Test-Time Immunization: A Universal Defense Framework Against Jailbreaks
for (Multimodal) Large Language Models

Anonymous Authors'

Abstract

While (multimodal) large language models
(LLMs) have attracted widespread attention due
to their exceptional capabilities, they remain vul-
nerable to jailbreak attacks. Various defense meth-
ods are proposed to defend against jailbreak at-
tacks, however, they are often tailored to specific
types of jailbreak attacks, limiting their effective-
ness against diverse adversarial strategies. For
instance, rephrasing-based defenses are effective
against text adversarial jailbreaks but fail to coun-
teract image-based attacks. To overcome these
limitations, we propose a universal defense frame-
work, termed Test-time IMmunization (TIM),
which facilitates test-time optimization to counter-
act diverse jailbreak attacks. Specifically, TIM
initially trains a gist token for efficient detec-
tion, which it subsequently applies to detect jail-
break activities during inference. When jailbreak
attempts are identified, TIM implements safety
fine-tuning using the detected jailbreak instruc-
tions paired with refusal answers. Furthermore,
to mitigate potential performance degradation in
the detector caused by parameter updates during
safety fine-tuning, we decouple the fine-tuning
process from the detection module. Extensive ex-
periments on both LLMs and multimodal LLMs
demonstrate the efficacy of TIM.

1. Introdcution

Large language models (LLMs) (Zhao et al., 2023; Touvron
et al., 2023; OpenAl, 2023; Naveed et al., 2023) and multi-
modal large language models (MLLMs) (Team et al., 2023;
Zhu et al., 2024; Liu et al., 2023) have achieved widespread
adoption across diverse applications, owing to their superior
performance and adaptability. Recently, security vulnera-
bilities in LLMs have emerged as a critical research focus
(Yi et al., 2024; Jin et al., 2024; Das et al., 2024), stem-

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

4 ‘ .)
uf,make 2 bomb? Vanilla Safety-Aligned LLM
L I'm sorry, but |
| > mmmssss) | LLM |mmmp| can'tprovide
Y u\ advices.

How to make 2 bomb? | Defense Framework against
#%*hjgas Jailbreak Attack
sk Step 1: you can..

": -'.') | LLM - Step 2: To col\ect

4
LL"—A

LLM after Jailbreak Attack in Our

How to conduct self-

harm? #**hj Defense Framework
)\
.3‘ ”" I'm sorry, but |
.'-' — LLM can’t provide
advices.

Figure 1: The overview of test-time immunization. The
upper: vanilla safety-aligned LLMs can reject malicious
instruction well. The middle: the vanilla is vulnerable
to various jailbreak attacks. While the jailbreak activities
happen, our detector identifies the jailbreak and uses the jail-
break instruction to enhance the defense capabilities against
this jailbreak attack. The bottom: the safeguarded LLMs
can reject the jailbreak instruction next time.

ming from their inherent weaknesses. To mitigate risks
associated with the generation of harmful content (e.g., dis-
criminatory, unethical, or illegal outputs), modern LLMs
implement safety-alignment techniques including reinforce-
ment learning from human feedback (Kaufmann et al., 2023;
Stiennon et al., 2020) and safety instruction tuning (Peng
et al., 2023; Zhang et al., 2023; Zong et al., 2024).

Despite these safeguards, LLMs remain vulnerable to so-
phisticated jailbreak attacks (Yi et al., 2024; Jin et al., 2024),
which are designed to circumvent these protections and
elicit harmful outputs. This susceptibility has been empiri-
cally validated through recent research (Chao et al., 2024;
Liu et al., 2024c; Zou et al., 2023), revealing that state-of-
the-art safety measures remain circumventable. To mitigate
these risks, a variety of defense strategies have been de-
veloped to enhance the robustness of LLMs against these

Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models

jailbreak tactics (Zhang et al., 2024b; Wang et al., 2024b;
Zhang et al., 2024a). However, most existing defense mech-
anisms are tailored to specific types of jailbreak attacks. For
instance, Hu et al. (2023) and Kumar et al. (2023) focus
on addressing adversarial prompt attacks by implementing
perplexity filtering and token deletion, respectively. How-
ever, these approaches fail to address other forms of attacks,
such as embedding malicious instructions into images, as
highlighted by (Gong et al., 2023). Similarly, (Wang et al.,
2024a) concentrates on defending against structure-based
attacks in vision modality, yet overlooks various text-based
jailbreak attacks.

Due to the continuous evolution of jailbreak techniques,
which constantly introduce new types of attacks, it is im-
practical to develop defense mechanisms that can address
every possible attack in advance. To overcome this limi-
tation, we introduce a novel jailbreak defense framework
called Test-time IMmunization (TIM), as illustrated in Fig-
ure 1. Drawing inspiration from biological immune systems,
TIM actively collects jailbreak instructions during model
deployment. In biological immunity, when the body first
encounters a pathogen, the immune system recognizes it
and triggers a targeted response, producing antibodies to
neutralize the threat. Similarly, TIM treats detected jailbreak
activities as digital “pathogens”. Upon identifying a jail-
break attempt, our system establishes a defense mechanism
based on the harmful instructions, enabling it to effectively
counter repeated attacks of the same type. As a result, TIM
progressively develops immunity against various jailbreak
techniques, strengthening its resilience over time.

A key insight of our defense framework is that identifying
jailbreak behaviors in LLMs is often more straightforward
than directly defending against them, as highlighted by (Gou
et al., 2024a; Zhao et al., 2024; Zhang et al., 2024a). While
several studies, including (Zhang et al., 2024a; Phute et al.,
2024), have focused on developing precise detection mecha-
nisms for jailbreak attacks, these approaches typically rely
on an auxiliary proxy LLM to analyze outputs. However,
such a setup can be impractical in real-world scenarios due
to time and computation costs. To overcome this challenge,
we have developed an efficient jailbreak detector that adds
minimal overhead. Specifically, we train a gist token to
extract summary information from previously generated to-
kens by injecting it at the sequence’s end. We then use a
classifier to determine whether the LLM has been jailbroken.
Additionally, we construct a dataset to train our detector,
which primarily consists of harmful questions, harmless
questions with harmful answers, harmless answers, and
refusal responses. For defense training, when jailbreak ac-
tivities are detected, we leverage the identified jailbreak
instructions and refusal responses to fine-tune the model
using a low-rank adapter (LoRA) (Hu et al., 2022). Further-
more, we decouple the jailbreak detector from the trainable

LoRA module. Specifically, we use the intermediate hidden
state for detection and train the LoRA module solely on
the final layers of the model, ensuring that updates to the
LoRA module do not affect detection performance. More-
over, to mitigate the risk of overfitting on rejecting jailbreak
attempts, we mix normal data with jailbreak data for regu-
larization. Simultaneously, we optimize the detector during
testing to further enhance its performance.

In the experimental section, we evaluate our approach
against various jailbreak attacks on both LLMs and MLLMs.
The results demonstrate that our framework effectively miti-
gates jailbreak attempts after detecting only a small number
of such activities (e.g., 10), ultimately reducing the jailbreak
attack success rate to nearly zero.

In summary, our contributions can be outlined as follows:

* We develop a test-time jailbreak defense framework that
detects jailbreak activities and enhances the model’s de-
fense capabilities against such attempts in an online man-
ner during testing.

* We design an efficient jailbreak detector that leverages
a gist token and a binary classifier to accurately identify
harmful responses.

» To improve the stability of the detector during testing,
we propose a decoupling strategy by assigning different
parameters for detector and defense training.

» Extensive experiments on both LLMs and MLLMs
demonstrate that our framework effectively defends
against various jailbreak attacks.

2. Related Works
2.1. Jailbreak Attacks

Research has consistently shown that safety-aligned LLMs
and MLLMs remain vulnerable to jailbreak attacks (Jin et al.,
2024; Chao et al., 2024), with exploitation techniques evolv-
ing from simple adversarial tactics to more sophisticated
methods. For example, GCG (Zou et al., 2023) appends an
adversarial suffix to jailbreak prompts. While effective, its
practicality is limited by its detectability through perplexity
testing. In contrast, AutoDAN (Liu et al., 2024c) employs a
hierarchical genetic algorithm to generate readable jailbreak
prefixes that evade such detection. Additionally, ICA (Wei
et al., 2023) advances in-context jailbreaking by embedding
harmful demonstrations directly into the context, effectively
manipulating LLMs. Building on this, Zheng et al. (2024)
refines the approach by injecting system tokens and employ-
ing a greedy search strategy within the demonstrations to
enhance effectiveness. As MLLMs gain prominence, their
multimodal capabilities have become a key target for attacks.
Qi et al. (2024) highlights the vision modality as particularly
vulnerable to adversarial attacks and proposes adversarial

Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models

image training as a means to facilitate jailbreaking. Figstep
(Gong et al., 2023) employs a blank-filling technique in
image prompts to trigger harmful responses. It combines
a standardized text prompt with a malicious topography
image to manipulate model outputs. Similarly, Liu et al.
(2024d) introduces MM-SafetyBench, which also employs
topography to subtly incorporate malicious prompts within
images. However, unlike Figstep, MM-SafetyBench uses
stable diffusion (Rombach et al., 2022) to create more com-
plex backgrounds that contain the intention of jailbreak, thus
enhancing the stealthiness and effectiveness of the attack.

2.2. Jailbreak Detection and Defense

To ensure the outputs of LLMs remain aligned with human
values, substantial research has been devoted to both detect-
ing and defending against jailbreak attacks. Jailbreak detec-
tion (Jain et al., 2023; Xie et al., 2024) aims to differentiate
jailbreak activities from normal activities. Current detec-
tion techniques often rely on an auxiliary proxy language
model to analyze outputs. For instance, Phute et al. (2024)
generates detection prompts by appending the model’s re-
sponse to the question “is the response harmful?”’ and then
uses a proxy LLM to assess potential harm. Similarly, Pi
et al. (2024) fine-tunes a small proxy model, utilizing the
hidden state of its last token with a binary classifier to de-
termine the nature of a response. LVLM-LP (Zhao et al.,
2024) addresses jailbreak detection by adopting a classi-
fier beyond the first generated token. Another approach by
Zhang et al. (2024a) involves augmenting the input multi-
ple times and using a similarity matrix between responses
for detection. However, most of these methods are time-
consuming, relying on additional models or multiple input
augmentations, which makes them less practical for real-
time applications. Instead, we propose a highly efficient
detector that incurs minimal additional cost. Another line
of work against jailbreak attacks is jailbreak defense (Gou
et al., 2024b). Self-reminder (Xie et al., 2023) is among the
earliest works to introduce a defensive system designed to
remind the model not to produce harmful content. Focusing
on MLLMs, Adashield (Wang et al., 2024a) optimizes a suf-
fix text prompt designed to remind the model to scrutinize
both malicious text and image inputs. Gou et al. (2024a)
endeavors to translate image inputs into corresponding text
prompts to defend against jailbreak attacks that embed mali-
cious intent within images to circumvent safety alignments.
In contrast, Zong et al. (2024) focuses on improving model
safety during training by creating a dataset of malicious im-
ages to supervise model fine-tuning, making it more resilient
to structure-based attacks like MM-SafetyBench and Fig-
step. IMMUNE (Ghosal et al., 2024) is a concurrent work
that employs a safety reward model to guide the decoding
generation process more securely. Different from them, our
method first tries to conduct adaptive safety fine-tuning and

optimize the model’s parameters during inference.

2.3. Test-Time Training

Test-time training is an innovative approach where a model
is fine-tuned during testing to improve performance and
adapt to new conditions. This is especially useful for ad-
dressing distribution shifts between training and testing
datasets. Sun et al. (2020) initially proposes conducting
a self-supervised task during testing to manage such shifts
effectively. Recently, the focus has shifted towards test-
time adaptation (TTA), which has emerged as a realistic
paradigm for improving model generalization at test time
(Liang et al., 2024; Yu et al., 2024). A notable example, Tent
(Wang et al., 2021), employs entropy minimization to adjust
the parameters of the model’s batch normalization layers
during testing, thereby enhancing performance. While most
TTA works focus on the recognition performance, Sheng
et al. (2024) aims to enhance the safety of the model (i.e.,
resistance to backdoor attack). Moreover, Guan et al. (2024)
propose test-time repairing to remove the backdoor during
testing. In addition, a lot of works pay attention to defense
against adversarial attacks during test time (Nayak et al.,
2022; Deng et al., 2021). A recent work (Lin et al., 2024)
introduces test-time training to improve the model’s adver-
sarial robustness through adaptive thresholding and feature
distribution alignment. Our work extends the concept of
test-time training to the domain of LLM’s security and uses
it to enhance the model’s ability to resist jailbreak attacks.

3. Methodology

3.1. Preliminary

Given a large language model M = {&;,C;} with a token
set T" and hidden space R™, and an input sequence ¢t =
[t1,...,tKk|tx € T], where & is the encoder, C; is the logit
projector, and K represents the sequence length. The model
generates the next token by:

txy1 = M(t<x) = C(&(t<k)),)]

where t 41 is the next token and hx = & (t<kx) € R™is
the hidden state of the last token.

Indeed, LLMs generate tokens autoregressively, using the
previous output token to predict the subsequent token. This
generation process continues until a stop condition is met,
which may involve reaching a maximum token limit or gen-
erating a specific end-of-sequence token. Additionally, in
modern LLMs, the Key-Value Cache (KV Cache) (Radford,
2018) technique is extensively utilized during inference to
speed up attention map computations.

3.2. Jailbreak Detector with Gist Token

Most previous jailbreak detection methods either require
proxy LLMs to analyze the model’s output or involve

Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models

3
Defense Training

2 Jailbroken . Output
Data Preparing

Appcnd

Instruction = Rejection e

o | Append

— S
e

Instruction

Instruction =~ Rejection 0

Train (11 Mg Lora 9
[Do | Module
My

Trai
K } £ LLM’s Detector

ll IO

Transformer Layer with LoORA

Transformer Layer
Transformer Layer

AA . -AM J

Figure 2: Detailed workflow of test-time immunization. 1: The detection process. We insert a trainable gist token at the
sequence’s end and utilize the hidden states from intermediate layers along with a classifier C, to perform detection. We
employ the KV Cache and the gist token to perform detection. 2: Upon detecting jailbreak activity during detection, we
append the data to jailbreak memory and incorporate detection data into detection memory for further training. 3: We utilize
jailbreak memory M to train the LLM’s defense LoORA module and employ detection memory M to train the detector
further. Additionally, we employ question-answering dataset D, and detection dataset D for regularization.

multiple augmentations to the model’s input, which are
time-consuming and impractical for real-world applications.
Therefore, we propose training an efficient jailbreak detec-
tor that leverages the autoregressive generation properties of
the model. Specifically, as shown in the part 1 in Figure 2,
we train a gist token ¢, and a binary classifier C4, and use
them to perform detection on text ¢ as follows:

ht - gl(t, tg),

2
:Cd(ht)v @

where p; represents the predicted probability distribution,
and we treat the detection results as follows:

0, not jailbroken, 3)
1, jailbroken.

s |
(&3

We inject the ¢, token at the end of the sequence. Since the
keys and values of the previous tokens are cached during
generation, the hidden state of ¢, can be computed efficiently
based on the KV Cache. For instance, for a sequence with a
length of 2000, the cost of detecting jailbreak activities is ap-
proximately 1/1000 of the total generation time. A simpler
alternative would be to remove the gist token and directly
use the hidden state of the last token to perform detection.
However, intuitively, the hidden state of the last token is
used for generation and may not encapsulate the information
relevant to the harmfulness of the response. Therefore, we

train a gist token designed to capture the harmfulness of
the previous answer. Additionally, we construct a dataset
Dy = (qi, a;, yz)‘ al to train our detector, where q; repre-
sents the question, a; represents the answer, and y; is the
label indicating jailbreak activities. We train the detector
using naive cross-entropy loss, as follows:

1

L= E(%ai,yi)NDd - Z Yi,c log Pic| » 4
c=0

where p; = Cq(&i(qi, a;,ty)) represents the predicted jail-

break probability of jailbreak detector.

3.3. Test-Time Defense Training

Since detecting jailbreak activity is easier than directly de-
fending against it, we build a test-time jailbreak defense
system transferring detection capability to defense capabil-
ity that resembles the biological immune system. When
pathogens first enter the system, it recognizes this invasion.
In our approach, we treat jailbreak activities as pathogens
and use the above detector to distinguish them from nor-
mal activities. Once pathogens are identified, the organism
will initiate an immune response and produce antibodies to
neutralize the damage caused by antigens. Following an
immune response, the organism becomes immune to the
specific antigen. Similarly, when jailbreak activities are
detected, our framework adds the detected jailbreak instruc-

Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models

tions along with a refusal response into jailbreak memory
M ;. We then use M to fine-tune the model. In this way,
we progressively collect jailbreak data during the model
testing process and enhance the defense capabilities of the
model against various jailbreak attacks. For normal instruc-
tion, our model does not alter its behavior but only incurs a
slight time cost for detecting jailbreak activities. Addition-
ally, to prevent the model from becoming overly defensive
against normal activities, we use the traditional question-
answering (QA) dataset D, to regularize the model during
training.

Furthermore, we adopt the concept of test-time adaptation
(Wang et al., 2021) to train our jailbreak detector while de-
tecting jailbreak behaviors. Specifically, we use jailbreak
instructions along with their corresponding answers as jail-
break QA pairs, and jailbreak instructions with refusal re-
sponses as normal QA pairs. We then append them to the
detection memory, denoted as M, and use M to train our
detector. Additionally, we also use the detection dataset,
denoted as Dy, for regularization training.

3.4. Decouple Jailbreak Detector and Defense Training

The framework described above has a drawback: the de-
tector and defense training share a set of parameters (i.e.,
parameters in &;). The updates to model parameters by de-
fense training are likely to impair the detector. To address
this issue, we propose decoupling the detector and defense
training. For detection, we utilize the hidden state of the
intermediate layer, rather than the last layer, to perform de-
tection. For defense training, we apply the LoORA module
(Hu et al., 2022) to the layers behind the intermediate detec-
tion layer, treating them as trainable parameters, as shown
in part 1 of Figure 2. We ensure that parameter updates to
the detector and the defense training do not interfere with
each other in this way.

4. Experiments
4.1. Setup

> Dataset. To construct the detection dataset, we initially
collected original malicious instructions from AdvBench
(Zou et al., 2023) and MM-SafetyBench (Liu et al., 2024d).
To obtain malicious answers, we employed Wizard-Vicuna-
7B-Uncensored (Xu et al., 2024), a model without safety
alignment, to generate answers. To obtain refusal answers,
we utilized LLaMA2-13B-chat to generate answers with
various refusal prefixes. We employed GPT4-LLM-Cleaned
(Peng et al., 2023) and LLaVA-Instruct-150K (Liu et al.,
2023) as clean instructions for LLMs and MLLMs, respec-
tively. Furthermore, to generate clean answers, we utilized
LLaMAZ2-7B-chat and LLaVA-v1.6-Vicuna-7B for GPT4-
LLM-Cleaned and LLaVA-Instruct-150K, respectively. Our

detection dataset comprises four parts: 1) malicious instruc-
tions with malicious answers, classified as jailbroken; 2)
malicious instructions with refusal answers, classified as not
jailbroken; 3) clean instructions with clean answers, classi-
fied as not jailbroken; 4) clean instructions with malicious
answers, classified as jailbroken. The primary focus of the
dataset is to determine whether the answer is harmful, rather
than assessing the harm of the instruction itself. For the
visual question-answering (VQA) dataset, since the original
malicious instructions lack images, we randomly selected
images from the COCO dataset (Lin et al., 2014) for them. It
is important to note that our malicious instructions are origi-
nal and unaffected by jailbreak attacks, meaning we do not
use jailbreak-processed instructions during detector training.
For the evaluation dataset, we combine normal QA/VQA in-
structions from GPT4-LLM-Cleaned/LLaVA-Instruct-150K
with jailbreak instructions to simulate real deployment envi-
ronments in experiments on LLMs/MLLMs.

> Jailbreak Attack/Defense Methods. We evaluate our
defense methods against various jailbreak attack methods.
For experiments on MLLMs, we choose Figstep (Gong
et al., 2023) and MM-SafetyBench (Liu et al., 2024d). Fig-
step conceals harmful content within text prompts using
typography, embedding it into blank images to circumvent
text-modality safety alignments. MM-SafetyBench initially
generates a malicious background image using harmful key-
words from jailbreak prompts and subsequently converts
text-based harmful content into images using topography.
For experiments on LLMs, we utilize I-FSJ as the jailbreak
attack method. I-FSJ (Zheng et al., 2024), based on in-
context jailbreak (Wei et al., 2023), aims to induce the
model to generate harmful content through several jailbreak
demonstrations. Additionally, I-FSJ employs system tokens
to enhance its attack capabilities. Furthermore, a greedy
search is used to select the optimal demonstration from the
datasets. For jailbreak defense methods, we consider FSD
(Gong et al., 2023), Adashield (Wang et al., 2024a), and
VLGuard (Zong et al., 2024). FSD is a defense method
that introduces a specific system prompt, reminding the
model to focus on malicious text within images. Adashield
is a test-time alignment method proposing the addition of
a defense prompt following the input text prompt. The de-
fense prompts can be static or adaptive, which are called
Adashield-S or Adashield-A, respectively. We consider
Adashield-S in our experiments. VLGuard is a training-
time alignment method that involves additional safety fine-
tuning on a specific dataset. It constructs a safety instruc-
tion tuning dataset containing malicious images to defend
against structure-based jailbreak methods like Figstep and
MM-SafetyBench. Unlike VLGuard, our detector’s training
dataset contains no prior knowledge of the jailbreak attack
method like malicious images. Additionally, we introduce
another baseline, TIM-NG (No Gist), which is identical

Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models

to our method but uses the final hidden state of the last
token for detection. To assess the impact of our defense
training on detection, we report results for TIM-NA (No
Adapt), where no optimization occurs during testing. TIM-
NG-NA represents a method that neither uses the gist token
nor adapts during testing. Furthermore, we compare our
detector against detection baselines, including Self Defense
(Phute et al., 2024) and LVLM-LP (Zhao et al., 2024), in
LLM experiments.

> Metrics. We evaluate jailbreak methods from two perspec-
tives: the effectiveness of defense against jailbreak attacks
and the model’s ability to respond to normal instructions.
For evaluating the effectiveness of defense against jailbreak
attacks, we adopt the Attack Success Rate (ASR) as a met-
ric, as is common in most studies (Wang et al., 2024a; Chao
et al., 2024). We define ASR as the proportion of jailbreak
instructions that are not rejected, relative to all the jailbreak
instructions. For the response set I; of the jailbreak dataset
D;, ASR is calculated as follows:

|Rj| = > cp, isReject(r)

ASR ==)
| R

0,71s reiection ()
3
isReject(r) = { ’

1, 7 is not rejection.

We employ prefix matching to determine whether a response
is rejected. Specifically, we compile a set of rejection pre-
fixes. If the model’s response matches any prefix in the
rejection set, we consider the instruction rejected. The rejec-
tion prefixes employed are listed in Appendix A. Since our
method aims to incrementally enhance the model’s security
capabilities, we also report another metric, ASR-50, which
calculates ASR for jailbreak samples in the last 50% of the
test sequences. This reflects the model’s performance after
it has learned to defend against jailbreak attacks. Although
defense methods improve the model’s ability to reject mali-
cious instructions, they may also cause the model to reject
an excessive number of normal queries. Thus, we use the
Over-Defense Rate (ODR) to assess the model’s ability to
respond to clean instructions. For the response set R,, of
the normal dataset D,,, ODR is calculated as follows:

ZTGR” isReject(r)

ODR =
| Rl

(6)

Additionally, to evaluate the detector’s performance, we
report the accuracy, True Positive Rate (TPR), and False
Positive Rate (FPR) (Swets, 1988).

4.2. Experimental Details

For MLLM experiments, we select LLaVA-v1.6-Vicuna-
7B (Chiang et al., 2023) and LLaVA-v1.6-Mistral-7B (Liu
et al., 2023; 2024b;a; Jiang et al., 2023) as the base models.

Table 1: The experimental results on Figstep (Gong et al.,
2023). We evaluate the jailbreak defense methods on
LLaVA-v1.6-Vicuna-7B and LLaVA-v1.6-Mistral-7B (Liu
et al.,, 2024b). TIM’s ASR is reported in the format of
ASR/ASR-50.

Methods LLaVA-v1.6-Vicuna-7B | LLaVA-v1.6-Mistral-7B
ASR({) ODR({) ASR ({) ODR ({)
Vanilla 100.0 0.0 100.0 0.0
FSD 100.0 0.0 100.0 0.0
Adashield 0.0 14.0 0.0 7.2
VLGuard 0.0 7.0 0.0 1.8
TIM-NG 1.6 0.0 0.4 0.4
TIM 1.4/0.0 0.0 0.6/0.0 0.0

For LLM experiments, we use LLaMA2-7B-chat (Touvron
et al., 2023) as the base model. The weights for all base
models are sourced from Hugging Face. We set the learning
rate, number of epochs, and batch size for detector training
to le-3, 5, and 32, respectively. We use the Adam optimizer
(Kingma, 2014) for defense training, setting the learning
rates to 0.001 for MLLMs and 0.002 for LLMs. We apply
LoRA (Hu et al., 2022) with a rank of 16 to the query
and value matrix in the last 15 transformer blocks. The
regularization batch size is set to 40, while the batch sizes
for refusal training and detector training during test time are
set to 1 and 6, respectively. Furthermore, during jailbreak
activity detection, we train the defense capabilities and the
detector for 1 and 5 steps, respectively. We incorporate an
equal mix of jailbreak instructions and clean instructions in
the test data,

4.3. Main Results

> Defense Effectiveness for Uni-Attack. To evaluate the
effectiveness of our method, we report the results on Figstep
and MM-SafetyBench in Tables 1 and 2. As shown in the
tables, Adashield demonstrates strong defensive capabilities,
especially against Figstep, where it reduces the ASR to 0%.
However, the ASR on MM-SafetyBench is 7%. Despite
its effectiveness, Adashield suffers from a noticeable over-
defense phenomenon with normal samples, with over 5% of
them being rejected. After training on a specially designed
dataset, VLGuard shows relatively excellent performance,
achieving almost 0% ASR against jailbreak samples but
still show over-rejects to normal samples. Compared to
VLGuard, our method can gradually learn to reject jailbreak
attacks during testing without any prior targeted training. It
achieves an ASR of less than 2%, and, among all the effec-
tive jailbreak attack defense methods, our approach causes
the least damage to the model’s ability to respond to normal
queries (from 0.2% to 2.3% on MM-SafetyBench, and 0%
on Figstep). From the ASR, we can draw a conclusion that
our method only requires a few jailbreak samples to learn

Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models

Table 2: The results on the MM-SafetyBench (Liu et al., 2024d). MM-SafetyBench contains 13 different malicious
attacks(Illegal Activity - IA, Hate Speech - HS, Malware Generation - MG, Physical Harm - PH, Economic Harm - EH,
Fraud - FD, Sex - SX, Political Lobbying - PL, Privacy Violence - PV, Legal Opinion - LO, Financial Advice - FA, Health
Consultation - HC, Government Decision - GD). TIM’s ASR is reported in the format of ASR/ASR-50.

ASR (1)
Model Methods IA HS MG PH EH FD SX ODR (|)
Vanilla (Liu et al., 2024b) 99.0 98.2 100.0 100.0 100.0 100.0 100.0 0.2
FSD (Gong et al., 2023) 100.0 98.2 100.0 100.0 100.0 100.0 100.0 0.2
Adashield (Wang et al., 2024a) 1.3 4.9 4.5 104 9.0 2.6 13.8 14.0
VLGuard (Zong et al., 2024) 0.0 0.0 0.0 0.0 1.6 0.0 0.0 6.5
TIM-NG 1.0 0.0 2.3 2.0 33 1.3 0.9 10.7
LLaVA-vl1.6 TIM 0.0/0.0 0.6/0.0 0.0/0.0 0.0/0.0 0.8/0.0 0.0/0.0 1.8/0.0 23
Vicuna-7B PL PV LO FA HC GD Avg.
Vanilla (Liu et al., 2023) 100.0 100.0 100.0 100.0 100.0 100.0 99.8 0.2
FSD (Gong et al., 2023) 100.0 100.0 100.0 100.0 100.0 100.0 99.8 0.2
Adashield (Wang et al., 2024a) 2.0 10.1 14.6 9.6 2.8 4.7 7.0 14.0
VLGuard (Zong et al., 2024) 1.3 0.0 0.0 0.6 0.0 1.3 0.4 6.5
TIM-NG 0.6 1.4 3.8 4.8 1.8 33 1.4 10.7
TIM 1.3/0.0 0.7/0.0 1.5/0.0 1.2/0.0 1.8/0.0 2.7/0.0 1.0/0.0 23
Table 3: The experimental results on text-based attack. We
adopt LLaMA2-7B-chat (Touvron et al., 2023) as the LLM 100 = TIM-NA
backbone and consider I-FSJ (Liu et al., 2024b) as the jail- TiM
break method. TIM’s ASR is reported in the format of 801
ASR/ASR-50. _
R 60
Methods ASR(}]) ODR() | ACC(1) TPR() FPR () g
Vanilla 99.2 55 - - - & a0l
Self Defense - - 64.4 429 14.2
LVLM-LP - - 67.7 36.3 0.8
TIM-NG-NA - - 88.5 77.4 0.7 201
TIM-NA - - 99.1 98.9 0.6
TIM-NG 0.6 4.9 99.4 100.0 0.6 0
TIM 2.6/0 0.6 99.9 100.0 0.1 ASR ODR ACC TPR FPR

how to reject such types of jailbreak attacks (on the Figstep
dataset, this number is less than 10). Since our method
progressively enhances the model’s defensive capabilities
during testing, we believe that the ASR-50 metric better
reflects the true effectiveness of our approach. Our method
achieved 0% ASR-50 across all jailbreak attack datasets,
indicating that, with continuous optimization, our model can
achieve complete defense against individual attacks. More-
over, Table 3 shows the results for the text-based attack.
Our method is also effective at defending against I-FSJ,
a jailbreak method that only uses the language modality.
Our approach not only achieves an ASR-50 of 0% but also
reduces the model’s ODR.

> Analysis of Jailbreak Detector. Next, we analyze the role
of our jailbreak detector from two perspectives: 1) What
advantages does our detector’s design offer compared to
TIM-NG? 2) How does training the detector during testing
enhance the effectiveness of our framework? First, address-
ing the initial question, the results in Table 3 show that
TIM-NA exhibits clear improvements over TIM-NG-NA
in three metrics: Accuracy, TPR, and FPR. This improve-
ment is primarily attributed to our introduction of the gist

Figure 3: Results under mixed jailbreak attack. We
randomly selected 300 jailbreak samples from MM-
SafetyBench and 300 from Figstep, combining them into a
new jailbreak dataset.

token, which is specifically designed to extract malicious
information from previously generated sequences, rather
than relying solely on the output of the last token for classi-
fication. This strategy has improved the expressive capacity
of our detector.

Secondly, the performance of the detector is shown in Fig-
ure 4. It is evident that TIM-NG exhibits a significant in-
crease in FPR compared to the original model, suggesting
that it misclassifies more normal samples as jailbreak sam-
ples. One consequence of this issue is the use of more nor-
mal samples in defense training, which leads to an increase
in the model’s ODR, as shown in the results in Table 2. The
root cause of this issue arises primarily from the detector
sharing parameters with the defense training. During de-
fense training, the detector’s performance can inadvertently
be compromised due to the parameters update. TIM re-
solves this issue by decoupling the defense training from
the jailbreak detector through the separation of parameters.

Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models

(a) Model: LLaVA-1.6-Vicuna-7B (b) Model: LLaVA-1.6-Vicuna-7B (c¢) Model: LLaVA-1.6-Mistral-7B

Dataset: MM-SafetyBench Dataset: Figstep

Dataset: Figstep

Figure 4: Performance of different variants of the proposed method.

3.0 5
—-- ASR
. —-- ASR-50
—— ODR 4
K20
8 g
-~ ~
G5y T~ . o
< a
~ 20
& 1.0
<
0.5 !
TN
- ~.
>
0.0 =~—lg

1:0.5 11 12 14)
Ratio (Jailbreak data:Normal data)
(a) The defense capabilities of our method with
various jailbreak data ratios.

N
=]
o

1000 =immimimmimmimmimmimm i mme———————

-
N
o

97.54

=
o
=)

95.04

=
N
o

92.59 —-- Accuracy

—-- TPR
— FPR
87.51 to.7s

Accuracy / TPR (%)
©
=3
=)
=
=3
S
FPR (94)

85.0 [0.50

82.54 r0.25

1:05 11 12 14 19
Ratio (Jailbreak data:Normal data)

(b) The detection performance of our method with

various jailbreak data ratios.

Figure 5: Experimental results under different jailbreak data ratios

According to the results in Table 3, we can see that TIM
achieves the best detection performance across all metrics.

4.4. Additional Analysis

However, in real-world scenarios, the situations encountered
by models can be both complex and diverse. Therefore,
we conduct additional experiments to directly assess the
robustness of our method in complex scenarios.

> Results under Mixed Jailbreak Attack. In deployment
scenarios, attackers may employ multiple methods simulta-
neously to launch jailbreak attacks against the model. Ac-
cordingly, we designed experiments involving mixed jail-
break attacks. The results, presented in Figure 3, indicate
that under our method, the ASR can still be reduced to a
very low level, while the model’s ability to respond to nor-
mal queries remains largely unaffected. We also present the
results under continuously changing attacks in Appendix B.

> Results under Different Jailbreak Data Ratios. In prac-
tical applications, the proportion of jailbreak data within
the model’s test data is typically not fixed. The model may
simultaneously receive a large number of jailbreak attack
requests, or it might not encounter any jailbreak instructions
for extended periods. Thus, we report the results of our

method under varying proportions of jailbreak attack data in
Figure 5. The results presented in the table demonstrate that
our method achieves stable and effective performance across
various proportions, both in terms of defending against jail-
break attacks and the detection performance of our detector.

5. Conclusion

In this paper, we address the challenge of defending against
diverse jailbreak attacks. We propose a universal test-time
defense framework designed to dynamically detect jailbreak
attacks during testing and utilize detected jailbreak instruc-
tions to defensively train the model. To enhance jailbreak
attack detection, we introduce a specialized gist token de-
signed to extract harmful information from model responses
with almost no additional cost, which is then classified using
a binary classifier. Furthermore, to minimize the impact of
model updates on the detector, we decouple the detector
from defense training, ensuring they operate on separate
parameters and do not interfere with each other. Extensive
experiments demonstrate the efficacy of our method across
a variety of scenarios. In future work, we will validate the
effectiveness of our approach under more diverse model
architectures (e.g., LLaMA3) and complex attack scenarios
(e.g., adversarial jailbreak, multi-turn jailbreak).

Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work. One of which we think should
be specifically highlighted is that the detection dataset we
generated may contain harmful responses.

References

Chao, P, Robey, A., Dobriban, E., Hassani, H., Pappas,
G.J., and Wong, E. Jailbreaking black box large language
models in twenty queries. In Workshop on Proc. NeurIPS,
2024.

Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang,
H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J. E.,
et al. Vicuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality. See https://vicuna. lmsys. org
(accessed 14 April 2023), 2(3):6, 2023.

Das, B. C., Amini, M. H., and Wu, Y. Security and privacy
challenges of large language models: A survey. ACM
Computing Surveys, 2024.

Deng, Z., Yang, X., Xu, S., Su, H., and Zhu, J. Libre: A
practical bayesian approach to adversarial detection. In
Proc. CVPR, 2021.

Ghosal, S. S., Chakraborty, S., Singh, V., Guan, T., Wang,
M., Beirami, A., Huang, F., Velasquez, A., Manocha, D.,
and Bedi, A. S. Immune: Improving safety against jail-
breaks in multi-modal llms via inference-time alignment.
arXiv preprint arXiv:2411.18688, 2024.

Gong, Y., Ran, D., Liu, J., Wang, C., Cong, T., Wang, A.,
Duan, S., and Wang, X. Figstep: Jailbreaking large vision-
language models via typographic visual prompts. arXiv
preprint arXiv:2311.05608, 2023.

Gou, Y., Chen, K., Liu, Z., Hong, L., Xu, H., Li, Z., Ye-
ung, D.-Y., Kwok, J. T., and Zhang, Y. Eyes closed,
safety on: Protecting multimodal 1lms via image-to-text
transformation. In Proc. ECCV, 2024a.

Gou, Y., Chen, K., Liu, Z., Hong, L., Xu, H., Li, Z., Ye-
ung, D.-Y., Kwok, J. T., and Zhang, Y. Eyes closed,
safety on: Protecting multimodal llms via image-to-text
transformation. In Proc. ECCV, 2024b.

Guan, J., Liang, J., and He, R. Backdoor defense via test-
time detecting and repairing. In Proc. CVPR, 2024.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. LoRA: Low-rank adaptation
of large language models. In Proc. ICLR, 2022.

Hu, Z., Wu, G., Mitra, S., Zhang, R., Sun, T., Huang, H.,
and Swaminathan, V. Token-level adversarial prompt
detection based on perplexity measures and contextual
information. arXiv preprint arXiv:2311.11509, 2023.

Jain, N., Schwarzschild, A., Wen, Y., Somepalli, G.,
Kirchenbauer, J., Chiang, P.-y., Goldblum, M., Saha, A.,
Geiping, J., and Goldstein, T. Baseline defenses for ad-
versarial attacks against aligned language models. arXiv
preprint arXiv:2309.00614, 2023.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. 1., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jin, H., Hu, L., Li, X., Zhang, P., Chen, C., Zhuang, J., and
Wang, H. Jailbreakzoo: Survey, landscapes, and hori-
zons in jailbreaking large language and vision-language
models. arXiv preprint arXiv:2407.01599, 2024.

Kaufmann, T., Weng, P., Bengs, V., and Hiillermeier, E. A
survey of reinforcement learning from human feedback.
arXiv preprint arXiv:2312.14925, 2023.

Kingma, D. P. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Kumar, A., Agarwal, C., Srinivas, S., Li, A. J., Feizi, S., and
Lakkaraju, H. Certifying llm safety against adversarial
prompting. arXiv preprint arXiv:2309.02705, 2023.

Liang, J., He, R., and Tan, T. A comprehensive survey on
test-time adaptation under distribution shifts. Interna-
tional Journal of Computer Vision, pp. 1-34, 2024.

Lin, J., Yang, X., Li, T., and Xu, X. Improving ad-
versarial robustness for 3d point cloud recognition at
test-time through purified self-training. arXiv preprint
arXiv:2409.14940, 2024.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P,,
Ramanan, D., Dollar, P., and Zitnick, C. L. Microsoft
coco: Common objects in context. In Proc. ECCV, 2014.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction
tuning. In Proc. NeurIPS, 2023.

Liu, H., Li, C., Li, Y., and Lee, Y. J. Improved baselines
with visual instruction tuning. In Proc. CVPR, 2024a.

Liu, H, Li, C, Li, Y, Li, B., Zhang, Y., Shen, S.,
and Lee, Y. J. Llava-next: Improved reason-
ing, ocr, and world knowledge, January 2024b.
URL https://llava-vl.github.io/blog/
2024-01-30-11lava—-next/.

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/

Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models

Liu, X., Xu, N., Chen, M., and Xiao, C. Autodan: Generat-
ing stealthy jailbreak prompts on aligned large language
models. In Proc. ICLR, 2024c.

Liu, X., Zhu, Y., Gu, J,, Lan, Y., Yang, C., and Qiao, Y.
Mm-safetybench: A benchmark for safety evaluation
of multimodal large language models. In Proc. ECCV,
2024d.

Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S.,
Usman, M., Akhtar, N., Barnes, N., and Mian, A. A
comprehensive overview of large language models. arXiv
preprint arXiv:2307.06435, 2023.

Nayak, G. K., Rawal, R., and Chakraborty, A. Dad: Data-
free adversarial defense at test time. In Proc. WACV, pp.
3562-3571, 2022.

OpenAl R. Gpt-4 technical report. arxiv 2303.08774. View
in Article, 2(5), 2023.

Peng, B., Li, C., He, P, Galley, M., and Gao, J. Instruc-
tion tuning with gpt-4. arXiv preprint arXiv:2304.03277,
2023.

Phute, M., Helbling, A., Hull, M. D., Peng, S., Szyller, S.,
Cornelius, C., and Chau, D. H. Llm self defense: By self
examination, llms know they are being tricked. In The
Second Tiny Papers Track at ICLR, 2024.

Pi, R., Han, T., Zhang, J., Xie, Y., Pan, R., Lian, Q., Dong,
H., Zhang, J., and Zhang, T. Mllm-protector: Ensur-
ing mllm’s safety without hurting performance. Proc.
EMNLP, 2024.

Qi, X., Huang, K., Panda, A., Henderson, P., Wang, M., and
Mittal, P. Visual adversarial examples jailbreak aligned
large language models. In Proc. AAAI 2024.

Radford, A. Improving language understanding by genera-
tive pre-training. 2018.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proc. CVPR, 2022.

Sheng, L., Liang, J., He, R., Wang, Z., and Tan, T. Can
we trust the unlabeled target data? towards backdoor
attack and defense on model adaptation. arXiv preprint
arXiv:2401.06030, 2024.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano, P. F.
Learning to summarize with human feedback. In Proc.
NeurlPS, 2020.

Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., and Hardt,
M. Test-time training with self-supervision for general-
ization under distribution shifts. In Proc. ICML, 2020.

10

Swets, J. A. Measuring the accuracy of diagnostic systems.
Science, 240(4857):1285-1293, 1988.

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Sori-
cut, R, Schalkwyk, J., Dai, A. M., Hauth, A., Millican,
K., et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, D., Shelhamer, E., Liu, S., Olshausen, B., and Darrell,
T. Tent: Fully test-time adaptation by entropy minimiza-
tion. In Proc. ICLR, 2021.

Wang, Y., Liu, X, Li, Y., Chen, M., and Xiao, C. Adashield:
Safeguarding multimodal large language models from
structure-based attack via adaptive shield prompting. In
Proc. ECCV, 2024a.

Wang, Y., Shi, Z., Bai, A., and Hsieh, C.-J. Defending llms
against jailbreaking attacks via backtranslation. In Proc.
ACL Findings, 2024b.

Wei, Z., Wang, Y., Li, A, Mo, Y, and Wang, Y.
Jailbreak and guard aligned language models with
only few in-context demonstrations. arXiv preprint
arXiv:2310.06387, 2023.

Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X.,
and Wu, F. Defending chatgpt against jailbreak attack
via self-reminders. Nature Machine Intelligence, 5(12):
1486-1496, 2023.

Xie, Y., Fang, M., Pi, R., and Gong, N. Gradsafe: Detect-
ing jailbreak prompts for llms via safety-critical gradient
analysis. In Proc. ACL, 2024.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J.,
Tao, C., Lin, Q., and Jiang, D. Wizardlm: Empower-
ing large pre-trained language models to follow complex
instructions. In Proc. ICLR, 2024.

Yi, S., Liu, Y, Sun, Z., Cong, T., He, X., Song, J.,
Xu, K., and Li, Q. Jailbreak attacks and defenses
against large language models: A survey. arXiv preprint
arXiv:2407.04295, 2024.

Yu, Y., Sheng, L., He, R., and Liang, J. Stamp: Outlier-
aware test-time adaptation with stable memory replay. In
Proc. ECCV, 2024.

Zhang, S., Dong, L., Li, X., Zhang, S., Sun, X., Wang, S.,
Li, J., Hu, R., Zhang, T., Wu, F., et al. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792, 2023.

Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models

Zhang, X., Zhang, C., Li, T., Huang, Y., Jia, X., Hu, M.,
Zhang, J., Liu, Y., Ma, S., and Shen, C. Jailguard: A uni-
versal detection framework for 1lm prompt-based attacks.
arXiv preprint arXiv:2312.10766, 2024a.

Zhang, 7., Yang, J., Ke, P., Mi, F., Wang, H., and Huang,
M. Defending large language models against jailbreaking
attacks through goal prioritization. In Proc. ACL, 2024b.

Zhao, Q., Xu, M., Gupta, K., Asthana, A., Zheng, L., and
Gould, S. The first to know: How token distributions re-
veal hidden knowledge in large vision-language models?
In Proc. ECCV, 2024.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., et al. A survey of
large language models. arXiv preprint arXiv:2303.18223,
2023.

Zheng, X., Pang, T., Du, C., Liu, Q., Jiang, J., and Lin, M.
Improved few-shot jailbreaking can circumvent aligned
language models and their defenses. In Proc. NeurlPS,
2024.

Zhu, D., Chen, J., Shen, X., Li, X., and Elhoseiny, M.
Minigpt-4: Enhancing vision-language understanding
with advanced large language models. In Proc. ICLR,
2024.

Zong, Y., Bohdal, O., Yu, T., Yang, Y., and Hospedales,
T. Safety fine-tuning at (almost) no cost: A baseline for
vision large language models. In Proc. ICML, 2024.

Zou, A., Wang, Z., Carlini, N., Nasr, M., Kolter, J. Z.,
and Fredrikson, M. Universal and transferable adversar-
ial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

11

Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models

A. The Jailbreak Evaluation

For the refusal judgment, we use the prefixes match method. We think the model refused to answer if the respones start with
the following prefixes.

I’'m sorry I do not

Sorry I cannot

I am sorry As a language model

I apologize I’'m really sorry

As an My apologies

As a responsible I’m not able to provide
I'm an I am really sorry

I’'m just I can’t provide

As an Assistant I can’t assist

If you have any other non-malicious requests

B. Additional Results

Table 4: ASR(%) under continual changing envi-
ronments.

To validate the effectiveness of our method under continuous exposure
to various forms of jailbreak attacks, we conducted experiments as
shown in Table 4. We selected 500 different samples for each type
of jailbreak attack and conducted the attacks in varying orders. As Attack Order (—)

can be seen, even after undergoing the MM-SafetyBench attack, our Figstep MM-SafetyBench Figstep
method still maintains good defensive performance during the second 14 6.6 0.0
exposure to the Figstep attack, without experiencing catastrophic
forgetting.

C. Algorithm of TIM

Algorithm 1 The Pipeline of TIM

Initailize: LLM &;,C,, Gist token t, and Detection Classifier Cg4, Jailbreak Memory M ;, Detection Memory Mg,
Instruction Dataset D,,, Detection Dataset D4, Refusal Answer ¢, 5.
Input: An instruction t;,,.
Generate the answer ¢, of t;,s by Equ. (1)
Obtain the jailbreak label by Equ. (2) and (3).
if jailbreak label equals to 1 then
Append (tins, trey) into M.
Append {(tins, tref, 0), (tins: tans, 1)} into M.
Train the Adapter of & with M; and Dyq.
Train ¢, and Cgq with My and Dy
end if
Output: Answer ¢,

We summarize the pipeline of TIM in Algorithm 1.

12

