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ABSTRACT

With the growing capabilities of machine learning systems, particularly those that
interact with humans, there is an increased risk of systems that can easily deceive
and manipulate people. Preventing unintended behaviors therefore represents an
important challenge for creating aligned AI systems. To approach this challenge
in a principled way, we first need to define deception formally. In this work, we
present a concrete definition of deception under the formalism of rational decision
making in partially observed Markov decision processes. Specifically, we propose
a general regret theory of deception under which the degree of deception can
be quantified in terms of the actor’s beliefs, actions, and utility. To evaluate our
definition, we study the degree to which our definition aligns with human judgments
about deception. We hope that our work will constitute a step toward both systems
that aim to avoid deception, and detection mechanisms to identify deceptive agents.

1 INTRODUCTION

The growth in the capabilities of machine learning systems, particularly systems that directly com-
municate or interact with humans such as language models (Brown et al., 2020; Chowdhery et al.,
2022; Wei et al., 2022), dialogue systems (Lewis et al., 2017a; He et al., 2018b; Wang et al., 2019;
Kim et al., 2022), and recommendation systems (Liu et al., 2010; Kang et al., 2019), has led to
increasing concern that such systems could be used to deceive and manipulate people on a large scale
(Tamkin et al., 2021; Lin et al., 2021; Goldstein et al., 2023). For example, a language model could
be trained to produce statements that elicit desired responses and then deployed through social media
to influence a large number of people. This could be done in well-meaning contexts (e.g., public
service announcements or education) or maliciously (e.g., deceptive marketing or social influence
campaigns with political goals). These influences may not even be verbal: generative models could
generate images that influence people in various ways.

Not all such influence is undesirable, and one might argue that very little social interaction is possible
if no influence at all is allowed to take place. Therefore, a major challenge is defining the degree
to which influence is intentional, aligned, and ethical. A basic requirement for such systems is to
be non-deceptive toward the users that they interact with. Deception has been defined in multiple
disciplines, including philosophy (Masip et al., 2004; Carson, 2010; Sakama et al., 2014), psychology
(Kalbfleisch & Docan-Morgan, 2019), and learning theory (Ward, 2022), with prior machine learning
work primarily focusing on supervised learning methods for detecting deception, as validated by
human labels or judgement (Shahriar et al., 2021; Zee et al., 2022; Tomas et al., 2022). However,
this perspective can be limiting when attempting to define deception in more complex settings where
deception can be determined based on the effect you have on another agent. Additionally, trying
to train agents to be less deceptive may require a decision-theoretic objective. While existing work
mainly defines deception as the act of making false statements Shahriar et al. (2021); Zee et al. (2022);
Tomas et al. (2022), the reality is that: (1) omissions can be inevitable because detailing the entire truth
may be infeasible; (2) technically true statements can convey a misleading impression; (3) the listener
might have prior beliefs such that a technically false statement brings their understanding closer to
truth; and (4) statements that are technically further from the truth may lead the listener to perform
actions more closely aligned with their goals. Hence, a complete definition of deception should go
beyond simply considering the logical truth of individual statements. This complexity motivates
introducing a definition of deception in the context of sequential decision making problems, where
we can account for the listener’s beliefs, belief updates, actions, and utilities. This definition is critical
for classifying system behavior as deceptive, providing explicit objectives that minimize deception,
and developing defense mechanisms in which users could use analysis tools that automatically detect
potential deception.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We work toward this goal by proposing a concrete definition of deception in the framework of
sequential decision making. In particular, we define this concept mathematically within a partially
observable Markov decision process (POMDP) (Kaelbling et al., 1998) which models a potentially
deceptive interaction between a speaker and a listener agent, and in which the speaker is the main
agent, while the listener is folded into the environment dynamics. We show how the actions of the
speaker, the changing beliefs of the listener, and rewards obtained by the listener can provide a way
to measure deception. Specifically, our formalism models deception by examining how a speaker’s
communication indirectly influences a listener’s downstream reward. In our model, this influence is
mediated by the listener’s beliefs, which are shaped by the communication and drive the listener’s
actions. We then test our general definition of deception with specific examples to illustrate how it
can reflect human intuitions about deception when provided with an appropriate reward function for
the listener.

In our experiments, we examine how deception is perceived in three interactions: a house bargaining
interaction between a buyer and a seller, a consultation between a nutritionist and a patient, and small
talk between two colleagues. Firstly, we conduct a user study in which participants rank simulated
interactions along several axes of deceptiveness. Using these human labels, we learn a classifier that
can flag a speaker as deceptive given the regret. We compare deception ratings between humans, our
formalism, and LLMs to discern whether our definitions align with human intution. Secondly, we
build a dialogue management system and conduct a user study in which humans interact with the
system and rank how deceptive they found these agents. Finally, to understand if we can quantify
deception occurring in AI systems, we generate dialogues for a sample negotiation task (Lewis et al.,
2017a) with an LLM and compare deception ratings between humans and our methodology.

Our contribution lies in defining deception in terms of different forms of regret, which measure the
impact of a speaker’s actions on a listener’s downstream reward. These different regret metrics are
obtains by defining the listener’s reward function in different ways. This allows us to measure the
“degree of deceptiveness” of an interaction between a speaker and a listener. Additionally, we show
that our formalism can identify deceptive behaviors present in a given interaction executed by our
dialogue management system. We hope that our work will represent a step toward both systems that
aim to avoid deception, and detection mechanisms to identify deceptive agents.

2 DEFINING DECEPTION

Consider the potential for deception in the interaction in Figure 1: Luca expresses interest in buying
a house that Sam is selling, leaking information about certain features they are most interested in,
such as the number of bedrooms/bathrooms and the size of the rooms. Based on this, Sam can choose
which facts about the house to share with Luca. Based on his resulting beliefs, Luca will decide
whether to sign up for a house showing. In this way, Sam’s utterance will result in a specific expected
reward for Luca. Since Sam wants to entice Luca to sign up for a house showing, Sam can choose
to explicitly lie about the house or omit undesirable information about the house (e.g., damages,
noisy neighbors, or limited parking). More subtly, Sam can provide information that is technically
true but misleading due to Luca’s implicit beliefs, such as truthfully stating that the house has many
bathrooms to create the impression that it is large (when it isn’t). In many cases, it may be unclear
whether Sam’s action should count as deceptive and to what degree. To analyze potentially deceptive
interactions such as this, we introduce our formalism in the following subsections.

2.1 PRELIMINARIES

We study deception in the context of an interaction between a speaker and a listener, which we
represent as a partially observable Markov decision process (POMDP) Kaelbling et al. (1998).
POMDPs are described by a tuple M

po=hS,A, T ,R,⌦,O, �i, where S is the state space, A is the
action space, T is the state transition function, R is the reward function, ⌦ is the observation space,
O is the observation function, and �2 [0, 1) is the discount factor. An agent executes an action at

according to its stochastic policy at⇠⇡(at|bt), where bt 2B denotes the belief state based on the
observation history up to the current timestep. Each observation ot 2⌦ is generated according to
ot⇠O(st). An action at induces a transition from the current state st2S to the next state st+12S

with probability T (st+1|st, at), and an agent obtains a reward rt⇠R(st, at). An agent’s goal is to
maximize its expected discounted return E

⇥P
t
�
t
rt|s0, a0

⇤
.
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!!: The house has 3 bedrooms.
!": The house has 2 bathrooms.
!#: The house is small.
!$: The house has a garage.
!%: There are loud neighbors.

True features the house known by Sam:

Possible utterances from Sam
• The house has 3 BDR, 2B. 
• The house has 3 BDR, 2B. The house is small. 
• The house has 3 BDR, 2B. The house is big. 
• The house has 3 BDR, 2B. The house is small. The 

surrounding neighborhood is quiet…
Listener Luca

Speaker Sam

Conversation

Thank you for your interest! The house 
does have a garage, and the 

surrounding neighborhood is very 
quiet.

Hello! I am interested in the 
house. I would like to live in a 

nice neighborhood, and I would 
like a garage.

Figure 1: Sam is marketing a house to Luca. Luca’s utterance shows they are concerned with
the �

4 and �
5 features of the house. In response, Sam can choose an action aS from all possible

combinations sharing or not sharing (lying or omitting) information. Finally, Luca selects an action
aL (whether to go to a house showing), leading to Luca’s agent-specific utility (corresponding to
whether they will be happy they went). Depending on the aS action and its effect on the downstream
utilities and beliefs of Luca, we can determine Sam’s degree of deceptiveness.

2.2 THE COMMUNICATION POMDP

Consider an interaction between a speaker agent S and a listener agent L, in which S can perform
actions that are potentially deceptive to L. The interaction between S and L proceeds as follows. S
observes the state of the world s and sends a message aS to L. L observes the message aS and updates
their prior belief b0

L
over their state using the observation aS and their model of the speaker’s policy

⇡̂S , which may not necessarily be the true speaker model (e.g. they may believe the speaker to be
honest when they are not). Finally, they perform the action corresponding to the highest reward under
their belief. We can formalize L’s behavior used in the transition dynamics of the communication
POMDP as follows.

Definition 2.1. Given a model ⇡̂S(aS |sL) that L has for the speaker S, the listener model is
represented by the tuple hS,AL, r̂L,⌦L, b

0
L
, b

t+1
L

i:

• S is the set of world states over which L maintains a belief bL.
• AL is the set of actions available to L.
• r̂L(sL, aL) represents the listener’s reward function (payoff) for performing action aL in state
sL. We explore choices of this reward function in Section 2.3.

• ⌦L = AS is the set of observations which L may encounter, where each observation oL is a
potentially deceptive communication action aS performed by S.

• b
0
L
(sL) is the initial belief that L has over the state sL.

• b
t+1
L

(sL|btL, oL) / ⇡̂S(aS |sL)btL(sL) is the belief update of L that represents the successor
belief bt+1

L
(sL) after making observation oL = aS under belief bt

L
(sL), where ⇡̂S(aS |sL) is

the model that L has for the speaker S.
• L’s policy is unknown to speaker: ⇡L(bL) = argmax

aL
EsL⇠bL

⇥
rL(sL, aL)

⇤
.

We now define the communication POMDP, where S optimizes for a reward function that may
incentivize deceptive behavior. Generally, S may not know the beliefs of L or L’s model of the
speaker ⇡̂S(aS |sL).

Definition 2.2. Given a model for L above, we define the speaker S’s communication POMDP as
hSS ,AS , TS , rS ,⌦S ,OS , �i:

• SS = S ⇥ BL ⇥ ⇧̂S , where S is the set of world states, BL is the belief about the world state
maintained by L, and ⇧̂S is the set of speaker policies that may be assumed by L.

• AS is the set of actions available to S, which may affect the belief bL of L.
• TS(stS , a

t

S
, s

t+1
S

) is the transition function that represents the probability of transitioning to state
s
t+1
S

after performing action a
t

S
in state s

t

S
, which will depend on L’s model of S, ⇡̂S(bL), as

this will determine how L will respond to S and the state transition.
• rS(stS , a

t

S
, s

t+1
S

) captures the immediate reward for the speaker of transitioning from state s
t

S

to s
t+1
S

when S performs action a
t

S
. Note that this will implicitly depend on L’s response to a

t

S
.

• ⌦S = AL ⇥ S is the set of observations made by S, where each observation oS is an action aL

performed by L.

3
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• OS(stS) = 1 iff ot
S

consists of the current listener action a
t

L
= ⇡L(btL) and current external

state s. Otherwise, OS(stS) = 0. This models the fact that the speaker has access to the world
state.

• � 2 [0, 1] is the discount factor.

In many real-world scenarios, one can assume that L does not think they are being deceived Kenton
et al. (2021), and hence S might assume a naive listener model for L. Even when this model is
incorrect, it might provide for reasonable inferences for S about whether or not they are being
deceptive with respect to a “reasonable but naïve” listener. With this assumption, the communication
POMDP immediately reduces to a fully observable MDP, which we show in Appendix A.

Note that our formulation of the communication (PO)MDP considers a single step of interaction: the
speaker takes a communication action, the listener updates their belief, and then takes an action to
receive the corresponding reward. While we consider this single-step formulation for simplicity of
exposition, it is straightforward to extend the formalism into a sequential setting. If the listener asks a
follow-up question, this would influence the listener’s belief update bt+1

L
(sL|btL, oL) at the next step –

e.g., if the listener asked a question that the speaker did not respond to directly, the listener might
infer the answer was not what they might like.

2.3 DECEPTION FORMALISM

Given an interaction between a speaker and a listener, how do we determine whether the speaker has
been deceptive? There are several intuitive notions of deceptive behavior: for instance, one could
ground deception by considering whether S negatively affects L’s beliefs (i.e., making their beliefs
less correct), or the outcomes of L’s actions (i.e., making L obtain less task reward, potentially for S
to get a higher reward for themselves). While the effect of S’s action on the reward of L and on the
belief of L seem distinct, we provide a general definition for deception that represents both.

Our definition of deception aims to capture the nuances of indirect deceptive behavior, handle
situations where providing full information is infeasible due to communication constraints, and
provide a formalism that can be combined with existing decision making and RL algorithms. We
measure deception in terms of the regret incurred by the listener from receiving the speaker’s
communication. This regret can be defined as a function of the speaker’s actions, their effect on the
listener’s belief, and the effect of these updated beliefs on the listener’s reward, providing a formalism
that can be used as a reward function for the listener (e.g., to avoid deception) or as a metric (e.g., to
measure if deception has occurred). By casting different intuitive notions of deception (i.e. the two
sample reward functions) under the same regret umbrella, we provide a mathematical formalism that
supports future algorithm design. Furthermore, the choice of reward for the listener allows granularity
in specifying which types of outcomes one cares most about, whether it’s inducing correct beliefs
over some or all of the variables, or other goals.

We propose to measure the degree of deceptiveness of an agent through the formalism of regret,
where a larger regret would indicate a more deceptive agent:

Regret(s,⇡L,⇡S)=
TX

t=0

Ea
t
S⇠⇡S ,a

t
L⇠⇡L(btL)

⇥
rL(s, a

t

L
)
⇤
�

TX

t=0

Ea
t
L⇠⇡L(b0L)

⇥
rL(s, a

t

L
)
⇤
. (1)

Here, rL is the reward of the listener when starting in state s 2 S , if L and S act according to ⇡L and
⇡S respectively. Under this regret formulation, the speaker is deceptive if they take an action that
reduces the listener’s expected reward relative to what the listener would have received had they acted
according to their prior beliefs. In other words, we say deception has occurred if it would have been
better if the listener had not interacted with the speaker at all. Hence, the speaker can be classified as
deceptive if this regret is positive, altruistic if it is negative, and neutral if the regret is zero.

While on the surface it might seem strange to equate deception with causing suboptimal rewards
for the listener, we argue that this general framework allows us to capture many of the intricacies
of deceptive interactions, including “white lies” and true but misleading statements, if the reward
function L is selected carefully. In the following subsections, we explore ways to define rL(s, aS) to
capture our intuition about what constitutes deceptive behavior. We will show how the “logical truth”
definition in fact is subsumed by our more general definition for an appropriate choice of reward, but
our definition can also capture more nuanced situations.

4
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a
t

S

⇡̂S

b
t+1
L

a
t+1
L

rLb
t

L

⇡S ⇡L

Figure 2: The interaction between the speaker and the listener is as follows: The listener L’s belief is
updated based on S’s action (interpreted according to L’s model of S’s behavior ⇡̂S). The listener
will make a decision and receive reward based on their updated belief.

2.4 DEFINING UTILITIES FOR THE LISTENER

Depending on the scenario, a listener may place different value on obtaining accurate information and
on making correct or generally beneficial decisions. In this section, we show how different intuitively
reasonable notions of deception can emerge from our definition above, simply by making different
choices for the listener’s reward rL.

The natural starting point for L’s reward is to make it equal to the “task reward” r̂L (e.g., a house
buyer might receive a higher reward for buying the right house). Defining the reward of L in this
way is reasonable in cases in which the “task reward” captures everything L cares about. This could
include utilities indicating that L does not care about being deceived as long as it improves outcome.

Deception as worsened outcomes:
rL(s, aL) = r̂L(s, aL), (2)

where r̂L is the listener’s “task reward”. The speaker is considered deceptive if the interaction with
the listener leaves them worse off in terms of expected “task reward”. The “task reward” captures
the idea that people may care less about omissions or deception irrelevant to the task, such as Sam
talking about how the house has a beautiful front porch when this is an embellishment and does not
influence Luca’s opinion of how valuable the house is to them.

However, we claim that the regret formulation is expressive enough to capture a variety of intuitive
notions of deception. An obvious criticism might be that people might still feel deceived if they
were “tricked” into making a good decision. However, this can be captured simply by redefining
their reward: instead of receiving a reward only for a good decision, they also receive a reward
for having an accurate belief over the state, or some subset of the state. For example, we use
rL(s, aL) = r̂L(s, aL)+wbL(s), where r̂L(s, aL) is the task reward and w 2 R is a constant weight,
the bL(s) term will provide for lower regret whenever the speaker changes the listener’s beliefs to be
more accurate, and higher regret when it makes their beliefs less accurate. Below we show how, for a
specific choice of rL(s, aS) in Equation (1), we can also capture the accuracy of beliefs in our metric
for deception.

Deception as leading to worse beliefs:
rL(s, aL) = bL(s), (3)

where bL is the current listener belief, which we can obtain from the listener action as described in
Appendix C.1. This definition can be thought of as a “score on a belief-accuracy test”: consider an
example scenario where L is answering questions on an exam administered by S. As L’s expected
value on this exam is the probability S assigns to the correct answer, we can formulate L’s reward
function as the proportion of questions they get correct on the exam. It is also straightforward to
extend this construction to weight correct beliefs over some dimensions or even functions of the state
more highly – for example, we might potentially define the listener’s reward in the house example as
the probability they assign to the true monetary value of the house, which is a derived quantity that
depends on the house’s features.

We’ve shown how rL(s, aS) in Equation (1) can be defined for different notions of deception. By
quantifying deception as regret, we can define deception based on the beliefs or downstram task
reward of the listener which are induced by the speaker’s actions. Additionally, we’ve shown how
one could combine them in practice.

3 EXPERIMENTAL METHODOLOGY

The goal of our evaluation is to determine how well our proposed metric for deception aligns with
human intuition. To that end, we have: (1) designed three scenarios to study deceptive behaviors;

5
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Scenario Learned Regret (ours) LLMs

Task Belief Combined GPT-4 LLaMa Google Bard

Housing Scenario 0.34 0.67 0.70 0.19 0.11 0.02
Nutrition Scenario 0.17 0.25 0.37 0.16 0.01 0.01

Friend Scenario 0.26 0.37 0.48 0.19 0.07 0.11

Table 1: Summary of correlation values between human deceptive labels and learned task regret (ours),
belief regret (ours), combined regret (ours), and deceptive labels three LLMs for three different real-
life scenarios where deception might occur. A larger correlation value is indicative of a method that
aligns strongly with human intuitive notions of deceptive behavior. We find that the housing situation
has the least ambiguity when it comes to aligning with human notions of deception, with more
ambiguity present for the nutrition and friend scenario. These results were statistically significant
(p-value <0.001).

(2) developed an interactive dialogue management system where we can deploy agents that are
deceptive to different degrees according to our proposed definition; (3) created a pipeline to measure
the deceptiveness of responses from an LLM in a negotiation task.

For the first experiment, we ask humans to rate the deceptiveness of each interaction in a series
of conversational scenarios, and provide comparisons by measuring the correlations between our
approach as outlined in Equation (1), human ratings, and baseline evaluations by three state-of-the-art
LLMs (OpenAI, 2023; Touvron et al., 2023; Google, 2023). For the second experiment, we evaluate
our dialogue management system by conducting a user study to measure the correlation between
human rating after interacting with the system and the deceptive regret of the policy deployed. For our
third experiment, we use an LLM to generate negotiation dialogues based on a standard negotiation
dataset (Lewis et al., 2017b), ask humans to label the deceptiveness in these negotiations and measure
the correlation between human ratings and our deceptive regret. For our study with human participants,
we received IRB approval and used CloudResearch Connect to recruit participants.

3.1 MEASURING DECEPTION IN CONVERSATIONAL SCENARIOS

We have designed three scenarios to capture how deception is perceived by humans in different
contexts: a house bargaining interaction between a seller and a buyer, a consultation between a
nutritionist and a patient, and small talk between two colleagues. These have been designed to
consider different models of the listener, leading to differing ratings of deception (e.g., it is more
deceptive to lie about features of a house than lie about your hobbies). Each scenario consists of
three features that can be either true or false. A sample interaction is shown in Figure 4. We provide
further details about the scenarios in Appendix D.

Scenario generation. We programmatically generate conversation scenarios for each situation
described in Appendix D.1, consisting of listener preferences and speaker actions. Similarly to how
prior work Bakhtin et al. (2022) translates symbolic moves into natural language for Diplomacy,
we use an LLM (gpt-3.5-turbo) (Brown et al., 2020) to wrap “symbolic” POMDP communication
actions from our model into natural text. We consider a setting in which the state consists of k = 3
features, with Luca “interested” in a random subset of these features. The features are considered
independently by Luca, and there are no correlations between features.

User study setup. We show each of N = 50 users a series of 10 random scenarios for each situation
(total of 1500 interactions), consisting of: 1) the true features (that are only known to Sam), 2) the
prior belief b0

L
Luca has about such features, 3) which features Sam revealed to Luca (given that the

participants are aware of the true features, they can determine whether Sam was truthful or not), and
4) which features Luca cares about. For each scenario, participants were asked to rate whether they
believe Sam’s behavior is deceptive on a 1-5 Likert scale, from “Strongly Disagree” to “Strongly
Agree”. We describe our scenario sampling mechanism and provide details in Appendix D. Figure 4
provides examples of the interactions users will see for the three real-life scenarios.

3.2 DEVELOPING A DIALOGUE MANAGEMENT SYSTEM

To understand how a human’s perception of deception changes upon interaction with a system, we
have built a dialogue management system as shown in Figure 3 to simulate a real-world scenario
where a human could be easily deceived. We chose to demonstrate this through the housing scenario
detailed in Figure 1, where a human must input their preferences and engage in dialogue with an
online representative (our model) who will share information about an available home. For this study,
we have added further complexity to the scenario by increasing the number of features to eight and

6
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including correlations between features, such that the human user cannot determine if the agent is
lying within a few rounds. Similar to the previous setup, we use an LLM (gpt-3.5-turbo) (Brown
et al., 2020) to wrap actions from our model into natural text, this time selecting actions that either
maximize or minimize the deceptive regret (task and/or belief utility) at random based on the house
preferences. For our user study to obtain deceptive human ratings, we have N = 30 users interact
with our system.

3.3 DETECTING DECEPTION IN LLM-GENERATED NEGOTIATION

To demonstrate how our definition can be used to quantify deception in dialogue, we use an LLM
(gpt-3.5-turbo) to generate 30 negotiation conversations as motivated by successes in using LLMs
to generate synthetic data (Bai et al., 2022; Park et al., 2023a; Abdulhai et al., 2023). We focus
on the Deal or No Deal task Lewis et al. (2017b). Here, two agents, Agent 1 (speaker) & Agent 2
(listener), must split an inventory of three items between them. We have modified the original task
setup such that Agent 1 is aware of the point values of Agent 2, but Agent 2 is not aware of the true
point values of Agent 1. Instead, Agent 2 has a prior belief over Agent 1’s point values, and Agent 1
can communicate in ways that are truthful or deceptive about their preferences. A deceptive agent
might seek to gain an advantage by implying they value some items more or less than they really
do. To encourage diversity in the conversations, we instantiate each agent with a different utility
function according to which it negotiates. To compute the deceptive regret for the conversation, we
use chain of thought prompting (Wei et al., 2023) to ask questions about the negotiation to determine
the prior belief of the listener, the posterior belief of the listener at the end of the conversation, and
the speaker’s actions (i.e., shared point valuations). For our user study, we have N = 30 humans
provide deceptive human ratings. A sample negotiation dialogue is shown in Figure 3, and we have
provided further details of our setup in Appendix G.

3.4 EVALUATION

We explain the results from our three experiments below.

Q1: Does our definition of deception align with human judgment? We compare human deception
scores from our user study against regrets calculated as per Equation (2) and Equation (3) by
computing their correlation as shown in Table 1. We combine two reward terms (labeled “Combined”)
to see whether that is able to better capture human intuitive notions of deception. To do so, we regress
human deceptiveness labels on both our regret metrics individually and jointly. While using both
reward terms in conjunction improves predictions, the majority of the predictive power comes from
the belief regret bL(s). We largely find that a combined regret formulation better captures human
intuitive notions of deception across all three scenarios, confirming our hypothesis from Section 2.3
that both belief and task reward contribute to improving the correlation with human judgment. For the
housing scenario, we find a significant correlation of 0.67 between human responses and that shown
by belief-based regret, and a correlation of 0.34 between human responses and task-reward-based
regret. This matches our intuition that humans primarily focus on the truthfulness of statements
more than just outcomes (which is closer to a purely utilitarian perspective). We find the least
correlated values shown for the nutrition scenario, which might indicate that due to ambiguity in the
listener’s observation model, humans may be noisy when discerning whether deception is taking place.
We found that for these two scenarios, humans ranked interactions as overall being less deceptive,
whereas our model labeled them as being more deceptive comparatively. This might be indicative
that there might be additional reward terms that may capture the conservative labeling of humans and
the subjectivity of defining deception depending on the scenario.

For multi-step conversations occurring as part of the dialogue management system, we found the
correlation between deceptive ratings from humans and our formalism to be 0.72 for belief utility and
0.45 for task utility respectively, slightly higher than the correlations of 0.67 and 0.34 when users
observe interactions as shown in Table 1 for the housing interaction. This shows that our deception
metric has the ability to scale when the conversation contains the complexity present in the real-world,
including correlations in beliefs and

Q2: How do LLM judgments compare at discerning deception? LLMs have been shown to
sometimes be successful in performing data annotation, sometimes even surpassing human annotator
quality (Pan et al., 2023; He et al., 2023; Wang et al., 2021). We explore how well LLM evaluations
correlate with human judgments about deceptiveness in Table 1. The purpose of this evaluation is to
examine whether or not it is trivial to infer the degree of deception in these statements. In particular,
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we use three state-of-the-art LLMs (OpenAI, 2023; Touvron et al., 2023; Google, 2023) with the same
prompt that was given to the human annotators, asking whether each given interaction is deceptive –
and compare the LLM deception labels with those in the user study. We find that even very large,
state-of-the-art LLMs, such as GPT-4, do not make deceptiveness judgments on these examples that
align as well with user intuition as even the worst choice of reward for our approach. Overall, we
find GPT-4 aligning more than Google Bard and LLaMa across all three situations, respectively.
Overall, these experiments validate our hypothesis that our formalism can be effective in estimating
the “degree of deceptiveness” of human interactions and that our proposed formulation aligns with
human intuition. For an initial exploration of how to create non-deceptive agents, see Appendix D.2.

Q3: How can we leverage a regret theory of deception to measure deception from LLMs?
Due to the increasing concern that LLMs could be used to deceive and manipulate people on a large
scale, we generated sample negotiations for the Deal or No Deal Lewis et al. (2017a) to demonstrate
a case of deception. Although we had humans only rate 30 dialogues, we generated a total of 500
dialogues to ensure a range of diverse strategies employed by agents in conversation, and by extension,
a larger range of deceptive regret values. We have found there to be a correlation of 0.82 between
human ratings of deception for the subset of conversations and our deceptive regret model, showing
that human intuition agrees with the labels we assign. We expect that these labels may be leveraged
as rewards for learning deceptive and non-deceptive LM models in the future.

4 RELATED WORK

Deception in social psychology and philosophy. Deception has been defined and analyzed through
philosophy (Masip et al., 2004; Martin, 2009; Todd, 2013; Fallis, 2010; Mahon, 2016; Sakama
et al., 2014) and psychology (Kalbfleisch & Docan-Morgan, 2019; Zuckerman et al., 1981; Whaley,
1982). To our knowledge, the most comprehensive definition (Masip et al., 2004) integrates the
work of several researchers on lying (Coleman & Kay, 1981) and deceptive communication (Miller
& Stiff, 1993), considering deception as the act of deliberately hiding, altering, or manipulating
information—through words or actions—to mislead others and maintain a false belief. However,
these definitions are mostly qualitative and are difficult to turn into precise mathematical statements
that could be leveraged as objectives for training autonomous agents that embody various degrees
of deception. Our definition formalizes deception within POMDPs, and is designed to be used as a
reward function to build non-deceptive agents. Importantly, our work is inspired by work in moral
psychology that contrasts utilitarianism, which aims to maximize the overall well-being (Driver,
2022), with deontological philosophies, which posit inviolable moral rules that do not vary with the
situation (Greene, 2007). Our formalism allows both utilitarian and belief perspectives of deception to
be represented by a regret formulation that can be used as a utility measure. Several works also define
deception depending on whether or not the listener is aware (i.e., coercion and rational persuasion)
(Todd, 2013) or unaware (i.e., lying or manipulation) (Noggle, 2022) of deceptive influence. Our
work represents both as we do not make any assumptions about the listener (i.e., the listener uses a
model that may or may not assume the speaker often lies).

Deception in language models and mitigation. With the development of LLMs with emergent
capabilities (Wei et al., 2022), there has been a growing concern that these models may exhibit
deceptive tendencies (Kenton et al., 2021). This occurs due to the model having misspecified
objectives, leading to harmful content (Richmond, 2016) and manipulative language (Roff, 2020).
Our work can potentially help address this misalignment Amodei et al. (2016) by providing a definition
of deception that can modify the objective function or constrain the behavior of reinforcement learning
agents to avoid deceptive tendencies. Several methods have focused on detecting deception in human
text by using language models with manual feature annotation (Fitzpatrick & Bachenko, 2012),
contextual information (Fornaciari et al., 2021), and textual data in a supervised manner (Shahriar
et al., 2021; Zee et al., 2022; Tomas et al., 2022). These methods have been extended to detecting
deception in spoken dialogue by learning multi-modal models through supervised learning (Hosomi
et al., 2018; Soldner et al., 2019) and asking questions to improve estimates (Tsunomori et al., 2015).
However, they may not cover the range of deceptive capabilities of LLMs as they only classify each
utterance independently. Our work instead takes advantage of the sequential nature of interactions in
AI systems in defining deception. We also differ from work on adversarial attacks Franzmeyer et al.
(2023); Tondi et al. (2018) as we provide a general regret formulation under which the deceptive
behavior of the speaker can be defined, quantified, and used as a way in which to label utterances in
conversations with varying levels of deceptiveness. With respect to work on training agents to be
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non-deceptive Hubinger et al. (2024), we would like to acknowledge that our formalism allows a
system designer to capture the nuance in defining deception depending on the scenario.

Deception in multi-agent systems and robotics. Our work approaches deception from the view of
sequential decision making problems, considering the effect of communication actions on a listener’s
beliefs. While expressing deception as changes in beliefs has been examined in prior work (Taylor
& Whitehill, 1981; McWhirter, 2016; Gmytrasiewicz, 2020; Ward et al., 2023), our work converts
belief-based definitions of deception into utility measures that can be used in reinforcement learning to
avoid deceptive tendencies. Moreover, recent works Sarkadi et al. (2019); Adhikari & Gmytrasiewicz
(2021); Ederer & Min (2022); Sarkadi (2018) have used communication or game theory to model
deception of an agent with a theory of mind under uncertainty, and other game theoretic approaches
Santos & Li (2009); Chelarescu (2021); Aitchison et al. (2021) have analyzed deception from a
utilitarian perspective. Masters et al. (2021) has provided a qualitative account of deception in AI,
and Park et al. (2023b) defines deception as the inducement of false beliefs when trying to achieve an
outcome other than the true one. In contrast, our work provides a general framework that captures
both belief-based and utility-based deception and quantifies deception as a continuous quantity,
allowing us to measure the “degree of deceptiveness” of a speaker toward a listener. Additionally,
while these methods assume that the speaker is intentionally deceptive by using a theory of mind, our
work assumes that the speaker can be intentionally or non-intentionally deceptive, which depends on
both the specific setting at hand and whether or not the speaker can access ground truth information.
Lastly, several works have studied deception in non-verbal behavior, such as robot motion planning
that deceives a person or makes it hard to infer intentions (Wagner & Arkin, 2011; Shim & Arkin,
2012; 2013; Dragan et al., 2015; Tomas et al., 2022; Ayub et al., 2021; Masters & Sardina, 2017).
While our work approaches deception from the view of sequential decision making, it makes no
assumptions on the action space, allowing it to be defined for both symbolic and textual forms of
communication.

5 LIMITATIONS

We would like to acknowledge some limitations of our approach. Our formalism may inaccurately
classify situations as deceptive when the speaker is simply suboptimal, leading to poor outcomes due
to incompetence rather than intentional deceit. This misclassification occurs because our metrics
might label such behavior as deceptive. If the speaker is modeled incorrectly, such as assuming they
have complete knowledge when they do not, the resulting inferences about deceptiveness can be
highly misleading. For example, a speaker might intend to deceive (attempting to lie and guide you
towards a poor outcome) but accidentally convey the truth, leading to a better outcome. In such cases,
the speaker would be wrongly classified as non-deceptive because their unintentional truthfulness
resulted in a high reward. Moreover, our technique requires access to the ground truth state (and
thus, a notion of what is true and false in the speaker’s communication). We would like to note that
many real-life situations assume a naieve listener who does not expect deception to occur, or that the
speaker has full access to the state and can influence the listener in the way they intend. However
despite this limitation, we believe that if we are not able to define deception under these simplifying
assumptions, there is little hope to address more challenging settings with these assumptions relaxed.
Lastly, we would like to acknowledge that we considered generalization to real-world scenarios when
defining deceptive behavior. The scenarios we considered were designed to be simple enough to be
quickly understood by humans, but complex enough to capture real-world behaviors. To consider
more complicated scenarios, we generated dialogues for a well-known negotiation task, and our
procedure could also be implemented for other similar benchmarks and datasets He et al. (2018a);
Wang et al. (2020).

6 DISCUSSION

We cast deception from the lens of impacts on a listener’s beliefs and resulting actions/task rewards.
We found that a belief regret model, looking at the extent to which the listener more or less strongly
believes in the correct state after interacting with the speaker, significantly correlates with users’
subjective ratings of deception. Interestingly, the impact on the task reward of the resulting listener
actions is a lot less predictive. Of course, this is just a start. Future research is needed to understand
where the correlation breaks and what nuances explain what real people find deceptive. If the belief
gets slightly worse, but the belief over aspects of the state that are actually relevant to the task reward
gets better, is that still considered deceptive? This type of question presents a fruitful avenue for
future investigation.
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7 ETHICS STATEMENT.
We acknowledge that our formalisms may pose non-negligible ethical risks. They could be especially
dangerous if used for targeted deceptive advertising, recommendation systems, and dialogue systems.
We discourage the use of deceptive AI systems for malicious purposes or harmful manipulation. We
hope this research provides grounding for how to define deception in decision making and build
systems that can mitigate and defend against deceptive behaviors from both humans and AI systems.
This work offers a concrete definition of deception under the formalism of decision-making. We
expect our work to only be a step in the direction of formally quantifying and understanding deception
in autonomous agents: while our definitions provide a working formalism, they may leave open edge
cases. A key area of future work is to generalize these definitions to settings that reflect realistic
domains of machine learning, such as dialogue systems, robotics, and advertising. Large-scale
applications may include reward terms that prevent deception and detection methods. Exploring
these applications may not only lead to practically useful systems aligned with human values but also
suggest ways to formalize deception in autonomous agents.
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