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Abstract

Language models (LMs) and their extension, vision-language models (VLMs),
have achieved remarkable performance across various tasks. However, they still
struggle with complex reasoning tasks that require multimodal or multilingual
real-world knowledge. To support such capabilities, an external memory system
that can efficiently provide relevant multimodal information is essential. Existing
approaches generally concatenate image and text tokens into a long sequence as
memory, which, however, may drastically increase context length and even de-
grade performance. In contrast, we propose using continuous memory-a compact
set of dense embeddings-to more effectively and efficiently represent multimodal
and multilingual knowledge. Our key insight is that a VLM can serve as its own
continuous memory encoder. We empirically show that this design improves per-
formance on complex multimodal reasoning tasks. Building on this, we introduce a
data-efficient and parameter-efficient method to fine-tune the VLM into a memory
encoder, requiring only 1.2% of the model’s parameters and a small corpus of
15.6K self-synthesized samples. Our approach CoMEM utilizes VLM’s origi-
nal capabilities to encode arbitrary multimodal and multilingual knowledge into
just 8 continuous embeddings. Since the inference-time VLM remains frozen,
our memory module is plug-and-play and can be flexibly integrated as needed.
Extensive experiments across eight multimodal reasoning benchmarks demon-
strate the effectiveness of our approach. Code and data is publicly released here
https://github.com/WenyiWU0111/CoMEM.

1 Introduction

Figure 1: CoMEM architecture in comparison
to the traditional RAG method.

Through large-scale training, language mod-
els (LMs) [1, 2] have demonstrated remarkable
performance across diverse real-world tasks. LMs
even surpass human capabilities in language
reasoning tasks [3] such as mathematical problem
solving [4], commonsense reasoning[5], and code
synthesis [6]. However, when confronted with
complex reasoning tasks that demand multimodal or
multilingual world knowledge, both LMs and their
vision-language model (VLM) extensions continue to face significant challenges [7, 8], primarily due
to insufficient world knowledge representation.
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Inspired by how humans offload facts, plans, and ideas to external repositories like notebooks or
databases for on-demand access, it is promising to develop a general external memory3 that contains
useful world knowledge for augmenting VLMs [9, 10]. Early approaches directly concatenate
the collected useful information into a long token sequence, and feeds it into VLMs [9, 11] e.g.,
retrieval-augmented generation (RAG) methods. However, multimodal representations demand
significantly more input tokens (e.g., 8 to 11427 tokens per image in Qwen2.5-VL [12]). Thus, simple
concatenation would greatly increase the input length, making it difficult for the memory content to
be used [13] (see the degradation in performance shown in Table 2 after using RAG). To solve the
token overload issue, token pruning methods have been proposed to remove unimportant in-context
tokens [14, 15]. However, token pruning generally leads to incomplete contextual contents, which
impedes the VLM’s ability to accurately understand and utilize the compressed information [8].

Compared to discrete tokens, continuous embeddings naturally have stronger representation capability
for complex data [16, 17, 18]. This advantage makes them particularly promising for memory encoder
architectures designed to condense multimodal information into continuous representations. However,
training such encoders faces two key challenges: (1) achieving generalizable compression ability
across diverse multimodal inputs, and (2) maintaining semantic alignment with the VLM [19]. While
large-scale training can improve performance, it greatly increases the training cost and becomes
heavily sensitive to the training data distribution. For example, when dominated by simple cases or a
single domain, the encoder tends to overfit and degrade generalization performance [20] [21].

In this paper, we focus on efficiently training a general continuous memory encoder to effectively
supply multimodal knowledge for VLMs. To avoid costly training for semantic alignment, it is
essential to minimize the representation gap between the memory encoder and downstream VLMs
before training. Therefore, a natural way is to use the VLM itself as the memory encoder. Our
empirical study confirms that the VLM can serve as a memory encoder for itself without any additional
training. Benefiting from the stacked self-attention mechanism, its generated continuous embeddings
in each layer have already aggregated rich semantic information [22] [23]. As shown in Fig. 2, even a
simple rule-based embedding selection strategy for constructing the memory can greatly boost the
performance of VLMs in complex multimodal multilingual reasoning tasks, compared to RAGs.

Based on our empirical findings, we propose a data-efficient and parameter-efficient training recipe
to further improve the compressor rate and adaptation performance of the VLM-based general
continuous memory encoder. Concretely, we only need to fine-tune the low-rank adaptation matri-
ces (LoRA) [24] in the VLM-based memory encoder, and a lightweight Q-Former [25] for further
compressing the VLM representations into only eight embeddings, 1.2% parameters in total. In terms
of data, we only need the VLM itself to synthesize 15.6k samples for training. This efficient training
strategy enables our continuous memory to reuse the original ability of the VLM, to effectively
encode multimodal and multilingual knowledge. Since we do not need to train the inference VLM,
our memory is plug-and-play and can be flexibly integrated with the VLM when necessary.

To demonstrate the effectiveness of our approach, we apply our method to state-of-the-art VLMs, and
evaluate the performance across eight visual reasoning benchmarks. For six English visual reasoning
benchmarks, our method achieves an average improvement of +8.0% on Qwen2-Instruct-VL and
+7.7% on Qwen2.5-Instruct-VL. On two multilingual multimodal benchmarks, our approach further
improves performance by +5.1% and +4.3% on Qwen2-Instruct-VL and Qwen2.5-Instruct-VL,
respectively. Furthermore, our adaptation study results also indicate the transferability of our VLM-
based memory encoder to improve LMs in visual reasoning tasks. The long context understanding
study also exhibits the stable and superior performance of our method.

2 Empirical Analysis with VLM as Memory Encoder

In this section, we conduct an empirical study to examine (1) whether VLM can serve as a continuous
memory encoder to compress multimodal information into compatible embeddings, and (2) whether
a few embeddings from the VLM can preserve key information to improve multimodal reasoning
tasks.

3In this paper, external memory denotes any detachable module or function that supplies the knowledge with-
out changing LM parameters, in contrast to internal memory that embeds knowledge by modifying parameters.
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Table 1: Comparison between our approach and other representative line of work.
Properties Scenarios Training Cost

Category Method Continuous Pulg-and-Play Multimodal Multilingual Data Parameters

Multimodal-RAG
EchoSight [26] ✗ ✓ ✗Text ✗ 900K 300M
ReflectiVA [27] ✗ ✗ ✓Image+Text ✗ 6.82M 8B
RoRA-VLM [28] ✗ ✗ ✓Image+Text ✗ 1M 7B

Context-Compression
xRAG [29] ✓ ✓ ✗Text ✗ 3M 40M
KV-Distill [30] ✗ ✓ ✗Text ✗ 500K+ 150M
VoCo-LLaMA [31] ✓ ✗ ✓Image/Video ✗ 665K 7B

LM Memory

LONGMEM [10] ✓ ✓ ✗Text ✗ 114M 558M
MA-LMM [32] ✓ ✓ ✓Video+Text ✗ NA 200M
M+ [33] ✓ ✗ ✗Text ✗ 5M NA
MemGPT [34] ✗ ✓ ✗Text ✗ NA NA
CoMEM ✓ ✓ ✓Image+Text ✓ 15K 200M

2.1 Analysis Setup

For the empirical study, we conduct experiments on two state-of-the-art VLMs, i.e., Qwen2-VL-7B
and Qwen2.5-VL-7B, and test the performance on three multimodal reasoning benchmarks.

Evaluation Settings. To compare the effectiveness of different memory and context compression
methods, we select three benchmarks: InfoSeek [35], OK-VQA [36], and A-OKVQA [37]. These
benchmarks contain complex visual questions that require both accurate visual entity identification
and multi-step reasoning to derive the correct answer. Following existing work [38] [28], for each
question, we utilize CLIP-based retriever [39] to collect relevant top-10 multimodal knowledge items
from a Wikipedia-based source dataset WiT [40] to construct the input data for the memory.

Table 2: Comparison of training-free memory methods. Bold indicates the best performance. For
VLM-as-Memory here, we use the cache KV from a VLM without fine-tuning, which differs from
the main method described in Section 3 and is intended for preliminary exploration.

InfoSeek OKVQA AOKVQA
Backbone Model Method Query Entity All

Qwen2.5-VL-Instruct

- 22.5 22.4 22.5 35.0 39.8
+RAG 17.7 18.8 18.2 31.3 34.9
+FastV 26.2 22.6 24.2 31.5 34.9
+VLM-as-Memory 29.3 28.0 28.6 37.3 44.4
+VLM-as-Memory+AS 30.0 25.3 27.5 37.9 41.8

Qwen2-VL-Instruct

- 17.9 17.8 17.9 36.3 41.8
+RAG 22.7 19.0 20.5 41.9 45.3
+FastV 23.6 23.8 23.7 42.0 45.4
+VLM-as-Memory 28.8 29.7 29.3 37.7 38.9
+VLM-as-Memory+AS 31.7 28.8 30.2 34.3 36.4

Memory Methods. We test the effectiveness of our VLM-as-memory method by comparing with
RAG, token pruning, and our variations using different embedding selection strategies.

• Vanilla RAG: it simply concatenates all the multimodal knowledge items into a long sequence, and
then feeds it with the visual question as the input of VLM.

• FastV [14]: it adopts a token pruning strategy that discard the image tokens with lower attention
scores from the multimodal knowledge items. Then, the pruned token sequence is fed into the VLM.

• VLM-as-Memory: we utilize the VLM itself to encode the knowledge items, and extract the hidden
states in all layers as the memory. These are concatenated at corresponding layers of the VLM. For
efficiency, we only add the memory in 17-19 layers.
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• VLM-as-Memory+Attn: we utilize the average attention scores across all layers within the VLM to
select the top-25% key continuous embeddings to compose the memory.

2.2 Results and Findings

In this part, we present the results and discuss the findings to analyze whether VLM can be a memory
encoder, assessing both their compression efficiency and semantic alignment capabilities.
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Figure 2: Qwen2.5 accuracy with vary-
ing attention-based compression rates.

Effectiveness Study of VLM-as-Memory Methods. As
shown in Table 2, the vanilla RAG method causes perfor-
mance degradation in several tasks, underscoring its lim-
itations for memory integration. FastV mitigates this is-
sue by pruning redundant tokens in the memory, result-
ing in measurable improvements. Notably, the VLM-as-
Memory method outperforms both approaches across most
tasks, suggesting that the VLM’s continuous embeddings
are inherently more compatible with its own processing
than token-based input. Furthermore, with the addition of a
simple attention-based compression mechanism, the VLM-
as-Memory method achieves even greater performance gains.
Thus, we conclude that:

(1) VLMs can effectively serve as their own memory en-
coders for external multimodal knowledge. The continuous embeddings they generate can be directly
reused by the same model without requiring additional training.

(2) The continuous embeddings produced by VLMs effectively preserve knowledge content. They
remain robust under simple compression strategies and reliably enhance performance.

Compressibility Study of VLM-as-Memory Methods. To study the compressibility, another key
feature of an effective memory mechanism, we investigate how performance varies under different
compression rates using the VLM-as-Memory approach. As shown in Fig. 2, despite employing a
simple token selection strategy, our method outperforms the baseline even at a high compression rate
of 5This suggests that a small number of continuous embeddings already encapsulate most of the
essential contextual information from the input. Therefore, we can conclude that:

(3) The continuous embeddings produced by VLMs support high compression rates. This highlights
the potential for achieving even greater compression through more advanced compression methods.

3 Approach

Figure 3: Overview of the CoMEM architecture. Given a vision-language query, the system retrieves
relevant multimodal knowledge via visual features. Retrieved image-text pairs are processed by a
Memory Encoder—which consists of a VLM and Q-Former—to generate a dense continuous memory.
This memory and the original query are fed into a frozen LM to produce accurate, grounded answers.

According to our empirical study, the VLM can be an effective memory encoder for itself, owing
to the satisfactory semantic alignment and compressibility of its produced continuous embeddings.
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Building on this insight, we aim to efficiently train the VLM into a continuous memory encoder,
to supply supplementary multimodal knowledge during inference. Concretely, we add a trainable
lightweight Q-Former to control the compression rate, synthesize a small training dataset using the
VLM itself, and perform data-efficient and parameter-efficient training.

3.1 Task Definition.

We aim to train a general-purpose continuous memory encoder capable of mapping arbitrary multi-
modal and multilingual data into continuous embeddings that augment the knowledge of a VLM. To
ensure plug-and-play compatibility, we keep the VLM’s parameters frozen during inference, while
continuous memory embeddings are directly used for downstream tasks. To achieve this, the memory
encoder should (1) efficiently condense diverse multimodal and multilingual data and (2) produce
embeddings that are both readable and functional for the VLM.

In this paper, we focus on using general continuous memory to enhance VLMs in complex multimodal
reasoning tasks. Formally, given an instance comprising an image i and a natural language question q,
the task is to predict an accurate answer a. Following prior work [28], we assume access to relevant
multimodal knowledge items (from external knowledge source), each consisting of an image ĩ and a
natural language description d̃. Our memory encoder learns to transform each knowledge item into a
continuous vector, formulated as Vt = f (̃it, d̃t). These vectors are aggregated into a unified memory,
which the VLM then utilizes for answer prediction: p(a|i, q, {Vt}kt=1).

3.2 VLM-Based Continuous Memory

For our continuous memory, the core idea is to leverage the VLM with a Q-Former as the encoder,
and adopt a simple plug-and-play mechanism that enables the VLM to use the memory information.

Continuous Encoder. Given each multimodal knowledge item ⟨̃it, d̃t⟩, we first use the VLM to
encode it and collect the continuous representations Et in the last layers. Then, we employ a query
Transformer (Q-Former) as the compressor to condense Et into k continuous embeddings Vt. The
Q-Former consists of k query embeddings q and L Transformer layers. In the first layer, the query
embeddings attend to all the continuous representations from the VLM through the cross-attention
mechanism. The output representations are then used as query embeddings for the next layer, and the
final layer outputs serve as the memory vector Vt. The whole process is formulated as:

H(0) = q, H(ℓ) = TransformerLayer(ℓ)
(
H(ℓ−1), Et

)
, Vt = H(L) (1)

To reduce the parameter scale of the Q-Former, we share parameters across all Transformer layers,
and set k = 8. In this way, only a few parameters are added, and any multimodal knowledge item will
be compressed into 8 continuous embeddings. This design ensures lower training cost and a higher
compression rate4, which is helpful to handle large-scale knowledge items and save the storage cost.

Plug-and-Play Mechanism. After obtaining the continuous embedding set {Vt}nt=1 for all multi-
modal knowledge items, we adopt a simple plug-and-play mechanism to equip the VLM the memory.
Concretely, we simply concatenate the embeddings into a sequence of 8 × n continuous vectors
as the memory, which is prepended to the input embedding EI of the VLM during the inference
time, formulated as [V1; · · · ;Vn,EI ]. In this way, the VLM can naturally perform autoregressive
generation to predict the answer, using its originally learned knowledge and capabilities.

3.3 Efficient Training Recipe

Since we introduce the Q-Former, we need to train its parameters to achieve full alignment between
the continuous memory and the VLM. Thanks to our design that employs the VLM as the memory
encoder, this alignment can be efficiently accomplished through parameter-efficient training using
only a small amount of self-synthetic multimodal and multilingual data.

4Notably, the average token number of knowledge items in this work is 643.7, and few extremely long ones
contain more than 2000 tokens. By compressing into 8 tokens, we can achieve more than 80× compression rate.
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Training Data Self-synthesis. To ensure training efficiency, we construct our training dataset
by synthesizing responses using the VLM itself, based on multilingual and multimodal questions
from existing benchmarks. Specifically, we begin by selecting questions from the training sets of
InfoSeek [35], Encyclopedic-VQA (EVQA) [41], and OK-VQA [36] to ensure coverage of diverse
multimodal reasoning tasks. For each question, we retrieve three relevant image-text pairs from the
WIT [40] knowledge base using CLIP, following the retrieval setup in prior work [28]. These pairs
serve as supplementary multimodal knowledge items. We concatenate the question with knowledge
items and input the sequence into Qwen2.5-VL-Instruct to simulate a vanilla RAG setting. Only
outputs yielding correct answers are retained, resulting in 13.8k high-quality training instances. To
extend our dataset beyond English, we randomly select 200 training samples and employ GPT-4o-
mini to translate the text part into nine languages: Bulgarian, Chinese, Egyptian Arabic, Filipino,
French, Japanese, Portuguese, Russian, and Spanish. This results in an additional 1.8k multimodal
multilingual training samples, which aims at activating our model’s cross-lingual capabilities. In
total, our final fine-tuning corpus for continuous memory includes 15.6K curated samples, covering a
variety of multimodal tasks and languages.

Parameter-efficient Fine-tuning. Given the above training data, we perform parameter-efficient
fine-tuning on the Q-Former and LoRA layers in the VLM encoder. For efficiency, we apply LoRA
with a rank of 16 and share parameters across all layers of the Q-Former. Therefore, only 1.2% of
total parameters are trainable. The above parameter and data efficient designs guarantee that our entire
training process can be completed on a single NVIDIA H100 GPU in 20 hours. We also empirically
find the training converges fast, and a single epoch is sufficient to achieve strong performance.

3.4 Discussion

In Table 1, we compare our method CoMEM with ten closely related works: i.e., multimodal RAG
(EchoSight [26] ReflectiVA [27], and RoRA-VLM [28]), context compression (xRAG [29], KV-
Distill [30] and VoCo-LLaMA [31]), and LLM memory methods (LONGMEM [10], MA-LMM [32],
M+ [33], and MemGPT [34]). The comparison spans three dimensions: Properties, where we
examine whether the method is continuous and plug-and-play; Scenarios, evaluating support for
multimodal and multilingual inputs; and Training Cost, which includes the amount of training data
required and trainable parameters.

While some existing methods also adopt continuous embeddings and support plug-and-play usage,
they often require substantial training resources—typically involving millions of training samples
and extensive parameter updates. In contrast, our method achieves comparable functionality with
significantly reduced cost: it utilizes only 15.6k self-synthesized training samples and fine-tunes
just 200M parameters, amounting to only 1.2% of the full model. Moreover, a key advantage of our
method is our method can handle both multimodal (text and image) and multilingual data, which is
very helpful for potential applications in low-resource language settings.

In summary, our proposed method, CoMEM, provides a generalizable, scalable, and compute-efficient
solution for augmenting VLMs with a continuous memory mechanism. By leveraging the VLM
itself as the memory encoder, CoMEM ensures strong semantic alignment between the memory
and the model, while supporting seamless plug-and-play integration for diverse downstream tasks.
This design enables effective reasoning over complex multimodal and multilingual inputs, offering
a unified and efficient alternative to existing approaches that often rely on discrete context inputs,
heavy fine-tuning, or multi-stage retrieval pipelines.

4 Experiments

4.1 Experimental Setup

Evaluation Settings We use WIT [40] (Wikipedia-based Image Text Dataset) as our retrieval
knowledge base. Building upon this, we conduct experiments across eight multimodal and multilin-
gual reasoning benchmarks, including six multimodal reasoning benchmarks: InfoSeek [35], OVEN
[42], MRAG-Bench [43], OK-VQA [36], A-OKVQA [37], and ViQuAE [44], and two multilingual
benchmarks: CVQA [45] and multilingual InfoSeek. Here we use GPT-4o-mini [46] to translate the
InfoSeek from English into five different languages to match the language settings of CVQA.
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Note (1) InfoSeek and OVEN are constructed from Wikipedia and consist of challenging factual
questions. (2) MRAG-Bench, OK-VQA, A-OKVQA, and ViQuAE focus on multimodal real-world,
knowledge-intensive tasks. (3) CVQA and multilingual InfoSeek evaluate model’s ability to reason
diverse linguistic and cultural contexts. Further details about benchmarks are in Appendix A.

Baseline Methods We compare our method against three types of baselines: (1) VLMs, (2) VLMs
with vanilla RAG, and (3) advanced RAG methods, covering a total of 18 different models.

For VLMs, we evaluate their original capabilities on multimodal reasoning tasks without access
to external knowledge, including: LLaVA-v1.5 [47], LLaVA-v1.6 [47], LLaVA-NeXT-LLaMA3
(denoted as LLaMA3 in tables) [48], InternLM-XComposer2.5vl (InternLM2.5vl) [49], mPLUG-
Owl3 [50], Qwen2-VL-Instruct (Qwen2-VL) [51], and Qwen2.5-VL-Instruct (Qwen2.5-VL) [12].

For VLMs with vanilla RAG, we directly insert retrieved image-text pairs into the input prompts
of models, without making any architectural modifications or applying additional fine-tuning. This
setup evaluates the effectiveness of naive retrieval-based augmentation.

Wiki-LLaVA and RORA-VLM use two-stage retrieval to improve knowledge relevance, while
ReflectiVA adds reflective tokens for self-filtering. All three fine-tune the inference-time model. In
contrast, EchoSight trains a separate Q-Former for retrieval without training the inference model.
However, they all rely on discrete context inputs, which limits their ability to handle long contexts.

Implementation Details Our experimental pipeline comprises three phases: Knowledge Retrieval,
Knowledge Compression, and Answer Generation. To ensure fairness, we consistently use the top-10
retrieved image-text pairs across all experimental settings. We evaluate our method on Qwen2-
Instruct-VL and Qwen2.5-Instruct-VL, demonstrating its strong generalization capability across
different VLMs and question types. More implementation details can be found in Appendix B.

4.2 Main Results

Evaluation on Multimodal Reasoning Task Table 3 presents the performance comparison across
six multimodal reasoning benchmarks, categorized into Base Models, Retrieval-Augmented Baselines,
and our Continuous Memory approach. Among base models, Qwen2-VL and Qwen2.5-VL achieve
the highest performance across most benchmarks, which is likely due to their extensive multimodal
training corpus and strong vision-language alignment. However, standard RAG integration often
leads to inefficiencies in processing longer multimodal inputs, resulting in unstable performance that
sometimes underperforms base models. To address this issue, advanced RAG models incorporate
mechanisms that retrieve and use relevant content more effectively, resulting in improved performance
on reasoning tasks. However, as shown in Section 3.4, existing methods still face limitations, such as
difficulty in adapting across modalities or a lack of generalizability across diverse task settings.

In comparison, our approach shows significant gains across multimodal reasoning benchmarks, with
particularly strong improvements (over 15%) on OKVQA and A-OKVQA versus baselines. These
advancements originate from our VLM-based continuous memory architecture, which exhibits both
strong adaptability to different VLMs and excellent generalization across diverse tasks. Remarkably,
this level of performance requires minimal fine-tuning (1.2% of parameters on 15.6k samples from
InfoSeek, OKVQA and EVQA subsets), yet still achieves remarkable improvements on unseen
benchmarks such as OVEN and A-OKVQA. This suggests that our method can effectively fuse
multimodal long-context knowledge, and generalize effectively to a wide range of downstream tasks.

Evaluation on Multimodal Multilingual Reasoning Task We further evaluate our model’s mul-
tilingual reasoning capabilities on the multilingual InfoSeek and CVQA benchmarks. As shown
in Table 4, standard RAG methods demonstrate reduced effectiveness for non-English questions,
potentially due to misalignment between retrieved multilingual content and input queries. In contrast,
our memory mechanism encodes and stores transferable semantic representations that preserve core
cross-modal and cross-lingual knowledge. This design translates into consistent accuracy improve-
ments across all evaluated languages, achieving absolute gains of 6–12 points on InfoSeek-All scores
while simultaneously showing enhanced performance on CVQA metrics. Notably, the model achieves
particularly strong performance gains for Bulgarian (18%) and Russian (10%), underscoring the
value of our language-agnostic memory mechanism for lower-resource settings where high-quality
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Table 3: Performance comparison with three types of baselines on knowledge-intensive VQA
benchmarks. Bold indicates the best performance, and underscore denotes the second-best.

InfoSeek OVEN MRAG OKVQA AOKVQA ViQuAE Avg.
Model Q E Q E

LLaVA-v1.5 8.3 8.9 20.0 3.4 34.6 17.0 17.4 11.1 15.1
LLaVA-v1.6 10.3 9.1 17.9 1.8 33.4 31.4 31.7 18.7 19.3
LLaMA3 10.7 8.6 16.8 0.8 33.5 23.7 25.3 17.2 17.1
InternLM-2.5vl 13.4 10.8 14.5 3.3 34.8 29.1 32.8 29.7 19.5
mPLUG-Owl3 9.6 6.4 20.7 1.9 45.0 31.9 33.0 23.1 21.4
Qwen2-VL 17.9 17.8 25.5 9.3 39.3 36.3 41.8 34.5 27.8
Qwen2.5-VL 22.5 22.4 29.3 16.3 42.0 35.0 39.8 39.0 30.8

LLaVA-v1.5 + RAG 14.6 11.4 11.7 7.6 34.7 9.8 8.7 7.6 13.3
LLaVA-v1.6 + RAG 6.7 5.8 9.7 1.2 32.6 25.6 22.6 17.0 15.2
LLaMA3 + RAG 12.1 10.8 24.7 21.5 36.4 20.7 22.1 18.1 20.8
InternLM-2.5vl + RAG 10.5 9.5 15.2 13.6 34.3 25.9 27.8 29.6 20.8
mPLUG-Owl3 + RAG 12.6 7.2 18.0 12.0 41.9 24.7 26.4 22.5 20.7
Qwen2-VL + RAG 22.7 19.0 24.7 21.5 40.4 41.9 45.3 33.6 31.1
Qwen2.5-VL + RAG 17.7 18.8 23.0 19.7 42.1 31.3 34.9 33.5 27.6
Wiki-LLaVA 28.6 25.7 - - - - - - 27.2
RORA 27.3 25.1 26.2 15.1 - - - - 22.9
EchoSight 18.0 19.8 - - 41.3 20.0 16.9 25.2 23.5
ReflectiVA 28.6 28.1 - - 39.7 47.5 47.6 29.8 36.9

CoMEM + Qwen2VL 32.6 33.1 30.5 23.6 35.1 57.7 60.6 36.3 38.7
CoMEM + Qwen2.5VL 32.8 28.5 26.0 20.8 38.1 47.6 55.0 34.7 35.4

retrieval is hardest to obtain. Overall, the results show that our method enables more robust grounding
of multilingual queries and enhances reasoning capabilities across diverse tasks.

Table 4: Performance comparison on Multilingual knowledge-intensive VQA benchmarks.

Language Method
Qwen2.5-Instruct-VL Qwen2-Instruct-VL

Multilingual InfoSeek CVQA Multilingual InfoSeek CVQA
Unseen-Q Unseen-E All Unseen-Q Unseen-E All

Chinese
- 17.4 13.8 15.4 82.32 15.1 10.9 12.6 74.60
+ RAG 14.8 9.8 11.8 74.60 11.5 8.9 10.1 72.35
+ CoMEM 22.5 21.5 22.0 78.46 23.1 19.5 21.1 73.31

Russian
- 15.6 14.7 15.1 66.50 13.0 13.8 13.4 71.00
+ RAG 10.6 8.9 9.7 66.00 13.6 10.9 12.1 62.50
+ CoMEM 21.8 21.3 21.5 70.00 19.3 20.4 19.8 71.00

Spanish
- 17.3 16.5 16.9 75.79 16.7 16.7 16.7 72.64
+ RAG 12.3 11.4 11.8 79.25 9.5 8.1 8.7 76.10
+ CoMEM 24.0 23.3 23.6 79.87 23.0 21.8 24.3 75.47

Portuguese
- 18.7 18.1 18.4 66.55 18.4 19.3 18.8 66.90
+ RAG 15.8 13.8 14.7 62.32 13.7 13.5 13.6 70.07
+ CoMEM 27.1 27.2 27.2 66.90 24.1 26.1 25.1 67.96

Bulgarian
- 12.5 12.0 12.2 46.09 8.0 7.9 7.9 45.55
+ RAG 9.8 7.0 8.2 46.63 8.5 7.1 7.7 39.89
+ CoMEM 19.3 17.4 18.3 47.44 15.9 18.3 17.0 50.13

Overall
- 17.3 16.2 16.7 67.45 14.8 14.4 14.6 66.14
+ RAG 13.8 11.4 12.5 65.76 13.3 11.3 12.1 64.18
+ CoMEM 24.9 23.6 24.2 68.53 23.0 23.2 23.4 67.57

4.3 Further Analysis

Long Context Understanding Study To evaluate the ability of models to handle long-context
inputs, we compare our method against vanilla RAG under varying numbers of retrieved image-text
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knowledge pairs. Specifically, we evaluate Qwen2-VL-Instruct and Qwen2.5-VL-Instruct on Infoseek,
using both vanilla RAG and our method across different top-k retrieval settings (from 3 to 50).
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Figure 4: Comparison of Long Context Ability of RAG
and Ours on Infoseek.

As shown in Figure 4, the results reveal
a clear trend: RAG-based performance
begins to degrade when more than 30 re-
trieved pairs are added, but our method
remains stable and performs consistently
well across all retrieval sizes. These find-
ings show that discrete token-based meth-
ods struggle with long context, while con-
tinuous memory enables scalable and re-
liable long-context reasoning. This ro-
bust performance as context length in-
creases underscores the advantage of our
approach in processing long, information-
dense inputs.

Table 5: Transferability Study of vision-language memory encoded by CoMEM on LLMs
InfoSeek(%) OVEN(%)

LLM Unseen-Q Unseen-E All Query Entity All Avg.

Qwen2.5-Instruct 5.0 4.8 4.9 2.4 0.1 1.3 3.1
Qwen2.5-Instruct + RAG 13.4 10.3 11.9 1.8 2.7 2.2 7.0
Qwen2.5-Instruct + CoMEM (using VLM) 29.3 27.4 28.3 6.8 7.7 7.2 17.8

Transferability Study to LLMs. To investigate whether the multimodal and multilingual continu-
ous memory generated by a VLM can be effectively transferred to and leveraged by a pure Large
Language Model (LLM), we conduct a transferability study. Specifically, we use Qwen2.5-VL-
Instruct to encode visual and textual knowledge into dense continuous memory, and appended to the
input embeddings of Qwen2.5-Instruct, a language-only LLM without vision capabilities.

We evaluate our approach on InfoSeek and OVEN. As shown in Table 5, our approach significantly
outperforms both the vanilla LLM and the LLM augmented with text RAG, achieving an average
accuracy of 17.8%, compared to 7.0% (RAG) and 3.1% (baseline). These results demonstrate
that LLMs can effectively leverage VLM-generated memory, even without vision modules. This
highlights a promising direction for cross-modal knowledge transfer, enabling LLMs to gain visual
understanding through shared continuous memory without any architectural modifications.

5 Related Work

Vision-Language Models. LLMs have seen significant advancements, with models like GPT-
4 [46] and Qwen-2.5 [52] demonstrating emergent capabilities such as in-context learning and
complex reasoning. Building upon these advancements, VLMs have emerged to integrate visual
and textual modalities, enabling models to process and understand multimodal data. To effectively
extend language understanding into the visual domain, VLMs combine specialized neural network
architectures for vision processing (such as Vision Transformers) with language models, enabling joint
reasoning over visual and textual inputs. These models are typically trained on large-scale datasets
that pair images with descriptive text to learn joint representations, using techniques like contrastive
learning [53, 39], multimodal pretraining [54, 55], and instruction-aware tuning [47, 56, 57].

Context Compression. The constrained context windows of language models limit their infor-
mation processing capacity, prompting the development of context compression methods to enable
longer-sequence handling. One of the approach towards context compression in LLMs is through
token pruning. FastV[14] distills vision-language knowledge into compact key-value memory slots,
while SparseVLM[15] selects a sparse subset of visual tokens via top-down routing. In contrast,
Gisting[58] compress long prompts into a small set of reusable "gist tokens" by modifying Trans-
former attention masks. Another approach involves soft prompts, which introduce trainable vector
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embeddings to input sequences, enabling efficient task adaptation. IC-Former[59] compresses long
input sequences into compact digest vectors, while SPC-LLM[60] combines natural language sum-
marization with trainable soft prompts. Both methods condense lengthy input sequences into shorter
representations, enhance the efficiency of LLMs and preserve over 90% of the original performance.

Memory for Language Models. As LMs face limitations in context length and long-term informa-
tion retention, memory mechanisms have emerged to enhance their capacity for information-intensive
reasoning and knowledge storage. Early retrieval-based approaches such as RAG [9] and REALM [11]
retrieve external documents and inject them as long token sequences during inference time. However,
these methods are constrained by context length limits and the inefficiency of discrete token represen-
tations, especially for supporting multimodal information. Recent advances shift toward continuous
memory, representing knowledge as dense vectors rather than raw text. Approaches like VoCo-
LLaMA [31] and MA-LMM [32] compress visual content into compact embeddings. Concurrently,
strategies for memory storage have evolved. Persistent memory systems such as LONGMEM [10]
store compressed knowledge in cache key-value (KV) formats, while retrieval-based methods like
WikiLLaVA [38], RORA-VLM [28], and EchoSight [26] treat external knowledge bases as memory
banks, using dedicated retrieval frameworks to support VQA tasks.

6 Conclusion

In this paper, we empirically demonstrate that a VLM can effectively serve as its own memory encoder,
capable of converting multimodal knowledge into compact continuous embeddings. Building on this
insight, we develop a data- and parameter-efficient method to fine-tune the VLM as a continuous
memory encoder. Specifically, by updating only 1.2% of the model’s parameters using just 15.6k self-
synthesized samples, the resulting memory module can encode diverse multimodal and multilingual
knowledge into merely 8 continuous embeddings. Importantly, since the VLM remains unchanged
during inference, our memory module can be seamlessly integrated or detached as needed. Extensive
evaluations across six English and two multilingual vision-reasoning benchmarks demonstrate the
effectiveness and versatility of our approach.

In future work, we plan to extend our approach to a wider range of complex reasoning and planning
tasks. Additionally, we aim to integrate the continuous memory mechanism into multimodal agents
and evaluate its effectiveness in facilitating knowledge transfer across multiple language and vision-
language models.
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A Benchmark Details

InfoSeek InfoSeek is a visual question answering (VQA) dataset tailored for information-seeking
questions that cannot be answered with only common sense knowledge. It combines human-annotated
and automatically collected data from visual entity recognition datasets and Wikidata, providing
over one million examples for model fine-tuning and validation [35]. For InfoSeek, the ground truth
answers for test sets are not publicly available, so we follow prior work [38, 26, 27] and report results
on the validation sets. These sets include questions not seen during training and those associated with
unseen entities.

OVEN OVEN (Open-domain Visual Entity Recognition) challenges models to select among six
million possible Wikipedia entities, making it a general visual recognition benchmark with the largest
number of labels. It is constructed by re-purposing 14 existing datasets with all labels grounded onto
one single label space: Wikipedia entities [42]. Similar with Infoseek, the ground truth answers for
the test sets of OVEN are not publicly available, so we also report results on the validation sets.

MRAG-Bench MRAG-Bench is a multimodal retrieval-augmented generation benchmark designed
to evaluate the performance of large vision-language models (LVLMs) in scenarios where visual
knowledge retrieval is more beneficial than textual information. It consists of 16,130 images and
1,353 human-annotated multiple-choice questions across nine distinct scenarios [43].

OK-VQA OK-VQA includes more than 14,000 open-ended questions that require external knowl-
edge to answer. The dataset is manually filtered to ensure all questions necessitate information
beyond the image content, such as from Wikipedia [36].

A-OKVQA A-OKVQA is a crowdsourced visual question answering dataset composed of approxi-
mately 25,000 questions requiring a broad base of commonsense and world knowledge to answer.
Unlike existing knowledge-based VQA datasets, the questions generally cannot be answered by
simply querying a knowledge base and instead require some form of commonsense reasoning about
the scene depicted in the image [37].

ViQuAE ViQuAE is a dataset focusing on knowledge-based visual question answering about
named entities. It covers a wide range of entity types, such as persons, landmarks, and products, and
evaluates models’ abilities to ground visual content with knowledge base information [44].

CVQA CVQA (Culturally-diverse Multilingual Visual Question Answering) dataset is a benchmark
that offers a broad, inclusive representation by incorporating culturally-driven images and questions
from a wide range of countries and languages[45]. In this study, we evaluate five of the most widely
used languages in CVQA: Chinese, Russian, Spanish, Portuguese, and Bulgarian.

For all benchmarks, we follow the official evaluation protocols to compute the accuracy of the model’s
responses. Specifically: (1) For InfoSeek, OK-VQA, A-OKVQA, and ViQuAE, we use exact match
evaluation to verify whether the model’s response exactly matches the ground-truth answers. (2) For
OVEN, we adopt the official evaluation script, which uses BM25 [61] to match the model’s answer
with relevant Wikipedia entities. (3) For MRAG-Bench and CVQA, which are in multiple-choice
format, we evaluate accuracy by checking whether the model selects the correct option.

B Implementation Details

• Knowledge Retrieval Our knowledge base is constructed using the Wikipedia-based Image-Text
(WIT) dataset[40], which consists of 37.5 million curated image-text pairs from Wikipedia articles
across 108 languages. Based on WIT knowledge base, we implement a CLIP-based image-to-image
retrieval system to identify the most relevant external knowledge. Following the stage-1 retrieval
methodology of RoRA[28], we first encode all images in WIT using a frozen CLIP image encoder[39]
to build a dense vector-search database. Given a query image I, its CLIP embedding CLIP (I)
is compared against all vectors in the knowledge base via cosine similarity, followed by softmax
normalization over the similarity scores. The image retriever then returns the top-k highest-scoring
images along with their associated textual descriptions.
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• Memory Encoding Given the retrieved image-text pairs, we employ a memory encoder, consisting
of a VLM and a Q-Former to compress multimodal information. For Each image-text pair is
compressed into an 8-token vector. These token vectors are then concatenated and passed into
the inference-time model. For Qwen2.5-Instruct VL, we uses Qwen2.5-Instruct VL as both the
inference-time model and the memory encoder, and for Qwen2-Instruct VL, we uses Qwen2-Instruct
VL as both the inference-time model and the memory encoder.

• Answer Generation The concatenated compressed tokens are plug into the inference-time model
to generate answers. We should note that our compression module is model-agnostic, allowing the
memory encoder to be plugged into other LMs. This flexibility is further demonstrated in Section 4.3.

C Ablation Study on Embedding Size

Table 6: Performance on Infoseek of Different Embedding Sizes

Metric 4-Emb 8-Emb 16-Emb 24-Emb

Unseen Question Score 29.32% 32.80% 31.95% 31.37%
Unseen Entity Score 29.64% 32.33% 30.03% 30.83%

Final Score 29.48% 32.74% 30.96% 31.10%

To identify the optimal memory size for CoMEM, we conduct an ablation on the number of continuous
embeddings (4, 8, 16, 24) using the InfoSeek [62] benchmark. As shown in Table 6, using 8
embeddings yields the best overall performance (32.74%), outperforming both smaller and larger
configurations. Fewer embeddings underrepresent complex multimodal knowledge, while more
embeddings introduce redundancy and noise. This result confirms that 8 embeddings offer an
effective trade-off between expressiveness and efficiency, supporting our design choice in CoMEM.

D Method Generalizability

D.1 Evaluation on Image Captioning

we evaluate the generalizability of CoMEM on a caption generation task using the COCO 2014
dataset [63]. We randomly sampled 100 image-caption pairs from the test set and used CLIP to
retrieve relevant image-caption pairs from the training set. We then compared three setups: (1)
Original model (no retrieval); (2) RAG-style retrieval (retrieved image-caption pairs prepended in
prompt); (3) Our method (retrieved image-caption pairs encoded into continuous memory). We tested
both Qwen2.5 and Qwen2, and report standard captioning metrics below in Table 7. We obtain the
following conclusions:

Better precision and fluency: BLEU-1 / BLEU-4 measure n-gram precision; METEOR balances
precision and recall with synonym matching; higher scores indicate better word accuracy. CoMEM
consistently improves BLEU-1, BLEU-4, and METEOR across both models, indicating more fluent
and accurate captions.

Substantial gain in content relevance: CIDEr scores use tf-idf weighted n-grams to measure
relevance to ground-truth captions. It’s increased significantly in Qwen2.5-VL with CoMEM (from
0.24 → 0.64), showing better content relevance to ground-truth captions.

Improved semantic similarity: ROUGE-L captures the longest common subsequence with the ref-
erence, reflecting surface-level overlap. BERTScore-F computes semantic similarity using contextual
embeddings. Memory-augmented models generate captions with high ROUGE-L and BERTScore-F
scores, showing stronger lexical overlap and semantic similarity.

These results confirm that CoMEM generalizes well beyond QA tasks, offering an effective and
lightweight memory mechanism for open-ended generation tasks like image captioning.

D.2 Evaluation on Reasoning Tasks
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Table 7: Evaluation Metrics for Qwen2.5-VL and Qwen2-VL on COCO Captioning task

Model Method BLEU-1 BLEU-4 METEOR CIDEr ROUGE-L BERTScore-F Trigram Diversity

qwen2.5-VL
Original 0.26 0.04 0.18 0.24 0.26 0.81 0.92
+RAG 0.30 0.05 0.20 0.45 0.27 0.81 0.94
+CoMEM 0.34 0.07 0.21 0.64 0.32 0.81 0.86

qwen2-VL
Original 0.34 0.08 0.21 0.79 0.34 0.81 0.84
+RAG 0.34 0.07 0.20 0.64 0.32 0.81 0.83
+CoMEM 0.36 0.08 0.23 0.76 0.32 0.82 0.88

Table 8: Performance Comparison on Reasoning Task MMMU
Metrics Method Accounting Architecture Clinical Med Computer Economics Electronics Management Materials Pharmacy

Accuracy
Qwen2.5-VL 26.7 23.3 43.3 26.7 46.7 23.3 40.0 30.0 30.0
+RAG 23.3 26.7 40.0 33.3 33.3 16.7 36.7 33.3 40.0
+CoMEM 40.0 26.7 43.3 40.0 46.7 30.0 36.7 33.3 40.0

Similarity
Qwen2.5-VL 26.7 26.7 43.3 26.7 46.7 26.7 40.0 30.0 30.0
+RAG 23.3 26.7 40.0 33.3 33.3 16.7 36.7 33.3 40.0
+CoMEM 40.0 33.3 43.3 40.0 50.0 30.0 43.3 33.3 43.3

Table 9: Performance Comparison on Reasoning Task
MathVista

Metrics Method Math Textbook QA Visual QA Figure QA

Accuracy
Qwen2.5-VL 59 50 34 46
+RAG 63 53 37 54
+CoMEM 65 46 39 56

Similarity
Qwen2.5-VL 62 55 35 48
+RAG 63 57 37 56
+CoMEM 66 49 41 57

In recent LLM/MLLM reasoning studies,
various reasoning-heavy benchmarks such
as MathVista [64] and MMMU [65] have
been widely adopted. It would be interest-
ing to see whether the proposed method
can effectively handle reasoning tasks on
these benchmarks.

Concretely, we split the dataset into evalu-
ation set and retrieval set, and retrieve rel-
evant image-text pairs using CLIP in RAG
and Memory settings. We calculate accuracy with exact matching and similarity with overlapping
ratio between predicted and ground truth tokens.

Our results show that CoMEM consistently improves performance across diverse domains:

On MMMU (Table 8), our method consistently outperforms both the Original and RAG baselines
across most domains, especially in domains like Accounting, Computer Science, Pharmacy, Electron-
ics, etc. On MathVista (Table 9), we also observe improvements in different types of reasoning-heavy
tasks. These results demonstrate that our proposed method effectively enhances accuracy in complex
reasoning scenarios across domains, showing the robustness and generalizability of our method.

E Method Cost

E.1 Inference Latency Test

To test the latency of baselines and our method, we evaluated the throughput (tokens per second)
for each model on 100 random sampled instances. The higher throughput indicates faster inference
speed. All experiments were conducted on a single NVIDIA H100 and the results are summarized in
Table 10.

The findings show that CoMEM maintains competitive inference speed as the original model, because
it does not significantly increase input length. For RAG, as it expands the input by up to 15× and
causes a proportional increase in attention cost, the inference speed decreases a lot. Since our
CoMEM adds less than 100 continuous memory tokens, this keeps inference cost close to that of the
base model while improving accuracy.

E.2 Token Cost Comparison

Continuous embeddings better support high compression, as continuous embeddings can densely
encode the information, which prevents the great increase of context length (see Table11). It is rather
helpful for VLMs to read and understand massive multimodal data. For the example of RAG scenario,
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Table 10: Inference Latency Evaluation accross different benchmarks

Token per Second InfoSeek OVEN MRAG OKVQA AOKVQA ViQuAE

Qwen2 models
Qwen2-VL 55.93 100.91 39.54 45.81 53.38 99.53
Qwen2-VL+RAG 40.71 49.27 8.38 34.66 23.60 37.50
Qwen2-VL+COMEM 48.93 53.29 18.61 40.42 51.60 41.50

Qwen2.5 models
Qwen2.5-VL 53.44 72.71 42.13 45.64 42.87 53.49
Qwen2.5-VL+RAG 41.17 42.04 15.89 32.22 27.93 39.61
Qwen2.5-VL+CoMEM 51.05 54.39 19.79 42.86 61.41 48.81

Table 11: Token Number and Accuracy Across Datasets

Token Number (Accuracy%) Infoseek Oven MRAG OKVQA AOKVQA ViQuAE

Qwen2-VL 357.6 (17.8) 408.6 (25.5) 84.5 (39.3) 404.8 (36.3) 418.4 (41.8) 424.7 (34.5)
Qwen2-VL+RAG 6163.8 (19.0) 6481.5 (24.7) 5882.4 (40.4) 6803.8 (41.9) 6715.4 (45.3) 6943.2 (33.6)
Qwen2-VL+COMEM 416.8 (33.1) 492.9 (30.5) 176.9 (35.1) 453.8 (57.7) 478.3 (60.6) 489.2 (36.3)

here we list the context length in three settings: Original model(no retrieval) , Qwen2-VL+RAG
and our CoMEM method. We can clearly see that although we only retrieve 10 examples in the
context, the context length increases by approximately 15× when using RAG. It will cause the VLM
to suffer from the long context understanding problem. In contrast, our method converts the retrieved
examples into continuous embeddings, which leads to fewer than 100 additional embeddings to
the input sequence. It avoids the long context understanding problem and also reduces the cost of
encoding such long input sequences.

F Training Efficiency

Infoseek
Training Settings Unseen-Q Unseen-E All

Original 32.8 28.5 30.7

Data

4x 34.8 28.4 31.3
2x 32.2 29.8 30.9
0.5x 26.5 24.4 25.4
0.25x 17.8 17.5 17.6

Parameters

4x 26.4 22.1 24.1
2x 28.6 24.8 26.3
0.5x 27.8 24.7 26.1
0.25x 23.1 20.3 21.6

Table 12: Performance of CoMEM on Qwen2.5-VL under
different training data and parameter settings.

To evaluate the training efficiency of
our method, we assess the performance
of CoMEM on Qwen2.5-VL using
the Infoseek benchmark under varying
amounts of training data and trainable
parameters. In the original setting, we
use only 15.6k training samples and fine-
tune 1.2% of the total parameters. For
the data variation setting, we scale the
training data by factors of 0.25×, 0.5×,
2×, and 4×. For the parameter variation
setting, we adjust the LoRA rank and
the number of Q-Former layers by the
same scaling factors to control the num-
ber of trainable parameters.

As shown in Table 12, increasing the
training data by 2× or even 4× results in
only marginal performance gains, suggesting that the original data size is already adequate for effective
training. Similarly, increasing the number of trainable parameters does not yield improvements, while
reducing them below the original configuration leads to a notable drop in performance. These findings
highlight that our training recipe is both data- and parameter-efficient, achieving strong results with
minimal resource expenditure.
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G Limitations

• Evaluation Benchmarks While we evaluate our method on 6 multimodal and 2 multilingual
reasoning tasks, most of benchmarks are static and synthetic. Real-world applications with dynamic
or noisy inputs (e.g., web data, live video) may introduce challenges.

• Multi-Agent Settings Our current framework is designed and evaluated in a single-model setting,
where one inference language model uses the continuous memory module for enhanced reasoning.
However, many real-world applications involve multiple collaborating agents or a combination of
LMs and VLMs. Whether our continuous memory can effectively transmit and share knowledge
across multiple models remains unexplored and will be investigated in future work.

H Case Study

Figure 5: Case studies comparing CoMEM with baseline model and model with RAG.

In this appendix, we present a qualitative case study to demonstrate the effectiveness of our proposed
model. Given a question and a corresponding query image, our pipeline first retrieves the top 10
relevant image-text pairs from the WIT knowledge base to provide rich contextual information. Due
to space constraints, we only display three representative retrieved pairs for each example in this
appendix. We then compare the performance of our CoMEM model against two baselines: the
standalone Qwen2.5-VL and a baseline retrieval-augmented generation (RAG) model. CoMEM can
effectively capture key information from retrieved supporting texts, even when the exact answer is
not explicitly provided, and perform reasoning to derive the correct answer.

These case studies demonstrate that CoMEM is able to generate accurate answers in challenging
scenarios where baseline models either fail or return incomplete information. This highlights
CoMEM’s ability to effectively encode and leverage complex multimodal and multilingual knowledge,
leading to stronger performance in advanced reasoning tasks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly and accurately reflect the paper’s main
contributions and scope. The proposed method uses VLM itself as a continuous memory
encoder with minimal fine-tuning effort, which addresses the issues exist in existing RAG-
based and token-pruning models. Our approach is validated by the result of massive
experiment, which is shown in 3.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in Appendix G

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not include theoretical results in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all of our experiment details in 4.1 and Appendix B. The
information provided in these two sections is enough for reproducing the results. All of our
code and data will be released.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release our code, data, and model checkpoints for review, and open-
source them upon paper acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We disclose all of our experiment details in 4.1 and Appendix B. The
information provided in these two sections is enough for reproducing the results. All of our
code and data will be released.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not include statistical significance results, as we have achieved apparent
and great improvements, and there is no need for significance test.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We clearly disclose our experiment settings and implementation details in
Section 3.3 and AppendixB

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our research
complies with all outlined principles.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work proposes an advanced method for improving LLM’s performace,
and is positive for the improvement for the whole society. We discuss the impact of our
work in the Introduction 1, Discussion 3.4, and Further Analysis part 4.3.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve the release of new models or datasets with high
risk of misuse. All models and datasets used are publicly available, widely adopted in the
community, and considered safe under their respective usage policies.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and models used in this work, such as InfoSeek, OK-VQA, EVQA,
WIT, CLIP, Qwen2-VL and Qwen2.5-VL are publicly available and used in accordance
with their respective licenses. Appropriate citations are provided for each asset, and no
proprietary or restricted data or models were used beyond their permitted scope.

Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All of the new assets introduced in the paper, including the code and data, is
well documented and will be published.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: This work introduces a novel approach that uses Vision-Language Models
(VLMs), specifically Qwen2.5-VL and Qwen2-VL, as continuous memory encoders for
multimodal reasoning. The VLM itself is used to synthesize training data and generate
memory embeddings. For more details, We disclose all of our experiment settings in 4.1
and Appendix B.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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