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Abstract
Machine learning models are increasingly utilized
across impactful domains to predict individual
outcomes. As such, many models provide algo-
rithmic recourse to individuals who receive neg-
ative outcomes. However, recourse can be lever-
aged by adversaries to disclose private informa-
tion. This work presents the first attempt at miti-
gating such attacks. We present two novel meth-
ods to generate differentially private recourse:
Differentially Private Model (DPM) and Laplace
Recourse (LR). Using logistic regression classi-
fiers and real world and synthetic datasets, we
find that DPM and LR perform well in reducing
what an adversary can infer, especially at low
FPR. When training dataset size is large enough,
we find particular success in preventing privacy
leakage while maintaining model and recourse
accuracy with our novel LR method.

1. Introduction
Explainability and privacy are two important pillars of trust-
worthy machine learning (ML), but they are often viewed
as conflicting. A right to privacy is often viewed as a limit
on transparency (Weller, 2019). Still, users may want an
explanation of how a ML system works or why it gave a
particular outcome, even as they want their personal data to
be kept private (Weller, 2019) (Shokri et al., 2021). As users
are increasingly impacted by negative model predictions
in domains such as healthcare, medicine, and criminal jus-
tice, there is a growing emphasis on providing algorithmic
recourse to individuals, so that they can understand and con-
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test decisions, or alter their behavior to achieve a preferred
outcome (Wachter et al., 2017).

Recourse commonly takes the form of counterfactual ex-
planations (CFEs), which highlight what feature changes a
user would need to make for a model’s predicted label to
change (Pawelczyk et al., 2022). However, recent work by
Pawelczyk et al. showed severe privacy risks with CFEs, as
they developed two successful membership inference (MI)
attacks utilizing CFEs to leak training data (2022).

In this work, we develop private recourse methods that pro-
tect against MI attacks while maintaining reasonable model
accuracy. We hypothesize that the mathematical framework
differential privacy (DP) can be used to create these private
recourses (Dwork & Roth, 2014). Investigating the privacy,
accuracy, and explainability trade-off is an under-explored
area. Our work is the first attempt at mitigating the MI
attacks presented by Pawelczyk et al. and the first work
generating recourses in a DP manner.

2. Related Work
The research area of machine learning explainability and
privacy is quite recent, and thus contains a smaller amount
of prior work. Furthermore, most works have revolved
around attacks leveraging explainability to the detriment
of privacy, rather than creating explainable and still private
models. Shokri et al. demonstrated that feature-based expla-
nations may leak sensitive information about training data
(2021). Milli et al. demonstrated that gradient-based expla-
nations could be used to quickly reconstruct the underlying
model (2019). Aı̈vodji et al. showed that CFEs could also
be leveraged for highly accurate model extraction attacks
(2020).

We are interested in CFEs that may expose information on
training data. Pawelczyk et al. provided the first work in
this area, with two novel counterfactual distance-based MI
attacks: 1) thresholding on counterfactual distance (CFD),
and 2) likelihood ratio test using counterfactual distance
(CFD LRT) (2022). We discuss the details of these attacks,
which are the basis of our work, in Section 3. With enough
recourse queries, adversaries can use these attacks to recon-
struct the training data of a non-private, recourse-supporting
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model (Pawelczyk et al., 2022).

3. Preliminaries
3.1. Algorithmic Recourse

We base our recourse definition off of Wachter et al.’s first
work in this area (2017). Wachter et al.’s definition is also
adopted by our motivating work (Pawelczyk et al., 2022)
and other explainability-privacy papers.

Definition 3.1. Let x ∈ X be a data observation that
received a negative label when fed through fθ, where
fθ : X → Y is a classifier model parameterized by θ,
X ∈ Rd, and Y ∈ {0, 1}.

Finding an algorithmic recourse for x means finding a
counterfactual

x′ = x+ δ : fθ(x
′) = f(x+ δ) = 1.

We aim to minimize the cost c(x, x′) to change x to x′ so
that the recourse is easily implementable; in practice, ℓ2
distance is commonly used as a cost function.

3.2. Counterfactual Distance-Based Membership
Inference Attacks for ML Models

MI attacks infer whether an instance x belongs to the train-
ing data for fθ. Across the literature, MI attacks are com-
monly loss-based, following the intuition that models have
lower loss on instances observed during training (Yeom
et al., 2017) (Carlini et al., 2021). Pawelczyk et al.’s novel
counterfactual distance-based MI attacks show that coun-
terfactual distance can also be used to leak training data
(2022).

Thresholding on counterfactual distance (CFD): Intu-
itively, during training, the decision boundary is pushed
away from training points (as in margin maximization), re-
sulting in test set points being closer to the decision bound-
ary.

MCFD(x) =

{
MEMBER, if c(x, x′) ≥ τD

NON-MEMBER, if c(x, x′) < τD
.

Counterfactual distance likelihood ratio test (CFD LRT):
In this attack, the adversary trains shadow models to esti-
mate the likelihood ratio

Λ =
Pr[c(x, x′)|x ∈ Dt]

Pr[c(x, x′)|x ̸∈ Dt]
.

The attack then thresholds on this Λ.

See Appendix .1 for the formulation and implementation
details of this attack.

3.3. Differential Privacy

Our solution involves using differential privacy (DP) to
counteract the success of the counterfactual distance-based
MI attacks in Section 3.2. DP is a mathematically provable
definition of privacy that provides a quantifiable metric of
privacy loss, providing a computational method whose out-
put is random enough to obscure any single participant’s
presence in the training data (Dwork & Roth, 2014).

Definition 3.2. A randomized mechanismM with domain
D and rangeR satisfies ε-differential privacy (ε-DP) if for
any two adjacent input datasets d, d′ ∈ D differing by one
row, and any subset of outputs S ⊆ R

Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S].

The ε parameter represents privacy loss: the lower the ε, the
stronger the privacy protection.

3.3.1. LAPLACE MECHANISM OF DIFFERENTIAL
PRIVACY

The Laplace Mechanism, a widely used DP mechanism, is
useful on numerical queries. It involves adding Laplacian
distributed random noise on the output of a sensitive query
(Dwork & Roth, 2014).

Definition 3.3. For sensitive query f(d) on input dataset d,
the ε-DP Laplace MechanismMLap is defined as

MLap(d) = f(d) + Laplace(GSf/ε),

where Laplace(GSf/ε) is a Laplace random variable with
scale parameter GSf/ε.

GSf is the global sensitivity of query f , bounding how
much the sensitive query outcome can change across any
two possible neighboring datasets d, d′ ∈ D:

GSf = max
d,d′
||f(d)− f(d′)||1.

3.3.2. DIFFERENTIAL PRIVACY UNDER
POST-PROCESSING

Dwork et al. prove that once a quantity is “made private”
through DP, it cannot be subsequently ”made un-private”
(2014). This is formalized in the following theorem.

Theorem 3.4. If mechanism M is ε-DP, and G is an arbi-
trary deterministic mapping, then G ◦M is also ε-DP.

4. Problem Statement & Methodology
4.1. Problem Statement

We hypothesize that DP can be used as a privacy preserva-
tion mechanism to protect algorithmic recourse models from
MI attacks. To thoroughly evaluate the extent and nature of
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the impact of DP on CFD based attack success, we evaluate
the influence of the following changes to our ML classifier
→ algorithmic recourse→ MI attack pipeline:

• The presence versus absence of differential privacy.

• The particular DP mechanism being used: DPM versus
LR (see Section 4.2.2).

• The privacy protection strength ε of the DP mechanism.

• The type of MI attack: CFD versus CFD LRT.

• The dataset, whether synthetic or real-world.

• The dimensionality of the data, for synthetic data.

4.2. Methodology

4.2.1. RECOURSE FOR LOGISTIC REGRESSION
CLASSIFIERS

Logistic regression, our classifier of choice, has weights w
after training which it uses to output a probability score:
f(x) = wTx = log Pr(y=1|x)

1−Pr(y=1|x) . In a linear model such
as this one, it is standard for the counterfactual distance of
instance x to be calculated using the ℓ2 norm from f(x) to
the target score s in logistic regression space:

c(x, x′) =
s− f(x)

||w||22
w.

This is the counterfactual distance calculation method we
use in our methodology. In our experiments, we set our
decision boundary threshold to s = 0, which corresponds
to the fitted Pr(y = 1|x) being equal to 1

2 at the threshold.

4.2.2. DIFFERENTIALLY PRIVATE RECOURSE
GENERATION METHODS

Differentially Private Model (DPM)

Our first DP method trains the underlying logistic regression
classifier with DP. By post-processing of DP (see Section
3.3.2), an ε-DP logistic regression model gives rise to ε-DP
counterfactual recourse. We use IBM’s diffprivlib
library (Holohan et al., 2019), which offers an implementa-
tion of DP logistic regression based on Chaudhuri et al.’s
formulation of a DP empirical risk minimization mechanism
(2009).

Differentially Private Laplace Recourse (LR)

We propose a novel method for DP post-hoc computation of
counterfactual recourse that does not touch the underlying
logistic regression model training process. The method is
as follows:

1. Apply the Laplace mechanism onto the predicted
probability score Pr′(y = 1|x) = Pr(y = 1|x) +
Laplace(1/ε).

2. Clamp Pr′(y = 1|x) to [0, 1] so that Pr′(y = 1|x) can
still be interpreted as a probability.

3. Calculate noisy logistic regression score f ′(x) =

log Pr′(y=1|x)
1−Pr′(y=1|x) .

4. Calculate noisy CFD:MCFD,Lap(x) =
s−f ′(x)
||w||22

w.

Claim: The above method is ε-DP.

Explanation: Our method begins with applying the Laplace
mechanism (see Section 3.3.1) on the predicted probabil-
ity Pr(y = 1|x), for data instance x. We claim that
GSP (y=1|x) = 1, i.e. the vector of all ones. First,
note that Pr(y = 1|x) is a probability vector ∈ [0, 1]d.
For any two possible datasets d, d′ ∈ D, if we calculate
Pr(y = 1|x)d using the classifier trained on d, and then
calculate Pr(y = 1|x)d′ using the classifier trained on d′,
the two probabilities can differ in ℓ1 distance by at most
1. Steps 2-4 in the method are post-processing functions
applied to Pr′(y = 1|x). By post-processing of DP (see
Section 3.3.2), we retain ε-DP.

5. Experimental Results
5.1. Setup

Datasets: To stay relevant and methodologically consistent
with the motivating work (Pawelczyk et al., 2022), we use
similar datasets. For real world data, we use the datasets 1)
Heloc (Home Equity Line of Credit) (FICO Community)
(d = 23), which scores whether individuals will repay their
Heloc accounts within a fixed time window, 2) MNIST
(Khodabakhsh et al., 2019), which contains 28× 28 pixel
gray-scale images of handwritten digits between 0 and 9,
and 3) Adult (Dua & Graff, 2017) (d = 14), a variant of
the 1994 Census database that labels whether an individual
has annual income greater than $50,000. However, based
on the minimal success of baseline CFD attacks on Adult,
we omit this analysis from this writeup, although our results
are presented in the Appendix .2.

For synthetic data, we follow Pawelczyk et al. (2022) and
Shokri et al (2021): For d ∈ {100, 1000, 5000, 7000}, we
randomly choose a vertex from a d-dimensional hypercube
and sample n = 5000 random variables from a Gaussian
distribution centered at the vertex with unit variance.

Pre-processing: We use 5000 data entries for each model
training set, and give the adversary 5000 entries to train their
own shadow models. Before model fitting, we pre-process
data by removing multicollinear features (with correlation
over 0.95), standardizing, and normalizing so that each
feature’s ℓ2 norm is 1.

Attack specifications: For both attacks, we calculate coun-
terfactual distance based on ℓ2 norm to the decision bound-
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ary. For CFD LRT attacks, we consider two versions with
global and local variance estimators, respectively, following
the paper that introduced the LRT MI attacks (Carlini et al.,
2021) that the motivating work (Pawelczyk et al., 2022) is
based upon. In each CFD LRT attack, we train 5 shadow
models and 20 ensemble models.

Settings: We evaluate the baseline setting as proposed by
Pawelczyk et al. (2022), alongside our novel DP model
(DPM) and Laplace recourse (LR) methods (refer to Section
4.2.2), each with ε = 0.5, 1.0.

5.2. Metrics

Following the motivating work (Pawelczyk et al., 2022), we
use log-scaled ROC curves (receiver operating characteris-
tic), AUC (area under the curve), and BA (balanced accuracy)
to determine the efficacy of the MI attacks. Figs 1, 2, and 3
show these metrics. Based on motivating literature (Carlini
et al., 2021) (Pawelczyk et al., 2022), we pay particular
attention to successes at low FPR, as a MI attack is still
successful if it can identify even a very small subset of the
training data with high confidence.

The DP literature acknowledges the tradeoff of privacy and
accuracy (Dwork & Roth, 2014). Because we aim to create
models that are at once accurate, private, and explainable,
we also consider the train accuracy on the last ensemble
model, and the test accuracy across all 20 ensemble models.
To examine recourse accuracy, we also compare the train
and test distributions of CFDs and CFD LRTs on synthetic
data, under all three settings (baseline, LR, DPM); these
results are in Fig 4.

5.3. Results and Analysis

Privacy: In Figs 1, 2, and 3, we hoped to see the DPM and
LR methods flatten the ROC curves of the baseline, towards
the random line with lower AUC, for all attacks—particularly
at low FPR, as explained in Section 5.2. This would show
the success of our methods in reducing the efficacy of the
MI attacks. Overall, we see that both DP methods generally
do flatten the ROC curves from the baseline, particularly at
low FPR, across all datasets. For a particularly impressive
example, compare DPM ε = 1.0 and baseline for CFD LRT
(global variance) in Fig. 2. As expected, ε = 0.5, with more
DP, protects against attacks more successfully than ε = 1.0.

At both values of ε, LR appears highly successful against
CFD, with almost exactly random lines and AUC = 0.5,
across all datasets. Similarly, DPM appears slightly more
successful against both CFD LRT attacks, particularly in
Fig. 2. This makes intuitive sense since both LR and CFD
happen on the level of recourse, while DPM and CFD LRT
happen on the level of model training.

The motivating work proposes this theorem: For a ε-DP

Figure 1. Log-scaled ROC curves (TPR v. FPR), AUC, and BA for
all attacks on all settings using Heloc dataset. See Privacy: for
analysis.

recourse mechanism—such as our LR—the BA of all attacks
is bounded by 1

2 + 1−e−ε

2 (Pawelczyk et al., 2022). For
ε = 0.5, 1.0, this bound is 0.697, 0.816, respectively. We
are pleased to announce that our empirical BA far surpasses
this theoretical bound, with BA across nearly all DP methods,
attacks, and datasets at approximately 0.5.

Model Accuracy: Considering train versus test accuracies
in Tables 1 and 2, we are not enthused about the tradeoff in
accuracy and privacy under DPM. LR seems the more fruitful
method.

Recourse Accuracy: Another way to assess accuracy is
to compare the distributions of the DP CFD calculations
with the baseline CFD distribution. These distributions are
shown in Fig 4. For dimension d ≥ 1000, both DPM and
LR have inaccurate CFD distributions, as seen through large
disparities in horizontal axis scaling. For d = 100, however,
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Figure 2. Same as Fig. 1, but using MNIST dataset.

Table 1. Train accuracy of last ensemble model and test accuracy
over all 20 ensemble models, using real world datasets. (LR is
excluded because it has no impact on model training; we observed
very similar empirical results, with only minor variation based on
the split of training data points between ensemble models.) We see
that training with DP significantly lowers train and test accuracy
for both datasets. As expected, ε = 1.0 is much more accurate
than ε = 0.5 in training — but it is only slightly more accurate in
testing.

Heloc Mnist
Train Test Train Test

Baseline 0.9046 0.8506 1.0 0.9393
DPM, ε = 0.5 0.6079 0.5254 0.6239 0.4795
DPM, ε = 1.0 0.8011 0.5648 0.7317 0.4985

LR offers a CFD distribution close to that of the baseline,
with the correct scaling. We hypothesize that the high bar
to the right in the LR case—the main noticeable difference
when compared with baseline—is a result of the clamping in

Figure 3. Same as Fig. 1, but using synthetic dataset.

Table 2. Same as Tab. 1, but using synthetic datasets. Again, we
see that training with DP lowers train and test accuracy across all
datasets, and that ε = 1.0 provides more accuracy than ε = 0.5.
However, given the low test accuracy on synthetic data under even
the baseline condition, the discrepancy in test accuracy under DP
is less noticeable.

d = 100 d = 1000
Train Test Train Test

Baseline 1.0 0.6799 1.0 0.5619
DPM, ε = 0.5 0.5323 0.4933 0.4913 0.5016
DPM, ε = 1.0 0.5386 0.5047 0.5165 0.5029

d = 5000 d = 7000
Train Test Train Test

Baseline 1.0 0.5261 1.0 0.5215
DPM, ε = 0.5 0.4551 0.4953 0.515 0.5035
DPM, ε = 1.0 0.4693 0.501 0.5244 0.5012

the novel LR method, where we clamp the noisy predicted
probability score to [0, 1], so that the score can still be
interpreted as a probability. Namely, we believe the bar
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Figure 4. Histograms of train and test counterfactual distances (for
the Input Distance (CFD) attack) and CFD LRTs (for the LRT
attacks), under the synthetic data, ε = 1.0 setting. We see that as
data dimension increases, train and test distributions differ, even
under differentially private recourse generation. This difference is
especially pronounced in CFD LRTs. These histograms also offer
insight on DP recourse accuracy, explained in Section 5.3

.

corresponds to observations that received a negative label,
and whose noisy predicted probabilities were originally
negative and then clamped to 0. We proceed to test this
hypothesis by examining the impact of privacy strength (ε)
on the severity of this clamping-induced issue. Not only do
these results reveal the privacy-accuracy trade-off (prevalent

in and consistent with DP literature), but point to LR as
promising for maintaining recourse accuracy.

On the Relationship Between Privacy Strength and Re-
course Accuracy

The Laplace Mechanism (Definition 3.3) involves adding
Laplace-distributed random noise to a sensitive numerical
query, where the noise’s scale parameter is proportional to
1/ε. Lower ε corresponds to stronger privacy protection un-
der DP, but for our LR method, it also means there is higher
perturbation of the logistic regression’s predicted probability
scores, and higher chance that a noisy predicted probability
score falls below 0 (upon which it is clamped to 0). The
CFD distributions in Figure 4 illustrate a consequence of this
clamping and is a source of accuracy loss of LR-generated
recourse. In this appendix, we examine whether decreased
privacy protection (higher ε) mitigates this consequence of
clamping and yields better CFD distribution accuracy. Fig-
ure 5 shows CFD distributions for d = 100 synthetic data,
under the LR, ϵ = {5, 10, 20} settings.

Figure 5. Histograms of LR-based train and test counterfactual dis-
tances from models trained with synthetic data, under the settings
d = 100, ε = {5, 10, 20}. The LR-based CFD distribution ap-
proaches the baseline CFD distribution as we increase ε.

These findings highlight a privacy-accuracy tradeoff (also
referred to as privacy-utility tradeoff in DP literature): the
CFD distribution is more accurate for larger values of ε (i.e.
weaker levels of privacy protection).

Even though the values of ϵ presented here are larger than
those presented in main results (and those used as library
default parameters), it is not uncommon for ε values of up to
10 (and at times up to 20) to be used in the literature: (Abadi
et al., 2016), (Jayaraman & Evans, 2019). Overall, this is a
promising result for the accuracy of LR-based recourse.
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6. Future Work
The accuracy and utility of DPM and LR-generated recourse
are worth further exploration; our work is a start. Our
recourse accuracy analysis in Section 5.3 highlights privacy-
accuracy tradeoff. Where on this tradeoff spectrum we
choose to lie depends on factors such as the motivation
behind generating recourse in the first place, the context and
end users behind the model, and the risk of an adversary
taking hold of data and our trained model. Further research
is needed to assess the human interpretability of the new
recourses.

Figures 3 and 4 show that as dimension of synthetic data
increases—especially as dimension passes the interpolation
threshold (i.e., when the number of training points equals the
dimension: d = n = 5000)—MI attack success remains dif-
ficult to prevent, even under differentially private recourse
generation methods. On high-dimensional datasets with
too few training points, this finding highlights a continued
privacy concern (even though such datasets are discouraged
in the real world for accuracy and privacy purposes). Ad-
dressing this difficulty is worth further exploration.

There is practical value in exploring privacy risk mitigation
in recourse-based membership inference attacks when the
underlying model is a non-linear or non-inherently inter-
pretable classifier, such as a neural network. (Abadi et al.,
2016) propose a differentially private stochastic gradient de-
scent (DP-SGD) mechanism by adding Gaussian distributed
random noise to gradients during training. For neural net-
work classifiers—and for general classifiers trained with
gradient descent—we hypothesize that DP-SGD with care-
fully tuned hyperparameters can help us achieve recourse
with lowered privacy risk.

7. Conclusion
We develop two methods to generate differentially private
recourse, in order to protect against MI attacks leverag-
ing explainability. We find particular success in preventing
privacy leakage while maintaining model and recourse accu-
racy with LR (Laplace recourse), especially on CFD attacks,
and especially when training dataset size is larger than di-
mension.

Our work leaves behind remaining difficulties in this field.
CFD LRT attacks remain more effective than CFD attacks.
On synthetic datasets of high dimensionality, attacks re-
main hard to prevent, as distances are simply greater in
high dimensions. While our LR method appears promising,
research is needed to determine if the Laplace mechanism
harms the human interpretability of the new recourses, in
particular under high strength levels of differential privacy.
Finally, while we considered a logistic regression classi-
fier, this is an inherently interpretable model; it would be

worthwhile investigating whether our results generalize to a
blackbox neural network scenario.
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Appendix
.1. CFD LRT Attack Detailed Formulation

Section 3.2 introduces the CFD LRT attack that (Pawelczyk et al., 2022) show successfully leak sensitive training data
membership. To fully estimate the likelihood ratio, the adversary uses maximum likelihood estimation (MLE) methods to
model the distributions of counterfactual distances (CFDs) when 1) x (the point in question) is in the training data, and
when 2) x is in the test data. These building blocks comprise the numerator and denominator, respectively, of the likelihood
ratio Λ.

(Pawelczyk et al., 2022) models the distributions of CFDs as log-normal (parameterized by mean and standard deviation),
meaning MLE estimates are of (µin, σin) and (µout, σout). In the full estimation process, the adversary — who has access
to training data distribution D— can estimate all four parameters by training shadow models with and without point x, and
then computing the resulting CFDs.

However, this process would entail sampling an adversary training set and training a shadow model separately for each data
entry x that we perform the attack on. This is computationally intractable in practice. To work around this, Pawelczyk et al.
show and implement a one-sided version of the LRT, where we only estimate µout, σout, and the attack predicts MEMBER if
c(x, x′)’s likelihood ratio is sufficiently low under such parameters. Conveniently, since µout, σout do not depend on x, we
need only train shadow models once.

Algorithm 1 shows a detailed formulation of the proposed one-sided CFD LRT attack, tailored to the linear classifier case.

Algorithm 1 CFD-based Likelihood Ratio Test (CFD LRT) for Linear Classifier
Inputs: x: point in question. t0 = c(x, x′): x’s CFD in the model trained on owner training data. D: training data
distribution. α: FPR. N : number of shadow models.
estimatedCFD = []
Compute: t0 = c(x, x′)
for i← 1, . . . , N do

Sample D(i)
t ∼ D {Adversary’s training set for training shadow model i.}

fθ(i) = TrainShadowClassifier(D(i)
t ) {ith shadow model.}

c(x, x′(i)) = GetCFD(x, fθ(i))
estimatedCFD← c(x, x′(i))

end for
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out, MLE).}

if t0 > z1−α then
Output: NON-MEMBER

else
Output: MEMBER

end if

.2. Experimental Results on Adult Dataset

See Fig. 6.
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Figure 6. Log-scaled ROC curves (TPR v. FPR), AUC, and BA for all attacks on all settings using Adult dataset. ROC curves are near-
random and AUC is around 0.5 even on baseline, signifying a lack of success of the attacks and therefore a negligible potential for our DP
methods to help.


