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Abstract

A popular approach to protein design is to combine a generative model with a1

discriminative model for conditional sampling. The generative model samples2

plausible sequences while the discriminative model guides a search for sequences3

with high fitness. Given its broad success in conditional sampling, classifier-guided4

diffusion modeling is a promising foundation for protein design, leading many5

to develop guided diffusion models for structure with inverse folding to recover6

sequences. In this work, we propose diffusioN Optimized Sampling (NOS), a7

guidance method for discrete diffusion models that follows gradients in the hidden8

states of the denoising network. NOS makes it possible to perform design directly9

in sequence space, circumventing significant limitations of structure-based methods,10

including scarce data and challenging inverse design. Moreover, we use NOS to11

generalize LaMBO, a Bayesian optimization procedure for sequence design that12

facilitates multiple objectives and edit-based constraints. The resulting method,13

LaMBO-2, enables discrete diffusions and stronger performance with limited edits14

through a novel application of saliency maps. We apply LaMBO-2 to a real-world15

protein design task, optimizing antibodies for higher expression yield and binding16

affinity to a therapeutic target under locality and liability constraints, with 97%17

expression rate and 25% binding rate in exploratory in vitro experiments.18

1 Introduction19

Optimizing protein sequences for improved function has the potential for widespread impact [59].20

Among many potential applications in engineering and medicine, engineered antibodies can be21

used to create cancer therapeutics that are much less harmful to the patient than radiotherapy or22

chemotherapy. Because the protein search space is vast and discrete, and experimental validation23

is slow and expensive, every protein design method ultimately reduces to restricting the search to a24

small enriched library of candidates to find a viable option in as few measurements as possible [44].25

In practice, these enriched libraries are usually obtained through massive low-fidelity high-throughput26

screens of a much larger library [63], or in the case of antibodies by injecting a living animal with27

the target antigen and sequencing the animal’s immune cells [51]. Generative protein models offer28

the tantalizing prospect of enriched libraries produced rapidly at a fraction of the cost. Success in29

real-world applications, however, has proven elusive, in part because naïve generative models produce30

outputs that are similar to their training data and therefore unlikely to improve target qualities [52].31

There are many approaches to guided generation of proteins, but one broad and important distinction32

is between methods that search in sequence space and those that search in structure space. A basic33

tenet of molecular biology is “sequence determines structure, structure determines function” [9].34

Hence when optimizing a protein for a desired function, it may seem more direct to design the protein35

in structure space, where gradient-based sampling methods can be used in tandem with carefully36

engineered potentials [1, 45, 74]. One of the drawbacks of this approach is the optimized structure37

must still be converted back to an amino acid sequence in order to be produced, a task known as38
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Figure 1: We propose diffusioN Optimized Sampling (NOS), a method for gradient-guided sampling
from discrete diffusion models. NOS uses T sampling steps of denoising diffusion, where each
step consists of applying a corruption, gradient steps to optimize a value function, f , and sampling
of the next discrete sequence, or corresponding latent state. NOS generates samples that optimize
an objective while maintaining high likelihood under the distribution of natural sequences. We
combine NOS with LaMBO, a strong Bayesian optimization method for sequence design [70], to
make LaMBO-2, our improved method for protein design.

“inverse-folding” [19]. There is no guarantee that the optimized structure can be realized by an39

actual sequence, and the inverse-folding procedure may not find the sequence if it exists. Structural40

models are also computationally intensive and limited by the scarcity of high-quality structural data.41

Searching directly in sequence space eliminates the need to recover sequence from structure. Protein42

sequence models are also comparatively fast, especially during inference, and can leverage sequence43

datasets that are often several orders of magnitude larger than their structural equivalents.44

Although sequence models are arguably the most practical foundation for protein design, they have45

historically suffered from the challenges of optimizing discrete sequences, where gradient-based46

sampling is not directly applicable. As a result, many sequence search methods resort to gradient-free47

sampling methods like Metropolis-Hastings MCMC [75, 36], which are flexible but computationally48

expensive, eroding a key advantage over structure search. Several methods have been proposed49

that maintain gradient-based search by performing guidance in a continuous latent space, with a50

learned decoder to sample discrete sequences [32, 31]. Notably, Stanton et al. [70] proposed LaMBO51

(Latent Multi-Objective Bayesian Optimization), a latent space optimization method combined with52

Bayesian acquisition functions to address the online, multi-objective nature of real-world protein53

design. While LaMBO can quickly sample sequences with improved acquisition value, it has two key54

limitations. First, one-step decoding from the latent space can lead to unlikely sequences because it55

assumes independence across corrupted sequence elements and interactive effects can be lost. Second,56

despite being designed to make impactful edits to a sequence instead of designing it completely from57

scratch, LaMBO and related methods have no principled framework for both enforcing an edit budget58

and choosing optimal edit locations based on that budget.59

To address the first issue we propose NOS (diffusioN Optimized Sampling), a new method for60

controllable categorical diffusion (Figure 1). Diffusion models capture complex relationships between61

distant residues by making iterative denoising steps, but there is relatively little previous work on how62

to control these processes. NOS generates sequences with both high likelihood and desirable qualities63

by taking many alternating steps between corruption, denoising, and control in the continuous latent64

space. Our in silico validation shows that NOS outperforms many state-of-the-art structure and65

sequence-based baselines on both unguided and guided infilling tasks. To address the second problem66

(selecting edit locations) we propose using embedding-gradient feature attribution (i.e. saliency maps)67

to determine which positions on the sequence are most important to edit to improve function. We68

combine NOS with saliency-based edits to create LaMBO-2, a more powerful variant of the original69

LaMBO algorithm. Exploratory in vitro experimental validation of our designs provides evidence70

that LaMBO-2 can be used to create enriched antibody libraries without the aid of high-throughput71

screening.72

2 Related Work73

Austin et al. [3] and Hoogeboom et al. [39] constructed diffusion models for categorical data using74

a categorical noise process. Recently, categorical diffusion has shown promise as a competitor to75

autoregressive models in text generation for machine translation and summarization. The approaches76

can be roughly grouped into methods that apply categorical noise distributions directly to sequences77

(CMLM [30], SUNDAE [61]), and those that apply Gaussian corruptions to continuous word78

embeddings (SED [71], CDCD [21]). In this work we show that NOS can guide both types of79
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categorical diffusions. Within the space of protein design, our method is also closely related to80

diffusion models over sequence and structure simultaneously [2, 50], which also circumvent inverse81

folding. Because these models still rely on structure information at training time, they can be limited82

by data availability in the same manner as pure structure models.83

Gradient guidance typically augments sampling from a generative model with gradient steps to84

increase the occurrence of a desired attribute [53]. Gradient guidance is natural within the framework85

of continuous diffusion models [20], and Li et al. [47] use this connection to perform gradient-guided86

sampling from a diffusion language model. To obtain a continuous space, they perform Gaussian87

diffusion [38] on word embeddings, decoding out to tokens using a linear head. The original method88

required many careful engineering interventions, e.g. clamping latent representations to the nearest89

word embedding, that have been improved by recent methods, such as CDCD [21], but gradient90

guidance has not been discussed for these more recent formulations.91

To achieve a similar form of gradient guidance without carefully engineering a latent space, Dathathri92

et al. [17] and Yang and Klein [78] propose gradient-guided autoregressive models by using the93

decoder’s activations as a gradient-friendly latent space. These methods alternate between sampling94

from logits and ascending the likelihood of a separately trained classifier model. Surprisingly, despite95

work on gradient guidance for continuous noise diffusions and autoregressive language models, there96

has been little work on gradient guidance for general categorical diffusions that predict denoised97

categorical distributions (e.g. CMLM, SUNDAE, CDCD), which is a topic we explore in detail.98

Most guided generation methods apply guidance at test time as samples are drawn. Generative flow99

networks (GFlowNets) are a notable exception, seeking to entirely amortize the cost of guidance100

into the training procedure [7]. While GFlowNets have been applied to protein generation [41], they101

are difficult to train [64], and are not particularly well-suited for use with pre-trained models, since102

the generation process itself must be retrained whenever the objectives change. Because NOS is103

applied at test-time, it can be applied identically to jointly trained generative-discriminative models104

and pretrained models that are finetuned for a new objective.105

3 Background106

We pose protein design as the problem of finding sequences, w P AL with alphabet A and fixed107

length L,1 which maximize a single objective fpwq (e.g., binding affinity) or multiple objectives108

f1pwq, . . . , fkpwq (e.g., expression yield, binding affinity, and aggregation tendency). Designs109

can be generated from random noise (ab initio design) or by making a fixed number of edits110

B P t1, . . . , L ´ 1u to a seed sequence s P AL. A protein is only useful if it can be expressed in111

living cells, and the objective value of non-expressing proteins is undefined since their properties112

cannot be measured. Therefore we must introduce the constraint w P E Ă AL, where E is the set of113

all expressible proteins. Since naturally occurring sequences must express in order to be observed,114

ppwq, the likelihood of a protein with respect to an empirical distribution of natural protein sequences,115

is often taken as a proxy for the tendency of a protein to express. In protein design, these proxies are116

typically called metrics of naturalness. Since we are looking for sequences that by definition have117

not yet been identified in nature, naturalness and our other objectives are often in tension.118

We can trade off naturalness and objective value by drawing samples from the unnormalized density119

p̃pwq “ expp´Ẽpwqq{Z, Ẽpwq “ Epwq ´ vpwq, , (1)

where Epwq “ ´ log ppwq is a scalar energy function, and the value function v : AL Ñ R expresses120

the “goodness” of a sequence with respect to our objectives. When designing proteins from primary121

sequence, sampling efficiently from the resulting energy function can be challenging. Simple122

approaches, such as the MCMC sampler used by Verkuil et al. [75] can require hundreds of thousands123

of steps to converge. Guided diffusion models are an appealing alternative because they construct a124

fixed-length Markov chain that quickly generates low-energy samples.125

Diffusion models. Denoising diffusion models construct samples by reversing a diffusion process126

that maps clean data points, x0, to samples from a prior πpxq (Figure 2). The forward process127

(x0 Ñ xT ) is composed of conditional distributions ppxt|xt´1q (i.e., the noise process) that admit128

closed forms for the conditional distributions ppxt|x0q and ppxt´1|xt, x0q (e.g., independent Gaussian129

corruption). The reverse process (xT Ñ x0) converts samples from the prior into samples from the130

1Length change is enabled by the use of protein sequence alignments, which introduce a padding token “-”.
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Continuous Noise Process Categorical Noise Process

Figure 2: Two approaches to diffusion generative modeling for categorical variables. (Left) Cate-
gorical data is embedded into continuous variables with an accompanying continuous noise process.
(Right) Categorical noise is applied directly to sequences, and corrupted sequences are denoised
using standard language modeling methods.

learned data distribution pθpx0q by repeatedly predicting the denoised variable x̂0 from noisy values xt131

and using the conditional distribution ppxt´1|xt, x̂0q to derive a transition distribution, pθpxt´1|xtq.132

The specific choice of noise process has been shown to significantly affect the likelihood and quality of133

image samples [68]. For categorical data there are two common approaches to constructing a diffusion134

generative model, depending on the nature of the noise process. We include brief descriptions below135

and a more detailed account in Appendix A.136

Continuous noise. To learn a distribution ppwq, one strategy is to first embed w to a continuous
variable x0 with embedding matrix Uθ and apply Gaussian noise [21]. The prior is taken to be
πpxq “ N p0, Iq while the forward process is ppxt|x0q “ N pxt;

?
ᾱtx0, p1 ´ ᾱtqIq for ᾱt P r0, 1s.

The values of ᾱt are determined by a user-specified corruption schedule. For the reverse process,
we learn a function, pθpŵ|xt, tq, to predict the sequence from noised points xt by minimizing the
following loss with respect to θ:

Lpθq “ Ew,t r´ log pθpw|xtqs , xt „ ppxt|x0 “ Uθw0q.

Using pθpŵ|xt, tq we can construct a distribution for the reverse process137

pθpxt´1|xtq “
ÿ

ŵ
p pxt´1|xt, x̂0 “ Uθŵq ppŵ|xt, tq, (2)

where ppxt´1|xt, x0q is also a Gaussian distribution. At inference time, we can use the learned138

reverse process to convert samples from πpxq into samples from the learned distribution pθpx0q by139

repeatedly sampling pθpxt´1|xtq, followed by sampling w „ pθpŵ|x0, 0q.140

Categorical noise. Alternatively, Austin et al. [3] proposed a forward process which operates
directly on w, by introducing an absorbing state for each token wpiq “ [MASK]. The forward process
pw0 Ñ wT q is defined by a discrete transition matrix, describing the probability of mutating a token
into a [MASK], and the corresponding prior is simply a point mass on the sequence of all [MASK]
tokens. To learn the parameters of the denoiser pθpŵ0|wt, tq we maximize the likelihood of the
denoising process on ground truth sequences

Lpθq “ Ew0,t r´ log pθpw0|wtqs , wt „ ppwt|w0q

Then, as above, we can use the denoiser to construct the reverse process141

pθpwt´1|wtq “
ÿ

ŵ0

ppwt´1|wt, ŵ0qpθpŵ0|wt, tq (3)

where ppwt´1|wt, w0q is also a categorical distribution derived using Bayes’ rule. To sample, the142

transition distribution is applied for t “ rT, ..., 0s.143

4 Methods144

Now we present practical methods for efficiently sampling from p̃pwq 9 ppwq exppvpwqq (Eq. 1) by145

modifying the learned transition distribution with a learned value function vθpwq. We then show how146

this sampling method can be used to perform protein design through guided infilling in sequence147

space. As before, we provide the most salient information below and the full details in Appendix B.148

4.1 NOS: diffusioN Optimized Sampling149

We introduce a general form of gradient guidance (NOS) for discrete diffusions with categorical150

denoising models, i.e. diffusion models that predict logits over the ground truth tokens (e.g. [21, 3]).151
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The key challenge in applying gradient guidance to categorical data is simply the lack of a continuous152

representation. Fortunately, in any denoising network, e.g. pθpŵ|xt, tq, the discrete sequence wt has153

many corresponding continuous representations in the form of hidden states of the model ht “ gℓpwtq154

for ℓ P t0, . . . , Lu, where L is the depth of the encoder network and g0pwtq “ Uθwt. Notably, for155

the Gaussian diffusion models in Sec. 3, we can equivalently have xt “ g0pwtq, as corruption156

and sampling are performed on the learned token embeddings. In the case of the categorical noise157

diffusion pθpŵ0|wtq “ pθpŵ0|htq, and thus for the purpose of guidance, we can consider a general158

pθpŵ|htq for both forms of corruption.159

To sample from p̃θpwtq 9 pθpwtq exppvθpwtqq, we construct a modified denoising model,160

p̃θpŵ|htq 9 pθpŵ|htq exppvθphtqq.

This formulation requires that the denoising model and the value function share hidden states up161

to depth ℓ, and that the value function also be trained on corrupted inputs wt. In Appendix D.4 we162

propose a simple procedure for corrupted discriminative training inspired by label smoothing [73].163

Using this modified denoising model we can construct modified transition distributions using Eq. 2164

or Eq. 3. There is one key difference between these transition distributions: in the continuous case165

(Eq. 2), smooth steps are taken in the token embedding space, while in the discrete case (Eq. 3) the166

transition leads to large jumps from one token embedding to another. In either case, it is possible167

to sample a discrete sequence w at any point in the chain using the logits of the denoiser pθpŵ|htq.168

When using Eq. 2 to derive a continuous transition distribution, we call the method NOS-C, and169

when using Eq. 3 for discrete transitions, we call the method NOS-D.170

To sample from the modified transition distribution at each diffusion step, we use Langevin dynamics171

with temperature τ ą 0, with the update step,172

h1
t Ð h1

t ´ η∇h1
t
rλKLppθpŵ|h1

tq||pθpŵ|htqq ´ vθph1
tqs `

a

2ητε, ε „ N p0, Iq, (4)

where η is the step size and λ is the regularization strength, followed by sampling pθpwt´1|h1
tq or173

pθpht´1|h1
tq. While the gradient ∇hvθ guides towards high values of the objective, the KL term174

ensures the resulting transition distribution still maximizes the likelihood of the original prediction.175

NOS is related to the popular method plug-and-play language model (PPLM), which can be used176

for gradient-guidance of autoregressive language models [17]. PPLM guides sampling by taking177

gradient steps similar to Eq. 4 for each autoregressive decoding step (details in Appendix B). Unlike178

PPLM, NOS is a form of iterative refinement, meaning that tokens across the entire sequence can179

be modified at each optimization step. This distinction is particularly important for protein design,180

because function can be determined by complex interactions between distant parts of the sequence.181

As we see in 5.2, NOS leads to better trade-offs between likelihood and objective value.182

4.2 LaMBO-2: function-guided protein design183

Many unique challenges arise when applying guided diffusion to real-world protein design tasks. Our184

approach builds on the LaMBO-1 algorithm proposed by Stanton et al. [70], which explicitly accounts185

for the online, multi-objective nature of protein design by optimizing a multi-objective Bayesian186

acquisition function. LaMBO-2 replaces the guided MLM (masked language model) sampler with187

NOS, selects edit positions based on value saliency, and replaces the deep kernel Gaussian process188

(GP) with ensemble-based uncertainty quantification.189

Architecture and value function. In order to apply the methods discussed in Subsec. 4.1 we190

require a generative diffusion model pθpwq and a discriminator f̂θpwq which share hidden layers191

up to depth ℓ. The discriminator is trained to predict the objective function f . Like LaMBO-1 our192

architecture consists of many task-specific feature extraction layers that share a bidirectional encoder.193

Bayesian acquisition values are expressed as vθpwq “ Erupw, f,Dqs, where the expectation is taken194

with respect to a posterior pθpf |Dq and u is some utility function. For multi-objective tasks u is195

the hypervolume improvement utility function [18], however we note that single-objective tasks are196

easily accommodated by a different choice of utility function. To estimate the expectation we draw197

samples from pθpf |Dq with an approach we call partial deep ensembles, where the discriminative198

layers of the model above the shared encoder are replicated k times and randomly initialized [77].199

We provide further details about partial deep ensembles and our learned discriminators in Appendix200

D.2 and D.3.201
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Figure 3: An example of a binding affinity saliency map produced by LaMBO-2 with NOS-D.
For simplicity, only the variable heavy (VH) region of the hu4D5 antibody is shown. Positions
corresponding to complementarity defining regions (CDRs) are enclosed in green boxes. Converting
this saliency map to an edit position distribution will concentrate computational resources on editing
CDRH3, which is often manually selected by experts. Some resources are also allocated to the
framework and other CDRs since these positions may also affect binding.
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Figure 4: We infill antibody CDRs with discrete diffusion models (ours) and compare against
structure-based diffusion models (DiffAb [50] and and RFDiffusion [76]) and an autoregressive
antibody language model (IgLM [66]). We see diffusion on sequences alone–without structural
priors–reliable leads to high sequence recovery. For structure based methods, we first fold seed
sequences with IgFold [60] and then run joint sampling of sequence and structure for the CDR. We
sample 10 infills for each of the 10 antibody seed sequences selected randomly from paired OAS [55].

Choosing edit positions. Because the edit budget, B, is often very small (e.g. 8), it is important to202

not only choose the right token changes but carefully choose where to make those changes. We must203

pick positions on the sequence where mutations will improve our sequence value. We propose to204

automatically choose edit positions by computing the gradient of the value function with respect to h0205

to determine which positions affect the value estimate the most (see Figure 3 for an illustration). This206

method is related to the use of saliency maps to explain the decisions of classifiers [4, 67]. We use207

input saliency to induce a distribution over edit positions. Specifically, given an embedded sequence208

h0 we define siph0q, the saliency with respect to v of position i P t1, . . . , Lu as209

siph0q :“ max

"ˆ

ÿd

j“1

ˇ

ˇ

ˇ
p∇hvph0qqij

ˇ

ˇ

ˇ

˙1{τ

, ε

*

, Predit w
piq
0 s “

siph0q
ř

j sjph0q
, (5)

where τ ą 0 is a temperature hyperparameter and 0 ă ε ! 1. As τ Ñ `8, Predit w
piq
0 s “ 1{L210

for all i. For each sequence we draw B edit positions without replacement according to Eq. 5. We211

conserve parts of the input we cannot change (e.g. the antigen sequence) by setting the the saliency212

to 0 before computing the edit position distribution. Importantly, the diffusion sampling process213

can also preserve the original values of selected positions when appropriate. If we select a highly214

conserved position, then the predicted logits will be low entropy and the guidance will incur a large215

KL penalty for changes (Eq. 4).216

5 Experiments217

We evaluate our methods on three increasingly complex antibody design tasks. First we compare218

our trained diffusion models on unguided infilling tasks, showing that sequence diffusion methods219

consistently outperform structure-based methods when only predicted structures are available2. We220

then evaluate NOS by optimizing two objectives that can be simulated effectively in silico. Lastly, we221

evaluate LaMBO-2 on antibody lead optimization, with both in silico and in vitro experiments.222

2In practical protein design campaigns it is infeasible to get ground truth structural measurements for
proposed designs, and predicted structures are the only alternative available.
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Figure 5: (left) Comparing convergence in sampling using a Metropolis Hastings-adjusted
MCMC [75] against NOS models. Diffusion models (ours) accelerate sampling by two orders
of magnitude while converging to similar energy values (Appendix C.2 for details). (center & right)
Comparing samples from diffusion models with guided generation using PPLM [17] and sequence
diversification with DiffAb [50] or RFDiffusion [76]. NOS (ours) exhibits higher likelihood for
similar or dramatically improved values of the objective. NOS and PPLM are sampled for many
settings of η and λ (Eq. 4), to demonstrate the full range of trade-offs between the objective and
likelihood. We provide details about hyperparameter settings in Appendix C.5 and additional density
plots in C.6.

5.1 Unguided CDR Infilling223

We focus on immunoglobulin G (IgG) format antibodies, which are comprised of a heavy (H) chain224

and a light (L) chain. Each chain has three complimentarity determining regions (CDRs), which tend225

to have strong effects on binding affinity to a target antigen but limited effects on other structural226

properties of the protein. Antibody design methods traditionally focus on proposing mutations to227

CDRs while leaving the rest of the protein fixed, which can be viewed as an infilling task. We select228

10 seeds at random from paired OAS [55] and infill each CDR individually as well as in combination.229

To evaluate the performance of each model, we measure the sequence recovery rate, which is simply230

the accuracy of the infilling predictions given the ground truth sequence. As baselines, we include231

IgLM [66], a GPT2 language model trained on OAS, and two structure-based methods: DiffAb [50],232

a joint sequence-structure diffusion model trained on SAbDab, and RFDiffusion [76], a structural233

diffusion model trained on the PDB [10] that uses inverse folding to derive sequences. Although IgLM234

is trained with fill-in-the-middle augmentations [6], it does not natively support infilling multiple235

non-contiguous regions, and we do so by replacing regions that are not yet sampled with [UNK]236

tokens. For the structure-based methods, we provide starting structures generated with IgFold [60],237

as no ground truth structure is known for the vast majority of recorded antibody sequences.238

In Figure 4, we find that diffusion models often generate infills that are on-par or better than that239

those returned by IgLM by default, especially when multiple regions must be filled simultaneously.240

We also see that DiffAb, while being capable of sequence-structure co-design out of the box, often241

underperforms sequence-only diffusion, most likely because our sequence-based approaches have242

access to a larger training dataset, while paired datasets with sequences and structures are much more243

limited. Lastly RFDiffusion tends to generate relatively low likelihood CDR infills. The gap between244

DiffAb and RFDiffusion may be explained by the relative scarcity of antibody structures in the PDB245

compared to SAbDab, which has an antibody in every structure. The poor performance of structural246

methods on CDR infilling in general could be a result of poor sequence recovery from structure, a247

problem that could be amplified for relatively unstructured loop regions like CDRs.248

5.2 Guided generation249

To test guided sampling from our model, we run experiments on two simple single-objective tasks,250

• The percentage of beta sheets, measured on primary sequence [15]251

• The solvent accessible surface area (SASA) of the protein’s predicted structure [60].252

First, for a high-level comparison with the procedure from Verkuil et al. [75], we construct an energy253

function using IgLM that balances sequence likelihood with a beta sheets objective, which we tune to254

generate sequences with approximately 40% beta sheets (details in Appendix C.2). For comparison,255

we also sample from our diffusion models on the beta sheets objective, choosing λ (eq. 2) to produce256

the same percentage of beta sheets. In Figure 5 (left) we show that the diffusion models are able to257

converge on low energy solutions in 1-2 orders of magnitude fewer steps.258

Since we want plausibly natural antibodies with high objective value we examine the Pareto front259

for samples optimized for each objective, with log-likelihood assigned by ProtGPT [28] (trained on260

Uniref50 [72]) plotted alongside the value of the objective. As our primary guided baseline, we run261

7



Uniform Edits + No Guidance
Uniform Edits + Guidance

Salient Edits + No Guidance
Salient Edits + Guidance

1.00 1.25 1.50 1.75 2.00
Diffusion Step

20

40

60

80

100

Ac
q.

 V
al

ue

B= 2

2 4 6 8
Diffusion Step

200

400

600

Ac
q.

 V
al

ue

B= 8

0 10 20 30
Diffusion Step

0

1000

2000

Ac
q.

 V
al

ue

B= 32

Figure 6: We ablate the effects of guidance and edit position selection on the acquisition function
optimization performance of LaMBO-2 with NOS-D. We start with the hu4D5 HER2 antibody and
vary the edit budget B P t2, 8, 32u, optimizing for expression yield and binding affinity. We sample
1K designs using B diffusion steps, tracking the acquisition value of the samples throughout the
diffusion. We evaluate all elements of the Cartesian product {uniform edits, salient edits} ˆ {no
guidance, guidance}. For all choices of edit budget, we find that the effect size of edit position
selection is much larger than that of guidance, making salient unguided edits a surprisingly strong
baseline. The effect size of guidance is largest when the edit budget is large.

PPLM, using IgLM as the base generative model (details in Appendix C.3). For both PPLM and NOS,262

we generate samples for many different setting of the control hyperparameters (Section 4.1), which263

yields samples across the spectrum from aggressively optimizing the objective to conservatively264

maintaining high likelihood. We also include DiffAb and RFDiffusion without guidance as baselines,265

as examples of popular “diversification” procedures, in which new samples are generated for later266

ranking and filtering. In Figure 5 (b & c), we see that, for both continuous and discrete corruptions,267

NOS offers better trade-offs between optimizing the objective and maintaining high likelihood, while268

also generating high values of the objective at the extreme.269

5.3 Effect of Salient Edits270

Having established the performance of NOS on simpler benchmarks, we now turn to real-world271

antibody design with LaMBO-2. In all LaMBO-2 experiments we jointly condition on the heavy272

chain, light chain, and antigen sequence, and we jointly optimize the heavy and light chains only. In273

this experiment we optimize hu4D5, a therapeutic antibody targeting the HER2 antigen3 for higher274

expression and affinity, as described in Subsec. 4.2. To separate and independently study the effects275

of guidance (NOS) and salient position selection, we present an ablation in Figure 6 for optimization276

with a relatively small edit budget B (B ă“ 10% of mutable positions). To isolate the effects of277

salient edits we baseline against edit positions chosen uniformly at random, and to isolate the effects278

of guidance we set the step size η (Eq. 4) to 0. Small edit distance constraints are common in antibody279

engineering because the goal is typically to increase binding affinity without altering the binding280

location on the antigen (i.e. the engineered antibody should bind to the same epitope) [43]. One281

heuristic way to constrain the design to the same epitope is to set B « 8, (about 2.7% of the antibody282

sequence length) [43], precisely the range we consider in Figure 6.283

In the few edit regime we find that while both interventions improve the seed’s value, selecting284

positions using saliency has a much larger effect than guidance. Although gradient guidance is a285

reliable and generally applicable tool for improved sampling, the scale of the edit position search286

dwarfs the scale of the search over token replacements that guidance affects. With a vocabulary of 21287

tokens the number of possible token combinations (218) is dwarfed by the combinations of possible288

edit positions (C300
8 ). Salient selection of edit positions is, therefore, key to any practical application289

of NOS in budget-constrained design. Interestingly, this facet of protein design differs significantly290

from guided sampling of images, where generation is typically limited to fixed locations [49, 14], not291

a fixed edit budget spread over any location that will optimize the objective. These additional degrees292

of freedom pose an extra challenge.293

5.4 Antibody Lead Optimization294

We now present in silico and in vitro results in the context of antibody lead optimization for active295

drug development projects.4 Our in silico evaluation compares two variants of LaMBO-2 (one using296

NOS-C, the other NOS-D) against a competing method, walk-jump sampling (WJS), an unguided297

smoothed discrete sampling algorithm proposed by Frey et al. [29]. Each method generated 1K298

designs from the same set of seeds, and all methods were restricted to B “ 8 edits. LaMBO-2 chose299

3HER2 is an important target for certain types of breast and stomach cancer [35].
4Due to the sensitive nature of the data, we do not disclose specific drug targets for these experiments.
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Figure 7: We evaluate LaMBO-2 in the context of real-world antibody lead optimization. LaMBO-2
can use either NOS-C or NOS-D to generate design libraries with higher predicted objective value
than the unguided sampling baseline WJS [29], however intensive optimization comes at the cost
of reduced naturalness (panels left and center). We experimentally validated 68 designs generated
by LaMBO-2 in the wetlab, observing 97% expression rate, 25% binding rate, and 4.4% of designs
may have improved binding (subject to further validation). These results are very encouraging when
placed in context with a related experiment designing HER2 antibody libraries [63]. While panel
right is not a head-to-head comparison (see Subsec. 5.4), our results indicate that some reduction in
naturalness can be tolerated without harming expression, and that it is possible to generate enriched
libraries exclusively with in silico methods.

all edit positions automatically along the entire antibody sequence, whereas WJS was given manually300

selected edit positions restricted to CDRs only. In the left two panels of Figure 7 we compare the301

predicted expression yield, predicted binding affinity, and naturalness of the antibody designs, using302

the metric proposed by Shanehsazzadeh et al. [63]. Comparing the Pareto frontiers obtained from303

each set of designs, we see that while WJS excels at generating “natural” antibodies, it struggles to304

generate designs at the higher end of the objective range. Conversely LaMBO-2 designs (particularly305

those generated with NOS-C) have high predicted objective value but also lower naturalness scores.306

LaMBO-2 designs generated with NOS-D strike a balance between the two extremes.307

In order for a synthetic library to be useful for antibody design it must contain functioning, expressing308

antibodies [65]. Since we value expression very highly (and by proxy, naturalness) we used LaMBO-309

2 with NOS-D (since NOS-D generally produced higher likelihood sequences) to generate 30K310

antibody designs (B “ 16). 68 designs were ultimately selected for in vitro experimental validation311

by an independent discriminative model, and 66 (97%) of those selected expressed well enough to312

evaluate binding affinity. It is encouraging to see that we can trade off some naturalness without a313

major decrease in expression, since some loss of naturalness is likely necessary for optimization.314

We present our binding affinity results in the right panel of Figure 7. 17 designs (25%) bound to the315

target antigen, with ´ log10pKDq values ranging from 6 to 8. 3 (4.4%) of the designs had higher316

measured binding affinity than the original seed measurement. Figure 7 also reports binding affinity317

results of a related experiment from Shanehsazzadeh et al. [63] for context, though we emphasize318

that there are substantial differences between our wetlab validation and that of Shanehsazzadeh et al.319

[63] which prevent a true apples-to-apples comparison. In the latter experiment 1M designs were320

generated for the HER2 target and screened with a high-throughput assay. After screening 421 designs321

were validated with a high-fidelity surface plasmon resonance (SPR) assay. In addition to wetlab322

screening, their experiment also restricted edits to specific antibody CDRs. We optimized antibodies323

for a different therapeutic target and relied exclusively on in silico screening before validating with324

SPR, while placing no explicit restrictions on the edit locations. Despite these differences, our325

results provide initial evidence that it is possible to generate enriched libraries of antibody designs326

exclusively with in silico methods operating only on primary sequence. While the experimental327

validation provided is preliminary, we are actively pursuing more rigorous experimental testing in the328

form of up-scaled and repeated expression and binding experiments and specificity assessment.329

6 Discussion330

There are many exciting directions for future work. The original LaMBO algorithm was used to331

optimize small molecules in addition to proteins, and applying LaMBO-2 to small molecule design is332

a fruitful direction, as LaMBO-2’s improvements are not protein-specific. Other promising directions333

include optimizing much longer sequences, such as gene perturbations [42], which can exceed 20K334

tokens in length and may necessitate the use of recent advancements in state-space models [34, 56]335

or clever modifications of self-attention [16, 13], and considering more general notions of guidance,336

such as classifier-free guidance [37], for text or class-conditional generation [58, 12], since some337

goals are difficult to express as black-box functions or constraints [48, 57].338
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A Extended Background578

In this section we provide full descriptions of the diffusion processes introduced in Sec. 3.579

A.1 Continuous noise diffusion580

The forward process is defined by noise variances β. We use the cosine variance schedule from Nichol581

and Dhariwal [54]. For convenience we further define582

αt “ 1 ´ βt, ᾱt “

t
ź

i

αi

The forward process is defined by the conditional distributions583

ppxt|xt´1q “ N pxt;
a

1 ´ βtxt´1, βtIq

ppxt|x0q “ N pxt;
?
ᾱtx0, p1 ´ ᾱtqIq

ppxt|wq “ N pxt;
?
ᾱtUθw, p1 ´ ᾱtqIq
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Figure 8: Illustration of a string gradually corrupted by [MASK] tokens.

where Uθ is an embedding matrix. The reverse process is defined by584

πpxq “ N p0, Iq

ppxt´1|xt, x0q “ N
`

xt´1;µt, σ
2
t I

˘

µt “

?
ᾱt´1βt

1 ´ ᾱt
x0 `

?
αtp1 ´ ᾱt´1q

1 ´ ᾱt
xt

σ2
t “

1 ´ ᾱt´1

1 ´ ᾱt
βt

pθpw|xtq “ Softmaxpϕθpx0qq

pθpxt´1|xtq “
ÿ

ŵ

ppxt´1|xt, x0 “ Uθŵqpθpŵ|xtq

A.2 Categorical noise diffusion585

Following Austin et al. [3] we define the MLM style categorical diffusion using transition matrices

rQtsij “

$

&

%

1 if i “ j “ m

αt if j “ m, i ‰ m

1 ´ αt if i “ j ‰ m

and Q̄t “ Q1Q2...Qt for noise schedule αt P r0, 1s (see Figure 8 for an illustration). These transition586

matrices correspond to categorical conditional distributions587

ppwt|wt´1q “ Catpwt; p “ wt´1Qtq

ppwt|w0q “ Catpwt; p “ w0Q̄tq

The reverse process is defined by588

πpwq “ 1rw “ [MASK]Ls

ppwt´1|wt, w0q “ Cat
ˆ

wt´1; p “
wtQ

J
t d w0Q̄

J
t´1

w0Q̄twJ
t

˙

pθpw0|wtq “ Softmaxpϕθpwtqq

pθpwt´1|wtq “
ÿ

ŵ0

ppwt´1|wt, ŵ0qpθpŵ0|wtq

B Methodological Details589

B.1 Infilling algorithm590

We sample infills using the procedure in Algorithm 1. The infill mask P is constructed by setting591

the index of conserved residue equal to 1, in this case at every residue that is not included in set of592

CDR regions being infilled. We use the same algorithm to perform the guided infilling in Subsec. 5.2,593

where it is extended with a guidance Langevin sampling step.594
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Algorithm 1 Infilling with categorical denoising diffusion model
Inputs: Denoiser pθpŵ|xt, tq, corruption process ppxt|x0q, infilling mask P , and seed sequence s
Returns: Sample from p̃pwq “ pθpw|P, sq exppfpwqq

xT „ ppxT q

sT „ ppsT |sq

xT Ð pI ´ PJP qxT ` PJsT
for t “ T, . . . , 1 do

ppxt´1|xtq Ð
ř

ŵ ppxt´1|xt, ŵqpθpŵ|xt, tq
xt „ ppxt´1|xtq

st „ ppst|sq

xt Ð pI ´ PJP qxt ` PJst
end
w „ pθpw|x0q

return w

B.2 Hidden State Langevin Sampling595

Design of molecules or images with generative models is often posed as the problem of sampling596

from a posterior distribution ppx|aq given the unconditional distribution ppxq and attribute model597

ppa|xq. Indeed, reinforcement learning, the design of good actions in an environment, can also be598

framed as posterior sampling where ppa|xq is the probability that a given state or state-action pair599

is optimal [46]. Methods that employ posterior sampling of this form are often call “plug-and-play”600

because ppa|xq and ppxq need not share parameters and therefore users can mix and match different601

instantiations [53, 17, 33, 25]602

The most common way to sample from the posterior ppx|aq 9 ppa|xqppxq is through Langevin603

sampling on the unnormalized joint density p̃pa, xq “ ppa|xqppxq, with sampling steps604

xi`1 “ xi ` η∇ log p̃pa, xq `
a

2ηzi, zi „ N p0, Iq

“ xi ` η p∇ log ppa|xq ` ∇ log ppxqq `
a

2ηzi, zi „ N p0, Iq

When we work with generative models over continuous random variables that permit a likelihood605

(e.g. normalizing flows), score function (e.g. diffusions), or energy (e.g. EBMs) ∇ log ppxq has a606

natural interpretation and sampling can be performed with essentially vanilla Langevin sampling.607

In other cases where only a denoising function over continuous variables is available, authors have608

proposed approximate samplers using an approximation of the score function [53].609

When we instead hope to sample from a posterior over discrete random variables constructing an610

analogy to the score function ∇ log ppxq is challenging, and prior work adopts a different approach of611

regularizing the conditional sampling distribution ppw|aq with unconditional sampling ppwq in order612

to maintain high likelihood [17]. In autoregressive models, ppwq is broken down using the chain rule,613

ppwt|wătq and thus the appropriate regularization is614

KLpppwt|wătq || ppwt|wăt, aqq (6)

In our case, the distribution ppwq is factorized by the transition distributions ppwt|wt´1q (or their615

continuous analogies in token embedding space), and we hope to sample from the perturbed transition616

p̃pwt´1|wtq “ pθpwt´1|wtq exppvθpwtqq

The correct regularization term in our case is thus617

KLpppwt´1|wtq || ppwt´1|wt, aqq

To put the pieces together, we first recognize that the denoising model pθpw0|wtq can be broken down618

into an language model head, Hθ, and trunk, Tθ, with619

ht “ Tθpwtq

pθpw0|wtq “ Hθpw0|htq

We can then perform Langevin sampling on the hidden representations, initializing with ht, as shown620

in Algorithm 2. In the experiments above we set λ3 “ 0, as we saw no noticable benefit from adding621

additional stochasticity. Importantly, sampling from ppwt´1|wtq already introduces randomness into622

the reverse process.623
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Algorithm 2 Guided diffusion sampler
Inputs: Denoiser pθpŵ|xt, tq “ rTθ, Hθs, value function vθ, and weights λ1, λ2, λ3

Returns: Sample from p̃pwq “ ppwq exppfpwqq

wT “ [MASK]L

for t “ T, . . . , 1 do
ppwt´1|wtq Ð

ř

ŵ ppwt´1|wt, ŵqpθpŵ|wtq

h0 Ð Tθpwtq

for i “ 0, . . . ,K ´ 1 do
zi „ N p0, Iq

ph Ð
ř

ŵ ppwt´1|wt, ŵqHθpŵ|hiq

hi`1 Ð hi ` λ1∇hvθphiq ` λ2∇hKLpppwt´1|wtq||phq ` λ3z
i

end
wt´1 „ HθphKq

end
return w0

C Infilling / NOS Guidance624

All of our diffusion models are train on all paired heavy and light chain sequences from OAS [55]625

(pOAS) combined with all sequences from SAbDab [24], aligned with ANARCI [23].626

C.1 Infilling experiment627

For our trained diffusion models, we use Algorithm 1 without guidance, generating P based on628

the indicated CDRs, using chothia numbering for consistency with DiffAb. For the baselines, we629

constructed wrapper scripts to convert the chosen CDR ids into each method’s native format.630

C.2 MCMC comparison631

Following Verkuil et al. [75], we construct a Markov chain using uniform random mutations to map a632

sequence w to a mutated sequence w1, using the following Metropolis-Hastings correction:633

ppaccept w1|wq “ min

ˆ

1,
expp´Epw1q{T q

expp´Epwq{T q

˙

,

where T ą 0 is a temperature hyperparameter. While this method has appealing theoretical properties,634

obtaining good samples from this Markov chain in practice requires hundreds of thousands of steps635

of burn-in.636

In our experiment, we define the energy, E, by combining sequence level probabilities assigned by637

IgLM with a beta sheets objective function trained on IgLM’s representations. We construct the638

energy as639

Epwq “ pIGLMpwq ` λvθpwq,

We tune λ to generate sequences with approximately 40% beta sheets. We also tune the NOS λ640

parameter (Eq. 4) to produce approximately 40% beta sheets.641

C.3 PPLM details642

In order to generate full (heavy and light chain) optimized antibodies with PPLM and IgLM, we643

train two separate value function models on IgLM’s aggregated hidden representations, one for heavy644

chain sequences and one for light chain sequences. IgLM uses special tokens for both the chain645

identity and the species identity of each sequences, and we pass in appropriate corresponding tokens646

when calculating the hidden representations for each model. To determine the correct species token647

for each sequence, we use the predicted species returned by ANARCI [23]. Our value function is a648

simple one-layer feed-forward neural network trained on top of the mean-aggregated representations649

for the corresponding chain identity.650

To sample using PPLM, we overwrite the forward pass of the huggingface decoder used by IgLM to
include a Langevin sampling step over the current hidden representations. We perform K gradient
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Figure 9: We compare samples from running our guided discrete diffusion (NOS-D) with diffusion
style sampling versus autoregressive style sampling. We find that using an iterative refinement
procedure does lead to consistent improvements in the objective value, though not to an extent that
would suggest iterative refinement is sufficient for strong sampling performance.

steps to update the current hidden representation h1 by descending on the objective

λKLrppŵ|h1q || ppŵ|hqs ´ vph1q

where h is the original hidden representation output by the model’s encoder, and η and λ are the step651

size and regularization strength respectively. We ran optimization with both vanilla gradient descent652

and AdaGrad [22] and found AdaGrad to be more robust to poor specifications of the step size. For653

the results in Sec. 5, we draw samples and present results for all of the hyperparameter settings in654

Table 1655

λ 0, 0.001, 0.01, 0.1, 1.0
η 0.5, 0.8, 1.1, 1.4, 1.7, 2.
K 5, 10

optimizer SGD, AdaGrad

Table 1: Hyperparameter settings used for PPLM. λ controls the strength of the regularization. Large
values prevent sampling values that differ significantly from the unguided model. η controls the size
of steps taken in the latent space. Larger step sizes, when not too large, can increase the distance
traveled in the latent space and the extent to which sampling can yield samples with high values of
the objective.

One critical difference between controllable autoregressive models and controllable diffusions is the656

ability to resample previously sampled values. Procedures that allow for resampling are often called657

“iterative refinement” procedures because they can produce increasingly plausible generations by658

refining the model’s previous output at each step in an iterative procedure. Because there are many659

potential differences between our NOS models and PPLM, including but not limited to the nature660

of iterative refinement, we performed an additional experiment to assess the impact of adapting a661

discrete diffusion to perform autoregressive sampling. Autoregressive models can themselves be662

thought of as diffusions with an idiosyncratic corruption process that masks out all tokens to the right663

of the last sampled token. As in our discrete corruption process, the prior is also a sequence of all664

mask tokens. Using this insight, we can run our trained discrete diffusions in autoregressive mode665

by contriving the sampling noise schedule to be autoregressive and recover an approximation of the666

timestep post-hoc from the percentage of masks at each step in autoregressive sampling.667

Figure 9 shows the difference in objective values and likelihood for samples obtained by running668

the model in typical diffusion mode (iterative refinement) or in contrived autoregressive mode. We669

can see that on the beta sheets objective, iterative refinement has a noticeable positive impact on the670

objective values of the sample. This effect is also present in the SASA objective, but to a much more671

limited extent. We speculate that the iterative refinement facet of NOS is helpful for outperforming672

other methods but not completely sufficient.673
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C.4 Model Architecture and Training674

The gaussian and categorical diffusions are trained with the bert-small transformer backbone intro-675

duced by Bhargava et al. [8]. We use a cosine noise schedule for both diffusions and train for 100676

epochs with a batch size of 64, optimizing with AdamW using an initial learning rate of 5e-3 with677

a linear warmup. The value function is a feed-forward neural network with one hidden layer. The678

value function is trained jointly with the denoiser by alternating optimization steps, with 5 steps on679

the generative objective for each step on the discriminative objective. We train the models for 100680

epochs in total.681

C.5 Hyperparameter settings682

For each guided sampling experiment with NOS, we sample using many different hyperparameter683

combinations in order to generate both conservative and aggressive optimization of the value function.684

The hyperparameter settings for both objectives (beta sheets and SASA) and both corruption types685

(NOS-D and NOS-C) are shown in Table 2. In Table 2, there is an additional hyperparameter,686

“guidance layer”, which we did not discuss at length in the main text of the paper. This parameter687

dictates whether we perform guidance in the first layer of the neural network (the token embeddings),688

as is standard in continous diffusion models for discrete sequences, or the final layer of the neural689

network (the layer before the final linear head). In either case, we can use the same gradient descent690

objective and corruption process in each case and need only change the variable we propagate gradient691

updates to.692

To aid intuition for the effects of each hyperparameter, we show the sample densities that result from693

each combination of λ and η when guiding in the first (Figure 10) and last (Figure 11) layer of the694

NOS-D and NOS-C models. We see that the most important parameter is λ, which controls how695

far samples tend to move from the seeds. We can also observe that guiding in the first hidden state696

tends to perform better when sampling with NOS-C, while guiding in the final hidden state tends to697

perform better with NOS-D.698

λ 0.001, 0.01, 0.1, 1.0, 10.0
η 0.1, 0.5, 1.0
K 5, 10

guidance layer first, last
optimizer SGD, AdaGrad

Table 2: NOS guided sampling hyperparameter settings using guided sampling results in Sec. 5.
λ controls the regularization strength, constraining the plausibility of samples. eta, when chosen
effectively, can effect the degree of optimization that takes place on the hidden states. The guidance
layer is the layer in the neural network over which guidance is applied, the first being the token
emnbeddings and the last being the final representations before the linear head. The same values are
used for both NOS-D and NOS-C.

C.6 Density plots699

Because pareto fronts present only a partial view of sampling outcomes (focusing on the best700

case outcomes along each axis), we also include sample density plots to confirm that our methods701

consistently yield samples with better trade-off between likelihood and fitness. Figure 12 shows702

density plots for NOS and baselines when optimizing each of the two objectives (percentage of beta703

sheets and SASA). We find that DiffAb and IgLM samples tend to cluster around the starting seeds,704

while RFDiffusion samples tend to generate more diverse samples under the objective, but often with705

much lower likelihood than the seed sequences. By contrast, both NOS methods consistently improve706

values of the objective without sacrificing likelihoods.707
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Figure 10: Density plots for every combination of the regularization (λ) and step-size (η) parameter,
when performing guidance in the first layer (token embeddings) of the neural network denoiser. We
observe that lambda has the strongest effect on trading off fitness under the objective with likelihood
or closeness to the seed sequences.
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Figure 11: Density plots for every combination of the regularization (λ) and step-size (η) parameter,
when performing guidance in the last layer (pre-logits layer) of the neural network denoiser. NOS-C
and NOS-D exhibit quite different performance as a function of guiding the first or final hidden
representation.
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Figure 12: We compare sample densities for the methods presenting in Sec. 5, in order to augment the
limitations of simply showing pareto fronts. We see that NOS-C and NOS-D can both consistently
generate samples with favorable trade-offs while other methods tend to radically decrease likelihood
with little benefit to the value function or be relatively limited to the neighborhood around the seed
sequences.

D LaMBO-2708

D.1 Intro to Multi-Objective Bayesian Optimization709

When there are multiple objectives of interest, a single best (i.e. strictly dominant) sequence x˚ may710

not exist. Suppose there are k objectives, f : X Ñ Rk. The goal of multi-objective optimization711

(MOO) is to identify the set of Pareto-optimal (i.e. non-dominated) solutions such that improving one712

objective within the set leads to worsening another. We say that x dominates x1, or fpxq ą fpx1q,713

if fjpxq ě fjpx1q for all j P t1, . . . ,mu and fjpxq ą fjpx1q for some j. The set of non-dominated714

solutions X ˚ is defined in terms of the Pareto frontier (PF) P˚,715

X ‹ “ tx : fpxq P P‹u, where P‹ “ tfpxq : x P X , ∄ x1 P X s.t. fpx1q ą fpxqu. (7)

MOO algorithms typically aim to identify a finite approximation to X ‹ (which may be infinitely716

large), within a reasonable number of iterations. One way to measure the quality of an approximate717

PF P is to compute the hypervolume HVpP|rrefq of the polytope bounded by P Y trrefu, where718

rref P Rm is a user-specified reference point.719

uEHVIpx, f,Dq “ HVIpP 1,P|rrefq “ rHVpP 1|rrefq ´ HVpP|rrefqs`, (8)

where P 1 “ P Y tf̂pxqu [26, 27, 18]. To decide where to query f next, we search for720

argmaxx EruEHVIpx, f,Dqs, where the expectation is w.r.t. ppf |Dq.721

D.2 Discrete EHVI722

Although expression yield and binding affinity are both continuous measurements, we chose to723

discretize them and model them as classification with a softmax likelihood (See Appendix D.4). As a724

result we needed an extension of EHVI for discrete outcomes. Informally, EHVI is simply computing725

the HVI for different realizations of f and marginalizing f using ppf |Dq. Instead of taking f to be726

the latent function of some regression y “ fpwq ` ε. ε „ N p0, σ2q, we instead take f to be the727

logits of a categorical distribution, ppy “ i|w,Dq “
ş

softmaxipfpwqqppf |Dqdf .728

Let y “ ry1 ¨ ¨ ¨ yksJ. Given a set of baseline points B Ă AL we define P (Eq. 8) using the posterior729

mean ŷpwq “ Ery|w,Ds, w P B. We model y1, . . . , yk as conditionally independent given some730

shared hidden state h “ gℓpwq, so ppy|h,Dq factorizes nicely. Finally we define P 1 “ P Y tyu and731

take the expectation of Eq. 8 w.r.t. ppy|h,Dq. Since ppy|h,Dq is discrete and factorizes, we can732

marginalize in closed form when K1 ˆ ¨ ¨ ¨ ˆ Kk is not too large, where Ki is the number of classes733

corresponding to the discretization of the original continuous fi.734
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Algorithm 3 LaMBO-2: one guided discrete diffusion step
Inputs: Seed sequence w0, edit budget projection P , diffusion timestep t, corruption function cpw, tq,
constraint function upwq, encoder gθpwq, value function vθphq, decoder dθphq, regularization strength
λ, SGLD step-size η and temperature τ .
Returns: Best feasible sample from SGLD chain with distribution p1pxq9 ppxq exppf ˝ gpxqq

w˚, v˚ “ w0, vθ ˝ gpw0q (initialize optimal solution)
w1

0 “ cpw0, tq (apply diffusion noise)
h1
0 “ gθpw1

0q (initialize hidden state)
for i “ 1, . . . , I do

loss “ λKLrdθph1
i´1q||dθph1

0qs ´ p1 ´ λqvθph1
i´1q

h1
i “ h1

i´1 ´ P pη∇h1loss `
?
2ητε), ε „ N p0, Iq (projected SGLD step)

wi „ dθph1
iq (decode hidden state)

if v˚ ă vθ ˝ gθpwiq & upwiq then
w˚ Ð wi

v˚ Ð vθ ˝ gθpwiq

end
end
return w˚, v˚

D.3 Architecture and Hyperparameters735

The inputs of the LaMBO-2 model for antibody design are the variable heavy (VH) and variable736

light (VL) regions of the antibody sequence as determined by Aho alignment with ANARCI, as well737

as the (unaligned) antigen sequence. Note that the concatenation of the antigen to the input makes738

the samples from the generative head conditional on the antigen as well as the unmasked portion739

of the antibody sequence. The LaMBO-2 model jointly predicts antigen-conditional categorical740

token distributions for corrupted positions and discriminative distributions over protein properties.741

Discriminative predictions that should not depend on the antigen are made invariant through data742

augmentation with random antigen sequences. See Algorithm 3 for an overview of a single guided743

diffusion step with LaMBO-2.744

Model Architecture: our architecture for this experiment is inspired by the one proposed by Stanton745

et al. [70]. In particular we jointly a train an encoder shared between a generative discrete diffusion746

head and discriminative heads which predict expression and affinity. Rather than use a deep kernel747

GP, we simply ensemble 10 heads for each discriminative task to obtain uncertainty estimates. Like748

Stanton et al. [70] for this experiment we use 1D CNN residual blocks (kernel width 9), with layer749

normalization and sinusoidal position embeddings. The shared encoder was comprised of 4 residual750

blocks, and each task head was comprised of 2 residual blocks followed by a linear layer, with the751

exception of the generative head which was just a linear layer on top of the shared embeddings. Note752

that in future work self-attention layers could be used instead of CNN layers, as was the case for the753

pOAS experiments in Subsec. 5.2. We set the embedding dimension to 32, and the latent channel754

dimension to 256.755

Training Hyperparameters: The LaMBO-2 model is both a jointly trained generative and discrimi-756

native model, as well as a true multi-task model, which is necessary since measurements for various757

protein properties are often missing from a substantial fraction of rows in real-world datasets. We758

trained for 500K gradient updates using the Adam optimizer with η “ 1e-3, β0 “ 0.99, β1 “ 0.999.759

At each gradient step we randomly sampled a task head and task minibatch (batch-size 121) and760

updated the corresponding weights (including shared weights). We used a linear learning rate warmup761

over 10K gradient updates, and decayed the learning rate to 1e-6 with a cosine schedule. We did not762

regularize with weight decay or dropout.763

Generation Hyperparameters: to generate the designs in Figure 7, we sampled 1K designs from a764

pool of seed antibody sequences hand-selected by domain experts. For each seed we set the total edit765

budget shared between chains to B “ 16. In this experiment each infilling method took 16 diffusion766

steps, using an inverse linear noise schedule αt “ 1{p1 ` tq. Although the models were trained with767

a standard cosine noise schedule, we found the inverse linear schedule gave better results in terms of768

sample acquisition value at generation time. Within each diffusion step we took 64 Langevin steps,769

with noise scale τ “ 1e-2. For guided infills with uniformly distributed edit positions we set τ “ 1e6.770
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Figure 13: An illustration of using quantization to address heavily imbalanced data. On the right we
show the original marginal label distribution in green, and the discretization boundaries as dotted
lines. The boundaries are defined by a minimal level of affinity to be considered a binder (pKD “ 4),
and pKD deciles computed from the remaining measurements.

For guided infills with saliency-informed edit position selection we set τ “ 0.1. We set λ “ 0.5 to771

balance the tradeoff of sequence likelihood and value during guidance.772

Generation Constraints: in addition to the edit budget locality constraint, our LaMBO-2 designs773

were also constrained to meet certain sequence liabilities constraints:774

• Canonical Cysteine Conservation: there are specific conserved cysteine residues in anti-775

body sequences which play a crucial role in the formation of disulfide bridges. Disulfide776

bridges are covalent bonds formed between two cysteine residues through oxidation of their777

sulfur atoms. These bridges contribute to the overall structural stability and integrity of778

antibodies.779

• No Unpaired Cysteines: odd numbers of cysteines within individual chains (i.e. unpaired780

cysteines) are generally undesirable since they can lead to non-native disulfide bonds781

between different antibody molecules, which may disrupt assembly, folding, or function.782

• No Glycosylation Motifs: A glycosylation motif is a specific amino acid sequence within a783

protein that serves as a recognition site for the attachment of sugar molecules. The presence784

of a glycosylation motif in a protein can affect its stability, solubility, activity, and function.785

The addition of sugar molecules can alter the protein’s conformation, change its interactions786

with other proteins or molecules, and affect its trafficking and localization within the cell.787

D.4 Training Data, Class Imbalance, and Label Smoothing788

Training Data: the expression task heads were trained on a dataset of 10K linear transfection789

expression measurements, which was subsequently augmented to 160K rows by pairing the same790

measurements with different random antigens to teach the model to ignore the antigen sequence791

when predicting expression. The binding task heads were trained on a dataset of 10K SPR affinity792

measurements for various antigens, which was then augmented to 12K rows by pairing binders with793

different random antigens and imputing a non-binding label. This augmentation is important for794

training a pan-target affinity model, since experimental measurements of affinity to off-target antigens795

are uncommon. Note that the expression and affinity data only partially overlapped, necessitating the796

multi-task architecture described in Appendix D.3. The generative diffusion head was trained only on797

binding antibody-antigen pairs in the SPR binding data.798

We did not pretrain our LaMBO-2 models. It is likely that performance could be improved with799

the right pretraining corpus, however it is unclear if datasets like pOAS are particularly useful for800

pretraining antibody design models since most do not report antigen sequences and may not have the801

right level of variability. In any case, it is very encouraging to see positive real-world results before802

scaling in earnest.803

Label Discretization. As noted above, biological data tends to be very imbalanced, and historical804

experimental data even more so since there are strong selection effects imposed by the scientists805

collecting the data. We chose to discretize continuous properties like expression yield and binding806

affinity, making it easier to correct for class imbalance by upsampling minority classes. In Figure 13807
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Figure 14: Binding affinity feature attributions for hu4D5 produced by independent models trained
with different input corruptions. While the attributions do not match exactly, there is substantial
agreement on the importance of CDRH3 (top panel) and CDRL1. Some importance is also assigned to
various framework regions, which could be related to the fitness of different antibody germlines. We
emphasize that these models were trained solely on aligned sequences, with no additional positional
information.

we illustrate our discretization scheme. Any antibody-antigen pair with ´ logpKDq (pKD) less than808

4 was assigned to the non-binding class 0. Then binders were assigned to classes 1 - 10 based on809

which pKD decile (computed from binders only) they resided in. One consequence of this scheme is810

increasing any objective value by one unit corresponds to moving up one decile in the empirical label811

distribution.812

Training Discriminators on Noisy Inputs: the benefits of discretization are not limited to addressing
class imbalance. Working with discretized labels also allowed a simple approach to training the
discriminator on corrupted inputs inspired by label smoothing [73]. We train the discriminators with
the same noise schedule as the diffusion model and the usual cross-entropy loss, using modified labels

yt “ αt ˚ y ` p1 ´ αtq{K ˚ 1,

where y is the one-hot encoded label and K is the number of classes. Informally, as αt Ñ 0 the813

discriminator reverts to a uniform prior since the inputs are not distinguishable. Training on corrupted814

inputs avoids evaluating the value gradient on out-of-distribution inputs during generation, and causes815

the strength of the value gradient to grow as the diffusion progresses and the samples become more816

defined.817

D.5 Are Saliency Maps Reliable?818

There is substantial controversy regarding the reliability of input-gradient-based feature attribution819

methods, specifically related to their ability to consistently highlight ground truth task-discriminative820

features and ignore irrelevant features. For example, Hooker et al. [40] claim that random attribution821

is competitive with input-gradient methods, and Casper et al. [11] claim that gradient-free attribution822

outperforms input-gradient competitors. On the other hand, many papers claim that specific types823

of regularization can improve the performance of input-gradient attribution, including adversarial824

training [62], mask denoising [5], and model curvature penalties [69].825

A thorough investigation of these claims is beyond the scope of this work, however we have found826

that saliency maps produced by independent models trained with different corruption processes seem827

to consistently highlight specific regions of the antibody sequence (Figure 14). It is also worth noting828

that most of the related literature evaluates feature attribution in the offline setting. In LaMBO-2829

feature attributions are used online to intervene on the data collection process (specifically where830

to introduce changes in the antibody sequences). If LaMBO-2 changes a position that does not831

affect function it is reasonable to conjecture that input-gradient attributions would adjust accordingly832

after the model is retrained for the next round. Further investigation into feature attribution in833

decision-making contexts (as opposed to post hoc interpretability) is an exciting direction for future834

work.835
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Figure 15: Here we show the experimentally validated affinity of each designed binder as a function
of edit-distance from the original seed. The colors correspond to different seed antibodies, whose
binding affinity is shown as a dashed line. It is notable that we were able to preserve or improve
binding for a relatively weak seed (shown in green) as well as a relatively strong seed (shown in
yellow).

D.6 Wetlab Validation836

In this section we briefly summarize the experimental procedures used to validate LaMBO-2 designs837

in vitro. Designed antibody sequences from LaMBO-2 were expressed and purified, and surface838

plasmon resonance (SPR) measurements were used to determine binding affinity. See Figure 15 for a839

plot of design binding affinity vs. edit distance from seed antibody.840

Plasmid Construction and Antibody Production: synthesized DNA of antibody variable domains841

(Twist Biosciences) were cloned into mammalian expression vectors using Gibson assembly. The842

whole vector was amplified using PrimeStar Max polymerase (Takeda). PCR products were trans-843

fected transiently in 1mL Expi293 cell culture. Expression lasted 7 days before harvest. Antibodies844

were affinity purified over a MAb Select SuRe resin (Cytiva), and their concentration was measured845

by optical density at 280nM.846

Binding Affinity Measurements: affinity of the antibodies towards their target antigen was measured847

by surface plasmon resonance (SPR) at 37 °C on a Biacore 8K instrument (Cytiva) in HBS-EP+848

buffer (10 mM Hepes, pH 7.4, 150 mM NaCl, 0.3mM EDTA and 0.05% vol/vol Surfactant P20).849

Antibodies were captured on a Protein A chip and their target antigen were injected for 5 minutes and850

allowed to dissociate for 10 minutes at 30ul/min. The surface was regenerated between cycles with851

10 mM glycine pH 1.5. Affinity constants were obtained using Biacore Insight (Cytiva) using a 1:1852

binding kinetics model.853

854
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