
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A HIERARCHICAL CIRCUIT SYMBOLIC DISCOVERY
FRAMEWORK FOR EFFICIENT LOGIC OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The efficiency of Logic Optimization (LO) has become one of the key bottlenecks
in chip design. To prompt efficient LO, many graph-based machine learning (ML)
methods, such as graph neural networks (GNNs), have been proposed to predict
and prune a large number of ineffective subgraphs of the LO heuristics. However,
the high inference cost and limited interpretability of these approaches severely
limit their wide application to modern LO tools. To address this challenge, we
propose a novel Hierarchical Circuit Symbolic Discovery Framework, namely
HIS, to learn a lightweight and interpretable symbolic function that can accu-
rately identify ineffective subgraphs for efficient LO. Specifically, HIS proposes a
hierarchical tree structure to represent the circuit symbolic function, where every
layer of the symbolic tree performs an efficient and interpretable message passing
to capture the structural information of the circuit graph. To learn the hierarchical
tree, we propose a circuit symbolic generation framework that leverages reinforce-
ment learning to optimize a structure-aware Transformer model for symbolic to-
ken generation. To the best of our knowledge, HIS is the first approach to discover
an efficient, interpretable, and high-performance symbolic function from the cir-
cuit graph for efficient LO. Experiments on two widely used circuit benchmarks
show that the learned graph symbolic functions outperform previous state-of-the-
art approaches in terms of efficiency and optimization performance. Moreover,
we integrate HIS with the Mfs2 heuristic, one of the most time-consuming LO
heuristics. Results show that HIS significantly enhances both its efficiency and
optimization performance on a CPU-based machine, achieving an average run-
time improvement of 27.22% and a 6.95% reduction in circuit size.

1 INTRODUCTION

The modern chip design workflow leverages a variety of Electronic Design Automation (EDA) tools
to efficiently and reliably synthesize, simulate, test, and verify different circuit designs (Huang et al.,
2021). Logic Optimization (LO) is one of the most important EDA tools in the front-end workflow
(Berndt et al., 2022; Pasandi et al., 2023). Specifically, LO aims to optimize circuits—modeled
by directed acyclic graphs—with functionality-equivalent transformations and reduced size and/or
depth. It is crucial to well tackle the LO task as it can significantly improve the circuits’ Quality of
Results (QoR), i.e., various metrics such as size, level, and edge to evaluate the quality of designed
chips. (De Abreu et al., 2021; Bertacco et al., 1997). However, the LO task is a challenging NP-hard
problem (Micheli, 1994; Farrahi & Sarrafzadeh, 1994), which makes it extremely hard to tackle. To
approximately tackle the LO task, many effective LO heuristics such as Mfs2 (Mishchenko et al.,
2011), Resub (Brayton, 2006), and Rewrite (Bertacco et al., 1997) have been developed. These
heuristics follow a common paradigm in which specific transformations are sequentially applied to
the subgraph rooted at each node (i.e., node-level transformations) for all nodes of an input circuit.

The efficiency of LO heuristics in LO tools has become one of the key bottlenecks in chip de-
sign, thus significantly impacting the final circuit performance and Time-to-Market, i.e., the over-
all duration for developing and commercializing new chips (Neto et al., 2021; Sabbavarapu et al.,
2014; Reddy et al., 2014). However, previous studies found that executing LO heuristics can be
highly time-consuming due to a large number of ineffective and redundant node-level transforma-
tions (Wang et al.). To address this, they propose a pruning framework, which leverages a key
scoring function to identify and avoid the ineffective transformations. Specifically, (Li et al., 2023)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝐻𝑣1
0 𝐻𝑣2

4

+

𝑚𝑖𝑛

×

𝐻𝑣0
0 𝑠𝑢𝑚

𝑭𝟎

𝑭𝟏

𝑭𝟐

𝑪𝒐𝒎𝒑𝒖𝒕𝒂𝒕𝒊𝒐𝒏 𝑻𝒓𝒆𝒆

𝑠 𝑠𝑐𝑜𝑟𝑒 𝐿𝑎𝑦𝑒𝑟 2 𝑛𝑜𝑑𝑒𝑠𝐻𝑣2𝐻𝑣1 𝐿𝑎𝑦𝑒𝑟 1 𝑛𝑜𝑑𝑒𝑠𝐿𝑎𝑦𝑒𝑟 0 𝑛𝑜𝑑𝑒𝑠𝐻𝑣0

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑝𝑎𝑠𝑠𝑖𝑛𝑔

𝑯𝒊𝒆𝒓𝒂𝒓𝒄𝒉𝒊𝒄𝒂𝒍
𝑺𝒚𝒎𝒃𝒐𝒍𝒊𝒄 𝑻𝒓𝒆𝒆

𝑯𝑰𝑺

෢𝐻𝑣1 = 𝑭𝟐 (𝐻𝑣2 , 𝐻𝑣1)

෢𝐻𝑣0 = 𝑭𝟏(෢𝐻𝑣1 , 𝐻𝑣0)

𝑠𝑐𝑜𝑟𝑒 = 𝑭𝟎(෢𝐻𝑣0)

𝑠𝑐𝑜𝑟𝑒

Figure 1: Our HIS framework learns a hierarchical symbolic tree which performs an interpretable
and efficient message aggregation motivated by the graph neural networks (GNNs).

proposes a lightweight mathematical expression as the scoring function. However, this method fails
to capture the rich structural information of the subgraph, resulting in limited optimization perfor-
mance. Recently, (Wang et al.) proposes a well-designed graph neural network (GNN) model, which
can effectively capture the subgraphs’ structural information to accurately identify ineffective trans-
formations. Nevertheless, the high inference cost and limited interpretability of GNNs significantly
restrict their adoption in modern LO tools.

To address these challenges, we propose a novel Hierarchical Circuit Symbolic Discovery Frame-
work, namely HIS, to learn a lightweight and interpretable symbolic function from the circuit
subgraph—always modeled by a computation tree—that can accurately identify ineffective transfor-
mations for efficient LO. The key technical challenge lies in designing a symbolic function that can
effectively capture subgraph structural information. Inspired by the message-passing mechanism in
GNNs, HIS proposes a hierarchical symbolic function representation, where each layer performs an
interpretable and computationally efficient form of message aggregation to capture the multi-level
structural information, as shown in Figure 1. To learn hierarchical symbolic functions, we intro-
duce a circuit symbolic generation framework. In this framework, a structure-aware Transformer
is employed to effectively encode tree-structured information and generate a distribution over sym-
bolic subtrees at each layer. Subtrees sampled from this distribution are merged to form hierarchical
symbolic trees, which are then evaluated using a group reward. The reward signal is leveraged to
optimize the model through a policy gradient algorithm. Ultimately, the target hierarchical symbolic
tree is generated according to the optimized model.

Experiments on two widely used benchmarks show that the symbolic scoring functions learned by
our HIS outperform previous state-of-the-art approaches in terms of efficiency and optimization
performance. Moreover, we incorporate HIS with the Mfs2 heuristic—the most time-consuming
one among commonly used LO heuristics. The empirical results on widely used circuit benchmarks
demonstrate that HIS achieves an average runtime improvement of 27.22% and a 6.95% reduction
in circuit size compared with the default Mfs2 heuristic. Furthermore, our HIS learned hierarchical
symbolic functions offer strong interpretability, revealing how specific structural patterns in the
circuit graph impact the final node embedding.

We summarize our major contributions as follows: (1) To the best of our knowledge, HIS is the
first approach to discover an efficient, interpretable, and high-performance graph symbolic function
for efficient LO. (2) The major technical contribution of HIS is the novel hierarchical symbolic tree
representation that enables interpretable and efficient message aggregation to capture the structural
information of circuit graphs. (3) Experiments show that the learned interpretable symbolic func-
tions outperform state-of-the-art approaches in terms of efficiency and optimization performance.

2 BACKGROUND

Logic Optimization (LO) Driven by Moore’s law, the complexity of chip design has increased
exponentially (Khailany, 2020; Lopera et al., 2021; Huang et al., 2021; Mirhoseini et al., 2021; Ren
& Hu, 2023). To address this growing complexity, modern design workflows integrate a suite of
Electronic Design Automation (EDA) tools to synthesize, simulate, test, and verify different circuit

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

designs efficiently and reliably. Among these tools, logic optimization (LO)—which optimizes
circuits represented as Boolean networks—serves as a key component. LO typically involves two
stages: pre-mapping optimization and post-mapping optimization (Hosny et al., 2020; Ren & Hu,
2023; Wang et al., 2024; Brayton et al., 2010). In the pre-mapping stage, heuristics such as Rewrite
(Bertacco et al., 1997), Resub (Brayton, 2006), and Refactor (Brayton, 1982) are used to optimize
the input circuit. The optimized logic circuits are then mapped onto the target technology library,
e.g., a standard-cell netlist (Brayton & Kam) or k-input lookup tables (Mishchenko et al., 2007).
Consequently, the post-mapping heuristics like Mfs2 (Mishchenko et al., 2011) are employed to
further enhance the mapped circuit.

The pruning framework for LO Heuristics Many effective LO heuristics have been developed to
tackle the LO task. These heuristics follow the same paradigm as illustrated in Figure 4. Specif-
ically, they apply specific transformations to a subgraph rooted at each node (i.e., the node-level
transformations) sequentially for all nodes in an input circuit. These LO heuristics constitute a
cornerstone of logic optimization, enabling substantial improvements in circuit quality. However,
recent work (Wang et al.) has shown that a large number of node-level transformations in many LO
heuristics are ineffective, which makes applying these heuristics highly time-consuming. To address
this challenge, several studies (Wang et al.; Li et al., 2023) have proposed a pruning framework,
which leverages a scoring function to identify and avoid transformations on those ineffective nodes
to improve the efficiency of LO heuristics. Within the pruning framework, the accuracy and effi-
ciency of the scoring function significantly determine the optimization performance and runtime of
LO heuristics. Therefore, it is crucial to discover an accurate and efficient scoring function.

Computation Tree of Graph Neural Networks (GNNs). GNNs have been developed to solve the
LO task. Let G = (V, E) denote a circuit graph with node set V and edge set E . For a target node
v ∈ V , the input to the GNN for LO is defined as a subgraph centered at v, which can be equivalently
represented by its depth-L computation tree TL

v as shown in Figure 1. Specifically, we set T 0
v = v,

and recursively construct TL
v for L > 1 by expanding TL−1

v with the neighbors of all leaf nodes in
TL−1
v . The GNN encoder takes TL

v as input and performs iterative message passing to learn node
embeddings. Formally, the L-th layer of a GNN encoder can be written as:

h(L)
v = UPDATE(L)

(
h(L−1)
v , AGGREGATE(L)

(
h(L−1)
u : u ∈ N (v)

))
,

where h
(L)
v denotes the embedding of node v at layer L, h(0)

v is initialized from its feature vector,
and N (v) denotes the set of neighbors of v.

3 RELATED WORK

Scoring functions for LO heuristics. A variety of approaches have been developed to address
the LO task, which can be broadly categorized into heuristic and machine learning-based methods.
Heuristic methods, such as (Li et al., 2023), manually design lightweight scoring functions derived
from circuit structure. However, these approaches often fail to capture the rich structural information
of subgraphs, resulting in limited optimization performance. In contrast, machine learning methods,
such as (Bai et al.) and (Wang et al.), employ graph convolutional networks either to generate
scoring functions or to directly serve as them. Nevertheless, their high inference cost and limited
interpretability significantly hinder their adoption in modern LO tools. These limitations highlight
the need for a scoring function that is accurate, interpretable, and computationally efficient.

Graph Symbolic Distillation from GNNs Motivated by the high expressive power but opaque
nature of GNNs, prior research has focused on distilling interpretable symbolic functions to ap-
proximate their mapping mechanisms. For example, (Cranmer et al., 2020) proposed a framework
that extracts symbolic functions from trained GNNs for scientific discovery. The approach first
trains neural network models and then employs a symbolic learning model to approximate both the
message-passing and aggregation functions with symbolic representations. However, this method
requires extensive process labels to train the symbolic model, which limits its scalability and prac-
ticality. More recently, (Kuang et al.) proposed an end-to-end framework to learn interpretable
symbolic policies from a general bipartite graph representation. Nevertheless, we observe that this
method struggles to effectively capture circuit structural information, often leading to suboptimal
performance. To address these limitations, we propose a hierarchical symbolic tree representation
that learns structural symbolic functions in an end-to-end fashion without relying on process labels.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 METHOD

In this section, we provide a comprehensive description of our Hierarchical Circuit Symbolic Dis-
covery (HIS) framework. We begin by introducing the hierarchical circuit symbolic tree representa-
tion in Section 4.1, where the structural properties of circuits are captured in a symbolic form. Then,
we present the circuit symbolic generation framework (see Figure 2), which proposes a reinforce-
ment learning based approach for discovering the symbolic tree, as detailed in Section 4.2.

4.1 THE HIERARCHICAL CIRCUIT SYMBOLIC TREE REPRESENTATION

Motivation To prompt efficient LO, graph neural networks (GNNs) (Wang et al.) have been applied
as the scoring function to predict and prune the ineffective node-level transformations. While this
method achieves high performance on node classification, the complex architecture and extensive
parameters significantly restrict its deployment in pure CPU-based industrial scenarios. To address
this limitation, we propose to distill the GNN into a symbolic representation for efficient deploy-
ment. However, it is challenging to learn a lightweight symbolic function that preserves expressive
graph representation capabilities. Motivated by the layered message-passing mechanism of GNNs,
which integrates structural information from neighboring nodes, we propose the hierarchical circuit
symbolic function representation. This representation comprises multi-layer functions that emulate
the message-passing process across layers, enabling the resulting symbolic functions to capture both
local and global graph structural information effectively for node classification.

Graph features and Symbolic library Given a circuit subgraph rooted at node v0, we follow (Wang
et al.) and represent it as an L-layer computation tree TL

v0 (see more details about the subgraph
construction process in Appendix E.4). By traversing all nodes in the circuit graph, we can thus
construct a training dataset D = {(TL

vi , yi)}
n
i=1. In our experiments, we set L = 2, which is

consistent with the 2-layer GNN configuration adopted in (Wang et al.). To learn a symbolic function
from the graph, we first define the graph features and symbolic library. Each node v ∈ TL

v0 is
initialized with a 5-dimensional structural feature vector hv , as defined in (Bai et al.). Let vi =
{vji }

ni
j=1 denote the set of nodes at layer i. Then the node features at layer i can be represented as

Hvi
=
[
hv1

i
· · · hv

ni
i

]⊤ ∈ Rni×5.

Finally, the graph features are represented as the union of node features across all layers

F =

L⋃
i=0

{H0
vi
, · · · ,H5

vi
},

where Hj
vi

∈ Rni denotes the j-th column of the node feature matrix at layer i. Moreover, con-
sidering the symbolic library, we employ {+,−,×,÷, log, exp} as the mathematical operators and
{0.1, 0.2, 0.5} as constants. To aggregate neighborhood information, we follow (Kuang et al.) and
employ four unary operators, {min,max,mean, sum}, each mapping features from layer i to layer
i−1, i.e., Rni → Rni−1 . The aggregation is performed according to edge connectivity, ensuring that
only features of adjacent nodes are combined. These aggregation operators play the same role as
those in GNNs, which can effectively capture the graph structural information. Finally, the symbolic
library comprises mathematical operators, aggregation operators, and constants.

Hierarchical Symbolic Tree To represent the hierarchical symbolic functions, we employ a tree-
structured representation in which the leaf nodes correspond to features or constants, and the internal
nodes denote mathematical operators (Kuang et al., 2024; Sun et al., 2023; Petersen et al., 2020).
Unlike traditional symbolic functions that take node features as input, our circuit symbolic tree
directly operates on the circuit computation tree to aggregate the structural information for node
classification. Specifically, given an L-layer computation tree TL

v0 rooted at node v0, the hierarchical
symbolic tree is organized into L layers (see Figure 1). For each node at layer i of the computation
tree, the learned function Fi aggregates messages from its neighboring nodes to update its feature
representation. In general, the aggregation function in layer i can be expressed as{

score = Fi

(
Ĥvi

)
, if i = 0,

Ĥvi−1
= Fi

(
Ĥvi

,Hvi−1

)
, if i > 0,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

{𝝉𝒊}𝒊=𝟏
𝒏𝑑𝑎𝑡𝑎:

𝑢𝑝𝑑𝑎𝑡𝑒:
𝜃0 += 𝛼∇𝜃0𝐽(𝜽)

𝜃1 += 𝛼∇𝜃1𝐽(𝜽)

𝜃2 += 𝛼∇𝜃2𝐽(𝜽)

𝐻𝑣1
0 𝐻𝑣2

4

+

𝑚𝑖𝑛

×

𝐻𝑣0
0 𝑠𝑢𝑚

෢𝐻𝑣0
1

෢𝐻𝑣1
2

𝑆𝑦𝑚𝑏𝑜𝑙𝑖𝑐 𝑇𝑟𝑒𝑒 𝝉

2. Learning Hierarchical Symbolic Function

𝑔𝑟𝑎𝑝ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑠𝑖𝑏𝑙𝑖𝑛𝑔

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟
(𝐿𝑎𝑦𝑒𝑟 0, 𝝅𝜽𝟎)

𝑚𝑖𝑛

෢𝐻𝑣0
1𝑠𝑜𝑓𝑡𝑚𝑎𝑥:

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟
(𝐿𝑎𝑦𝑒𝑟 1, 𝝅𝜽𝟏)

×

𝑠𝑜𝑓𝑡𝑚𝑎𝑥: ෢𝐻𝑣1
2

𝐻𝑣0
0 𝑠𝑢𝑚

𝑝𝑎𝑟𝑒𝑛𝑡

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟
(𝐿𝑎𝑦𝑒𝑟 2, 𝝅𝜽𝟐)

+

𝑠𝑜𝑓𝑡𝑚𝑎𝑥: 𝐻𝑣2
4

𝐻𝑣1
0

𝑝𝑎𝑟𝑒𝑛𝑡

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 𝑡𝑟𝑒𝑒 𝑙𝑎𝑦𝑒𝑟 𝑏𝑦 𝑙𝑎𝑦𝑒𝑟

𝐿𝑎𝑦𝑒𝑟 2

𝐿𝑎𝑦𝑒𝑟 1

𝐿𝑎𝑦𝑒𝑟 0

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑇𝑟𝑒𝑒

𝑡𝑎𝑟𝑔𝑒𝑡
𝑛𝑜𝑑𝑒

𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝑆𝑢𝑏𝑡𝑟𝑒𝑒

3. Policy Optimization1. Circuit Data Preparation

𝑎𝑐𝑡𝑖𝑜𝑛 𝝉𝑝𝑜𝑙𝑖𝑐𝑦 𝜽

Figure 2: Illustration of the Circuit Symbolic Generation framework. The circuit is first represented
as a computation tree to provide graph features. Then, a hierarchical symbolic function is generated
layer by layer using Transformer-based policies that incorporate both parent and sibling information.
Finally, the model parameters are optimized via policy gradient methods.

where Ĥvi−1 ∈ Rni−1×d denotes the updated node feature matrix at layer i−1, and Fi represents d
aggregation functions that update the features of layer i nodes based on their current features and the
features of nodes in layer i − 1. The parameter d, which denotes the dimensionality of the updated
feature vectors, is set to 10 in our experiments. By combining the learned symbolic functions Fi,
we can construct a hierarchical symbolic tree. This symbolic tree captures the structural information
of the circuit through layer-wise aggregation while retaining the efficiency of symbolic operations,
which is deployable in industrial settings.

4.2 THE CIRCUIT SYMBOLIC GENERATION FRAMEWORK

Symbolic Sequence Formulation In this section, we provide a detailed explanation of the learning
process for symbolic trees at each hierarchical layer. Previous works usually employ a pre-order
traversal sequence τ = {τ1, τ2 · · · τn} to represent the symbolic tree. Therefore, the task of gener-
ating symbolic trees can be formulated as a sequence generation task. At each generation step, we
output a categorical distribution over all possible tokens to sample the current token τi. Finally, we
can generate a symbolic sequence τ with the probability given by

pθ(τ) =

|τ |∏
i=1

pθ(τi|τ1, · · · , τi−1),

where pθ(τ) is the probability of generating the sequence τ , θ is the generation model parameter,
and pθ(τi|τ1, · · · , τi−1) is the conditional probability of generating token τi at i-th step.

Transformer Model for Symbolic Generation To generate the hierarchical symbolic tree, we de-
sign L encoder-only Transformer models, each model πθi responsible for generating the symbolic
functions at layer i. At each generation step k, the layer i generation model takes the previously
sampled token sequence as input and predicts the next token τ ik. However, a standard Transformer is
limited in capturing the tree-structural dependencies of symbolic expressions, which often leads to
suboptimal results (Holt et al., 2023; Petersen et al., 2020). To overcome this limitation, we design
a tree-aware embedding aggregation mechanism inspired by (Kuang et al.). Specifically, during the
generation period of token τ ik, we first identify its parent and sibling tokens, denoted as τ ipk

and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

τ isk , and then encode them as Parent(τ ipk
) = βp and Sibling(τ isk) = βs, respectively. After pass-

ing through several encoder layers—each consisting of a multi-head attention and a feed-forward
network—we compute the representation of τ ik by averaging the embedding vectors of τ ipk

and
τ isk . We then apply a softmax function to this representation to obtain the probability distribution
pθi(τ

i
k | τ i1, . . . , τ ik−1), which is used to generate the token τ ik at step k.

Training Model via Reinforcement Learning Since the symbolic tree is not differentiable with
respect to the model parameters θ = (θ0, · · · , θL), we formulate the sequence generation as a
reinforcement learning problem. Specifically, we formulate the transformer models as the policy
network, treat the sampled tokens as states, and consider each generated token as an action. Further-
more, we regard a complete sequence of tokens as an episode, and define the reward as a terminal
signal that is computed only upon the completion of the expression. In each episode, we sample
a group of m symbolic expressions and use them to optimize the policy parameters via Proximal
Policy Optimization (PPO). Specifically, we define the objective function as

J(θ) = Eτ∼p(τ |θ)

[
min

(
pθ(τ)

pθold(τ)
Aθold(τ), clip

(
pθ(τ)

pθold(τ)
, 1− ϵ, 1 + ϵ

)
Aθold(τ)

)]
,

where τ = (τ1, τ2, . . . , τL) denotes the hierarchical symbolic tree obtained by sequentially merging
the generated symbolic trees τ i from each layer, pθ(τ) =

∑L
i=0 pθi(τ

i) denotes the probability of
generating the hierarchical symbolic tree τ under the policy parameters θ, Aθold(τ) is the advantage
function, and ϵ is the clipping threshold that constrains the policy update. Unlike traditional PPO,
which requires training a resource-intensive critic network for advantage prediction, we compute the
advantage as the sequence reward relative to the group mean reward, achieving both lower resource
consumption and more stable training. The advantage is defined as

Aθ(τ) =
r(τ)− r̄

σr
,

where r̄ = Eτ∼p(τ |θ)[r(τ)] and σr =

√
Eτ∼p(τ |θ)

[
(r(τ)− r̄)2

]
denote the mean and standard

deviation of rewards in the generated function groups. Given a symbolic tree τ and the training data
D = {(TL

vi , yi)}
n
i=1, the reward is computed using the focal loss (Lin et al., 2017), defined as

r(τ) = − 1

n

n∑
i=1

[
αyi(1− ŷi)

γ log(ŷi) + (1− α)(1− yi)ŷ
γ
i log(1− ŷi)

]
,

where ŷi = τ (TL
vi) is the predicted score, α is a balancing factor. The detailed training algorithm

is illustrated in Algorithm 1. Overall, this reinforcement learning framework allows our model to
efficiently discover high-quality symbolic expressions.

5 EXPERIMENT

In this section, we conduct extensive experiments to evaluate HIS, which consist of four main parts:
Experiment 1. Demonstrate the superior performance of our HIS in terms of node classification ac-
curacy and heuristics efficiency. Experiment 2. Demonstrate that our method can not only enhance
the efficiency but also improve the Quality of Results (QoR) of one of the most time-consuming LO
heuristics, Mfs2. Experiment 3. Perform ablation experiments to provide further insight into HIS.
Experiment 4. Show the appealing features of HIS in inference efficiency and interpretability.

Benchmarks We evaluate HIS on two widely used public benchmarks, EPFL (Amarú et al., 2015)
and IWLS (Albrecht, 2005). The EPFL benchmark comprises 20 circuits, including large-scale
cases with up to 214,335 nodes. The IWLS benchmark contains 21 circuits, including challenging
cases with up to 1,130 inputs and 1,416 outputs. We defer more benchmark details to Appendix D.1

Experimental setup Throughout all experiments, we use ABC (Brayton et al., 2010) as the backend
LO framework. ABC is a state-of-the-art open-source LO framework and is widely used in research
on machine learning for LO. Moreover, we choose the Mfs2 (Mishchenko et al., 2011)—one of
the most time-consuming LO heuristics—as the backend heuristic. Experiments are performed on
a single machine that contains 32 Intel XeonR E5-2667 v4 CPUs, which closely resembles a real-
world industrial deployment environment. More details are provided in Appendix E.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: The results show that HIS consistently outperforms all graph-based and node-based base-
lines in terms of generalization top 50% prediction recall.

Circuits Hyp Square Multiplier DesPerf Ethernet Conmax

Method Recall↑ Recall↑ Recall↑ Recall↑ Recall↑ Recall↑
COG 0.87 0.81 0.82 0.81 0.55 0.75
CMO 0.79 0.94 0.87 0.79 0.59 0.73

Effisyn 0.18 0.04 0.13 0.28 0.88 0.05
Random 0.50 0.48 0.44 0.50 0.47 0.50

HIS (Ours) 0.82 0.94 0.94 0.83 0.99 0.75

Hyp Multiplier Square DesPerf Ethernet Conmax

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 R
un

ti
m

e

Online Evaluation on Six Challenging Circuits

HIS-Mfs2 (Ours)
CMO-Mfs2

Effisyn-Mfs2
Random-Mfs2

COG-Mfs2

Figure 3: We compare our HIS with four competitive baselines on online runtime. The results
demonstrate that our approach achieves significant runtime improvement with the baselines.

Evaluation Metrics and Evaluated Methods Throughout all experiments, we evaluate our method
in two separate phases, i.e., the offline and online phases. In the offline phase, we focus on evaluat-
ing the prediction recall of effective nodes. The evaluation setup is detailed in two parts as follows:
(1) Evaluation metrics Under the pruning framework (see Figure 4), we formulate the prediction
task as a node scoring problem, where nodes with the top k scores are predicted to be positive.
Based on this formulation, we define the top k accuracy metric, which measures the fraction of
true positive nodes among those predicted as positive, i.e., prediction recall. As shown in Appendix
C.1, a higher prediction recall consistently leads to improved QoR. Therefore, achieving high recall
is essential for obtaining QoR comparable to the default heuristics. Further details of this metric
are provided in Appendix E.1.2. (2) Evaluated methods We compare five main approaches: COG
(Wang et al.), CMO (Bai et al.), Effisyn (Li et al., 2023), Random and our proposed HIS. COG is
a carefully designed 2-layer GNN. CMO is a graph-enhanced symbolic learning method. Effisyn
is a human-designed nonlinear function with parameters derived from circuit features. Random is
a heuristic method which randomly predicts the score between 0 and 1. Implementation details of
these baselines are deferred to Appendix E.2. In the Online phase, we evaluate both the efficiency
and QoR of HIS. The evaluation setup is as follows: (1) Evaluation metrics For efficiency, we
measure the runtime of the heuristics. For QoR, we primarily consider the number of optimized
circuit nodes, as this directly influences the final chip area. In addition, we evaluate the circuit depth
(i.e., level) of the optimized circuits, which serves as a proxy metric for chip delay. (2) Evaluated
methods We introduce a new heuristic, X-Mfs2, which incorporates a learned scoring function “X”
into the default Mfs2 heuristic. In our experiments, “X” corresponds to the baselines and our HIS.

Generalization Evaluation Strategy In practical industrial settings, it is desirable for the trained
model to generalize effectively to unseen circuits. To evaluate this capability, we design two gener-
alization strategies. In the first setting, we use the IWLS circuits as the training dataset and select
three hard-to-optimize circuits—Hyp, Multiplier, and Square—from the EPFL benchmark as test

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: We compare the Default Mfs2 heuristic with our HIS-Mfs2 heuristic with the hyperparam-
eter k set as 30%, 40% and 50% on six challenging circuits. Optimized Nd denotes the node number
(size) of circuits, and Lev denotes the level (depth) of circuits. We define an Improvement metric by
M(Default)−M(Ours)

M(Default) , where M(·) denotes the Optimized Nd, Lev, or Time.

Hyp Square

Method Lev ↓ Improvement ↑ Time (s) ↓ Improvement ↑ Optimized Nd ↓ Improvement ↑ Time (s) ↓ Improvement ↑
(Lev, %) (Time, %) (Optimized Nd, %) (Time, %)

Default(Mfs2) 8259.00 NA 265.93 NA 5701.00 NA 21.48 NA
HIS-Mfs2 (0.5, Ours) 8259.00 0.00 85.46 67.86 5703.00 -0.04 10.69 50.24
2HIS-Mfs2 (0.3, Ours) 5762.00 30.23 147.62 44.49 5553.00 2.60 16.21 24.54
2HIS-Mfs2 (0.4, Ours) 5762.00 30.23 192.51 27.61 5542.00 2.79 19.97 7.03

Multiplier DesPerf

Method Optimized Nd ↓ Improvement ↑ Time (s) ↓ Improvement ↑ Optimized Nd ↓ Improvement ↑ Time (s) ↓ Improvement ↑
(Optimized Nd %) (Time, %) (Optimized Nd, %) (Time, %)

Default(Mfs2) 7799.00 NA 16.91 NA 30853.00 NA 28.82 NA
HIS-Mfs2 (0.5, Ours) 7799.00 0.00 13.52 20.03 31035.00 -0.59 22.84 20.73
2HIS-Mfs2 (0.3, Ours) 7661.00 1.77 16.48 2.50 30104.00 2.43 24.88 13.65
2HIS-Mfs2 (0.4, Ours) 7659.00 1.80 20.60 -21.83 29493.00 4.41 31.71 -10.03

Ethernet Conmax

Method Optimized Nd ↓ Improvement ↑ Time (s) ↓ Improvement ↑ Optimized Nd, ↓ Improvement ↑ Time (s) ↓ Improvement ↑
(Optimized Nd %) (Time, %) (Optimized Nd, %) (Time, %)

Default(Mfs2) 13638.00 NA 27.00 NA 16509.00 NA 19.93 NA
HIS-Mfs2 (0.5, Ours) 13639.00 -0.01 13.19 51.16 16760.00 -1.52 13.63 31.59
2HIS-Mfs2 (0.3, Ours) 13511.00 0.93 14.84 45.06 15890.00 3.75 13.33 33.09
2HIS-Mfs2 (0.4, Ours) 13509.00 0.95 19.36 28.31 15782.00 4.40 16.77 15.87

cases. In the second setting, we reverse the roles by training on the EPFL circuits and testing on
three challenging circuits—DesPerf, Ethernet, and Conmax—from the IWLS benchmark. Due to
limited space, we provide more details about our designed generalization strategy in Appendix D.2

Experiment 1. Comparative Evaluation In this subsection, we compare the offline and online met-
rics of our HIS framework with the baselines. Following the established generalization strategy, we
conduct experiments on six challenging circuits from two widely used open-source benchmarks. In
the offline phase, we adopt the top 50% accuracy as the evaluation metric. Results in Table 1 show
that HIS consistently outperforms all baselines in terms of the prediction recalls, highlighting the
superior generalization ability of our method. Moreover, HIS achieves a prediction recall exceeding
80% on the majority of test circuits, indicating that it can preserve most of the effective transforma-
tions. In the online phase, we primarily focus on evaluating the efficiency of the X-Mfs2 heuristics.
To ensure a fair comparison for efficiency, we compare the runtime of different methods when they
achieve similar optimization performance. As larger top k accuracy improves the final performance,
we employ top 50% for our HIS, top 60% for COG and CMO, and higher k for the Effisyn and
Random baselines to achieve comparable optimization performance (see Table 7 in Appendix C.2
for the optimization results). Specifically, the results in Figure 3 indicate that our HIS-Mfs2 achieves
an average improvement of 11.96%, 21.82%, 19.24%, and 22.91% over CMO-Mfs2, Effisyn-Mfs2,
Random-Mfs2, and COG-Mfs2 in terms of the runtime, respectively. Overall, the offline and on-
line results show that our HIS can not only accurately predict the effective transformations but also
outperform all competitive baselines in terms of heuristic efficiency.

Experiment 2. Improving Efficiency and QoR of the LO heuristic In this subsection, we conduct
experiments on six challenging circuits to demonstrate that our method not only reduces runtime but
also improves QoR, measured by the size and level of the optimized circuits. These two metrics are
critical in chip design, as they serve as proxies for the final chip area and delay. We first show that
HIS can enhance the efficiency of the Mfs2 heuristic while maintaining comparable optimization
performance. Results in Table 2 demonstrate that our HIS with top 50% accuracy achieves an aver-
age runtime reduction of 40.27% with only a marginal 0.38% degradation in circuit size and level
across the six test circuits. In particular, HIS attains up to 3.1× faster runtime on the Hyp circuit.
Building on this efficiency advantage, we explore applying HIS-Mfs2 sequentially rather than once
(denoted as 2HIS-Mfs2) to further improve QoR. Since HIS-Mfs2 runs significantly faster than the
default Mfs2 heuristic, this repeated application is computationally feasible. To accelerate runtime,
we additionally consider smaller hyperparameter settings, using k = 30% and 40% instead of 50%.
When prioritizing optimization performance in real-world scenarios, we can set k = 40%. Table 2
shows that 2HIS-Mfs2 with k = 40% achieves an average reduction of 7.43% in size and depth while
also reducing runtime by 7.82% on the test circuits. When prioritizing runtime in real-world scenar-
ios, results in Table 2 show that 2HIS-Mfs2 with k = 30% achieves an average reduction of 6.95%

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: The ablation results show that each component plays an important role in our HIS.

Circuits Hyp Multiplier Square DesPerf Ethernet Conmax

Method Recall↑ Recall↑ Recall↑ Recall↑ Recall↑ Recall↑
HIS (Ours) 0.82 0.94 0.94 0.83 0.99 0.75

w/o hierarchical 0.81 0.91 0.74 0.77 0.81 0.72
w/o group optimization 0.88 0.89 0.90 0.51 0.87 0.74

w/o tree-structured aggregation 0.81 0.51 0.94 0.79 0.91 0.75

in size and depth, along with a runtime reduction of 27.22%. Overall, these results demonstrate that
the proposed HIS-Mfs2 framework can simultaneously deliver faster runtime and improved QoR,
highlighting its potential to yield significant economic benefits in practical chip design.

Experiment 3. Ablation Study In this subsection, we perform an ablation experiment to evaluate
the individual contribution of each component in HIS. Specifically, the results in Table 3 indicate
three key findings as follows. (1) The ’w/o hierarchical’ variant, which learns a complete symbolic
tree from the training data end to end rather than layer by layer, led to significant degradation in
the prediction recall. This highlights that our proposed hierarchical symbolic function representa-
tion can effectively capture circuit structural information for node classification; (2) The ’w/o group
optimization’ variant, which employs the single symbolic function’s reward rather than the group
rewards as the advantage, exhibits a noticeable reduction in prediction recall across the majority of
circuits. This demonstrates the effectiveness of the group advantage in improving symbolic expres-
siveness; (3) The ’w/o tree-structured aggregation’ variant, which omits the aggregation of parent
and sibling embeddings during token generation, exhibits a substantial decline in prediction recall.
This result highlights the necessity and effectiveness of our proposed approach in capturing tree-
structured information for high-performance symbolic trees generation.

Experiment 4. Strengths for Deployment In this subsection, we conduct extensive experiments to
demonstrate the appealing features of our HIS on inference efficiency and interpretability. Specifi-
cally, we present a detailed analysis as follows.

Inference Efficiency We compare the inference time of our HIS against both the SOTA graph-based
method COG and several lightweight baselines under a pure CPU industrial environment. As shown
in Table 5 in Appendix C.3, HIS achieves an average inference speedup of 296× over COG on
the EPFL circuits and 254× on the IWLS circuits, while maintaining inference times comparable
to other lightweight methods. These results demonstrate that HIS successfully learns a lightweight
graph symbolic scoring function that achieves both high prediction recall (see Table 1) and efficient
inference, making it well-suitable for deployment in real industrial scenarios.

Interpretability We visualize the discovered hierarchical symbolic functions for EPFL and IWLS
benchmarks in Table 6 and Figure 5 in the Appendix. Owing to the high interpretability of the
symbolic functions, these learned symbolic policies allow researchers to gain deeper insight into
the patterns extracted from circuit graphs and to trace how information is aggregated. Specifically,
we observe that: (1) All the discovered expressions aggregate information from both the root node
and the candidate node, which is consistent with the design in previous GNN-based approaches. (2)
The hierarchical symbolic tree structure successfully performs an efficient message-passing across
layers, wherein the node features in Layer i− 1 are updated through aggregation from Layer i.

6 CONCLUSION

To enable efficient Logic Optimization (LO), previous machine learning methods propose to use
scoring functions to predict and prune ineffective nodes in LO heuristics. However, the high in-
ference cost and limited interpretability of these approaches severely limit their wide application to
modern LO tools. To address this, we propose HIS, a novel Hierarchical Circuit Symbolic discovery
Framework that learns efficient, interpretable, and high-performance symbolic functions from the
circuit graph. Extensive experiments on two widely used benchmarks show that the learned graph
symbolic functions outperform previous state-of-the-art approaches in terms of efficiency and op-
timization performance. Moreover, HIS significantly enhances both the Mfs2 heuristic’s efficiency
and optimization performance on a CPU-based machine, achieving an average runtime improvement
of 27.22% and a 6.95% reduction in circuit size.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research does not involve any personally identifiable information. All datasets used are pub-
licly available and widely adopted in the community, and we have verified that their licenses per-
mit research use. In accordance with the ICLR Code of Ethics (https://iclr.cc/public/
CodeOfEthics), we ensure that our work adheres to principles of fairness, transparency, and re-
sponsible AI research. We also disclose that LLMs were used for text polishing, while all conceptual
contributions and validation remain the responsibility of the authors in Appendix F.

REPRODUCIBILITY STATEMENT

We will provide open access to all source code, configuration files, and preprocessing scripts, to-
gether with detailed instructions to reproduce the main experimental results. All datasets employed
are publicly available, and we specify the exact versions and preprocessing steps. We report all
hyperparameters, model versions, and API parameters in full, and we describe the computational
environment (hardware type, GPU model, and software dependencies) in the supplemental mate-
rial. We also include ablation studies and negative results to ensure transparency. Collectively, these
resources and specifications enable reliable and faithful reproduction of our results.

REFERENCES

Christoph Albrecht. Iwls 2005 benchmarks. 2005.

Luca Amarú et al. The epfl combinational benchmark suite. (CONF), 2015.

Yinqi Bai, Jie Wang, Lei Chen, Zhihai Wang, Yufei Kuang, Mingxuan Yuan, JianYe Hao, and Feng
Wu. A graph enhanced symbolic discovery framework for efficient logic optimization. In The
Thirteenth International Conference on Learning Representations.

Augusto André Souza Berndt et al. A review of machine learning in logic synthesis. Journal of
Integrated Circuits and Systems, 17(3):1–12, 2022.

Valeria Bertacco et al. The disjunctive decomposition of logic functions. In iccad, volume 97, pp.
78–82, 1997.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascan-
dolo. Neural symbolic regression that scales. In International Conference on Machine Learning,
pp. 936–945. Pmlr, 2021.

Alan Mishchenko Robert Brayton. Scalable logic synthesis using a simple circuit structure. 6:15–22,
2006.

Alan Mishchenko Satrajit Chatterjee Robert Brayton and Xinning Wang Timothy Kam. Technology
mapping with boolean matching, supergates and choices.

Robert Brayton et al. Abc: An academic industrial-strength verification tool. In Computer Aided
Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Pro-
ceedings 22, pp. 24–40. Springer, 2010.

Robert K Brayton. The decomposition and factorization of boolean expressions. ISCA-82, pp.
49–54, 1982.

Miles Cranmer, Alvaro Sanchez Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. Discovering symbolic models from deep learning with inductive biases. Advances
in neural information processing systems, 33:17429–17442, 2020.

Stéphane d’Ascoli, Samy Bengio, Josh Susskind, and Emmanuel Abbé. Boolformer: Symbolic
regression of logic functions with transformers. arXiv preprint arXiv:2309.12207, 2023.

Brunno A De Abreu, Augusto Berndt, Isac S Campos, Cristina Meinhardt, Jonata T Carvalho, Ma-
teus Grellert, and Sergio Bampi. Fast logic optimization using decision trees. In 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE, 2021.

10

https://iclr.cc/public/CodeOfEthics
https://iclr.cc/public/CodeOfEthics

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Louis De Branges. The stone-weierstrass theorem. Proceedings of the American Mathematical
Society, 10(5):822–824, 1959.

Amir H Farrahi and Majid Sarrafzadeh. Complexity of the lookup-table minimization problem for
fpga technology mapping. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 13(11):1319–1332, 1994.

Samuel Holt, Zhaozhi Qian, and Mihaela van der Schaar. Deep generative symbolic regression.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=o7koEEMA1bR.

Abdelrahman Hosny, Soheil Hashemi, Mohamed Shalan, and Sherief Reda. Drills: Deep rein-
forcement learning for logic synthesis. In 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 581–586. IEEE, 2020.

Guyue Huang et al. Machine learning for electronic design automation: A survey. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 26(5):1–46, 2021.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-to-
end symbolic regression with transformers. Advances in Neural Information Processing Systems,
35:10269–10281, 2022.

Brucek Khailany. Accelerating chip design with machine learning. In Proceedings of the 2020
ACM/IEEE Workshop on Machine Learning for CAD, pp. 33–33, 2020.

Yufei Kuang, Jie Wang, Yuyan Zhou, Xijun Li, Fangzhou Zhu, HAO Jianye, and Feng Wu. Towards
general algorithm discovery for combinatorial optimization: Learning symbolic branching policy
from bipartite graph. In Forty-first International Conference on Machine Learning.

Yufei Kuang, Jie Wang, Haoyang Liu, Fangzhou Zhu, Xijun Li, Jia Zeng, HAO Jianye, Bin Li,
and Feng Wu. Rethinking branching on exact combinatorial optimization solver: The first deep
symbolic discovery framework. In The Twelfth International Conference on Learning Represen-
tations, 2024.

Xing Li, Chen Lei, et al. Effisyn: Efficient logic synthesis with dynamic scoring and pruning. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 2023.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Daniela Sánchez Lopera, Lorenzo Servadei, Gamze Naz Kiprit, Souvik Hazra, Robert Wille, and
Wolfgang Ecker. A survey of graph neural networks for electronic design automation. In 2021
ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD), pp. 1–6. IEEE, 2021.

Giovanni De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill Higher Education,
1994.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodol-
ogy for fast chip design. Nature, 594(7862):207–212, 2021.

Alan Mishchenko, Sungmin Cho, Satrajit Chatterjee, and Robert Brayton. Combinational and se-
quential mapping with priority cuts. In 2007 IEEE/ACM International Conference on Computer-
Aided Design, pp. 354–361. IEEE, 2007.

Alan Mishchenko, Robert Brayton, Jie-Hong R Jiang, and Stephen Jang. Scalable don’t-care-based
logic optimization and resynthesis. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 4(4):1–23, 2011.

Walter Lau Neto, Matheus Trevisan Moreira, Luca Amaru, Cunxi Yu, and Pierre-Emmanuel Gaillar-
don. Read your circuit: leveraging word embedding to guide logic optimization. In Proceedings
of the 26th Asia and South Pacific Design Automation Conference, pp. 530–535, 2021.

11

https://openreview.net/forum?id=o7koEEMA1bR
https://openreview.net/forum?id=o7koEEMA1bR

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ghasem Pasandi, Sreedhar Pratty, and James Forsyth. Aisyn: Ai-driven reinforcement learning-
based logic synthesis framework. arXiv preprint arXiv:2302.06415, 2023.

Brenden K Petersen, Mikel Landajuela Larma, Terrell N Mundhenk, Claudio Prata Santiago,
Soo Kyung Kim, and Joanne Taery Kim. Deep symbolic regression: Recovering mathematical
expressions from data via risk-seeking policy gradients. In International Conference on Learning
Representations, 2020.

Shubham Rai, Walter Lau Neto, Yukio Miyasaka, Xinpei Zhang, Mingfei Yu, Qingyang Yi,
Masahiro Fujita, Guilherme B Manske, Matheus F Pontes, Leomar S da Rosa, et al. Logic syn-
thesis meets machine learning: Trading exactness for generalization. In 2021 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 1026–1031. IEEE, 2021.

Basireddy Karunakar Reddy, Srinivas Sabbavarapu, and Amit Acharyya. A new vlsi ic design
automation methodology with reduced nre costs and time-to-market using the npn class represen-
tation and functional symmetry. In 2014 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 177–180. IEEE, 2014.

Haoxing Ren and Jiang Hu. Machine Learning Applications in Electronic Design Automation.
Springer Nature, 2023.

Srinivas Sabbavarapu, Karunakar Reddy Basireddy, and Amit Acharyya. A new dynamic library
based ic design automation methodology using functional symmetry with npn class representation
approach to reduce nre costs and time-to-market. In 2014 Fifth International Symposium on
Electronic System Design, pp. 115–119. IEEE, 2014.

Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Discov-
ering governing equations via monte carlo tree search. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
ZTK3SefE8_Z.

Zhihai Wang, Lei Chen, Jie Wang, Yinqi Bai, Xing Li, Xijun Li, Mingxuan Yuan, HAO Jianye,
Yongdong Zhang, and Feng Wu. A circuit domain generalization framework for efficient logic
synthesis in chip design. In Forty-first International Conference on Machine Learning.

Zhihai Wang, Jie Wang, Dongsheng Zuo, Yunjie Ji, Xinli Xia, Yuzhe Ma, Jianye Hao, Mingxuan
Yuan, Yongdong Zhang, and Feng Wu. A hierarchical adaptive multi-task reinforcement learn-
ing framework for multiplier circuit design. In Forty-first International Conference on Machine
Learning. PMLR, 2024.

Yilong Xu, Yang Liu, and Hao Sun. Reinforcement symbolic regression machine. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=PJVUWpPnZC.

A PROOF OF THEOREM 1

Consider a depth-L (L > 0) message-passing tree TL
v , whose GNN computation is yGNN(T

L
v) =

Φ0 ◦ Φ1 ◦ · · · ◦ ΦL(HvL , HvL−1
), where Hvi denotes the node feature matrix at layer i. For each

l = 0, . . . , L, let Kl ⊂ Rdl be the compact domain of input features before the l-th message-
passing, K̂l ⊂ Rd̂l be the compact domain after the update, Al be the symbolic class, and C(Kl)
be the space of continuous real-valued functions on Kl. Assume that (i) The GNN map Φl is
continuous and Ll-Lipschitz on its compact domain, and (ii) the symbolic class Al is a subalgebra
containing basic operators (i.e., {+,−,×,÷}) and constants, hence uniformly dense in C(Kl) by
the Stone–Weierstrass theorem (De Branges, 1959). Then, the proof proceeds in three steps.

Step 1 (Existence of symbolic approximants via Stone–Weierstrass). Since each Φl is continuous
on the compact domain Kl, and Al ⊂ C(Kl) is a subalgebra containing constants and separating
points, the Stone–Weierstrass theorem implies that Al is uniformly dense in C(Kl). Thus, for any
εl > 0 there exists Fl ∈ Al satisfying

δl := sup
z∈Kl

∥Φl(z)− Fl(z)∥ ≤ εl.

12

https://openreview.net/forum?id=ZTK3SefE8_Z
https://openreview.net/forum?id=ZTK3SefE8_Z
https://openreview.net/forum?id=PJVUWpPnZC
https://openreview.net/forum?id=PJVUWpPnZC

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Step 2 (Defining partial compositions). Define the true and approximate compositions

Ψ(l) := Φ0 ◦ · · · ◦ Φl, Ψ̂(l) := F0 ◦ · · · ◦ Fl,

and let the error after layer l be

el(X) :=
∥∥Ψ(l)(X)− Ψ̂(l)(X)

∥∥.
Step 3 (Lipschitz error propagation). We prove by induction that

sup
X

el(X) ≤
l∑

j=0

(
δj

j−1∏
t=0

Lt

)
. (1)

The base case l = 0 is immediate:

e0(X) = ∥Φ0(X)− F0(X)∥ ≤ δ0,

which matches equation 1.

For the inductive step, assume equation 1 holds for l − 1. Then

el(X) =
∥∥Ψ(l−1)(Φl(X))−Ψ(l−1)(Fl(X))

+ Ψ(l−1)(Fl(X))− Ψ̂(l−1)(Fl(X))
∥∥

≤ ∥Ψ(l−1)(Φl(X))−Ψ(l−1)(Fl(X))∥+ el−1(Fl(X)).

By Lipschitz continuity of Ψ(l−1) we have

∥Ψ(l−1)(Φl(X))−Ψ(l−1)(Fl(X))∥ ≤
(l−1∏

t=0

Lt

)
δl.

Taking the supremum over X and applying the induction hypothesis to el−1 yields

sup
X

el(X) ≤
(l−1∏

t=0

Lt

)
δl +

l−1∑
j=0

(
δj

j−1∏
t=0

Lt

)
,

which is exactly equation 1 for layer l. Setting l = L gives the bound stated in the theorem. Hence,
if δl → 0 for all l, the HIS approximation error tends to zero.

B MORE DETAILS OF THE BACKGROUND AND RELATED WORK

Logic Optimization heuristics To tackle the LO task, many researchers have developed a rich set of
LO heuristics. For instance, researchers have developed Rewrite (Bertacco et al., 1997) and Resub
(Brayton, 2006) for pre-mapping optimization, while Mfs2 (Mishchenko et al., 2011) is designed
for post-mapping optimization. These LO heuristics follow the paradigm as shown in Figure 4.
Specifically, these heuristics traverse the Boolean network in a topological order from PIs to POs
and apply transformations to subgraphs rooted at each node sequentially for all nodes. However,
previous literature (Wang et al.) found that these heuristics can be highly time-consuming due to a
large number of ineffective transformations. To address this problem, we follow the new heuristics
paradigm proposed by (Wang et al.) that can significantly improve the efficiency of LO heuristics
by learning a classifier to predict nodes with ineffective transformations and avoid applying trans-
formations on these nodes. In this paper, we focus on optimizing the post-mapping operator Mfs2
(Mishchenko et al., 2011), which stands out as the most time-consuming one among all commonly
used LO heuristics.

Circuit Representation In the LO stage, a circuit is usually modeled by a directed acyclic graph
(DAG), where nodes correspond to Boolean functions and directed edges correspond to wires con-
necting these functions. A Boolean function takes the form f : Bn → B, where B = {0, 1} denotes
the Boolean domain. Given a node, its fanins are nodes connected by incoming edges of this node,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Y

N

Y

N

𝐈𝐧𝐩𝐮𝐭: Original Circuit

i = N[0]

i = |N|?

Trans node N[i]
Gain
> 0?

Update circuit

i += 1

𝐎𝐮𝐭𝐩𝐮𝐭: Optimized Circuit

𝐄𝐱𝐭𝐫𝐚𝐜𝐭 𝐧𝐨𝐝𝐞 𝐢𝐝 𝐬𝐞𝐭 𝐍

Node features extraction

𝐒𝐜𝐨𝐫𝐢𝐧𝐠 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧

Effective node id set N

𝐏𝐫𝐮𝐧𝐞 𝐅𝐫𝐚𝐦𝐞𝐰𝐨𝐫𝐤

Collect all nodes

𝐃𝐞𝐟𝐚𝐮𝐥𝐭 𝐋𝐎 𝐡𝐞𝐮𝐫𝐢𝐬𝐭𝐢𝐜

Full node id set N

Start

End

Optimization For Loop

Figure 4: An illustration of the pruning framework for LO heuristics. The scoring function aims to
predict and prune the ineffective node-level transformations to prompt efficient LO.

and its fanouts are nodes connected by outgoing edges of this node. The primary inputs (PIs) are
nodes with no fanin, and the primary outputs (POs) are nodes with no fanout. The size of a circuit
denotes the number of nodes in the DAG. The depth (level) of a circuit denotes the maximal length
of a path from a PI to a PO in the DAG. The size and depth of a circuit are proxy metrics for the area
and delay of the circuit, respectively.

Deep Symbolic Discovery Several recent approaches utilize deep learning for symbolic discovery.
These methods generally fall into two categories: pre-trained and search-based. The pre-trained
symbolic regression methods have shown advantages in fast inference and have successfully discov-
ered large input (with up to twelve) symbolic functions (d’Ascoli et al., 2023; Biggio et al., 2021;
Kamienny et al., 2022). However, these methods are limited by high training costs and data gen-
eralization challenges. The search-based approach explores the discrete symbolic operator space to
identify functions that maximize the fitness with respect to the given dataset. Mainstream symbolic
regression frameworks based on this paradigm typically employ sequence prediction models, such
as Transformers (Kuang et al.; Holt et al., 2023) and RNNs (Petersen et al., 2020), or leverage Monte
Carlo tree search (Sun et al., 2023; Xu et al., 2024). These methods have achieved state-of-the-art
performance across multiple benchmarks.

C ADDITIONAL RESULTS

C.1 THE IMPORTANCE OF THE PREDICTION RECALL ON OPTIMIZATION PERFORMANCE

In this subsection, we explore how prediction recalls of effective nodes influence the optimization
performance of heuristics. To do this, we assess the performance of the Random method with dif-
ferent values of the hyperparameter k, which denotes the percent of nodes to apply transformations.
Note that Random is a baseline that randomly assigns a score between [0, 1] for each node. The
recall and optimization outcomes (i.e., And Reduction) of Random for various values of k are sum-
marized in Table 8. The results reveal a near-linearly positive relationship between the value of k
and the recall, with a similar trend observed between the recall and the optimization performance as

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

well. Therefore, to maintain the optimization performance of heuristics, it is essential for our model
to maximize prediction recall.

C.2 MORE RESULTS FOR COMPARATIVE EVALUATION

In this subsection, we provide further insights into the efficiency of our HIS compared to several
baselines, including COG-Mfs2, CMO-Mfs2, Effisyn-Mfs2, and Random-Mfs2. To ensure a fair
comparison, we select higher hyperparameter values for k in the baselines, which are necessary to
achieve comparable online optimization performance. While higher values of k improve optimiza-
tion performance, they also increase time costs, so this parameter is adjusted differently for each
circuit. Specifically, we use k = 60% for COG and CMO across most circuits, and higher values
of k for Effisyn and Random, based on the specific circuit. The results and details are shown in
Table 7. Additionally, when compared to COG-Mfs2 and CMO-Mfs2, our HIS achieves average
runtime improvements of 22. 91% and 11. 96%, respectively, while maintaining or even improving
the optimization performance across most circuits. Moreover, when compared to Random-Mfs2 and
Effisyn-Mfs2, with k values not lower than 70%, our HIS demonstrates average improvements of
19.24% and 21.82%.

C.3 MORE RESULTS FOR INFERENCE EFFICIENCY

In this subsection, we present further details on the inference efficiency of our HIS, compared to
COG, CMO, and Effisyn. Note that our HIS and COG both rely on graph inputs, which enhance
optimization performance but result in lower inference efficiency. As shown in Table 5, our HIS
achieves an average inference speedup of 296 × on the EPFL circuits and 254× on IWLS circuits.
These results reveal that HIS successfully learns a lightweight graph-based symbolic scoring func-
tion, delivering both high prediction recall and efficient inference. This makes HIS well-suited for
deployment in real-world industrial applications. Although CMO and Effisyn show higher inference
efficiencies than HIS, their actual runtimes are comparable.

D DETAILS OF DATASETS USED IN THIS PAPER

D.1 DESCRIPTION OF TWO WIDELY USED BENCHMARKS

We provide detailed statistics of the circuits from two open source benchmarks EPFL and IWLS
in Tables 9 and 10, respectively. These benchmarks contain 41 circuits in total. In general, nodes
denote logic gates and edges represent the wires connecting them. The fanins refer to the nodes that
provide inputs to it, while its fanouts are the nodes it drives. Primary inputs (PIs) are nodes without
fanins, and primary outputs (POs) are a subset of the network’s nodes. Latches are specialized nodes
found in sequential circuits, and cubes denote specific subsets of input variables. Lev refers to the
depth of the circuit, measured by the maximum number of edges between PIs and POs.

D.2 DATASETS FOR EVALUATION ON OPEN-SOURCE BENCHMARKS

For each circuit and a given X heuristic, we generate the circuit dataset by applying the X heuristic
to optimize the circuit, then collecting the graph features {Gi}ni=1 and labels {yi}ni=1. We observe
that a few circuits contain no effective nodes, and we exclude these from our analysis since no
transformations need to be applied to them, thus negating the need for model training.

In particular, employing the generalizable evaluation strategy with the EPFL benchmark, we con-
struct three datasets for evaluation. One of the three circuit datasets—–collected from Hyp, Mul-
tiplier, and Square—–serves as the testing dataset, while the circuits from the IWLS are used for
training. Similarly, using the generalization strategy with the IWLS benchmark, we create three
datasets, selecting one of these circuit datasets from DesPerf, Ethernet, and Conmax as the testing
dataset and using the EPFL circuits for training.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E DETAILS OF METHODS AND EXPERIMENTAL SETTINGS

E.1 DETAILS OF EXPERIMENTAL SETUP

E.1.1 OPTIMIZATION SEQUENCE FLOWS

Optimization Sequence Flows for Data Collection and Evaluation In industrial practice, a se-
quence of Logic Optimization (LO) heuristics is typically applied to optimize an input circuit. We
adopt the same setting throughout all experiments unless stated otherwise. Specifically, for the Mfs2
heuristic, we use the sequence strash; dch; if -C 12; mfs2 -W 4 -M 5000 to collect graph data and
evaluate both the Default Mfs2 heuristic and our proposed HIS. Note that the optimization sequence
flow is a standard academic flow for evaluating the Default Mfs2 heuristic, which follows previous
work (Mishchenko et al., 2011; Li et al., 2023; Wang et al.).

Optimization Sequence Flows for Evaluating 2HIS-Mfs2 To apply our HIS twice, we adopt the
heuristic sequence strash; dch; if -C 12; mfs2 -W 4 -M 5000; strash; if -C 12; mfs2 -W 4 -M
5000 for evaluating the performance of 2HIS. The Mfs2 heuristic is a post-mapping optimization
technique that operates on a k-input look-up table graph (K-LUT). Specifically, the strash heuristic
(Rai et al., 2021) converts the circuit into an And-Inverter Graph (AIG) using one-level structural
hashing, while the if heuristic (Mishchenko et al., 2007) maps the AIG into K-LUTs. Finally, the
Mfs2 heuristic performs optimization on the resulting K-LUTs twice.

E.1.2 TOP K ACCURACY METRIC

A common challenge in many LO heuristics is the ineffective node-level transformations problem,
where the number of ineffective nodes substantially exceeds the number of effective ones. This im-
balance introduces a significant distribution shift in the training dataset, making the normal threshold
of 0.5 unsuitable for determining whether a sample is positive. To mitigate this issue, we adopt the
approach proposed in (Wang et al.), which reformulates the classification task as a ranking problem.
Specifically, all nodes are ranked according to the prediction scores assigned by the learned sym-
bolic functions, and the top-k nodes are selected as positives while the remainder are classified as
negatives. The evaluation metric, referred to as top-k accuracy, is defined as the proportion of true
positive nodes in the top-k predictions that are correctly identified, i.e., recall.

E.2 IMPLEMENTATION DETAILS OF THE BASELINES

In this part, we present a detailed description of all the baselines used in this paper.

COG. COG is a well-designed 2-layer graph convolutional neural network that can achieve high
optimization performance (Wang et al.). Specifically, it constructs a bipartite graph as input and
learns a domain-invariant representation to achieve high generalization capability.

CMO. CMO is a novel graph-enhanced symbolic discovery framework (Bai et al.). Specifically, it
employs a Monte Carlo method to explore the symbolic function space, while leveraging a well-
designed GNN as a teacher model to guide the search process. This approach achieves state-of-the-
art performance among lightweight scoring function methods.

Effisyn. Effisyn is a human-designed nonlinear symbolic function (Li et al., 2023). Specifically, in
human-designed symbolic scoring functions, experts manually design the structure of the function
and extract key parameters from training circuit data to form a complete symbolic scoring function.
This process involves identifying relevant characteristics of the circuit and carefully selecting or
engineering the symbolic terms that best capture the underlying behavior of the system. However,
designing and developing these functions is extremely challenging as it requires extensive expert
knowledge and manual tuning.

Random. Random is a baseline that randomly predicts a score between [0, 1] for each node, and
selects the top k nodes as positive samples to apply node-level transformations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E.3 IMPLEMENTATION DETAILS OF THE TRAINING DETAILS

In this subsection, we provide further details of the training process. The overall procedure of our
algorithm is illustrated in Algorithm 1, and the corresponding parameter settings are summarized
in Table 4, covering model, reinforcement learning, and symbolic tree configurations. Moreover,
we adopt a Best-of-N (BON) strategy during training. Specifically, the top-N expressions with
the highest training rewards are selected to construct an ensemble model. Owing to the lightweight
nature of the symbolic functions learned by HIS, the additional computational overhead is negligible,
while yielding substantial performance improvements. In our experiments, we set N = 4.

E.4 IMPLEMENTATION DETAILS OF THE CIRCUIT SUBGRAPH CONSTRUCTION

In this subsection, we describe the procedure for constructing circuit subgraphs and modeling them
as computation trees. Following (Wang et al.), a subgraph in LS heuristics is constructed by select-
ing a root node along with a limited set of its neighboring nodes. To enable more effective node
embedding alignment, we first transform the subgraph into a bipartite graph, where the root node
and the non-root nodes are treated as two distinct types of nodes. This bipartite graph is then con-
verted into a two-layer computation tree: the root node corresponds to the 0-th and 2-th layers, while
all candidate nodes in the subgraph are placed in the 1-th layer.

F THE USE OF LARGE LANGUAGE MODEL

In accordance with the ICLR 2026 policy, we disclose the use of Large Language Models (LLMs)
as an assistive tool in preparing this manuscript. The primary role of LLMs was to support improve-
ments in writing clarity and presentation quality.

Specifically, LLMs were used for the following purposes:

• Grammar and Spelling Correction: Detecting and correcting grammatical errors and
typographical mistakes.

• Clarity and Readability: Rephrasing sentences and suggesting alternative formulations to
enhance readability and flow.

• Conciseness: Streamlining sentences and paragraphs to make the writing more direct and
succinct.

All scientific contributions, analyses, and claims in this paper are solely the work of the human
authors. The use of LLMs was limited to language refinement and carried out responsibly in accor-
dance with academic and ethical standards.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

+

−

+

−0.1

𝐻𝑣0
1

𝐻𝑣0
2

𝐻𝑣0
2 𝑚𝑒𝑎𝑛

+

𝐻𝑣0
2𝑚𝑒𝑎𝑛

×

𝐻𝑣1
4 𝐻𝑣2

1

Hierarchical Symbolic Tree for IWLS Hierarchical Symbolic Tree for EPFL

𝑳𝒂𝒚𝒆𝒓 𝟎 𝑳𝒂𝒚𝒆𝒓 𝟏 𝑳𝒂𝒚𝒆𝒓 𝟐

+

+

+ 𝐻𝑣0
2

𝐻𝑣0
1

0.2𝑚𝑖𝑛

×

𝐻𝑣0
3𝐻𝑣1

4

Figure 5: Visualization of the hierarchical symbolic functions for EPFL and IWLS benchmarks.

Algorithm 1 Circuit Symbolic Generation Framework

Input: Transformer model pθ, symbolic library L, dataset D = {(TL
vi , yi)}

n
i=1, number of gener-

ated expressions m, number of layers L
Output: Updated parameter θ.

for i = 1 to training epoch do
Initialize empty list of hierarchical symbolic trees
for j = 1 to m do

Initialize empty sequence τ
for l = 0 down to L do

while sequence not completed do
Sample a token: τ lk ∼ pθl(τ

l
k|τ l1, . . . , τ ll−1)

Apply constraints to τ lk
end while

end for
Merge L sequences {τ i}Li=0into a hierarchical symbolic tree τ
if τ contains updated feature tokens then

Substitute feature tokens with corresponding sequences
end if
Add τ to the list of generated trees

end for
Compute rewards for each tree τ :

r(τ) = − 1

n

n∑
i=1

[
αyi(1− ŷi)

γ log(ŷi) + (1− α)(1− yi)ŷ
γ
i log(1− ŷi)

]
Update model parameters θ using PPO objective:

J(θ) = Eτ∼p(τ |θ)

[
min

(
pθ(τ)

pθold(τ)
Aθold(τ), clip

(
pθ(τ)

pθold(τ)
, 1− ϵ, 1 + ϵ

)
Aθold(τ)

)]
end for

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 4: We provide comprehensive implementation details, including the arguments for training,
the Transformer model, and RL algorithms, along with a subset of the tokens library.

Parameter Value
Train Kwargs

number of expressions generated each epoch 512
data batch size 10240
number of expressions for RL training 96
number of expressions for recording 16
training epoch 2000

Transformer Kwargs

Transformer min length of each layer [4, 4, 4]
Transformer max length of each layer [48, 16, 8]
Transformer embedding dimension 32
Transformer attention heads 4
Transformer feedforward model dimension 128
Transformer number of layers 4

RL Kwargs

PPO learning rate 5e-5
PPO epochs at each iteration 10
PPO clipping threshold 0.2

Symbolic Tree Kwargs

Constant operators [0.1, 0.2, 0.5]
Math operators {+,−,×,÷, log, exp}
aggregation operators {min,max,mean, sum}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: The model inference results show that our HIS is extremely efficient for inference compared
to the SOTA graph-based approach (COG) when executed on CPU-based LO tools.

EPFL Benchmark Hyp Square Multiplier Average
Method Inference time (s) ↓ Improvement ↑ Inference time (s) ↓ Improvement ↑ Inference time (s) ↓ Improvement ↑ Inference time (s) ↓ Improvement ↑

COG 5.631 NA 0.418 NA 0.865 NA 2.304 NA
CMO 0.003 2097 0.001 761 0.001 1080 0.001 1313

Effisyn 0.005 1228 0.001 760 0.001 1087 0.002 1025
HIS (Ours) 0.009 635 0.003 162 0.010 90 0.007 296

IWLS Benchmark DesPerf Ethernet Conmax Average
Method Inference time (s) ↓ Improvement ↑ Inference time (s) ↓ Improvement ↑ Inference time (s) ↓ Improvement ↑ Inference time (s) ↓ Improvement ↑

COG 2.507 NA 1.050 NA 1.388 NA 1.648 NA
CMO 0.002 1598 0.000 2501 0.001 1370 0.001 1823

Effisyn 0.003 907 0.001 1304 0.001 961 0.002 1057
HIS (Ours) 0.007 342 0.005 197 0.006 223 0.006 254

Table 6: The discovered hierarchical symbolic functions for the IWLS and EPFL benchmarks.

IWLS

layer0 Final output score

Expression
(
Ĥ1

v0 −
(
0.1 + (Ĥ1

v0 − Ĥ9
v0)
))

+ Ĥ0
v0

layer1 Updated Feature Ĥ0
v0

Ĥ1
v0 Ĥ2

v0 Ĥ3
v0 Ĥ4

v0 Ĥ5
v0

Ĥ6
v0 Ĥ7

v0 Ĥ8
v0 Ĥ9

v0

Expression H0
v0

H1
v0 H2

v0 H3
v0 H4

v0 sum(0.1 + Ĥ3
v1) max(0.1− Ĥ4

v1) max(Ĥ1
v1 + Ĥ2

v1) min(Ĥ1
v1 ∗ Ĥ3

v1) mean(Ĥ5
v1

+H1
v0)

layer2 Updated Feature Ĥ0
v1

Ĥ1
v1 Ĥ2

v1 Ĥ3
v1 Ĥ4

v1 Ĥ5
v1

Ĥ6
v1 Ĥ7

v1 Ĥ8
v1 Ĥ9

v1

Expression H0
v1

H1
v1 H2

v1 H3
v1 H4

v1 mean(H3
v1 ∗H

0
v2) min(H3

v1 +H1
v2) mean(H3

v1 +H2
v2) mean(H3

v1 −H0
v2) min(H1

v2 +H0
v2)

EPFL

layer0 Final output score

Expression
((

(Ĥ6
v0 + 0.2) + Ĥ0

v0

)
+ Ĥ1

v0

)
layer1 Updated Feature Ĥ0

v0
Ĥ1

v0 Ĥ2
v0 Ĥ3

v0 Ĥ4
v0 Ĥ5

v0
Ĥ6

v0 Ĥ7
v0 Ĥ8

v0 Ĥ9
v0

Expression H0
v0

H1
v0 H2

v0 H3
v0 H4

v0 min(Ĥ2
v1 − 0.5) min(Ĥ3

v1 ∗H
2
v0) max(Ĥ4

v1 − Ĥ2
v1
) min(0.5 ∗ Ĥ2

v1) min(H1
v0 + Ĥ1

v1)

layer2 Updated Feature Ĥ0
v1

Ĥ1
v1 Ĥ2

v1 Ĥ3
v1 Ĥ4

v1 Ĥ5
v1

Ĥ6
v1 Ĥ7

v1 Ĥ8
v1 Ĥ9

v1

Expression H0
v1

H1
v1 H2

v1 H3
v1 H4

v1 max(H2
v1 +H4

v2) max(H1
v2 + 0.2) min(0.1 ∗H1

v2
) min(0.2−H1

v2) mean(H3
v2 +H2

v1)

Table 7: We compare our HIS with four competitive baselines. The results demonstrate that our ap-
proach consistently outperforms all baselines in terms of online heuristics efficiency and optimiza-
tion performance. And Reduction (AR) denotes the reduced number of nodes, i.e., optimization
performance. Normalized AR denotes the ratio of the AR to that of the default heuristic.

Hyp Square
Method And Reduction(AR) ↑ Normalized AR ↑ Times(s) ↓ Method And Reduction(AR) ↑ Normalized AR ↑ Times(s) ↓

COG 435 0.66 198.09 COG 6 0.75 14.70
CMO 142 0.21 129.56 CMO 6 0.75 13.60

Random 563 0.85 238.22 Random 3 0.38 15.62
Effisyn 498 0.75 218.20 Effisyn 3 0.38 14.66

HIS (Ours) 566 0.85 85.46 HIS (Ours) 6 0.75 10.69

Multiplier DesPerf
Method And Reduction(AR) ↑ Normalized AR ↑ Times(s) ↓ Method And Reduction(AR) ↑ Normalized AR ↑ Times(s) ↓

COG 21 0.95 17.07 COG 732 0.65 29.01
CMO 22 1.00 15.08 CMO 900 0.81 22.82

Random 18 0.82 14.99 Random 906 0.81 23.30
Effisyn 22 1.00 15.51 Effisyn 886 0.79 24.68

HIS (Ours) 22 1.00 13.52 HIS (Ours) 936 0.84 22.84

Ethernet Conmax
Method And Reduction(AR) ↑ Normalized AR ↑ Times(s) ↓ Method And Reduction(AR) ↑ Normalized AR ↑ Times(s) ↓

COG 36 0.95 18.30 COG 259 0.33 16.66
CMO 2 0.05 20.88 CMO 730 0.93 14.43

Random 19 0.50 19.04 Random 579 0.74 14.25
Effisyn 24 0.63 20.93 Effisyn 593 0.76 16.76

HIS (Ours) 37 0.97 13.19 HIS (Ours) 647 0.83 13.63

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: We report the recall and optimization performance of the Mfs2 heuristic incorporated with
Random models. Percent denotes the hyperparameter k, i.e., the percent of nodes to apply transfor-
mations. And Reduction denotes the reduced number of nodes, i.e., optimization performance.

Hyp Multiplier
Percent Recall And Reduction(AR) Percent Recall And Reduction(AR)

0.10 0.11 33.33 0.10 0.10 3.00
0.20 0.20 69.00 0.20 0.18 5.33
0.30 0.30 111.33 0.30 0.28 6.67
0.40 0.40 164.67 0.40 0.39 9.33
0.50 0.50 225.33 0.50 0.44 10.00
0.60 0.60 295.00 0.60 0.56 12.33
0.70 0.70 374.33 0.70 0.67 14.00
0.80 0.80 464.33 0.80 0.78 16.67
0.90 0.90 561.33 0.90 0.89 19.00
1.00 1.00 664.00 1.00 1.00 22.00

Square DesPerf
Percent Recall And Reduction(AR) Percent Recall And Reduction(AR)

0.10 0.10 114.67 0.10 0.10 114.67
0.20 0.21 210.33 0.20 0.21 210.33
0.30 0.31 318.33 0.30 0.31 318.33
0.40 0.41 421.33 0.40 0.41 421.33
0.50 0.50 529.67 0.50 0.50 529.67
0.60 0.60 657.67 0.60 0.60 657.67
0.70 0.70 790.00 0.70 0.70 790.00
0.80 0.80 904.67 0.80 0.80 904.67
0.90 0.90 1001.33 0.90 0.90 1001.33
1.00 1.00 1118.00 1.00 1.00 1118.00

Ethernet Conmax
Percent Recall And Reduction(AR) Percent Recall And Reduction(AR)

0.10 0.11 0.00 0.10 0.10 95.00
0.20 0.19 0.00 0.20 0.20 188.00
0.30 0.28 0.33 0.30 0.30 251.00
0.40 0.38 1.33 0.40 0.40 330.67
0.50 0.48 2.33 0.50 0.50 411.67
0.60 0.56 3.00 0.60 0.59 493.33
0.70 0.65 3.67 0.70 0.69 557.67
0.80 0.75 4.33 0.80 0.78 625.00
0.90 0.89 6.67 0.90 0.90 718.67
1.00 1.00 8.00 1.00 1.00 782.00

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: A detailed description of circuits from the EPFL benchmark. Nodes denotes the sizes of
circuits, and Lev denotes the depths of circuits.

Circuit PI PO Latch Nodes Edge Cube Lev

Adder 256 129 0 1020 2040 1020 255
Barrel shifter 135 128 0 3336 6672 3336 12

Divisor 128 128 0 57247 114494 57247 4372
Hypotenuse 256 128 0 214335 428670 214335 24801

Log2 32 32 0 32060 64120 323060 444
Max 512 130 0 2865 5730 2865 287

Multiplier 128 128 0 27062 54124 27062 274
Sin 24 25 0 5416 10832 5416 225

Square-root 128 64 0 24618 49236 24618 5058
Square 64 128 0 18486 36969 18485 250

Round-robin ariter 256 129 0 11839 23678 11839 87
Alu control unit 7 26 0 175 348 174 10

Coding-cavlc 10 11 0 693 1386 693 16
Decoder 8 256 0 304 608 304 3

i2c controller 147 142 0 1357 2698 1356 20
Int to float converter 11 7 0 260 520 260 16
Memory controller 1204 1230 0 47110 93945 47109 114

Priority encoder 128 8 0 978 1956 978 250
Lookahead XY router 60 30 0 284 514 257 54

Voter 1001 1 0 13758 27516 13758 70

Table 10: A detailed description of circuits from the IWLS benchmark. Nodes denotes the sizes of
circuits, and Lev denotes the depths of circuits.

Circuit PI PO latch nodes edge cube lev

aes core 259 129 530 20797 40645 24444 28
des area 240 64 128 5005 9882 5889 35
des perf 234 64 8808 98463 180542 108666 28
ethernet 98 115 10544 46804 113378 72850 37

i2c 19 14 128 1147 2299 1375 15
mem ctrl 115 152 1083 11508 26436 14603 31

pci bridge32 162 207 3359 16897 34607 23130 29
pci conf cyc addr dec 32 32 0 109 212 128 6

pci spoci ctrl 25 13 60 1271 2637 1557 19
sasc 16 12 117 552 1148 766 10

simple spi 16 12 132 823 1694 1089 14
spi 47 45 229 3230 6904 4054 32

steppermotordrive 4 4 25 228 397 253 11
systemcaes 260 129 670 7961 18236 11648 44
systemcdes 132 65 190 3324 6304 3791 33

tv80 14 32 359 7166 16280 9352 50
usb funct 128 121 1746 12871 27102 16378 25
usb phy 15 18 98 559 1001 638 12
vga lcd 89 109 17079 124050 242332 146201 25

wb conmax 1130 1416 770 29036 77185 39619 26
wb dma 217 215 263 3495 7052 4496 26

22

	Introduction
	Background
	Related Work
	Method
	The Hierarchical Circuit Symbolic Tree Representation
	The Circuit Symbolic Generation Framework

	Experiment
	Conclusion
	 Proof of Theorem 1
	More details of the Background and Related Work
	Additional Results
	The Importance of the Prediction Recall on Optimization Performance
	More Results for Comparative Evaluation
	More Results for Inference Efficiency

	Details of Datasets Used in This Paper
	Description of Two widely used Benchmarks
	Datasets for Evaluation on Open-Source Benchmarks

	Details of Methods and Experimental Settings
	Details of Experimental Setup
	Optimization Sequence Flows
	Top k Accuracy Metric

	Implementation Details of The Baselines
	Implementation Details of The Training Details
	Implementation Details of The Circuit Subgraph Construction

	The Use of Large Language Model

