants as candidates based on model performance and suggesting a level of pre-
diction confidence, and (iv) an example instantiation of the framework involving binary resistance
classification across 14 antibiotic agents via the modeling of a well-characterized Staphylococcus
Aureus pangenome.

2 RELATED WORK

Lineage stratification. Numerous regularization techniques exist to explicitly control for popu-
lation structure manifesting as stratification. For example, Phelan et al. (2016) extract principal
components from the genotype matrix, Earle et al. (2016) construct a kinship matrix to regularize
a linear mixed model by modeling random effects, and Diaz Caballero et al. (2018) incorporate
genetic distances obtained from phylogenetic reconstruction tools. Implicit modeling of popula-
tion structure is typically achieved using cross-validation (CV) techniques, as demonstrated by Lees
et al. (2020) using strain-specific partitions as a leave-one-strain-out methodology for an elastic net
model. Inspired by the leave-one-strain-out approach, we also perform cross-validation with strain-
specific partitions. However, to reduce computational demands, we partition strains across 5 folds
by combining multiple strains to construct validation sets, rather than just validating on a single
strain.

Multicollinearity. Feature selection and marker choice provide the dominant approaches to address-
ing multicollinearity that results from LD and high-dimensionality of bacterial data. For example,
Yang & Wu (2023) and Biggs et al. (2021) prioritize features based on variable importances deter-
mined by an initial modeling step. Alternatively, Mallawaarachchi et al. (2022) prioritize features
based on LD scores, Hyun et al. (2023) on GWAS scores. Saber & Shapiro (2020) and Lees et al.
(2020) leverage regularization techniques to shrink coefficients of redundant features. Our approach
manages LD effects via an informed feature selection framework, relying on a biological assumption
rather than prior causal knowledge or model reasoning.

Information loss. Genotype matrix representations suffer from information loss due to the omis-
sion of genomic context and positional dependencies, as the matrix structure treats each genetic
variant as an independent feature and disregards the presence of interactions along the genome.
cry (2024) incorporates spatial information within a sequential representation of the genome by
prioritizing known causal and statistically significant sites identified in bGWAS and the adjacent
≈ 100bps upstream and downstream of these loci. Jaillard et al. (2017) incorporate spatial context
by leveraging a graph structure representation of genomic data to reduce feature dimensionality dur-
ing pre-processing within a traditional statistical testing setting, and during the post-processing stage
for analyzing the output of a linear mixed model (Jaillard et al., 2018). We incorporate structural
information via a feature selection method that leverages graph structured genomic data within a
ML setting. We also consider the full set of features for analysis and therefore avoid limiting the
scope of the study by retaining the complete genetic profile.

3 A COMPREHENSIVE RESISTANCE DATASET FOR Staphylococcus aureus

To establish a robust ground truth as the foundation for evaluation, we use a dataset in which re-
sistance mechanisms are thoroughly characterized. A total of 4,138 S. aureus isolates have been
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Figure 1: Overview of the proposed workflow for causal cDBG hotspot detection via prediction
of binary phenotype measures of resistance to an antibiotic (binned MICs) from local genotype
matrices with cDBG subgraph informed feature selection.

previously collected and analyzed by Wheeler et al. (2019), where approximately 98% of pheno-
typic variation may be explained by the set of known causal resistance mechanisms over 14 rare and
common antibiotic agents (rates of resistance ranging from 0.05-97.54%). This collection has previ-
ously been used to demonstrate challenges associated with causal analysis in genotype-to-phenotype
tasks for bacterial datasets (James et al., 2025). We note that we exclude two agents from our study:
VAN (only 2 resistant samples belonging to the same subpopulation), and DAP (no ground truth).

We define the sets of potentially observable genotypes and phenotypes Xt and Yt, respectively,
determined by the historical evolution processes up to time t. Let A = {a1, a2, . . . , a|A|} denote
the fixed panel of antibiotic agents under study. The 14 agents within our study, and their respective
causal mechanisms present within the collection, are listed in Table 1.

The collection of S. aureus isolates define an empirical dataset D = {(xi,yi)|xi ∈ Xt,yi ∈ Yt, i =
1, 2, ..., n}, n = 4138, sampled from an unknown underlying distribution Pt over Xt × Yt. Each
genotype xi ∈ Xt is the complete genomic DNA sequence of isolate i, and its associated resistance-
profile vector yi = (yi1, yi2, . . . , yi|A|) ∈ Yt records the resistance phenotypes for each antibiotic
agent aℓ ∈ A. Projecting onto a single agent aℓ yields D(ℓ) = {(xi, yiℓ)|xi ∈ Xt, yiℓ ∈ Y(ℓ)

t , i =
1, 2, ..., n} of observed genotype-phenotype pairs. Although assay formats can differ (e.g., binary
calls, S/I/R categories, MIC values, etc.), clinical laboratories typically map resistance to every
antibiotic to the same categorical scale. Accordingly, we dichotomize each agent into susceptible (0)
versus resistant (1), which in principle gives a joint phenotype space Yt = {0, 1}|A|. In practice, the
primary focus is a single-agent setting, where projecting onto a single agent aℓ transforms resistance
prediction into a binary classification problem, where Y(ℓ)

t = {0, 1}.
We note that the set of data points are often prone to heavy biases due to environmental conditions
(e.g., controlled laboratory settings) and sampling strategies.

4 ENCODING THE GENOTYPE DATA FOR STATISTICAL MODELING

To facilitate analysis and modeling, appropriate representation spaces of embedded and encoded
genotypes R and X , respectively, must be defined to prepare the genotype data {xi} for input into
a specific ML model. In practice, genotype data is captured in the form of raw sequencing reads
(e.g., from Illumina sequencing platforms), and undergoes assembly to construct a comprehensive
pangenome that captures the full genetic variation of a bacterial population. We may now define a
marker space M that serves as an intermediate representation to capture specific genetic markers
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derived from the raw genotype data. These markers represent locatable sequences on the genome
(e.g., k-mers, unitigs, genes, or gene clusters).

The space of encoded genotypes X prepared for input may be obtained by employing a hierarchical
mapping framework of representation spaces summarized by a composite function ϕ (James et al.,
2025),

ϕ = ρ ◦ τ : Xt →M
ρ−→ R τ−→ X. (1)

A fundamental requirement in designing the hierarchical mapping functions of the composite ϕ
in Equation 1 is that they must each preserve and encode the core genetic signals underlying
phenotype variation.

When dealing with limited sample sizes, classical ML methods, such as linear regression, deci-
sion trees, and support vector machines, are generally preferable to deep learning methods as they
require fewer data points to train effectively and are generally considered less susceptible to over-
fitting (Bashir et al., 2020). A genotype matrix representation strategy facilitates these modeling
techniques in bGWAS, allowing for a compact, scalable, and flexible representation of genotype
data by encoding each genotype in terms of a set of genetic features (e.g., k-mers, unitigs, genes,
and gene clusters). As a result, it offers a robust choice for identifying genetic variants associated
with phenotypic traits.

We follow this standard of ML-based bGWAS and adopt a genotype matrix representation for the
proposed workflow in Figure 1, thereby ensuring compatibility with existing studies and pipelines.

4.1 CDBG CONSTRUCTION

Many short-read assembly algorithms use de Bruijn graphs (DBGs) to represent the genotype data
– a graph structure where each node represents a k-mer, and edges connect nodes that overlap by
k− 1 bases. It is then possible to construct a compacted DBG (cDBG) by collapsing non-branching
paths within a DBG, where each node represents a unitig – unique, contiguous sequences formed by
aggregating overlapping k-mers. This process results in a more compact and scalable data structure
for representing genomes, and a simple example is illustrated in Stage 1 of Figure 1: a DBG (left)
of 3-mers, each adjacent pair of nodes overlapping by k-1 nucleotides, undergoes collapsing of
non-branching paths into single nodes resulting in a cDBG (right).

The first mapping given in Equation 1 Xt →M allows the information contained within the set of
isolates {xi} to be described by a set of p locatable genomic sequencesM = {mj |j = 1, 2, ..., p}.
This is achieved by converting the raw genomic data into a cDBG Gt, which we construct with
DBGWAS (Jaillard et al., 2018), from which a set of p unitigs is derived. The benefit of collapsing
overlapping k-mers into non-branching paths (unitigs), is a representation that scales better compu-
tationally while retaining many functionally important k-mer patterns in the genome. However, it
inevitably discards any explicit record of the complete linear ordering and precise distances among
these segments, introducing a controlled form of information loss.

Subsequently,M ρ−→ R maps individual isolates xi onto corresponding paths of finite length ρ(xi)
through Gt, where the collection of observed paths define the representation spaceR = {ρ(xi)|i =
1, 2, ..., n} of embedded genotypes. In this transformation, direct information may be lost on factors
like unique structural rearrangements that might not be cleanly represented by path-based traversals
if they involve highly complex variations. Still, adjacency within each path is preserved, so key
local contiguities holding essential signals linking genotype to phenotype should be maintained for
a given isolate.

Once the cDBG has been constructed, each unique unitig may be mapped to a gene via exact and
near-exact string matching. Gene family sequences in FASTA format were obtained from the pub-
licly available NCBI gene database and searched against (both forward and reverse compliment) the
set of unitig sequences. Unitigs that contained a gene family sequence as a substring were labeled
accordingly.
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4.2 GENOTYPE MATRIX CONSTRUCTION

The final mapping in 1,R τ−→ X , maps each embedded genotype ρ(xi) into a binary p-dimensional
vector ϕ(xi) ∈ Rp within the space X = {0, 1}p, having components,

ϕ(xi)j =

{
1 if mj ∈ ρ(xi)

0 otherwise
∀j ∈ {1, 2, . . . , p}.

A genotype matrix M ∈ {0, 1}n×p may then be constructed to represent genotypes {xi} within
empirical dataset D as Stage 2 of the workflow in Figure 1.

Matrix M therefore provides a structured framework for representing the set of n encoded genotypes
{ϕ(xi)} in terms of the set of p genetic markersM. Within this format, each row ϕ(xi) indicates
the presence or absence across all p features – each unitig mj – for a given isolate i.

The transformation τ(ρ(xi)) = ϕ(xi), while drastically simplifying the data structure to facilitate
large-scale association studies, results in the loss of the precise ordering and adjacency information
inherent in ρ(xi), only retaining genetic signal with the presence or absence of specific genetic
segments (unitigs).

5 BACTERIAL FINE MAPPING

5.1 TASK DEFINITION

Bacterial fine mapping may be defined by the task (James et al., 2025): Identify a subset of genomic
markersM∗ ⊆M that are the true causal variants influencing the phenotype.

In ML-based bGWAS settings, this is approached through a primary goal of approximating the
GP mapping with a predictive model. The true, and unknown, ground truth GP mapping function
Θ : X → Y defines the relationship that maps each genotype x ∈ X that may exist for t → ∞, to
a corresponding resistance profile y = Θ(x) ∈ Y , with y(ℓ) = Θ(ℓ)(x) ∈ Y(ℓ) for a single-agent
setting.

The goal is then to build a predictive model f (ℓ) : Xt → Y(ℓ)
t that approximates the ground truth

Θ(ℓ) using D(ℓ), such that f (ℓ)(x) ≈ Θ(ℓ)(x) for all x ∈ X . Fine-mapping then relies on the ability
to interpret the model. While it is possible to extract learned parameters from a statistical model, the
full function is only transparent for simpler models. Obtaining full transparency is often not possible
for bGWAS due to the need for more complex models that can capture the nonlinear relationships
that exist within bacterial genomes. Due to this, a more desirable goal is to approximate the GP
mapping by focusing on causal markersM∗ ∈M alone, assuming a relationship y(ℓ) = Θ(ℓ)(x) ≈
f (ℓ)(x|M∗).

5.2 REFINED FINE MAPPING TASK

Within the context of the proposed framework outlined in Figure 1, we consider an amended task:
Identify a minimal set of subgraphs S∗ ⊆ S for which their corresponding marker subsetsMc

best explain phenotypic variation.

The set S∗ of selected subgraphs represent subsets of unitigs that result in models that are the most
predictive of a phenotype according to some performance metric (e.g., accuracy, AUROC), from
the full set of non-overlapping subgraphs S derived from the cDBG representation for a bacterial
pangenome. Each subgraph within the set S∗ may therefore be considered to be of greater statistical
significance, and by extension, contain a subset of more statistically significant features, suggesting
the capturing of true causal variants within these neighborhoods. Here, we approximate the GP
mapping using the set of features (nodes) Mc that are present within a single subgraph gc ∈ S ,
given by y(ℓ) = Θ(ℓ)(x) ≈ f

(ℓ)
c (x|Mc

).
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6 CAPTURING SPATIAL CONTEXT WITH TOPOLOGICALLY-INFORMED
FEATURE SELECTION

While supervised learning models can learn to capture interactions during the training process, the
mappings themselves must prioritize the preservation of biologically relevant interactions. Given
that the transformation τ(ρ(xi)) discards contextual information regarding the interactions and re-
lationships between genetic variants on the genome, supervised models trained on matrix-formatted
genotype data will be unable to distinguish between between true epistatic interactions that directly
influence phenotypic traits and spurious correlations arising from LD. It is therefore crucial to miti-
gate information loss in the mapping τ(ρ(xi)) through explicit incorporation of domain knowledge.

We propose a feature selection framework that selects features corresponding to specific subgraphs
of the cDBG – which encodes the topological structure of the pangenome – to incorporate the
graph’s embedded structural knowledge into the identification of the genetic features most relevant
for phenotype prediction.

Our method is predicated on the assumption that spatial dependencies between variants exist within
the genome, manifesting as causal hotspots where causal variants are concentrated within a few
localized genomic regions defined in physical space, which is visualized by Wheeler et al. (2019)
for a S. aureus protein. Extending this assumption from physical space to cDBG space, we posit
that regions proximal in physical space are also localized within the cDBG. This framework assumes
that epistatic effects are primarily confined to within local neighborhoods, enabling the capture of
sufficient causal signals within individual subgraphs, while additive effects are distributed over more
distant neighborhoods (across multiple subgraphs).

By partitioning the cDBG into subgraphs, the goal is to constrain the learning process by focusing
solely on biologically relevant interactions between a reduced set of proximally close variants. This
biologically informed paradigm enables extremely harsh feature selection, introducing LD control
by removing redundant information and informing the model of higher priority interactions that
would otherwise be overlooked due to the assumption of feature independence.

6.1 GENERATING LOCALIZED GENOTYPE MATRICES VIA CDBG-BASED PARTITIONING

Let Gt be the compacted de Bruijn graph (cDBG) built from the S. aureus pangenome. We partition
its nodes (unitigs) into q non-overlapping communities S = {g1, . . . , gq} such that each commu-
nity gc induces a disjoint marker subset Mc ⊂ M, and

⋃q
c=1Mc = M. Restricting the global

genotype matrix M to the columns inMc yields a local matrix Mc that is analyzed independently
in downstream models (Stage 3, Figure 1).

We apply the Louvain community detection algorithm to a NetworkX (Hagberg et al., 2008) graph
from the python-louvain PyPi package, using default resolution=1.0, to iteratively split and merge
communities for partitioning Gt (Alg. 1, Appendix A) until every subgraph satisfies 1300 ≤ |Mc| ≤
1600 or a maximum number of iterations (max itr) is reached, producing q = 834 subgraphs.
The interval was chosen to: (i) include enough unitigs (nodes) such that an entire gene may be
comfortably captured within a single subgraph, (ii) maintain a dimensionality of pc < n, and (iii)
limit CPU/RAM demands on commodity hardware. The selected thresholds comfortably span the
vast majority (≈ 99.9%) of S. aureus genes, which average around 1kb in length (Méric et al.,
2015).

Because many unitigs share identical presence/absence patterns, a genome-wide model can only
assign importance to an arbitrary representative, obscuring biological interpretation. Constrain-
ing the feature space to a single cDBG neighborhood eliminates patterns that span distant loci,
re-establishing a one-to-one correspondence between feature subsets and physical genomic context.
Although the size constraint is agnostic to gene boundaries and may split some genes, testing un-
der these stringent, quasi-arbitrary limits lets us evaluate whether cDBG-guided selection can still
concentrate causal signal despite LD and collinearity. In effect, each subgraph acts as an LD-aware
window that preserves positional information while providing a tractable, biologically informed re-
duction of the high-dimensional genotype matrix.

6



Published as a workshop paper at MLGenX 2025

Antibiotic Known mechanisms present in
collection

# resis-
tant sub-
graphs

Top N
selected

# resis-
tant in
top N

Max.
Ac,ℓ

GEN aaacA-aphD 3 8 0 0.98
PEN blaZ, mecA 13 3 1 0.92
MET mecA 4 10 0 0.96
FUS fusA∗, fusB†, fusC 3 4 2 0.85
TEI vanA†, vanZ 11 10 0 0.86
ERY msrA, ermA, ermB, ermC 9 5 2 0.92
CLI linA, ermA, ermB, ermC 8 2 1 0.83
MUP ileS∗, ileS-2 8 3 2 0.88
LIN rplC, 23S† 3 2 0 0.69
CIP grlA∗, grlB∗, gyrA, gyrB 4 6 2 0.87
RIF rpoB∗ 1 3 1 0.98
MIN tetM 4 7 1 1.0
TET tetK, tetL, tetM 8 10 1 0.84
TMP dfrA∗, dfrG, dfrB† 6 4 0 0.83

Table 1: Predicting antibiotic resistant sites in the S. aureus cDBG. To distinguish between causal
mechanisms that are due to an acquired gene vs. individual unitig mutations, ∗ indicates causal
mutations. Genes that are not labeled within the dataset (for providing the ground truth) are indicated
with †. Bold genes indicate those that have corresponding nodes present within the top N subgraphs.

7 EMPIRICAL ANALYSIS

For each of the 14 antibiotic agents aℓ ∈ A, we fit multiple independent random-forest (RF) classi-
fiers using scikit-learn (Pedregosa et al., 2011) to predict binary resistance phenotypes {y(ℓ)i } from a
local genotype Mc . Due to incomplete resistance measurement coverage for 7 of the 14 documented
antibiotics, sample sizes vary from 908 to 4138 isolates. Specifically, for each drug aℓ, we defined
5-fold cross-validation splits and selected a hyperparameter configuration hℓ via “GridSearchCV”.
A RF f (ℓ)(x|Mc) was then trained on each local genotype matrix Mc independently to predict y(ℓ),
fixing hyperparameters to hℓ. Further details on training procedures are outlined in Appendix B) for
Stage 4 of Figure 1.

We note that although we train RF classifiers on phenotype prediction, the methodology in Figure
1 is not limited to classification tasks or RF models, and may be amended for training alternative
models instead depending on the desired goals of the study.

We evaluate the performance of each model f (ℓ)(x|Mc
) on the classification of resistance to each

antibiotic agent aℓ, corresponding to Stage 5 in Figure 1. Each model f (ℓ)(x|Mc
) has a correspond-

ing score Ac,ℓ, determined by taking the mean of the AUROC values over each of the 5 folds, which
we use for evaluation. As there are a total of q subgraphs, a total set of q scores is produced for each
antibiotic aℓ, where each score Ac,ℓ indicates the predictive performance for the model trained on
the specific subset of unitigs pc contained within Mc, representing the information within a localized
genomic region across genotypes {xi}.

7.1 RANKING CDBG SUBGRAPHS FOR CAUSAL HOTSPOT DETECTION

To compare across subgraph models for a given phenotype and determine which subgraphs may be
predicted as high risk, we rank subgraphs according to their respective Ac,ℓ. As we expect the causal
signal to be concentrated within just a few subgraphs – confirmed by our ground truths ranging from
1-13 subgraphs for each phenotype – we also expect this to be reflected within Ac,ℓ values as gaps in
the distribution, where we predict resistance mechanisms with causal signal concentrated to fewer
subgraphs results in a more distinct separation in Ac,ℓ scores between resistant and non-resistant
sites. Based on this, we select N top subgraphs for a given phenotype based on Ac,ℓ scores, with an
upper limit of N = 10. This choice corresponds to a maximal selection of ≈ 1.2% of the full set of
unitigs, depending on node distribution over the selected subgraphs.
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To determine the number of top subgraphs N selected for downstream analysis, we implemented
a function that constructs a histogram over all Ac,ℓ. Bins with zero observations indicate a gap in
the distribution, and the function identifies the rank of the subgraph that marks this discontinuity.
Specifically, if a bin is empty, the algorithm locates the subgraph with its Ac,ℓ closest to the upper
boundary of that gap and considers its index as a potential cutoff only if it is within the top 10
subgraphs. The maximum of these is used to set N . The default of N = 10 is set for instances
where no discontinuity in the distribution exists.

7.2 BASELINES

To provide a baseline for comparison and demonstrate biological relevance of candidates, we train a
RF classifier on a subset of features. This dataset was constructed from the set of all Mc containing
unitigs labeled as causal according to our ground truth across all 14 antibiotics, ensuring complete
coverage of causal signal for each drug. The resultant dataset contained 95630 unitigs (7.7% of the
nodes in the cDBG Gt) over 64 subgraphs.

Additionally, Wheeler et al. (2019) provide a baseline for comparison with traditional bGWAS meth-
ods and highlight the causal mechanisms identified with them.

8 RESULTS

(i) cDBG-guided feature selection reveals genomic subgraphs linked to resistance with machine
learning.

The predictive performance across subgraphs were ranked (with highest Ac,ℓ assigned rank 1) for
each antibiotic aℓ, by assigning a rank to each subgraph gc ∈ S based on corresponding Ac,ℓ.
Extracting the top N performing subgraphs for each drug reveals that selecting features based on
the cDBG structure returns high predictive performances for significantly reduced feature sets.

The top Ac,ℓ values (N = 1) for each drug are given in Table 1, where the top ranking subgraph for
13 out of the 14 total drugs returned a value of Ac,ℓ ≥ 0.83 when trained on features sets containing
between 1435 to 1671 unitigs.

The total number of unitigs selected within the top N subgraphs for each of the 14 drugs resulted
in 2860 to 15858 candidate nodes being selected, corresponding to a unitig selection rate between
0.23% and 1.28%. Within the total set of top N subgraphs selected within each of the 14 antibiotic-
specific studies, mechanisms associated with a total of 9 drugs were uncovered. Within these, pre-
viously undiscovered (with traditional bGWAS) resistance mechanisms to 3 drugs were captured
within the subgraph feature selection framework (ermB for ERY, ermC for CLI, and gyrB, grlB
for CIP). It was also stated that performance was worst for predicting ERY and FUS resistance
with an elastic net, where multiple gene variants contribute to resistance. This was not reflected
within our subgraph-based approach, where resistant sites were uncovered for fusA, fusC and ermB,
ermC, suggesting that a subgraph-based feature selection approach can aid in identifying resistance
mechanisms that are the product of multiple interacting variants where traditional methods strug-
gle. Additionally, it may be used in combination with traditional methods to increase confidence in
predictions.

(ii) Focused cDBG-subgraph feature selection minimizes spurious associations while retaining
causal variants.

By comparing the performance along with the sets of selected candidate features between those se-
lected via a subgraph-based approach and those selected within the baseline model, we can demon-
strate the ability to focus on the true causal variants by successfully disentangling causal from spu-
rious features across multiple resistance studies. The baseline model contained a reduced feature
set (7.7% of the unitigs), while the subgraph-based approach considered complete genetic variation.
Despite the reduced feature set, the baseline returned sets of candidate nodes (features having non-
zero importance) that made up between 4.1% and 24.6% of the limited set, with representation in
all 64 of the subgraphs that were selected to construct the dataset across all 14 antibiotic analyses,
compared to the 1-10 subgraphs selected out of the 834 total in the subgraph approach.
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Assessing the number of true discoveries for each method (causal variants correctly selected as
candidates), the baseline returned a higher value of true discoveries for 9 of the 14 antibiotics, and
the remaining 5 had a greater number of true discoveries with the subgraph approach, however
it should be noted that the number of false discoveries is greatly inflated for the baseline. Notable
differences were seen for resistance predictions in CIP, where the subgraph-based method uncovered
152 true causal variants, compared to 43 in the baseline, and RIF, where the subgraph method
correctly discovered all 5 of the known causal variants compared to just 1 in the baseline. Other
than resistance to the drug LIN, these were the only other two antibiotics that are solely the result of
causal mutations, rather than acquired genes.

(iii) AUROC distributions across local cDBG models reflect confidence in predicted variants.

In bGWAS, the reliability of selected candidates may be judged according to the signal distribution
over genetic loci positions in the genome, where a more condensed signal peak is considered a
stronger indication that candidates correspond to true causal variants (Wheeler et al., 2019). This
however relies upon identifying the corresponding location of each genetic feature on the genome
prior to establishing a level of confidence in results. By selecting features based on cDBG structure,
this signal peak analysis is inherently captured within the individual Ac,ℓ scores due to features
being derived from subgraphs in the cDBG, where a smaller value of N combined with higher Ac,ℓ

values indicate a stronger and more localized causal signal, which in most cases would suggest more
trustworthy candidates. Phenotypes indicating a stronger and more localized signal include PEN and
RIF, both of which involved discovery of a corresponding resistant site. Phenotype studies where
10 subgraphs were selected, indicating no discernible gap in the histogram, include MET, TEI, and
TET, for which only a single resistance site was uncovered for TET alone.

9 CONCLUSION

This paper presents an approach to bacterial fine mapping that derives structural knowledge from
graph structured genetic data to address multicollinearity and high-dimensionality in genetic cohorts.
We discover that selecting features based on localized subgraphs within a cDBG provided additional
control for confounding effects due to ancestry, specifically those manifesting as genome-wide LD,
combined with assigning biological relevance to features as an explicit method for distinguishing be-
tween correlated variables for uniquely identifying relevant genetic marker sequences. Constraining
the function space through the injection of structural information within the feature selection stage
enabled the successful identification of multiple resistance causing loci in S. aureus with low counts
of false discoveries. We also observed that resistance mechanisms that are the product of multiple
interacting variants are identifiable using our proposed approach. Overall, this paper highlights the
potential of using structural information to control for population structure and also enhance inter-
pretability for more focused bacterial fine mapping for some resistance profiles in a limited setting.
A complete description of scenarios that enable the uncovering of underlying causal mechanisms
remain unclear, requiring a more thorough exploration of the behavior of causal traits for resistance
phenotypes where deconfounding efforts demonstrate a weakened ability in disentangling causal
and spurious features.
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A SUBGRAPH GENERATION

Algorithm 1: Generate Non-Overlapping Subgraphs
Input: A graph Gt, minimum subgraph size threshold min size, maximum subgraph size

threshold max size, maximum iterations max itr
Output: A set of non-overlapping subgraphs S
Procedure generate subgraphs(Gt, min size, max size, max itr):

init
S ← Gt

itr = 0
while itr < max itr do

while any(size(c) > max size for all c in S) do
Update S ← split large communities(S)
Update S ← merge small communities(S)
Update itr ← itr + 1

return S
Function split large communities(S, max size):

init
Ssplit ← {c ∈ S | size(c) < max size}
Slarge ← {c ∈ S | size(c) > max size}

while Slarge ̸= ∅ do
foreach c inSlarge do

Pop c from Slarge
partitions← Partition c using the Louvain method
foreach p in partitions do

if size(p) < max size then
Add p to Ssplit

else
Add p to Slarge

return Ssplit

Function merge small communities(S, min size):
init
Ssmall ← {c ∈ S | size(c) < min size}

while Ssmall ̸= ∅ do
foreach s inSsmall do

Pop s from S,Ssmall
neighbors← {c ∈ S | edge exists between c and s}
n← argminc(size(c) | c ∈ neighbors)
Update n ∈ S ← merge(n, s)

Update Ssmall ← {c ∈ S | size(c) < min size}
return S

B RESISTANCE CLASSIFICATION

Each local genotype matrix Mc was used to train a corresponding RF model f (ℓ)(x|Mc
) configured

with the same set of hyperparameters hℓ. Hyperparameters were initially selected using 5-fold CV
for a subset of 6 randomly sampled matrices Mc, confirming robustness across models to varia-
tions in hℓ. The final set of hyperparameters were fixed according to the modal parameters across
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the set of representative models as: ‘bootstrap’: True, ‘max depth’: None, ‘min samples leaf’: 4,
‘min samples split’: 2, ‘n estimators’: 200. We also used the ‘balanced’ mode to compute sample
weights and adjust them according to class frequencies in the input data.

For model evaluation, we adopted a 5-fold CV strategy with validation sets determined by sub-
population assignments. Our method is a more limited version of a leave-one-strain-out method
(Lees et al., 2020), in favor of reduced computation over a more comprehensive evaluation. Cluster
membership for each sample was derived from a phylogenetic reconstruction performed with the
software package FastBAPS (Tonkin-Hill et al., 2019). Validation sets were then constructed using
entire clusters, each cluster being assigned to the validation set of one of the 5 folds, resulting in
variable sizes. Assignments were managed to ensure a fair and systematic distribution of samples
across each fold regarding cluster size and resistance class representation across both training and
test sets, and were uniquely determined for each drug.

C LIMITATIONS

Louvain partitioning. We partition according to to Louvain community detection algorithm with
subgraph size constraints, however alternative sizes or community detection frameworks may be
more suitable depending on the underlying causal structure for resistance. For example, better man-
agement for structures with high causal spread. We also don’t consider distances between sub-
graphs, treating them each as independent entities meaning relationships spanning across borders
are excluded from the model’s function space.

Strain representation. Strains are treated independently, however their exist relationships on the
strain level as well as on the sample level. As a result, certain strains may be more predictive of
others, which we don’t account for when dividing strains between validation sets. This may reflect
in variable and biased mean AUROC values (Ac,ℓ). As we consider the mean across folds, we do
not account for biases due to genetic relatedness between strains.

Feature invariance. Statistical models and strain-based CV assume feature invariance, where the
effect of causal features on the phenotype is assumed to remain consistent across all environments
(strains). Biological mechanisms don’t always conform to this rule, so ignoring the possibility of
environmental dependencies along with certain types of interactions such as suppressor epistasis,
where the presence of a non-causal variant may mask the effect of a causal variant on the phenotype.
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