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ABSTRACT

Brain computer interfaces (BCIs) can decode neural signals to control assistive
technologies such as robotic limbs for people with paralysis. Neural record-
ings from intracortical microelectrodes offer the spatiotemporal resolution (e.g.,
sortable units) necessary for complex tasks, such as controlling a robotic arm with
multiple degrees of freedom. However, the quality of these signals decays over
time despite many attempts to prolong their longevity. This decrease in long-term
performance limits the implementation of this potentially beneficial technology.
Predicting whether a channel will have sortable units across time would mitigate
this issue and increase the utility of these devices by reducing uncertainty, yet to
our knowledge, no such methods exist. Similarly, it would be useful to under-
stand how variables like time post-implantation, electrochemical characteristics,
and electrode design impact the long-term quality of these signals. Here, we ob-
tained longitudinal neural recordings and electrochemical data from freely behav-
ing rats implanted with a custom designed microelectrode array with varying site
areas, shank positions, and site depths. This dataset was used to develop an ex-
plainable machine learning pipeline that predicts with high accuracy the presence
of sortable units on a given channel pre-recordings and elucidates the most impor-
tant factors leading to these predictions. Our pipeline was able to predict whether
a channel will be active with an AUC of 0.79 (95% C.I. 0.73–0.86) on unseen data.
The most important features of the model were experimental subject, time post-
implantation, and a channel’s previous spike metrics. Electrode site depth was the
most important electrode design variable. Our results demonstrate the feasibil-
ity of implementing explainable machine learning pipelines for longitudinal BCI
studies and support previous reports on how factors like time, inter-animal vari-
ability, and cortical depth impact long-term performance of BCIs. These results
are an important step forward in improving efficient decoding performance and
guiding device development, which stand to advance the field and benefit the lives
of human BCI patients.

1 INTRODUCTION

Decoding neural signals through brain computer interfaces (BCI) can improve quality of life for
people with paralysis. Every year, approximately 20,000 patients suffer from spinal cord injury in
the US alone (Sekhon & Fehlings, 2001). Most of these cases result in tetraplegia, causing paralysis
from the neck down (Sekhon & Fehlings, 2001). By interfacing directly with the brain, BCIs can be
used as assistive technologies for these patients. Neural signals can be decoded and used to move
computer cursors (Hochberg et al., 2006), control robotic limbs (Hochberg et al., 2012), and enrich
exoskeleton (Benabid et al., 2019) and spinal cord stimulation technologies (Capogrosso et al., 2016)
that aim to restore locomotion. Neural signals can be recorded using a variety of interfaces that vary
in their degree of invasiveness (Eisinger et al., 2018). Recording signals directly from the brain
cortex using implantable microelectrodes enables isolating spikes from individual neurons (single
units). This level of precision is important for complex implementations such as controlling a robotic
arm with multiple degrees of freedom (Lebedev & Nicolelis, 2017) and has led to the creation of
companies like Elon Musk’s Neuralink (Musk, 2019).
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One challenge for intracortical BCIs is the long-term stability of the neural signals. The ability to
record sortable units gradually decreases over time, compromising decoding performance due to
reduced quality of the recorded neural signals (Williams et al., 1999; Colachis et al., 2021; Downey
et al., 2018). Potential solutions, such as replacing the electrode, might require a second surgery,
hindering the feasibility and clinical implementation of BCI technologies. There have also been
attempts to mitigate this decline in stability by using drug delivery systems, electrode coatings, and
new electrode materials (Colachis et al., 2021), but the problem persists. To date, we still do not
fully understand how these factors, and others such as the electrode design, inter-animal variability,
or electrochemical features, might play a role in the stability of these signals. Predicting when
stability of neural signals will decrease and understanding which features of the interface contribute
to this, would benefit clinicians and researchers and improve utility of intracortical BCIs.

Classical statistical techniques that focus on the individual impact of each of these factors may be
ineffective due to the size and complexity of many BCI datasets. These rich datasets may benefit
from more advanced machine learning (ML) techniques. In recent years, ML has been used used in
medicine for the prediction of disease onset (Fleuren et al., 2020; Yahaya et al., 2020) and for the
analysis of neurotherapeutics such as Deep Brain Stimulation (DBS) for Parkinson’s Disease (Per-
alta et al., 2021). However, to our knowledge, no ML studies have been applied on the longitudinal
stability of intracortical BCIs. In addition to predicting when a recording channel will be active (has
sortable units), applying ML explainability tools could also shed light on the most important factors
involved in these predictions, such as time post-implantation, electrochemical characteristics, and
electrode design variables.

Here, we obtained longitudinal neural recordings and electrochemical data (voltage transient,
impedance spectroscopy) from freely behaving rats implanted with a custom made intracortical
microelectrode (Fig. 1). This device has 16 channels with varying shanks, electrode-site areas, and
cortical depths. We only selected features that were available prior to a given recording session and
that are commonly available in clinical BCI studies. Following offline spike sorting, we developed
an explainable ML pipeline that predicts (pre-recordings) whether a channel will be active and elu-
cidate the most important features leading to these predictions (Fig. 1). We bypassed the complex-
ity/interpretability tradeoff of many black box ML models by using gradient boosting (Friedman,
2001). This non-parametric model offers high accuracy on tabular datasets (Shwartz-Ziv & Armon,
2022) and is still interpretable (Lundberg et al., 2018). Through the use of Shapley additive expla-
nations (SHAP), a method derived from game theory (Lundberg & Lee, 2017), we obtained local
and global explanations that shed light on the most important factors for individual predictions, and
the model as a whole, respectively. Similarly, through the use of decision paths, we elucidated
how feature importance changes depending on the presence or absence of sortable units in chronic
timepoints. Overall, these findings demonstrate the feasibility of predictive modeling and ML ex-
plainability tools for the longitudinal performance of BCIs and similar neurotechnologies. Imple-
mentation of these tools can guide the design of future BCI studies (including non-intracortical BCI
experiments) as well as the manufacturing of novel intracortical microelectrodes. Understanding the
most important factors affecting the long-term stability of BCIs and predicting when a channel is ac-
tive has the potential to propel forward the translatability of these assistive technologies for millions
of patients with paralysis.

2 METHODS

2.1 OVERVIEW

Following the collection of intracortical recordings and electrochemical characteristics over a period
of 15 weeks with a custom-made microelectrode (Fig. 1), we developed an explainable ML pipeline
that relied on gradient boosting and Shapley additive explanations. Importantly, all input features of
the model are available prior to the recording session (Fig. 1) and are routinely collected in clinical
BCI studies (i.e. impedance). This pipeline not only predicted with high accuracy whether a channel
would have sortable units, it also elucidated the most important features leading to such prediction.
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Figure 1: Data collection and Explainable Machine Learning Pipeline. Implantation: A silicon mi-
croelectrode with a custom design was implanted in the S1 of rats. The electrode-sites of this device
are combination of are shank, area, and depth. Chronic data collection: electrochemical features and
neural recordings were obtained for up to 15 weeks post-implantation. Pre-processing: following
offline sorting, channels that had sortable units were deemed active. EDA: Percentage of active sites
across electrode design variables. Model development: in order to predict whether a channel will be
active prior to the recording session, only features available prior to the collection of neural record-
ings were selected, such as the channel’s previous sortable unit metrics. The development set used
to train each classifier was done using leave-one out cross-validation and performance was evaluated
on an external validation subject. ML Explainability: SHAP values were computed to determine the
most important predictors for the model, on chronic timepoints, and for individual trials.

2.2 SURGICAL IMPLANTATION AND CHRONIC MEASUREMENTS

A custom silicon microelectrode array with variable site sizes distributed across 4 shanks was de-
signed for this study (NeuroNexus, Ann Arbor, MI). Following sterilization with ethylene oxide, this
device inserted into the somatosensory cortex of adult Sprague Dawley rats using a micro-insertion
system, resulting in a maximum electrode site depth of 900 µm (see: Fig. 1). All surgeries were
carried out by the same surgeon. The first 5 subjects were implanted within a period of 2 weeks.
The sixth animal was implanted a month afterwards and was used as the external validation set in
our machine learning pipeline (Fig. 1). Specifics of the surgical procedure are explained elsewhere
(Urdaneta et al., 2021).

Following implantation, neural recordings, electrical impedance spectroscopy (EIS), and voltage
transients (VT) were measured for 15 weeks (Fig. 1). First, neural recordings from all 16 channels
were taken for 5 minutes at a sampling rate of 24 kHz on freely behaving animals using a PZ5
amplifier (Tucker Davis Technologies, Alachua, FL). Immediately after, EIS 15 mV peak-to-peak
measurements were obtained using logarithmic frequency sweeps from 10 Hz to 100 kHz using a
PG-STAT-128N Potentiostat (Metrohm, Utrecht, Netherlands). Lastly, VT was measured using 5
µA symmetric waveforms with a phase duration of 50 µs using a IZ-32 stimulator (Tucker-Davis
Technologies, Alachua, FL) (Saldanha et al., 2021).
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2.3 VARIABLES AND FEATURE ENGINEERING

To determine whether a channel was active (presence of sortable units), raw neural signals were
sorted for spike waveforms using Offline Sorter (Plexon Inc. Dallas, TX) (Fig. 1). This supervised
method was chosen over automatic alternatives since it allows for easy artifact removal (typical of
recordings in freely behaving animals) and has been widely used in the field (O’Doherty et al., 2009).
Only channels with spike waveforms that passed the inspection of two blind reviewers and had more
than 200 spikes, were considered active. Importantly, our threshold for classifying a channel as ac-
tive was solely dependent on the presence of a sortable waveform. In other words, having a sortable
unit in a channel does not imply that the extracellular recordings are coming from a single, individ-
ual neuron. Spike metrics (SNR, amplitude, and spike count) were calculated automatically with
the Offline Sorter software (Plexon Inc. Dallas, TX). Overall, 52.1% of all channels across the du-
ration of the study were active. Several features were engineered to potentially augment the model’s
predictive power. First, we obtained the electrochemical (EIS and VT) and spike metrics of the first
recording session that had a sortable unit for a particular channel (”First S.U.”). These spike metrics
were amplitude, signal-to-noise ratio (SNR), and spike count. In the case of intracortical microstim-
ulation (ICMS), metrics such as the amplitude of the first detection threshold, serves as a good proxy
for the overall chronic performance of that channel (Urdaneta et al., 2022). Therefore, obtaining the
metrics of the first time the channel was active might be informative for the model. Similarly, we
obtained electrochemical and spike metrics of the previous experimental session. To avoid potential
data leakage, features such as “week of previous active channel” were dropped. Electrochemical
features (EIS and VT) were imputed using last observation carried forward (LOCF) imputation.
Feature scaling was performed for the K-nearest neighbor (KNN) and logistic regression algorithms
using min-max normalization (Patro & Sahu, 2015). However, given that decision tree models are
insensitive to data variance (Dietterich & Kong, 1995) normalization was not performed for either
gradient boosting and decision tree classifier models. Lastly, cross-correlated variables (i.e., day
vs. week vs. month post-implantation) were removed, while some highly correlated variables such
as different impedance frequencies were left untouched for the explainability pipeline. Fig. 4 and
table 2 (appendix) show a correlation matrix with the final list of features, and descriptions of those
features, respectively.

2.4 MODEL DEVELOPMENT

In order to capture the nonlinear interactions from this type of dataset we used gradient boosting, a
non-parametric ensemble model that uses gradient descent in the function space Friedman (2001).
We compared the performance of gradient boosting with baseline classifiers. Specifically, we used
a KNN classifier with 5 neighbors and uniform weights, a Gini entropy decision tree classifier, and
a logistic regression with ridge penalty. All these models were implemented from the Scikit-Learn
library Pedregosa et al. (2011). We used XGBoost (extreme gradient boosting), an implementation
of gradient boosting known for its improved speed (Chen & Guestrin, 2016) as well as its ability to
outperform even complex deep learning models on tabular datasets (Shwartz-Ziv & Armon, 2022).
Hyperparameter optimization was performed using Optuna, an automatic search space for tuning
hyperparameters based on dynamically constructed spaces (Akiba et al., 2019). The final hyperpa-
rameters for our gradient boosting model were: number of estimators: 1190, learning rate 0.003,
subsample = 74.8%, and a depth-wise growth policy. To take into account the performance het-
erogeneity observed across subjects in previous BCI studies (Williams et al., 1999; Downey et al.,
2018), and to better generalize on unseen data, we created a development set with the first 5 im-
planted subjects and an external validation set with the last-implanted animal. All models were
trained using leave one out cross-validation (Kearns & Ron, 1997) on the development set, and its
performance was compared to the external validation set.

2.5 MODEL PERFORMANCE

We used different metrics to evaluate the performance of each classifier across the development and
external validation sets. Accuracy and AUC-ROC (area under the receiving-operating characteristics
curve) were used as performance metrics. Given that the dataset is slightly imbalanced, 52.1%
for the positive (channel active = 1) class. We decided to also use metrics that performed well in
imbalanced datasets. For this we used both precision and recall, as well as the F1 score, the harmonic
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mean between precision and recall. Furthermore, each dataset was bootstrapped (resample with
replacement) 1000 times to obtain 95% confidence intervals for each metric.

2.6 EXPLAINABLE MACHINE LEARNING

The last step of our explainable ML pipeline was the use of SHAP (Lundberg & Lee, 2017), a
concept derived from game theory (Charnes et al., 1988). This method quantifies how predictions
for a particular model are affected after the removal of an individual feature in an iterative fashion
(Lundberg & Lee, 2017). This way SHAP assigns a relative importance value for each feature on
individual predictions. Each SHAP value ϕi is given by:

ϕi =
∑

S⊆N\{i}

|S|!(M − |S| − 1)!

M !
[fx(S ∪ {i})− fx(S)]

where S is the set of non-zero indexes, M is the number of input features, and N is the set of all
input features (Lundberg & Lee, 2017). Our gradient boosting model was passed through a Tree
Explainer (Lundberg et al., 2018) in order to obtain the global importance of the model, individual
instances, and decision paths.

3 RESULTS

3.1 THE PROPORTION OF ACTIVE CHANNELS MONOTONICALLY INCREASES WITH
ELECTRODE SITE DEPTH

We calculated the proportion of active channels (channels with sortable units) for each distinct fea-
ture (area, shank, depth) of our custom-designed intracortical microelectrode (Fig. 1 - exploratory
data analysis). The results of this analysis showed that channel depth had a monotonic increase in
the proportion of active channels as a function of cortical depth. Specifically, there were 28.4% more
active channels for sites 900 µm from the cortical surface (134) than 300 µm from cortical surface
(96). Proportionally, only 41.7% of superficial sites (300 µm) were active compared to 60.6% of
deep sites (900 µm). In contrast, the percent difference in the number of active sites between the
largest site-area (21,600 µm²) (105) and the smallest site-area (800 µm²) (118) was only 11.01%.
The site area with the highest proportion of active sites was 7200 µm², the second largest area, with
57.5%. Lastly, the proportion of active sites for the most anterior and posterior and most shank
was similar, with 46.5% and 47.9% for positions 1 and 4, respectively. The shank position with the
highest proportion of active channels was the second most anterior (position 2) with 60.6%. Over-
all, compared to site-size and shank position, electrode site-depth had a monotonic increase in the
proportion of active sites as these channels go deeper into the cortical surface.

3.2 GRADIENT BOOSTING CAN PREDICT WITH HIGH PERFORMANCE THE PRESENCE OF
ACTIVE CHANNELS

Table 1: Predictive modeling performance across classifiers. Numbers in parentheses represent 95%
CI from 1,000 bootstrapped iterations.

MODEL SUBSET ACCURACY AUC-ROC F1 SCORE PRECISION RECALL

Gradient Boosting test 0.73 (0.68-0.79) 0.74 (0.67-0.81) 0.64 (0.54-0.72) 0.73 (0.63-0.84) 0.63 (0.52-0.72)
Gradient Boosting ext. val. 0.73 (0.68-0.79) 0.79 (0.73-0.86) 0.79 (0.74-0.84) 0.83 (0.77-0.89) 0.76 (0.69-0.83)
Log. Regression test 0.69 (0.63-0.75) 0.72 (0.64-0.80) 0.62 (0.52-0.70) 0.66 (0.56-0.76) 0.65 (0.55-0.75)
Log. Regression ext. val. 0.36 (0.3-0.42) 0.49 (0.44-0.54) 0.07 (0.03-0.12) 1.00 (1.00-1.00) 0.04 (0.01-0.06)
KNN test 0.62 (0.56-0.68) 0.59 (0.50-0.68) 0.54 (0.46-0.62) 0.55 (0.46-0.64) 0.60 (0.49-0.71)
KNN ext. val. 0.37 (0.30-0.43) 0.58 (0.51-0.64) 0.12 (0.06-0.18) 0.88 (0.67-1.00) 0.07 (0.03-0.10)
Decision Tree test 0.69 (0.64-0.76) 0.65 (0.58-0.73) 0.60 (0.50-0.68) 0.65 (0.53-0.77) 0.58 (0.48-0.7)
Decision Tree ext. val. 0.66 (0.60-0.72) 0.66 (0.61-0.72) 0.73 (0.67-0.78) 0.79 (0.73-0.86) 0.67 (0.60-0.75)

Table 1 shows the results of our predictive modeling across different metrics for different classifiers.
The average accuracy on the holdout test of the development set was 0.69 (95% CI: 0.63-0.75) for
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logistic regression, 0.62 (0.56-0.68) for KNN, and 0.69 (0.64-0.76) for the decision tree classifier.
On the other hand, the accuracy for the external validation was 0.36 (0.3-0.42) for logistic regression,
0.37 (0.3-0.43) for KNN, and 0.66 (0.6-0.72) for decision trees. In contrast, our gradient boosting
model had the best accuracy (0.73) for both the test and external validation set. Gradient boosting
also had a better overall performance among the test and external validation sets for other metrics.
For instance, the test set had AUC-ROC and a F1 score of 0.74 (0.67-0.81) and 0.64 (0.54-0.72),
respectively, while the external validation set had an AUC-ROC of 0.79 (0.73-0.86) and a F1 score
of 0.79 (0.74-0.84). Altogether, the non-parametric nature of gradient boosting allows us to predict
with high performance when a channel will have sortable units. One of the advantages of gradi-
ent boosting is that it is not as affected as other complex models in the typical trade off between
performance and explainability (Lundberg et al., 2018). Hence, using SHAP’s tree explainer, we
decided to further investigate how gradient boosting reached these predictions in order to obtain
global explanations and determine feature importance of this model.

3.3 GLOBAL EXPLANATIONS INDICATE FEATURE IMPORTANCE

Figure 2: Summary plot containing global explanations for the most important features across the
study. Feature importance is represented in descending order, with the most important features at
the top of the graph. SHAP values indicate the overall contribution of an individual feature, higher
values push the prediction towards the channel being active.

SHAP is a robust model-agnostic method to quantify the contribution of individual features for each
prediction the model does (Lundberg & Lee, 2017). SHAP values are estimated by running a model
with and without the feature in question while at the same time iterating the order in which the
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feature is presented to reduce bias. This way, SHAP allows us to elucidate the feature importance
from otherwise black box models and obtain global explanations and elucidate the most important
predictors (Lundberg et al., 2018). Fig. 2 shows a beeswarm plot with the most important features
for the prediction of active channels in our longitudinal recordings for BCI dataset. In this graph,
positive SHAP values have a positive impact on the model output, in other words, they drive the pre-
diction towards a channel being active (having sortable units), while negative SHAP values push the
prediction towards the channel not being active. Our results showed that Subject ID had the greatest
impact in our model. Interestingly, the distribution of SHAP values for this feature shows a bimodal
distribution with some subjects having high SHAP values (red dots) while others having low SHAP
values. This is consistent with the phenomenon of responders vs. non-responders observed across
several BCI studies (Williams et al., 1999; Downey et al., 2018). Time post-implantation was the
feature with the second largest impact in our model. Indeed, for the first half of the study 55.5% of
channels were active while only 46.8% were active during the second half. The high feature values
of Fig. 2 (dark red dots) had mostly negative SHAP values, suggesting that late timepoints tend to
drive the prediction negatively (towards a channel not being active). This finding is consistent with
the decay in the count of sortable units observed in chronic timepoints across the literature (Downey
et al., 2018). Features based on the channel’s previous sortable unit metrics (SNR, amplitude, and
spike count) were among the top 7 most relevant features, with previous SNR and amplitude being
the 2nd and 3rd most important features, respectively. The channel’s previous electrochemical fea-
tures such as VT peak and and 1kHz impedance magnitude, were ranked 9th and 13th for channels
previous VT peak, respectively. These findings suggest that predictions rely heavily on the results
of the previous experimental session, with channels with high SNR and amplitude in the previous
recording having a higher probability of being active. Electrochemical characteristics such as 0.3
kHz impedance and VT peak were the 4th and 9th most important features. For the most part, low
impedance values and high VT peak values seem to push the prediction towards the channel being
active. Indeed, the average 1kHz impedance magnitude for inactive channels was 554.6 ± 468.3
s.d.and 480.7 ± 399.6 s.d. for active channels. Being ranked 8th, electrode-site depth was the elec-
trode design variable that had the highest feature importance. Predominantly, red dots (light red:
700 µm, dark red 900 µm) had higher SHAP values, suggesting that deeper electrode-sites increased
the probability of a channel being active. In contrast, both site shank and site area had similar con-
tributions to the model but they are less important, with shank and area being the 15th and 17th most
important feature in our model, respectively. Lastly, the electrochemical and spike metrics of the
first sortable unit of a particular channel had an almost negligible importance (Fig 2, bottom). Many
of the most important features of fig. 2 were consistently ranked among the top predictors across
individual subjects and across classifiers. Collectively, the insights obtained from these findings, led
us to further investigate how the model makes individual predictions on a specific recording session.

3.4 LOCAL EXPLANATIONS CAN SHED LIGHT INTO INDIVIDUAL CONTRIBUTIONS FOR A
PARTICULAR RECORDING SESSION

SHAP’s local explanations allow us to elucidate how decisions are made for individual instances, in
other words, how each individual feature contributed to reach a prediction (Lundberg & Lee, 2017;
Lundberg et al., 2018). To contrast how local explanations change for an active and an inactive
channel, we selected a neural recording session on a chronic timepoint (week 10) for one of the
animals (subject 2) of the development test. Subsequently, we picked 2 out of 16 channels at ran-
dom, one with sortable units and one without them. Figure 3a shows local explanations for channel
5, an active channel. The axis units are log of odds, with higher values increasing the probability
of a channel being active. Features in red increase the probability of a channel being active, while
features in blue decrease it. Based on its magnitude (widest red bar), the most important feature
driving the prediction positively was the previous SNR of the channel, which was 7.46. The other
most important features in order of importance were the subject ID, the channel’s previous ampli-
tude, VT peak, and electrode-site depth. Conversely, time post-implantation was the most important
factor driving the prediction towards a negative outcome. This is consistent with the observation of
Fig. 2 in which late timepoints drive the prediction towards the channel not being active. Altogether,
the additive nature of these explanations leads to a log of odds of 4.98, which corresponds to a prob-
ability of 0.99, in other words the model correctly classified this channel as active. On the other
hand, Fig. 3b depicted local explanations for channel 10, a channel with no sortable unit. The most
important factors pushing this instance towards a negative prediction were 0.3 kHz impedance mag-
nitude, time post-implantation, and site depth. Interestingly, compared to the prediction of channel
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Figure 3: Local explanations depicting individual predictions for an active and an inactive channel
for a single session of neural recordings. A) Local explanations for a channel with an active channel.
Red features pushing the probability of a channel being active are more predominant on this plot. B)
Local explanations for a channel with an inactive channel. blue features, decreasing the probability
of a channel being active, are more prominent. The final prediction in the form of log of odds and
probability are present at the top of each graph.

5 (channel with sortable unit) where site depth influenced the prediction positively, in this case, site
depth had the opposite effect. This can be explained by the fact that the depth of channel 5 was
700 µm, compared to 300 µm for channel 10, the most superficial channel. As reported in Fig. 2,
superficial channels predominantly had negative SHAP values, meaning that superficial channels
(such as channel 10) tend to drive the prediction towards not having a sortable unit. The final pre-
diction for channel 10 (Fig. 3) had a log of odds of -1.73, which corresponds to a probability of
0.15, in other words the algorithm correctly classified this channel as not active (0). The results of
Fig. 3 showed that feature importance varied substantially from positive to negative predictions in
just two instances. This raised the question: how does feature importance change across positive
and negative predictions for more than two individual instances?

3.5 FEATURE IMPORTANCE ON CHRONIC TIMEPOINTS CHANGES DEPENDING ON WHETHER
CHANNEL WAS ACTIVE OR NOT

To assess this question, we used decision plots for every negative and positive prediction for the
second half of the longitudinal study. Similar to force plots (Fig. 3), decision plots can represent
prediction paths for multiple individual predictions, allowing us to individually rank the most im-
portant features for active and inactive channels (Fig. 5). The x-axis is in log-odds, with higher
values representing a higher probability that the channel is active. Each vertical line represents a
single recording session for a channel. By following the path of individual lines across different
features, we can determine how the model reached an individual prediction. Similar to Fig. 2, fea-
ture importance is sorted in descending order. Figure 5 (Appendix) a shows a decision plot for all
inactive channels after the second half of the study. The most important factors leading to a negative
prediction were subject ID, time post-implantation, channel’s previous spike metrics (SNR, ampli-
tude, spike count), and electrode-site depth. On the other hand, Fig. 5b shows individual prediction
paths for active channels. In this case, the most important feature was the channels’ previous SNR,
followed by subject ID, and 0.3 kHz impedance magnitude. We saw a shift in the importance of time
post-implantation. This factor went from the second most important feature for inactive channels
(Fig. 5a) to the fifth most important feature for active channels (Fig. 5b). This shift in importance
suggests that time post-implantation has a higher impact in the prediction of inactive channels, con-
sistent with the observations of figures 2 and 3. Regarding features related with the design of the
electrode, only electrode-site depth had relatively high importance for negative and positive predic-
tions, 6th, and 8th, respectively. Other electrode design variables (site-area, and shank) were out of
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top 10 most important features. Overall, analyzing decision paths for multiple predictions, help us
elucidate intrinsic differences in feature importance leading to the prediction of sortable units for
BCIs.

4 DISCUSSION

In this study, we recorded neural signals from rats chronically implanted with a custom-designed
intracortical microelectrode. In order to better understand the long-term stability of these signals for
BCIs, we developed an explainable ML pipeline to predict with high performance when a partic-
ular channel was active and to elucidate how different factors influenced these predictions. Using
gradient boosting, our model had an AUC-ROC of 0.79 (95% C.I: 0.73-0.86) predicting whether a
channel was active on unseen data. Through the use of SHAP, our pipeline identified that subject ID
and time post-implantation were among the two important features in the model. This was followed
by the spike metrics of the previous recording session. Importantly, out of the electrode design vari-
ables of our unique device, electrode-site depth was the most important, ranking 8th most important
feature overall. Moreover, through the use of local explanations and decision plots, we were able to
elucidate how the model made predictions on chronic timepoints for individual instances and how
different feature importance varied based on whether the channel was active or not. For instance,
time post-implantation played a more significant role in predicting whether a channel was not active
than active. The significance and novelty of this study is two-fold: 1) it is a unique longitudinal
dataset with a custom-designed microelectrode array. 2) To our knowledge, this is the first time
predictive modeling and/or ML explainability tools have been applied to a chronic BCI dataset.

Our study had a few limitations and constraints. First, we limited our longitudinal study to 15 weeks
only. Although this is a common timeframe for rats (Saldanha et al., 2021), human BCI studies
might last several years (Hughes et al., 2021; Downey et al., 2018). However, animal and human
recordings have shown similar trends over time (Downey et al., 2018; Williams et al., 1999). There-
fore, this study might serve as a precedent for the implementation of ML tools on future human
work. Another potential limitation is that for this study, we limited our dependent variable to the
presence or absence of sortable spikes (single units). Some modern BCIs might rely on different
neural signals using different filtering techniques. However, isolating single units remains an impor-
tant metric for many BCIs (Lebedev & Nicolelis, 2017) and other neuroscientific research (Buzsáki
et al., 2012). The feature importance of electrode-site area in our study might be limited to the
design constraints of the microelectrode device. Even though our device had electrode-sites with
different areas ranging from 800 µm² to 21,700 µm², the width of the shank was held constant.
Many studies have shown that reducing the thickness and width of the device to subcellular levels
(≤ 10 µm) can improve both the biocompatibility and chronic stability of its recordings (Luan et al.,
2017). In conclusion, through the design of a custom microelectrode device and the development of
an explainable ML pipeline we were able to predict with high performance whether a channel was
active for BCI applications. This pipeline also allowed us to shed light on the most important factors
in the model including the roles of inter-animal variability, time post-implantation, electrochemical
features, and electrode design variables. Even though ML explainability tools such as the ones used
in this study do not imply causation, our findings can inform the design of electrode manufacturing
and future BCI studies. Similarly, this study can open the doors for the implementation of similar
ML and explainability techniques to the field of neural engineering. Combining high performance
predictions with explainability tools can help both clinicians and researchers alike as well as improv-
ing the long-term performance and wide implementation of BCI assistive technologies for millions
of patients with paralysis.
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6 APPENDIX

Figure 4: Cross-correlation matrix across features. Pearson’s correlation value for each model vari-
able and the binary dependent variable: active channel. The diagonal of this matrix (1) has been
hidden for simplicity. S.U.: Sortable units.
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Table 2: Model’s input features: S.U. stands for sortable units

FEATURE DESCRIPTION UNITS

Subject Subject ID Int
Time post-implantation Time after the animal was implanted weeks
Electrode-site depth Cortical depth of the electrode site µm
Electrode-site shank Shank position in the array (1 most anterior - 4 most posterior) Int
Electrode-site area Size of the electrode-site µm²
Channel’s previous SNR Signal-to-noise ratio of the last S.U. a particular channel had Float
Channel’s previous spike count Count of spikes of the last S.U. a particular channel had Int
Channel’s previous amplitude Peak-to-peak amplitude of the last S.U. a particular channel had µV
Channel’s previous 1 kHz imp. mag. 1 kHz impedance magnitude of the previous experimental session Ω
Channel’s previous VT peak Voltage transient peak of the previous experimental session µV
0.3 kHz imp. magnitude Impedance magnitude frequency response at 300Hz Ω
1 kHz imp. magnitude Impedance magnitude frequency response at 1kHz Ω
5 kHz imp. magnitude Impedance magnitude frequency response at 5kHz Ω
Voltage transient peak Voltage transient peak of the current experimental session µV
Voltage transient p2p Voltage transient peak-to-peak of the current experimental session µV
Time post-implantation of first S.U. Week in which a particular channel had its first S.U. weeks
SNR of first S.U. Signal-to-noise ratio of the first S.U. registered for a channel Float
Amplitude of first S.U. Peak-to-peak amplitude of the first S.U. registered for a channel µV
Spike count of first S.U. count of spikes of the first S.U. registered for a channel Int
0.3 kHz imp. magnitude of first S.U. Impedance at 300Hz of the first S.U. registered for a channel Ω
1 kHz imp. magnitude of first S.U. Impedance at 1kHz of the first S.U. registered for a channel Ω
5 kHz imp. magnitude of first S.U. Impedance at 5kHz of the first S.U. registered for a channel Ω
Voltage Transient peak of first S.U. Voltage transient peak of the first S.U. registered for a channel µV
Voltage Transient p2p of first S.U. Voltage transient peak-to-peak of the first S.U. registered for a channel µV
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Figure 5: Decision plots on chronic time points for predictions of channels with and without sortable
units. All individual trials of the second half of the study were considered for this analysis. Feature
importance increases from bottom to top. A) decision plot showing prediction paths for every inac-
tive site. The lower the model output value the lower the probability that a channel has a sortable
unit. B) decision plot showing prediction paths for every active site. The higher the model output
value the higher the probability that a channel has a sortable unit. S.U.: sortable units.
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