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MultimodalQuery Suggestion with Multi-Agent Reinforcement
Learning from Human Feedback

Anonymous Author(s)

ABSTRACT
In the rapidly evolving landscape of information retrieval, search
engines strive to provide more personalized and relevant results to
users. Query suggestion systems play a crucial role in achieving this
goal by assisting users in formulating effective queries. However,
existing query suggestion systems mainly rely on textual inputs,
potentially limiting user search experiences for querying images.
In this paper, we introduce a novel Multimodal Query Suggestion
(MMQS) task, which aims to generate query suggestions based on
user query images to improve the intentionality and diversity of
search results. We present the RL4Sugg framework, leveraging the
power of Large Language Models (LLMs) with Multi-Agent Rein-
forcement Learning from Human Feedback to optimize the gener-
ation process. Through comprehensive experiments, we validate
the effectiveness of RL4Sugg, demonstrating a 18% improvement
compared to the best existing approach. Moreover, the MMQS has
been transferred into real-world search engine products, which
yield enhanced user engagement. Our research advances query
suggestion systems and provides a new perspective on multimodal
information retrieval.

CCS CONCEPTS
• Information systems→ Multimedia information systems.

KEYWORDS
multimodal query suggestion, multi-agent reinforcement learning
from human feedback, vision-language pre-training
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1 INTRODUCTION
Search engines have become an indispensable tool for information
retrieval, aiding users in finding relevant content in vast online
repositories. Traditional keyword-based search methods [23, 46],
while effective, often require users to precisely articulate their in-
formation needs, leading to potential challenges in formulating
accurate queries. To enhance the search experience and provide
more user-friendly alternatives, query suggestion systems have
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Guess what you want to
search

How to fix a broken  
bicycle chain

Nearby bicycle repair stalls

Why does the bicycle chain
frequently break

(a) Textual Query Suggestion

(b) Visual Query Suggestion (c) Multimodal Query Suggestion

Figure 1: Illustration of MMQS problem.

gained prominence. These systems aim to generate relevant and
contextually appropriate suggestions based on users’ current query
input, reducing the cognitive burden on users and increasing the
efficiency of information discovery.

There are two well-established query suggestion systems that
have been extensively studied: Textual Query Suggestion (TQS) [2,
5, 14, 15, 17, 39] and Visual Query Suggestion (VQS) [28, 49–51].
In TQS, it is capable to automatically suggest a list of keywords
based on users’ current queries, a feature that many existing search
engines have already implemented. Its primary purpose is to assist
users in formulating their search intents clearly and conveniently
(as illustrated in Figure 1(a)). In VQS, the suggestions generated
by TQS might be inadequate for users who lack familiarity with
the suggested terms. To address this issue, incorporating visual
examples along with the suggestions can greatly improve the user
experience and help users better understand the context (as illus-
trated in Figure 1(b)). The limitation of these systems is that they
mainly rely on users’ text inputs to generate potential suggestions.
However, images contain rich information that can be quickly per-
ceived. There are some situations where users can imagine what
they desire but find it challenging to express it concisely in words.
For example, imagine a scenario where a user’s bicycle breaks down
while riding on the street. In such a case, the intuitive search for
the user would be to quickly take a photo of the bicycle to query
for a solution rather than relying on TQS or VQS to describe the
current issue in text. If the user types “bicycle” in a search box, the
suggestions provided may be “bicycle poker”, “bicycle shop”, and
“bicycle pump”, which are all irrelevant in expressing the user’s
intent. In addition, to further enhance the query suggestions, it is
desirable for the system to not only provide guidance on fixing
a broken bicycle but also offer other useful information, such as
nearby bicycle repair stalls and possible reasons why his/her bicycle
frequently breaks. These diverse choices allow users to explore the
information they may need effectively (as illustrated in Figure 1(c)).

Motivated by practical scenarios, we introduce a novel query
formulation, called Multimodal Query Suggestion (MMQS). It takes
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a user query image as input and generates query suggestions to
response to the user’s search intent. Given that the query sugges-
tions are intended to assist users in activating search engines, the
design of MMQS focuses on two essential properties:

• Intentionality: The primary goal of MMQS is to capture the user’s
search intent effectively. Visual data presents an opportunity to
infer implicit information needs that might be challenging to
articulate in words. By incorporating visual cues from user query
images, MMQS aims to provide query suggestions that accurately
reflect the user’s underlying intent and support more focused
and relevant searches.

• Diversity: MMQS generates query suggestions that encompass
different aspects of the query image, thereby expanding the
search space. This empowers users to explore multiple aspects of
information discovery, enhancing the overall search experience.

Challenges and aNewSolution.The formulation of theMMQS
problem introduces several challenges that need innovative solu-
tions. Data Collection (C1): Integrating multimodal data comprising
both textual and visual information poses unique data preparation
challenges. Specifically, it involves generating image-suggestion
pairs, a property not presents in many publicly available image-
text datasets (e.g., COCO Captions [29] or Flickr30k Entities [34]).
Moreover, annotating user intent can be time-consuming and lacks
clear guidelines. Therefore, developing efficient and effective strate-
gies for data collection, automated pairing, and reliable annotation
becomes crucial for the success of MMQS. Capturing Intentional-
ity and Diversity (C2): Inferring user intent from a query image
and generating diverse suggestions is a complex task. It requires
understanding the visual context and associations between images
and textual suggestions. Achieving both intentionality and diver-
sity meanwhile in the generated suggestions necessitates carefully
designed techniques to align with user intent and avoid redundancy.

To address the aforementioned challenges, we propose a novel
RL4Sugg framework, leveraging the capabilities of Large Language
Models (LLMs) with Multi-Agent Reinforcement Learning to gen-
erate query suggestions based on input images. To tackle C1, we
leverage the current GPT language generation capabilities to au-
tomate the collection of image-suggestion pairs and user intent
annotations based on potential clicks. We employ a threshold-based
mechanism that selectively involves manual effort for suggestions
with lower confidence scores, ensuring high-quality annotations
while striking a balance between automation and human input in
the data labeling process. To tackle C2, we study a novel solution
based on multi-agent reinforcement learning, where we employ
two distinct agents within the framework: Agent-I, responsible for
intentionality, and Agent-D, responsible for diversity. Specifically,
the Agent-I first generates a set of intentional candidate sugges-
tions, which incorporates a RewardNet and a PolicyNet tailored
for this task. The RewardNet utilizes multi-task learning to align
image-suggestion pairs and assigns rewards to these pairs. Follow-
ing this, the PolicyNet is trained through Reinforcement Learning
from Human Feedback (RLHF) to enhance the intentionality of the
suggestions. Further, the Agent-D selects diverse suggestions from
the candidate pool, which is designed to cooperate with the Agent-
I to ensure that both intentionality and diversity are optimized
explicitly in an end-to-end training.

Our contributions can be summarized as follows:

• The MMQS Task: We introduce a novel query formulation,
called Multimodal Query Suggestion (MMQS), which addresses
the gap betweenmultimodal data and query suggestions in search
engines. Our objective is to improve the user search experience
by providing intentional and diverse query suggestions generated
from user query images. To the best of our knowledge, this work
presents the first attempt in its kind.

• The RL4Sugg Framework:We present a novel framework called
RL4Sugg, which is designed to generate query suggestions using
user input images. By leveraging the capabilities of LLMs and
multi-agent reinforcement learning, RL4Sugg optimizes the in-
tentionality and diversity of the generated suggestions through
an end-to-end training.

• Comprehensive Experiments:We conduct extensive experi-
ments on two real-world datasets and achieve promising results
than various baselines. Our experiments demonstrate the effec-
tiveness of our proposed framework in generating intentional
and diverse query suggestions (e.g., it demonstrates 18% improve-
ment compared to the best baseline method). In addition, the
proposed MMQS has been transferred into products, and the
results show that the deployed system effectively enhances user
engagement of search engines.

2 RELATEDWORK
Query Suggestion. Query suggestion is a feature of search en-
gines that provides users with a list of possible queries based on
their current query inputs. We review the literature in terms of Tex-
tual Query Suggestion (TQS) and Visual Query Suggestion (VQS).
For TQS, it relies on the text of the user’s query to generate a list
of possible textual queries. There are a number of different meth-
ods for generating the query suggestions, including (i) query auto
completion [2, 39], (ii) query spelling correction [17], (iii) query ex-
pansion [5], and (iv) query rewriting [14, 15]. Overall, TQS does not
use any visual information, such as images, to generate suggestions.

For VQS, it is introduced by Zha et al. [50, 51], which offers
users both textual and visual suggestions based on their query text.
This enables users to conveniently specify their search intentions.
When a user selects a text-image pair from the suggestion list, the
VQS system performs an image search using the provided text
and employs the selected image to filter initial search results by
leveraging its visual content. Subsequently, many techniques are
proposed for the VQS. For example, Zeng et al. [49] develop a new
client-side photo search system, which uses VQS and joint text-
image hashing to improve the search accuracy and efficiency. Li et
al. [28] study video search, and a multimodal method is developed
to process the joint text and images suggestions produced by VQS.
Overall, our MMQS problem differs from VQS mainly in that the
user’s query input is different. In MMQS, the input is images, while
in VQS, it is text. Additionally, Bian et al. [3] study a new setting
of VQS called Visual Query Attributes Suggestion (VQAS), where
an image is inputted and VQAS suggests informative attributes
(e.g., color, texture, shape) extracted from the query image via
some SVM classifiers. These attributes allow users to select and
express more precise search intents. Our work differs from VQAS
in two aspects. First, MMQS outputs query suggestions instead
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of those image attributes, where the suggestions need satisfying
the intentionality and diversity properties. Second, we propose a
multi-agent reinforcement learning based framework to generate
the suggestions from large language models instead of choosing
those pre-defined attributes using the classifiers.
Vision-Language Pre-training. Our work is related to Vision-
Language Pre-training (VLP) in techniques. VLP aims to train a
multimodal foundation model to align the relationships between
images and text, and then the model is used to support various
downstream vision-and-language tasks (e.g., image captioning or
visual question answering). The literature onVLP training strategies
can be categorized into three main approaches: end-to-end pre-
training [7, 18, 21, 25–27, 35, 41, 42], modular pre-training [1, 6, 12,
16, 25, 30, 52, 53], and zero-shot [38, 44, 47].

Our work falls into the modular pre-training, where it makes
use of off-the-shelf pre-trained models, keeping them frozen during
the pre-training. Existing studies can be categorized according to
different frozen components, including the approaches that freeze
image encoders [52, 53], language models [6, 12, 16], and both [1,
25, 30]. Specifically, Zhai et al. [52] study Locked-image Tuning
(LiT), where it fine-tunes language models via contrastive learning
to extract useful representations from locked pre-trained image
models for new vision tasks. Driess et al. [12] propose embodied
language models, which integrate visual information through a
projector into language models. It freezes the language model, and
just trains the image encoder with the projector for robotics tasks.
Flamingo [1] freezes both image encoders and language models,
and introduces cross-attention layers into the language model to
incorporate visual features during the fine-tuning. Similarly, BLIP-
2 [25] introduces an adapter called Q-Former, which injects visual
features into the language model. Our RL4Sugg freezes both image
encoders and languagemodels, where we introduce two lightweight
agents for fine-tuning, which align the input image to generate
query suggestions with RLHF.
Reinforcement Learning from Human Feedback. Reinforce-
ment Learning from Human Feedback (RLHF) is an active research
area that focuses on training RL agents using human-generated
feedback, which is originally developed for training simple robots
to interact with real-world environments for complex tasks such
as Atari games [9]. Recently, RLHF has been applied to fine-tune
various language tasks including text summarization [45], dialogue
systems [19, 48], machine translation [22], semantic parsing [24],
and review generation [8]. For example, InstructGPT [33] collects a
dataset of model desired outputs written by human labelers, and it
then adopts RLHF to fine-tune GPT-3 [4]. In this paper, we propose
a novel multi-agent reinforcement learning framework, which in-
corporates RLHF to generate human intentional query suggestions.
To our best knowledge, this is the first of its kind.

3 PROBLEM STATEMENT
We study the problem of Multimodal Query Suggestion (MMQS),
which is formulated below.

Problem 1 (MMQS). Given a user query image, denoted as 𝐼 ,
MMQS aims to recommend textual suggestions, denoted as S =<

𝑆1, 𝑆2, ..., 𝑆𝐾 >. The suggestions are used to help users activate search
engines, and thus they need to meet the following two properties:

- Intentionality: the suggested queries should align with the content
depicted in the query image, and effectively capture the user’s intent
to offer meaningful options for initiating the search.

- Diversity: the suggested queries should reflect different aspects of
the query image, offering users a diverse set of choices and avoiding
redundancy among them.

By fulfilling these properties, MMQS aims to enrich the user
experience by offering intentional and diverse query suggestions
derived from the input query image. MMQS provides a foundational
feature for supporting two types of search engines: generation-
based and retrieval-based (to be introduced in Section 4.5).

4 METHODOLOGY
4.1 Overview of RL4Sugg
The proposed solution RL4Sugg addresses the problem of Multi-
modal Query Suggestion (MMQS) by generating intentional and
diverse query suggestions based on user query images. It consists
of several key components, including data collection (Section 4.2),
Agent-I training (Section 4.3), and Agent-D training (Section 4.4).
The overall framework is shown in Figure 2.

In data collection, the language generation capabilities of LLMs
are utilized to automate the collection of image-suggestion pairs
and the annotation of user intents. This approach combines the effi-
ciency of LLM automation and the reliability of human annotation
together to ensure data quality for training. In Agent-I, it generates
candidate suggestions by combining a RewardNet and a PolicyNet
to capture intentionality. The RewardNet is trained using annotated
image-suggestion pairs to assign scores (rewards) indicating the
user interest in clicking suggestions. This involves a multi-task
learning approach optimizing three pre-training tasks to generate
informative rewards. The PolicyNet adopts a two-tower structure
to capture visual and textual features and incorporates a Language
Model (LLM) to enhance understanding and generation capabilities.
It formulates the Markov Decision Process (MDP) for generation,
refined through Reinforcement Learning from Human Feedback
(RLHF) to ensure alignment with user intents. In Agent-D, it lever-
ages lightweight neural networks to select diverse suggestions from
the candidate pool provided by Agent-I, whose MDP is designed so
that the two agents cooperatively optimize the both intentionality
and diversity of the output suggestions in an end-to-end manner.

We explain some insights behind the RL4Sugg design as follows.
(1) RL4Sugg is built based on the combination of LLM automation
and human annotation for preparing the training data. It simplifies
the data collection process, and reduces the reliance on human
annotators for RLHF. (2) The multi-task learning in the RewardNet
and RLHF in the PolicyNet enable the Agent-I to learn from various
tasks and user feedback, leading to improved performance in gen-
erating user intentional suggestions. (3) The Agent-D is trained to
minimize the similarity between output suggestions, which ensures
that the output suggestions are informative and provide various
search aspects for users. Further, Agent-D and Agent-I are trained
cooperatively to ensure that the output maintains both intentional-
ity and diversity. This is achieved by optimizing both intentionality
and diversity explicitly with multi-agent reinforcement learning.

3
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Table 1: A running example of data collection. Step 1: GPT-4 generates multiple candidate suggestions from a query image. Step
2: The model assigns a label (1 or 0) to each suggestion, indicating user click intent, along with a confidence score (0 to 1). Step
3: Suggestions with low confidence are filtered out using a confidence threshold (e.g., 0.5) and then undergo human annotation
to produce the final labels.

Step 1 Step 2 Step 3
Query Image Suggestions (generated by GPT) GPT Labels Conf Thres (0.5) Human Labels Final Labels

How to fix a broken bicycle chain 1 0.7
√

- 1
Bicycle chain cleaning 1 0.3 × 0 0
Bicycle brand rankings 0 0.6

√
- 0

Nearby bicycle repair stalls 1 0.8
√

- 1
Mountain bike prices 1 0.4 × 0 0

4.2 Data Collection
This process involves collecting image-suggestion pairs and anno-
tating user intents regarding their likelihood to click on the sugges-
tions or not. However, relying solely on human crowd-sourcing for
data collection can be time-consuming and lack clear guidelines.
To address this, inspired by language generation capabilities from
recent GPT models [13, 30, 32], we propose a novel approach using
GPT-4 to automate image-suggestion pair collection and user intent
annotation based on potential clicks. This approach provides a bal-
ance between automation (by GPT-4) and manual effort (by human
annotators) through a threshold-based mechanism. To better illus-
trate the labeling process, we present a running example in Table 1,
which involves three key steps, and the detailed descriptions are
included in Appendix Section A.1.

We note that the proposed labeling approach offers several novel
aspects in the field of text annotation tasks [13, 30, 32]. First, by
utilizing GPT-4’s language generation capabilities, we can generate
a wide range of candidate suggestions based on image content, pro-
viding a comprehensive set of options for users. Second, the labeling
and confidence estimation step enhance the reliability of the gener-
ated suggestions by quantifying the model’s confidence. Third, the
threshold-based mechanism introduces a customizable parameter,
which facilitates the workload adjustment between automation and
human effort according to specific requirements.

4.3 Agent-I: Generating Intentional Candidate
Suggestions

4.3.1 RewardNet. In this section, we introduce the training pro-
cess of the RewardNet, utilizing the annotated image-suggestion
pair data. The RewardNet provides rewards (e.g., a value ranging
between 0 and 1) for each image-suggestion pair, indicating the
likelihood of user interest in clicking the suggestion for a given
query image. Below, we present the model architecture and training
details for the RewardNet.

Model Architecture. As shown in Figure 2, our RewardNet em-
ploys a Q-Former structure [25], which incorporates an Image-
Tower and a Text-Tower, both utilizing transformer-based mod-
ules with shared self-attention layers to capture visual and textual
features. In the Image-Tower, it incorporates a pre-trained frozen
image encoder to extract visual features. To achieve this, we intro-
duce learnable query embeddings as inputs, enabling interactions
between queries via self-attention layers and with frozen image
features through cross-attention layers. In the Text-Tower, textual

suggestions interact with learnable query embeddings through
shared self-attention layers.
Training Paradigm. We adopt multi-task learning for the Re-
wardNet, optimizing three pre-training tasks: Image-Suggestion
Alignment (ISA), Image-Suggestion Generation (ISG), and Image-
Suggestion Matching (ISM). The rationale behind the approach
is to enhance the RewardNet’s training process, facilitating the
generation of informative rewards guided by these typical tasks.

In ISA, the goal is to align image and suggestion representations
to bring similar pairs closer and push dissimilar ones apart. This
is achieved through a contrastive approach. We sample a batch of
image-suggestion pairs, each with a label of 1. (2) For each pair
< 𝐼𝑖 , 𝑆𝑖 >, we represent them as vectors v𝐼

𝑖
and v𝑆

𝑖
via two towers.

We treat v𝑆
𝑖
as the positive of v𝐼

𝑖
(the anchor), because 𝐼𝑖 and 𝑆𝑖 have

a label of 1, and other suggestions in the batch are considered as
the negatives. Then, let L𝐼 ,𝑆 denote a contrast, which encourages
the suggestions to align with the anchor image by comparing their
positive and negative pairs, that is,

L𝐼 ,𝑆 =
∑︁

<𝐼𝑖 ,𝑆𝑖>∈V
− log

exp
(
max
v𝐼
𝑖
∈V𝐼

𝑖

v𝐼
𝑖
· v𝑆
𝑖
/𝜏

)
∑

<𝐼 𝑗 ,𝑆 𝑗>∈V, 𝑗≠𝑖
exp

(
max
v𝐼
𝑖
∈V𝐼

𝑖

v𝐼
𝑖
· v𝑆
𝑗
/𝜏

) , (1)

where 𝜏 represents a temperature parameter. To determine the
image-text similarity, we compute the pairwise similarity between
each query embedding v𝐼

𝑖
∈ V𝐼

𝑖
and v𝑆

𝑖
, and select the highest

similarity value. Symmetrically, we can define L𝑆,𝐼 by anchoring
at v𝑆

𝑖
, then the loss LISA is defined as

LISA = (L𝐼 ,𝑆 + L𝑆,𝐼 )/2. (2)

In ISG, the goal is to generate suggestions based on the underly-
ing image content, thereby enhancing the RewardNet’s ability to
accurately assign scores to image-suggestion pairs. This is achieved
by ensuring that the generated suggestions are semantically con-
sistent with the visual context of the grounded image. Specifically,
given an image-suggestion < 𝐼 , 𝑆 > pair, where the suggestion 𝑆
corresponds to a sequence of word tokens 𝑆 =< w1, ...,w𝑚 >, we
employ a language generation loss to maximize the conditional
probability 𝑃 as

LISG =
∑︁
𝑖

− log 𝑃 (w𝑖 |w1:𝑖−1, 𝐼 ). (3)

In ISM, the goal is to establish a precise alignment between image
and suggestion representations through fine-grained learning. This

4
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Figure 2: Training overview of Agent-I and Agent-D. Agent-I trains the RewardNet on three tasks (ISA, ISG, ISM) using learnable
query embeddings, while the PolicyNet is trained with RLHF to generate candidate suggestions 𝑆 ′1, 𝑆

′
2, ..., 𝑆

′
𝑁

for intentionality.
Agent-D learns to select diverse suggestions from the candidates via policy gradient and outputs the final 𝐾 suggestions.

involves a binary classification task in which the model is to predict
whether an image-suggestion pair is positive (matched) or negative
(unmatched). To achieve this, we use a hard negative mining strat-
egy, where hard negative samples are image-related suggestions
labeled as 0. The rationale is that while some suggestions are related
to the query image, they fail to capture the user’s search intent. By
optimizing with these hard samples, the RewardNet is encouraged
to assign high scores to the pairs exhibiting a strong intention.
Then, the objective is trained using a binary cross-entropy loss,
formulated as

LISM = −𝑦 ∗ log(𝑃) + (𝑦 − 1) ∗ log(1 − 𝑃), (4)

where 𝑦 denotes the true label (either 0 or 1), and 𝑃 is the predicted
probability of the positive class.

Finally, the RewardNet is trained using a multi-task learning
approach, where the loss function LRN is defined as

LRN = LISA + LISG + LISM . (5)

Note that the reward is then obtained as the predicted probability 𝑃
in the ISM task, where it scores a normalized value ranging from 0
to 1, which avoids potential data scale issues that may arise during
the training process, that is

𝑟\ (𝐼 , 𝑆) = 𝑃, (6)

where 𝑟\ (𝐼 , 𝑆) denotes the reward for a given query image 𝐼 and its
associated suggestion 𝑆 , and \ denotes the RewardNet parameters.

4.3.2 PolicyNet. The objective of MMQS is to generate query
suggestions that align with users’ intended search queries, specifi-
cally those that are more likely to be clicked. This motivates us to
explore the application of Reinforcement Learning from Human
Feedback (RLHF) technique in training the PolicyNet. Below, we
present the model architecture, and MDPs in the PolicyNet.
Model Architecture. In PolicyNet, we adopt a similar two-tower
structure as presented in the RewardNet, to capture both visual
and textual features. Additionally, we aim to leverage the language

generation capability of a LLM by establishing a connection be-
tween the Image-Tower and the LLM. As shown in Figure 2, the
connection is implemented using a fully-connected (FC) layer. The
FC layer projects the output query embeddings to align with the
dimensionality of the LLM’s text embedding, and then these pro-
jected query embeddings are concatenated at the beginning of the
input text embeddings of the LLM. This integration serves the vi-
sual information as soft prompts, conditioning the LLM on the
visual representations to generate language. Notably, the LLM is
kept frozen during training to facilitate the process.
MDP for Generating Suggestions. To enhance the intentionality
of the generated suggestions, we model the process with RLHF,
involving states, actions, and rewards.

States: The state s𝐼 is defined by the learned query embeddings
of an input query image, which undergoes a process to extract
the representation. Specifically, the image is first encoded using
a frozen Vision Transformer (ViT) [35], which produces a fixed-
length representation of the image that captures its visual features.
Then, some learnable query embeddings are generated as the design
in RewardNet, these embeddings represent the different aspects of
the query image that the model should attend to, and the query
embeddings are then passed through cross-attention layers, which
allow them to interact with the frozen visual features. By leveraging
this approach, we can effectively incorporate the contextual rela-
tionships between the queries and the image features, and forming
a comprehensive representation of the state.

Actions: The action 𝑎𝐼 is defined by the generated suggestions
via a LLM, which conditions on the state representation to generate
language. Here, We employ a decoder-only language model (e.g.,
OPT [54]) for its simplicity and efficiency, as it does not require
encoding input information, and only to generate suggestions that
are relevant to the image. This enables our training more efficiently
and reduces GPU requirements.

Rewards: The reward 𝑟 𝐼 is obtained from the RewardNet accord-
ing to Equation 6. The purpose of training the reward model is
to accurately predict the quality of a generated suggestion, as as-
sessed by human judgment. It is important to note that Agent-I’s
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action involves exploring candidate suggestions, and the reward
cannot be immediately observed because the final suggestions have
not yet been generated. When the action is to provide the candi-
dates for Agent-D to choose final suggestions within this candidate
pool, some reward signal can be acquired (e.g., measuring the in-
tentionality of suggestions). Subsequently, the PolicyNet would
be updated accordingly through RLHF (more training details are
presented in Section 4.4). This approach facilitates the cooperation
between Agent-I and Agent-D, guiding them towards the joint goal
of producing intentional and diverse suggestions in the final output.

4.4 Agent-D: Choosing Diverse Suggestions
from the Candidates

MDP for Choosing Suggestions. We further introduce an Agent-
D to enhance the overall diversity of suggestions and provide users
with a more comprehensive selection. We discuss the rationale be-
hind the introduction of this agent. One straightforward method
to increase diversity is to employ post-processing techniques like
clustering. This technique groups similar candidate suggestions
into clusters and selects the cluster centers as output to reduce
redundancy. However, such post-processing faces two challenges:
(1) the model cannot directly generate both intentional and diverse
suggestions, which makes further optimization difficult; (2) the
clustered suggestions prioritize diversity but may sacrifice inten-
tionality in the output. To tackle the challenges, we consider the
diversity as one of the training objectives managed by Agent-D,
where it calculates semantic similarity between suggestions, and co-
operative training with Agent-I during the policy training process.
This end-to-end optimization empowers the language model to
generate suggestions that exhibit both intentionality and diversity.

To accomplish this task, we use a sliding window algorithm
with a window size denoted as 𝐾 . The candidate suggestions pro-
vided by Agent-I are represented as < 𝑆 ′1, 𝑆

′
2, ..., 𝑆

′
𝑁

>, and Agent-
D’s objective is to select the 𝐾 diverse suggestions from this set
(where𝐾 < 𝑁 ). Here is how the sliding window algorithm operates:
(1) The algorithm begins by scanning the first 𝐾 suggestions and
deciding which one within the window should be omitted. (2) It
then inserts the next suggestion into the window and repeats the
decision-making process. (3) This scanning and decision-making
continue until all suggestions have been processed. (4) Finally, the
algorithm maintains and outputs the best 𝐾 suggestions during the
scanning, which correspond to the highest diversity. Diversity is
measured by computing pairwise semantic similarities among the
𝐾 suggestions < 𝑆1, 𝑆2, ..., 𝑆𝐾 >, typically involving a subtraction
operation (where a larger diversity implies smaller similarity), i.e.,

𝐷𝐼𝑉 =
1
2
−
∑
1≤𝑖< 𝑗≤𝐾 𝜎 (𝑆𝑖 , 𝑆 𝑗 )
𝐾 ∗ (𝐾 − 1) , (7)

where 𝜎 (·, ·) represents a similarity measurement between two sug-
gestions, typically calculated using methods like cosine similarity
with S-BERT [36]. This similarity score is then normalized to a
value between 0 and 1 for clarity. Below, we introduce the MDP of
Agent-D, which decides the process of selecting which suggestions
to drop from the window. This decision-making process is guided by
lightweight fully-connected (FC) neural networks trained through
the policy gradient method [40, 43].

States: In the context where we have 𝑁 candidate suggestions
denoted as < 𝑆 ′1, 𝑆

′
2, ..., 𝑆

′
𝑁

>, we utilize S-BERT embeddings [36]
to capture their semantic features, which are represented as b𝑆

𝑖
for

each suggestion (1 ≤ 𝑖 ≤ 𝑁 ). The state s𝐷 is defined by concatenat-
ing these 𝑁 embeddings, i.e., s𝐷 = {b𝑆1 , b

𝑆
2 , ..., b

𝑆
𝑁
}.

Actions: We denote an action of Agent-D as 𝑎𝐷 , and the de-
sign of these actions is based on the previous discussion, which
involves dropping one of the 𝐾 suggestions in the sliding window
and inserting the next suggestion into the window. Formally, the
actions are defined as 𝑎𝐷 = 𝑘 where 1 ≤ 𝑘 ≤ 𝐾 . In this notation,
when action 𝑎𝐷 = 𝑘 , it means that the 𝑘-th suggestion should
be dropped, and the 𝐾 + 1-th suggestion should be inserted into
the window. Consider the consequence of dropping the 𝑘-th sug-
gestion, this action transitions the environment to the next state
as s′𝐷 = {b𝑆1 , ..., b

𝑆
𝑘−1, b

𝑆
𝑘+1, ..., b

𝑆
𝐾
, b𝑆
𝐾+1, ..., b

𝑆
𝑁
,O}, where O rep-

resents a zero vector, which is used to pad the state s′𝐷 into a
fixed-length vector. This fixed-length vector is then fed into the
fully-connected (FC) policy network.

Rewards: We denote the reward as 𝑟𝐷 . The reward associated
with the transition from state s𝐷 to state s′𝐷 after taking action 𝑎𝐷
is defined as: 𝑟𝐷 = s′𝐷 .𝐷𝐼𝑉𝑏𝑒𝑠𝑡 − s𝐷 .𝐷𝐼𝑉𝑏𝑒𝑠𝑡 , where s𝐷 .𝐷𝐼𝑉𝑏𝑒𝑠𝑡
represents the maintained best diversity value found at state s𝐷
during the scanning according to Equation 7. With this reward
definition, the objective of the MDP, which is to maximize the
cumulative rewards, aligns with the goal of discovering the great-
est diversity among the suggestions. To illustrate this alignment,
consider the process as it moves through a sequence of states:
s𝐷1 , s

𝐷
2 , ..., s

𝐷
𝑁
, ending at s𝐷

𝑁
. We can denote the rewards received at

these states, except for the termination state s𝐷
𝑁
, as 𝑟𝐷1 , 𝑟

𝐷
2 , ..., 𝑟

𝐷
𝑁−1.

When future rewards are not discounted, we have:
𝑁∑︁
𝑡=2

𝑟𝐷𝑡−1 =
𝑁∑︁
𝑡=2

(s𝐷𝑡 .𝐷𝐼𝑉𝑏𝑒𝑠𝑡 − s𝐷𝑡−1 .𝐷𝐼𝑉𝑏𝑒𝑠𝑡 )

= s𝐷𝑁 .𝐷𝐼𝑉𝑏𝑒𝑠𝑡 − s𝐷1 .𝐷𝐼𝑉𝑏𝑒𝑠𝑡 ,

(8)

where s𝐷
𝑁
.𝐷𝐼𝑉𝑏𝑒𝑠𝑡 corresponds to the highest diversity value found

during the scanning process, and s𝐷1 .𝐷𝐼𝑉𝑏𝑒𝑠𝑡 represents the initial
diversity value, which remains constant. Consequently, maximizing
the cumulative rewards is equivalent to maximizing the diversity
that can be discovered.
Learning Policies of Agent-I and Agent-D.We discuss the learn-
ing process of the two agents.

For Agent-I, to train the PolicyNet, which involves two stages:
(1) warm-start stage and (2) training stage. In (1), we study the
Supervised Fine-Tuning (SFT), which equips the LLM with the
basic abilities to generate suggestions, where the two towers of
the PolicyNet are trained using a multi-task learning approach
(ISA, ISG, and ISM) according to Equation 4, which allows them to
learn from different related tasks simultaneously. In (2), we utilize
the PPO algorithm [37] to fine-tune the SFT model for achieving
the intentionality, where the environment is modeled as a bandit
setting, i.e., when a random query image is presented, the model
generates a suggestion in response to the image, and ends the
episode. The loss contains the following components: i) Following
the output suggestions (denoted by < 𝑆1, 𝑆2, ..., 𝑆𝐾 >) by Agent-D,
the environment calculates a reward 𝑟 𝐼 via the RewardNet according
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to Equation 6. ii) In addition, we fine-tune the connection (i.e., the
FC layer) between the LLM and the two-tower using a language
generation loss on the output suggestions according to Equation 3.
By conditioning the LLM on the output from the two-tower to
generate language, it can capture the visual cues presented in the
input image. iii) To prevent over-optimization of the RewardNet, we
further incorporate a penalty for the KL divergence [19] between
the learned RL policy, denoted as 𝜋RL

𝜙
with parameters 𝜙 , and its

original SFT policy, denoted as 𝜋SFT. Formally, the loss of Agent-I
is presented as

LI = −𝑟 𝐼 + 𝛽 log(𝜋RL
𝜙

(𝑎𝐼 |s𝐼 )/𝜋SFT (𝑎𝐼 |s𝐼 )) − 𝛾
∑︁
𝑖

log 𝑃 (w𝑖 |w1:𝑖−1, 𝐼 ),

(9)

where 𝛽 and 𝛾 are two coefficients to control the strength of the KL
penalty and language loss. For each output suggestion 𝑆𝑖 (1 ≤ 𝑖 ≤
𝐾 ), it corresponds to a sequence of word tokens 𝑆𝑖 =< w1, ...,w𝑚 >

for the language generation.
For Agent-D, the core problem of its MDP is to acquire a policy

that guides the agent in selecting actions denoted as 𝑎𝐷 . These
actions are determined based on the constructed states s𝐷 with the
objective of maximizing the cumulative reward, denoted as 𝑅𝑁 . We
employ a policy gradient method for learning this policy, called
the REINFORCE algorithm [40, 43]. To elaborate, we introduce a
stochastic policy denoted as 𝜋\ (𝑎𝐷 |s𝐷 ). This policy is responsible
for probabilistically sampling an action𝑎𝐷 for a given state s𝐷 using
a neural network, where the network’s parameters are represented
as \ . The loss function for Agent-D is then formulated as follows:

LD = −𝑅𝑁 ln𝜋\ (𝑎𝐷 |s𝐷 ). (10)

4.5 Discussion on Applications and Cold-start
Supporting Generation-based and Retrieval-based Applica-
tions.We explore RL4Sugg capabilities in two search engine sce-
narios: (1) generation-based and (2) retrieval-based. In (1), RL4Sugg
can naturally generate query suggestions using its language gen-
eration capability from LLMs in response to users’ image queries
across diverse domains. In (2), RL4Sugg specializes in providing
query suggestions for specific domains with narrower focuses, like
E-commerce shopping websites, where the query suggestions are
limited to their commodities, and can be prepared in advance. It
leverages its ability to represent images and language in PolicyNet’s
two-tower. Query suggestions are stored as vector representations
in a database, and vector-based retrieval, such as HNSW, enhances
search efficiency. During inference, RL4Sugg extracts the user’s
image representation and retrieves Top-𝐾 query suggestions with
high similarity. Notably, this approach offers several advantages, in-
cluding efficient query response, and by precomputing and storing
the query suggestions in a database, the quality of these suggestions
can be guaranteed in advance.
Handling the Cold-start Problem. Since RL4Sugg relies on anno-
tator feedback to understand search intentionality, RL4Sugg faces a
potential cold-start issue for recommending suggestions when the
learned knowledge is insufficient for online user queries. To tackle
this issue, we employ online learning to continuously fine-tunes
both agents by Equation 9 and 10, using newly recorded query

images and user-clicked suggestions (i.e., labeling as 1), ensuring
the model’s policy remains up-to-date for online use. In Section 5.2,
we validate this approach, and the results show significant improve-
ments by 8.3% in user experience, which indicates the positive
impact of this strategy in practice.

5 EXPERIMENTS
5.1 Experimental Setup
Dataset and Ground Truth. We conduct experiments on two
real-world datasets: Business and ImageNet [11]. The Business
dataset contains around 50,000 user query images collected from
a real image search engine between January 2022 and January
2023. We randomly sample 80% of these images for training, and
the remaining for testing. For each image, we collect 5 suggestions
following the data collection process described in Section 4.2, where
46.9% suggestions are labeled by the GPT model, and the remaining
suggestions are labeled by 20 human labelers. Among them, 75.8%
image-suggestion pairs are with the label 1. Similarly, we collect
1,000 image-suggestion pairs with labels from the ImageNet, which
are used to test the transferability of the model fine-tuned on the
Business and to perform zero-shot evaluations on the ImageNet.

By following [33], we then discuss the ground truth for evalua-
tion, considering both the retrieval and generation tasks. For the
retrieval task, we establish the ground truth of each query image
by considering its suggestions with a label of 1. For quality control,
we randomly pick 10% labeled image-suggestion pairs, ask 5 other
checkers to label these suggestions independently. We employ ma-
jority voting to aggregate the labels, and compute the accuracy
(denoted by 𝛿) of the labels by the labelers against the aggregated
ones by the checkers. The 𝛿 is 76.7% for the Business and 78.3%
for the ImageNet, which demonstrate the high accuracy of our
evaluations. For the generation task, we let the human labelers to
assess the suggestions generated by various baseline methods and
RL4Sugg. These labeled suggestions are then reviewed by 5 other
checkers. Similarly, we report the 𝛿 values as a measure of quality
verification.

Baseline.We carefully examine existing vision-language models,
and identify the following baseline methods: Flamingo, BLIP-2,
LLaVA for the generation task, and CLIP, BLIP-2 for the retrieval
task. These methods have comparable parameter sizes of LLM back-
bones as our OPT2.7B for addressing the MMQS problem. Notably,
these models are open-sourced, and we fine-tune them using our
collected image-suggestion pairs for fair comparisons. The details
are introduced in Appendix Section A.2 due to the page limit.

Implementation Details. The implementation details of RL4Sugg
and training process can be found in Appendix Section A.3 due to
the page limit.

Evaluation Metrics. We evaluate the RL4Sugg in terms of the
generation task and the retrieval task. For the generation task, We
report Discounted Cumulative Gain (DCG) and Good vs. Same vs.
Bad (GSB) by following [10, 31]. For the retrieval task, we report
positive-negative ratio (PNR) and Recall@K by following [20, 31].
In addition, We report the DIV according to Equation 7 for measur-
ing the diversity within a set of output query suggestions. Overall,
superior results are indicated by higher values of DCG, GSB, PNR,
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Table 2: Effectiveness of generation-based applications, fine-
tuned on Business and zero-shot transferred to ImageNet,
where 𝛿 indicates the accuracy of labeling the generated sug-
gestions as introduced in Section 5.1.

Models #Train/#Total
Params

Business Fine-tuned ImageNet 0-Shot
DCG DIV 𝛿 DCG DIV 𝛿

Flamingo 1.4B/3.4B 0.73 0.25 81.7% 0.67 0.23 80.6%
BLIP-2 104M/3.1B 0.59 0.17 68.3% 0.47 0.18 69.2%
LLaVA 14M/13B 0.60 0.25 73.3% 0.47 0.24 76.5%
RL4Sugg 208M/3.1B 0.89 0.25 83.3% 0.87 0.24 86.9%

Table 3: Effectiveness of retrieval-based applications, fine-
tuned on Business and zero-shot transferred to ImageNet.

Models #Train/#Total
Params

Business Fine-tuned ImageNet 0-shot
PNR R@1 R@3 PNR R@1 R@3

CLIP 300M/300M 1.30 0.23 0.33 0.90 0.21 0.32
BLIP-2 104M/3.1B 1.05 0.27 0.60 0.73 0.26 0.58
RL4Sugg 208M/3.1B 2.80 0.63 0.83 2.17 0.58 0.74

Table 4: Ablation study (Business).

Components DCG DIV
RL4Sugg 0.89 0.25

w/o RLHF (SFT) 0.78 0.24
w/o Agent-D (Agent-I only) 0.89 0.19

w/o Agent-D (greedy) 0.82 0.23

Recall@𝐾 , and DIV. The detailed description is included in Appen-
dix Section A.4 due to the page limit.

5.2 Experimental Results
(1) Effectiveness evaluation (comparison with baseline meth-
ods).We conduct experiments to verify the effectiveness of both
generation task and retrieval task, where we fine-tune the model
on Business (the number of trainable parameters is reported) and
directly test its performance on ImageNet for transferability study.
For the generation task, as shown in Table 2, we query 300 images
on both Business and ImageNet datasets, where the models gen-
erate three suggestions on each image for human evaluation to
calculate the DCG, and 𝛿 is also reported to indicate the evaluation
accuracy. We observe that the DCG of RL4Sugg outperforms all
other baseline models and shows good transferability. The best
baseline model is Flamingo with the DCG of 0.73, which is 18%
lower than RL4Sugg. In addition, we observe that all models have
similar diversity except BLIP-2, because BLIP-2 sometimes gener-
ates query suggestions with same meaning expressed by different
words, and LLaVA tends to generate longer query suggestions so
its diversity is relatively high. Since the query suggestions are all
based on query images, which contain some necessary described
entities or common grammar structures, the diversity values of all
models are not very high in general. For the retrieval task, as shown
in Table 3, RL4Sugg shows better PNR and Recall compared with
the other two baseline models on both datasets.
(2) Ablation study. To evaluate the effectiveness of the two agents
in RL4Sugg, we conduct an ablation study. We replace the RLHF
in Agent-I and use the SFT model only; we remove the Agent-D,
or replace it with a pre-defined rule of dropping the most similar

Table 5: Online A/B Test (Business).

Metric Cold-start
A (old RL4Sugg) B (new RL4Sugg) Impr

# Click behaviors 0.46% (vs. old RL4Sugg)
DCG 0.83 0.89 6.7%
GSB 8.3% (vs. old RL4Sugg)
PNR 2.61 2.80 6.8%
R@1 0.57 0.63 9.5%
R@3 0.75 0.83 9.6%

suggestion within the window. We present the results in Table 4,
which demonstrate that both agents contribute to improving the
performance. Specifically, we observe that the DCG drops dramati-
cally without the RLHF training from 0.89 to 0.78, which indicates
that RLHF can capture human intentionality. As expected, when
we remove the Agent-D, the diversity decreases significantly from
0.25 to 0.19. If we use a rule to greedily drop the suggestions, the
diversity also decreases, and we note that the DCG also decreases
from 0.89 to 0.82. This is because the rule simply drops those similar
query suggestions without considering the intentionality. By incor-
porating the Agent-D, which interacts with the Agent-I during the
training so it guides the Agent-I to generate more diversified query
suggestions while preserving the intentionality.
(3) Parameter study (varying confidence threshold in data col-
lection). We investigate the effect of varying confidence threshold
in data collection on the generation task and the retrieval task. The
results and detailed analysis are included in Appendix Section A.6
due to the page limit. Overall, we observe that a moderate threshold
can produce good results and save human efforts.
(4) Online A/B Test.We conduct an online A/B test to compare
the new system (after online learning for the cold-start problem)
with the old system for one month. The results as shown in Table 5
demonstrate that the fine-tuned model via online learning can
largely improve the overall user experience, e.g., it increases the
number of click behaviors by 0.46%. In addition, we collect online
cases, and compare the two systems with the real user-generated
queries via manual evaluation. We observe that the new system
can largely outperform the base system.
(5) Qualitative results.We qualitatively evaluate the generated
query suggestions. The detailed visualization results and analysis
are in Appendix Section A.7 due to the page limit. Overall, we
observe that the suggestions align well with user search intents.

6 CONCLUSION
In this paper, we introduce a novel Multimodal Query Suggestion
(MMQS) framework that addresses the limitations of existing query
suggestion systems by incorporating user query images. Through
the MMQS approach, we significantly enhance the intentionality
and diversity of query suggestions, resulting in a more user-centric
and effective search experience. Extensive experiments conducted
on two real-world datasets demonstrate a remarkable 18% improve-
ment over the best existing approach. Moreover, our successful
deployment of MMQS into real-world products showcases its prac-
ticality and potential for providing valuable insights in search en-
gines. As a future direction, we plan to extend MMQS to accom-
modate other modalities, such as audio or video, to enhance its
applicability in diverse real-world scenarios.
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A APPENDIX
A.1 Data Collection Details
The data collection process involves three key steps, which are
presented below:

Step 1: Candidate Suggestion Generation. Leveraging extracted
information (e.g., captions) from an image, GPT-4 initially employs
its language generation capabilities to generate multiple candidate
suggestions. These suggestions are designed to capture various
aspects of the image, providing a wide range of options that may
align with their interests.

Step 2: Labeling and Confidence Estimation. Once the candidate
suggestions are generated, GPT-4 further proceeds to label each
suggestion based on its relevance to the image and potential user
intent. The process enables GPT-4 to assign a binary label (i.e., 1
or 0) to each suggestion, indicating the user interest in clicking
the suggestion for a given query image or not. In addition, GPT-4
provides a confidence score (ranging from 0 to 1) associated with
each label, which serves as an indicator of the model’s certainty in
its own labels.

Step 3: Threshold-based Annotation. To mitigate the reliance on
manual annotation while maintaining annotation quality, we in-
troduce a threshold-based mechanism. The confidence scores gen-
erated by GPT-4 are used to indicate the quality of the suggested
annotations. By setting a threshold value, suggestions with low con-
fidence scores are identified for further manual annotation. This
approach reduces the burden of extensive manual annotation while
ensuring that suggestions with lower confidence are subject to
human review.

A.2 Baseline Details
We compare RL4Sugg with the following baseline methods, and the
details are presented below:

• Flamingo [1]: it freezes the image encoders and language mod-
els during the fine-tuning process, and the language model learns
to use visual features by adding cross-attention layers.

• BLIP-2 [25]: it bridges the modality gap between image and
language with a lightweight Transformer adapter, which trains
following a two-stage strategy, i.e., vision-and-language represen-
tation learning, then vision-to-language generative learning.

• LLaVA [30]: it studies an automatic strategy for generating
language-image instruction-following dataset, and a multimodal
model connecting the image encoder and the language model is
trained end-to-end based on the dataset.

• CLIP [35]: it leverages contrastive language-image pre-training
to produce highly effective image and text representations, which
can transfer well to different tasks.

A.3 Implementation Details
Agent-I Training. Our RL4sugg model is composed of two agents:
Agent-I and Agent-D. Agent-I has two modules: RewardNet and
PolicyNet. Before training these modules, we fine-tune the BLIP-
2 model for its two stages to obtain an SFT model on the COCO
dataset. Since the COCO dataset has image captions instead of query
suggestions, we input these captions to the GPT model as context
prompts and ask it to output query suggestions. We then pair up the

Table 6: Hyperparameters for training SFT.

Stages Stage 1 Stage 2
Pretrained model blip2-pretrain blip2-sft_stage1
Epochs 10
Learning rate schedule linear_warmup_cosine_lr
Warmup learning rate 1e-6
Initial learning rate 1e-4
Minimum learning rate 1e-5
Warmup steps 5000 2000
Weight decay 0.05
Batch size 64 16
Image resolution 224

Table 7: Hyperparameters for training RewardNet.

Stages Stage 1
Pretrained model blip2-sft_stage1
Epochs 10
Learning rate schedule linear_warmup_cosine_lr
Warmup learning rate 1e-6
Initial learning rate 1e-4
Minimum learning rate 1e-5
Warmup steps 5000
Weight decay 0.05
Batch size 64
Image resolution 224

Table 8: Hyperparameters for training PolicyNet.

Stages Stage 2
Pretrained model blip2-sft_stage2
Epochs 10
Learning rate schedule linear_warmup_cosine_lr
Warmup learning rate 1e-6
Initial learning rate 1e-4
Minimum learning rate 1e-5
Warmup steps 2000
Weight decay 0.05
Batch size 50
Image resolution 224

Table 9: Hyperparameters for training Agent-D.

Approach Policy gradient
Optimizer Adam
Learning rate 1e-3
Discount factor 0.99

image and query suggestions and use these image-suggestion pairs
to fine-tune the BLIP-2 model. During the two stages of training, we
use the checkpoint of stage 1 (resp. stage 2) to initialize the Reward-
Net (resp. PolicyNet). After initialization, we train RewardNet (resp.
PolicyNet) on the Business (resp. Flickr30k) dataset. The Business
dataset is constructed in the form of image-suggestion pairs, so
it can be used for this training directly. Additionally, we only use
images in Flickr30k for this training. Specifically, these images are
fed into PolicyNet, which generates 20 query suggestions. These
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image-suggestion pairs are then sent to RewardNet to get rewards,
which are further used for training PolicyNet.
Agent-D Training. Agent-D is a network that consists of three
fully-connected layers. The number of neurons in each layer is
512, 128, and 3, respectively. The dropout rate for hidden layers
is 0.5, and the activation function is ReLU. It is pre-trained before
being integrated into the RL4Suggmodel. Specifically, Agent-D first
learns to select some diversified suggestions from many candidate
suggestions during pre-training. Then, it trains with Agent-I to
optimize both intentionality and diversity. During pre-training, we
sample 100 sets of candidate suggestions from the training dataset.
For each set, we generate 200 episodes for policy gradient. Each
episode involves around 20 steps, resulting in approximately 4
million transition steps during the learning process. At each step,
we sample an action using the probability outputted by the softmax
function at the current state.
Training time. Using a machine with 8 Nvidia RTX 3090 (24GB
memory), it takes 6 hours to fine-tune the BLIP-2 model to obtain
the SFT model and 2 hours for pre-training Agent-D. In Agent-I,
RewardNet takes 1.5 hours while PolicyNet requires 4.5 hours for
training.

We summarize the hyperparameter settings for training the SFT
model, RewardNet, PolicyNet and Agent-D in Table 6, Table 7,
Table 8 and Table 9, respectively.

A.4 Evaluation Metrics
For the generation task, we report Discounted Cumulative Gain
(DCG) and Good vs. Same vs. Bad (GSB) by following [10, 31]. For
DCG, it is to evaluate the effectiveness of a list of suggestions
produced by a system. The DCG is defined as follows:

𝐷𝐶𝐺 =

𝐾∑︁
𝑖=1

𝑟𝑒𝑙𝑖

log2 (𝑖 + 1) , (11)

where 𝑟𝑒𝑙𝑖 represents the intentionality of the suggestion (e.g.,
whether it is clicked or not) at position 𝑖 (𝑟𝑒𝑙𝑖 ∈ {0, 1}), and 𝐾
denotes the returned 𝐾 query suggestions. For GSB, it involves
human experts to determine whether the new system or the base
system provides superior final results, where the relative gain is
measured using the Good vs. Same vs. Bad (GSB), that is

𝐺𝑆𝐵 =
#𝐺𝑜𝑜𝑑 − #𝐵𝑎𝑑

#𝐺𝑜𝑜𝑑 + #𝑆𝑎𝑚𝑒 + #𝐵𝑎𝑑
, (12)

where #𝐺𝑜𝑜𝑑 (resp. #𝐵𝑎𝑑) is a counter that increments by 1 if the
new system delivers better (resp. worse) results compared to the
base system, and #𝑆𝑎𝑚𝑒 increments by 1 otherwise.

For the retrieval task, we report positive-negative ratio (PNR)
and Recall@K by following [20, 31]. For PNR, it is defined as the
ratio of positive instances over negative instances for a given query
image 𝐼 and its suggestions S, that is

𝑃𝑁𝑅 =

∑
𝑆𝑖 ,𝑆 𝑗 ∈S 1(𝑦𝑖 > 𝑦 𝑗 ) · 1(𝑓 (𝐼 , 𝑆𝑖 ) > 𝑓 (𝐼 , 𝑆 𝑗 ))∑
𝑆 ′
𝑖
,𝑆 ′

𝑗
∈S 1(𝑦′𝑖 > 𝑦

′
𝑗
) · 1(𝑓 (𝐼 , 𝑆′

𝑖
) < 𝑓 (𝐼 , 𝑆′

𝑗
)) , (13)

where 𝑦𝑖 denotes the manual label (i.e., click or not by users) of the
suggestion 𝑆𝑖 , and 𝑓 (𝐼 , 𝑆𝑖 ) denotes the cosine similarity based on the
representations of query image 𝐼 and suggestion 𝑆𝑖 . The indicator
function1(·) is used to represent whether a certain condition is true
or false, e.g., 1(𝑦𝑖 > 𝑦 𝑗 ) = 1 if 𝑦𝑖 > 𝑦 𝑗 , and 0 otherwise. Intuitively,

Table 10: Parameter study (Business), 0 and 1 indicate all
suggestions are labeled by GPT and human, respectively.

Threshold 0 0.2 0.4 0.6 0.8 1
DCG 0.83 0.85 0.86 0.89 0.89 0.90
PNR 2.40 2.60 2.70 2.80 2.83 2.85

Recall@1 0.54 0.58 0.61 0.63 0.64 0.64
#Suggs for

human labeling 0 58K 96K 133K 202K 250K

PNR quantifies the agreement between the manual labels and the
model scores. For Recall@𝐾 , it is defined as

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 =
|S| ∩ |Ŝ |

𝐾
, (14)

where Ŝ denotes the suggestions for a query image 𝐼 by a retrieval
model, and S denotes the set of ground truth suggestions (e.g., the
suggestions that will be clicked by human labelers) for the 𝐼 . We
report the average PNR and Recall@𝐾 values across all queries in
our experiments.

In addition, to measure the diversity within a set of output query
suggestions, we report the DIV according to Equation 7. Overall,
superior results are indicated by higher values of DCG, GSB, PNR,
Recall@𝐾 , and DIV.

A.5 Evaluation Platform
We implement RL4Sugg and other baselines in Python 3.7 and Py-
Torch 1.8.0. The experiments are conducted on a server with 32
cores of Intel(R) Xeon(R) Gold 6151 CPU @ 3.00GHz 512.0GB RAM
and 8 Nvidia RTX3090 GPU (24GB memory).

A.6 Parameter Study of Confidence Threshold
Recall that during data collection, GPT model is used to reduce
the workload of human labelers, where the suggestions with lower
confidence than a threshold are subject to human labeling. We vary
the threshold from 0 to 1, where 0 (resp. 1) indicates all suggestions
are labeled by GPT (resp. human). Within the setting, we train
6 versions of RL4SUGG models, and the effectiveness is reported
in Table 10. We choose the threshold of 0.6 as the default setting,
since the effectiveness is near to the optimal, and it reduces a large
amount of labeling effort for 46.9%.

A.7 Qualitative results
Table 11 demonstrates examples to show a wide range of zero-
shot capabilities on image-to-suggestion generation. We choose
Flamingo for comparison, since it shows the best effectiveness
among baselines. We observe that our query suggestions cover
various intentions of the query image. For Case-1, a potential inten-
tion could involve the task of cleaning or organizing a dirty fridge.
Notably, we observe that RL4Sugg effectively captures this intuitive
intention, which demonstrates a commendable level of intentional-
ity following RLHF training. For Case-2, RL4Sugg notices that the
user might be interested in the dress for a photoshoot or the outdoor
environment, and thus it recommends two suggestions accordingly
instead of simply describing the content of the image. However,
Flamingo wrongly recognizes “wedding dresses” in the image. For
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Table 11: Examples of zero-shot image-to-suggestion generation using RL4Sugg and Flamingo.

No. Query Image RL4Sugg Flamingo GSB

1 Tips for keeping a refrigerator clean
How to organize and clean a fridge

Desirable refrigerator brands
Where to buy shampoo 1.00

2 How to choose the right dress for a outdoor photoshoot
Benefits of spending time in nature

Desirable wedding dresses
Where to buy wedding dresses 1.00

3 How to fix a broken iPhone screen
How to clean a broken iPhone screen

Where to buy a new iPhone
Where to buy a new iPad 0.50

4 How to make fresh breads at home
Best places to buy fresh baked bread in the area

Where to buy breads
Where to buy breads 0.50

5 Snowboarding safety tips and tricks
How to choose the right snowboarding gear

Desirable snowboard brands
Where to buy snowboard boots 0.00

Case-3, RL4Sugg can accurately captures a high-intention query (“a
broken iPhone”) similar to Case-1. For Case-4, RL4Sugg provides
suggestions with good diversity with the aid of our Agent-D, e.g.,
it generates suggestions about how to make them or where to buy
them; however, Flamingo generates duplicated suggestions (“Where
to buy breads”) in this case. For Case-5, we observe that Flamingo

frequently uses a fixed pattern to process the image query, such
as “Desirable something” or “Where to buy something” (as seen in
Case-1, Case-2 and Case-5), where it succeeds in recognizing the
correct object (“snowboard boots”) in the image. However, when
users frequently notice the fixed pattern, they might become bored
with the recommended suggestions.
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