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ABSTRACT

The efficiency of Logic Optimization (LO) has become one of the key bottlenecks
in chip design. To prompt efficient LO, many graph-based machine learning (ML)
methods, such as graph neural networks (GNNs), have been proposed to predict
and prune a large number of ineffective subgraphs of the LO heuristics. However,
the high inference cost and limited interpretability of these approaches severely
limit their wide application to modern LO tools. To address this challenge, we
propose a novel Hierarchical Circuit Symbolic Discovery Framework, namely
HIS, to learn a lightweight and interpretable symbolic function that can accu-
rately identify ineffective subgraphs for efficient LO. Specifically, HIS proposes a
hierarchical tree structure to represent the circuit symbolic function, where every
layer of the symbolic tree performs an efficient and interpretable message passing
to capture the structural information of the circuit graph. To learn the hierarchical
tree, we propose a circuit symbolic generation framework that leverages reinforce-
ment learning to optimize a structure-aware Transformer model for symbolic to-
ken generation. To the best of our knowledge, HIS is the first approach to discover
an efficient, interpretable, and high-performance symbolic function from the cir-
cuit graph for efficient LO. Experiments on two widely used circuit benchmarks
show that the learned graph symbolic functions outperform previous state-of-the-
art approaches in terms of efficiency and optimization performance. Moreover,
we integrate HIS with the Mfs2 heuristic, one of the most time-consuming LO
heuristics. Results show that HIS significantly enhances both its efficiency and
optimization performance on a CPU-based machine, achieving an average run-
time improvement of 27.22% and a 6.95% reduction in circuit size.

1 INTRODUCTION

The modern chip design workflow leverages a variety of Electronic Design Automation (EDA) tools
to efficiently and reliably synthesize, simulate, test, and verify different circuit designs (Huang et al.,
2021). Logic Optimization (LO) is one of the most important EDA tools in the front-end workflow
(Berndt et al., 2022; Pasandi et al., 2023). Specifically, LO aims to optimize circuits—modeled
by directed acyclic graphs—with functionality-equivalent transformations and reduced size and/or
depth. It is crucial to well tackle the LO task as it can significantly improve the circuits’ Quality of
Results (QoR), i.e., various metrics such as size, level, and edge to evaluate the quality of designed
chips. (De Abreu et al., 2021; Bertacco et al., 1997). However, the LO task is a challenging NP-hard
problem (Micheli, 1994; Farrahi & Sarrafzadeh, 1994), which makes it extremely hard to tackle. To
approximately tackle the LO task, many effective LO heuristics such as Mfs2 (Mishchenko et al.,
2011), Resub (Brayton, 2006), and Rewrite (Bertacco et al., 1997) have been developed. These
heuristics follow a common paradigm in which specific transformations are sequentially applied to
the subgraph rooted at each node (i.e., node-level transformations) for all nodes of an input circuit.

The efficiency of LO heuristics in LO tools has become one of the key bottlenecks in chip de-
sign, thus significantly impacting the final circuit performance and Time-to-Market, i.e., the over-
all duration for developing and commercializing new chips (Neto et al., 2021; Sabbavarapu et al.,
2014; Reddy et al., 2014). However, previous studies found that executing LO heuristics can be
highly time-consuming due to a large number of ineffective and redundant node-level transforma-
tions (Wang et al.). To address this, they propose a pruning framework, which leverages a key
scoring function to identify and avoid the ineffective transformations. Specifically, (Li et al., 2023)
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Figure 1: Our HIS framework learns a hierarchical symbolic tree which performs an interpretable
and efficient message aggregation motivated by the graph neural networks (GNNs).

proposes a lightweight mathematical expression as the scoring function. However, this method fails
to capture the rich structural information of the subgraph, resulting in limited optimization perfor-
mance. Recently, (Wang et al.) proposes a well-designed graph neural network (GNN) model, which
can effectively capture the subgraphs’ structural information to accurately identify ineffective trans-
formations. Nevertheless, the high inference cost and limited interpretability of GNNs significantly
restrict their adoption in modern LO tools.

To address these challenges, we propose a novel Hierarchical Circuit Symbolic Discovery Frame-
work, namely HIS, to learn a lightweight and interpretable symbolic function from the circuit
subgraph—always modeled by a computation tree—that can accurately identify ineffective transfor-
mations for efficient LO. The key technical challenge lies in designing a symbolic function that can
effectively capture subgraph structural information. Inspired by the message-passing mechanism in
GNNs, HIS proposes a hierarchical symbolic function representation, where each layer performs an
interpretable and computationally efficient form of message aggregation to capture the multi-level
structural information, as shown in Figure 1. To learn hierarchical symbolic functions, we intro-
duce a circuit symbolic generation framework. In this framework, a structure-aware Transformer
is employed to effectively encode tree-structured information and generate a distribution over sym-
bolic subtrees at each layer. Subtrees sampled from this distribution are merged to form hierarchical
symbolic trees, which are then evaluated using a group reward. The reward signal is leveraged to
optimize the model through a policy gradient algorithm. Ultimately, the target hierarchical symbolic
tree is generated according to the optimized model.

Experiments on two widely used benchmarks show that the symbolic scoring functions learned by
our HIS outperform previous state-of-the-art approaches in terms of efficiency and optimization
performance. Moreover, we incorporate HIS with the Mfs2 heuristic—the most time-consuming
one among commonly used LO heuristics. The empirical results on widely used circuit benchmarks
demonstrate that HIS achieves an average runtime improvement of 27.22% and a 6.95% reduction
in circuit size compared with the default Mfs2 heuristic. Furthermore, our HIS learned hierarchical
symbolic functions offer strong interpretability, revealing how specific structural patterns in the
circuit graph impact the final node embedding.

We summarize our major contributions as follows: (1) To the best of our knowledge, HIS is the
first approach to discover an efficient, interpretable, and high-performance graph symbolic function
for efficient LO. (2) The major technical contribution of HIS is the novel hierarchical symbolic tree
representation that enables interpretable and efficient message aggregation to capture the structural
information of circuit graphs. (3) Experiments show that the learned interpretable symbolic func-
tions outperform state-of-the-art approaches in terms of efficiency and optimization performance.

2 BACKGROUND

Logic Optimization (LO) Driven by Moore’s law, the complexity of chip design has increased
exponentially (Khailany, 2020; Lopera et al., 2021; Huang et al., 2021; Mirhoseini et al., 2021; Ren
& Hu, 2023). To address this growing complexity, modern design workflows integrate a suite of
Electronic Design Automation (EDA) tools to synthesize, simulate, test, and verify different circuit
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designs efficiently and reliably. Among these tools, logic optimization (LO)—which optimizes
circuits represented as Boolean networks—serves as a key component. LO typically involves two
stages: pre-mapping optimization and post-mapping optimization (Hosny et al., 2020; Ren & Hu,
2023; Wang et al., 2024; Brayton et al., 2010). In the pre-mapping stage, heuristics such as Rewrite
(Bertacco et al., 1997), Resub (Brayton, 2006), and Refactor (Brayton, 1982) are used to optimize
the input circuit. The optimized logic circuits are then mapped onto the target technology library,
e.g., a standard-cell netlist (Brayton & Kam) or k-input lookup tables (Mishchenko et al., 2007).
Consequently, the post-mapping heuristics like Mfs2 (Mishchenko et al., 2011) are employed to
further enhance the mapped circuit.

The pruning framework for LO Heuristics Many effective LO heuristics have been developed to
tackle the LO task. These heuristics follow the same paradigm as illustrated in Figure 4. Specif-
ically, they apply specific transformations to a subgraph rooted at each node (i.e., the node-level
transformations) sequentially for all nodes in an input circuit. These LO heuristics constitute a
cornerstone of logic optimization, enabling substantial improvements in circuit quality. However,
recent work (Wang et al.) has shown that a large number of node-level transformations in many LO
heuristics are ineffective, which makes applying these heuristics highly time-consuming. To address
this challenge, several studies (Wang et al.; Li et al., 2023) have proposed a pruning framework,
which leverages a scoring function to identify and avoid transformations on those ineffective nodes
to improve the efficiency of LO heuristics. Within the pruning framework, the accuracy and effi-
ciency of the scoring function significantly determine the optimization performance and runtime of
LO heuristics. Therefore, it is crucial to discover an accurate and efficient scoring function.

Computation Tree of Graph Neural Networks (GNNs). GNNs have been developed to solve the
LO task. Let G = (V, E) denote a circuit graph with node set V and edge set E . For a target node
v ∈ V , the input to the GNN for LO is defined as a subgraph centered at v, which can be equivalently
represented by its depth-L computation tree TL

v as shown in Figure 1. Specifically, we set T 0
v = v,

and recursively construct TL
v for L > 1 by expanding TL−1

v with the neighbors of all leaf nodes in
TL−1
v . The GNN encoder takes TL

v as input and performs iterative message passing to learn node
embeddings. Formally, the L-th layer of a GNN encoder can be written as:

h(L)
v = UPDATE(L)

(
h(L−1)
v , AGGREGATE(L)

(
h(L−1)
u : u ∈ N (v)

))
,

where h
(L)
v denotes the embedding of node v at layer L, h(0)

v is initialized from its feature vector,
and N (v) denotes the set of neighbors of v.

3 RELATED WORK

Scoring functions for LO heuristics. A variety of approaches have been developed to address
the LO task, which can be broadly categorized into heuristic and machine learning-based methods.
Heuristic methods, such as (Li et al., 2023), manually design lightweight scoring functions derived
from circuit structure. However, these approaches often fail to capture the rich structural information
of subgraphs, resulting in limited optimization performance. In contrast, machine learning methods,
such as (Bai et al.) and (Wang et al.), employ graph convolutional networks either to generate
scoring functions or to directly serve as them. Nevertheless, their high inference cost and limited
interpretability significantly hinder their adoption in modern LO tools. These limitations highlight
the need for a scoring function that is accurate, interpretable, and computationally efficient.

Graph Symbolic Distillation from GNNs Motivated by the high expressive power but opaque
nature of GNNs, prior research has focused on distilling interpretable symbolic functions to ap-
proximate their mapping mechanisms. For example, (Cranmer et al., 2020) proposed a framework
that extracts symbolic functions from trained GNNs for scientific discovery. The approach first
trains neural network models and then employs a symbolic learning model to approximate both the
message-passing and aggregation functions with symbolic representations. However, this method
requires extensive process labels to train the symbolic model, which limits its scalability and prac-
ticality. More recently, (Kuang et al.) proposed an end-to-end framework to learn interpretable
symbolic policies from a general bipartite graph representation. Nevertheless, we observe that this
method struggles to effectively capture circuit structural information, often leading to suboptimal
performance. To address these limitations, we propose a hierarchical symbolic tree representation
that learns structural symbolic functions in an end-to-end fashion without relying on process labels.
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4 METHOD

In this section, we provide a comprehensive description of our Hierarchical Circuit Symbolic Dis-
covery (HIS) framework. We begin by introducing the hierarchical circuit symbolic tree representa-
tion in Section 4.1, where the structural properties of circuits are captured in a symbolic form. Then,
we present the circuit symbolic generation framework (see Figure 2), which proposes a reinforce-
ment learning based approach for discovering the symbolic tree, as detailed in Section 4.2.

4.1 THE HIERARCHICAL CIRCUIT SYMBOLIC TREE REPRESENTATION

Motivation To prompt efficient LO, graph neural networks (GNNs) (Wang et al.) have been applied
as the scoring function to predict and prune the ineffective node-level transformations. While this
method achieves high performance on node classification, the complex architecture and extensive
parameters significantly restrict its deployment in pure CPU-based industrial scenarios. To address
this limitation, we propose to distill the GNN into a symbolic representation for efficient deploy-
ment. However, it is challenging to learn a lightweight symbolic function that preserves expressive
graph representation capabilities. Motivated by the layered message-passing mechanism of GNNs,
which integrates structural information from neighboring nodes, we propose the hierarchical circuit
symbolic function representation. This representation comprises multi-layer functions that emulate
the message-passing process across layers, enabling the resulting symbolic functions to capture both
local and global graph structural information effectively for node classification.

Graph features and Symbolic library Given a circuit subgraph rooted at node v0, we follow (Wang
et al.) and represent it as an L-layer computation tree TL

v0 (see more details about the subgraph
construction process in Appendix E.4). By traversing all nodes in the circuit graph, we can thus
construct a training dataset D = {(TL

vi , yi)}
n
i=1. In our experiments, we set L = 2, which is

consistent with the 2-layer GNN configuration adopted in (Wang et al.). To learn a symbolic function
from the graph, we first define the graph features and symbolic library. Each node v ∈ TL

v0 is
initialized with a 5-dimensional structural feature vector hv , as defined in (Bai et al.). Let vi =
{vji }

ni
j=1 denote the set of nodes at layer i. Then the node features at layer i can be represented as

Hvi
=
[
hv1

i
· · · hv

ni
i

]⊤ ∈ Rni×5.

Finally, the graph features are represented as the union of node features across all layers

F =

L⋃
i=0

{H0
vi
, · · · ,H5

vi
},

where Hj
vi

∈ Rni denotes the j-th column of the node feature matrix at layer i. Moreover, con-
sidering the symbolic library, we employ {+,−,×,÷, log, exp} as the mathematical operators and
{0.1, 0.2, 0.5} as constants. To aggregate neighborhood information, we follow (Kuang et al.) and
employ four unary operators, {min,max,mean, sum}, each mapping features from layer i to layer
i−1, i.e., Rni → Rni−1 . The aggregation is performed according to edge connectivity, ensuring that
only features of adjacent nodes are combined. These aggregation operators play the same role as
those in GNNs, which can effectively capture the graph structural information. Finally, the symbolic
library comprises mathematical operators, aggregation operators, and constants.

Hierarchical Symbolic Tree To represent the hierarchical symbolic functions, we employ a tree-
structured representation in which the leaf nodes correspond to features or constants, and the internal
nodes denote mathematical operators (Kuang et al., 2024; Sun et al., 2023; Petersen et al., 2020).
Unlike traditional symbolic functions that take node features as input, our circuit symbolic tree
directly operates on the circuit computation tree to aggregate the structural information for node
classification. Specifically, given an L-layer computation tree TL

v0 rooted at node v0, the hierarchical
symbolic tree is organized into L layers (see Figure 1). For each node at layer i of the computation
tree, the learned function Fi aggregates messages from its neighboring nodes to update its feature
representation. In general, the aggregation function in layer i can be expressed as{

score = Fi

(
Ĥvi

)
, if i = 0,

Ĥvi−1
= Fi

(
Ĥvi

,Hvi−1

)
, if i > 0,
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Figure 2: Illustration of the Circuit Symbolic Generation framework. The circuit is first represented
as a computation tree to provide graph features. Then, a hierarchical symbolic function is generated
layer by layer using Transformer-based policies that incorporate both parent and sibling information.
Finally, the model parameters are optimized via policy gradient methods.

where Ĥvi−1 ∈ Rni−1×d denotes the updated node feature matrix at layer i−1, and Fi represents d
aggregation functions that update the features of layer i nodes based on their current features and the
features of nodes in layer i − 1. The parameter d, which denotes the dimensionality of the updated
feature vectors, is set to 10 in our experiments. By combining the learned symbolic functions Fi,
we can construct a hierarchical symbolic tree. This symbolic tree captures the structural information
of the circuit through layer-wise aggregation while retaining the efficiency of symbolic operations,
which is deployable in industrial settings.

4.2 THE CIRCUIT SYMBOLIC GENERATION FRAMEWORK

Symbolic Sequence Formulation In this section, we provide a detailed explanation of the learning
process for symbolic trees at each hierarchical layer. Previous works usually employ a pre-order
traversal sequence τ = {τ1, τ2 · · · τn} to represent the symbolic tree. Therefore, the task of gener-
ating symbolic trees can be formulated as a sequence generation task. At each generation step, we
output a categorical distribution over all possible tokens to sample the current token τi. Finally, we
can generate a symbolic sequence τ with the probability given by

pθ(τ) =

|τ |∏
i=1

pθ(τi|τ1, · · · , τi−1),

where pθ(τ) is the probability of generating the sequence τ , θ is the generation model parameter,
and pθ(τi|τ1, · · · , τi−1) is the conditional probability of generating token τi at i-th step.

Transformer Model for Symbolic Generation To generate the hierarchical symbolic tree, we de-
sign L encoder-only Transformer models, each model πθi responsible for generating the symbolic
functions at layer i. At each generation step k, the layer i generation model takes the previously
sampled token sequence as input and predicts the next token τ ik. However, a standard Transformer is
limited in capturing the tree-structural dependencies of symbolic expressions, which often leads to
suboptimal results (Holt et al., 2023; Petersen et al., 2020). To overcome this limitation, we design
a tree-aware embedding aggregation mechanism inspired by (Kuang et al.). Specifically, during the
generation period of token τ ik, we first identify its parent and sibling tokens, denoted as τ ipk

and
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τ isk , and then encode them as Parent(τ ipk
) = βp and Sibling(τ isk) = βs, respectively. After pass-

ing through several encoder layers—each consisting of a multi-head attention and a feed-forward
network—we compute the representation of τ ik by averaging the embedding vectors of τ ipk

and
τ isk . We then apply a softmax function to this representation to obtain the probability distribution
pθi(τ

i
k | τ i1, . . . , τ ik−1), which is used to generate the token τ ik at step k.

Training Model via Reinforcement Learning Since the symbolic tree is not differentiable with
respect to the model parameters θ = (θ0, · · · , θL), we formulate the sequence generation as a
reinforcement learning problem. Specifically, we formulate the transformer models as the policy
network, treat the sampled tokens as states, and consider each generated token as an action. Further-
more, we regard a complete sequence of tokens as an episode, and define the reward as a terminal
signal that is computed only upon the completion of the expression. In each episode, we sample
a group of m symbolic expressions and use them to optimize the policy parameters via Proximal
Policy Optimization (PPO). Specifically, we define the objective function as

J(θ) = Eτ∼p(τ |θ)

[
min

(
pθ(τ )

pθold(τ )
Aθold(τ ), clip

(
pθ(τ )

pθold(τ )
, 1− ϵ, 1 + ϵ

)
Aθold(τ )

)]
,

where τ = (τ1, τ2, . . . , τL) denotes the hierarchical symbolic tree obtained by sequentially merging
the generated symbolic trees τ i from each layer, pθ(τ ) =

∑L
i=0 pθi(τ

i) denotes the probability of
generating the hierarchical symbolic tree τ under the policy parameters θ, Aθold(τ ) is the advantage
function, and ϵ is the clipping threshold that constrains the policy update. Unlike traditional PPO,
which requires training a resource-intensive critic network for advantage prediction, we compute the
advantage as the sequence reward relative to the group mean reward, achieving both lower resource
consumption and more stable training. The advantage is defined as

Aθ(τ ) =
r(τ )− r̄

σr
,

where r̄ = Eτ∼p(τ |θ)[r(τ )] and σr =

√
Eτ∼p(τ |θ)

[
(r(τ )− r̄)2

]
denote the mean and standard

deviation of rewards in the generated function groups. Given a symbolic tree τ and the training data
D = {(TL

vi , yi)}
n
i=1, the reward is computed using the focal loss (Lin et al., 2017), defined as

r(τ ) = − 1

n

n∑
i=1

[
αyi(1− ŷi)

γ log(ŷi) + (1− α)(1− yi)ŷ
γ
i log(1− ŷi)

]
,

where ŷi = τ (TL
vi) is the predicted score, α is a balancing factor. The detailed training algorithm

is illustrated in Algorithm 1. Overall, this reinforcement learning framework allows our model to
efficiently discover high-quality symbolic expressions.

5 EXPERIMENT

In this section, we conduct extensive experiments to evaluate HIS, which consist of four main parts:
Experiment 1. Demonstrate the superior performance of our HIS in terms of node classification ac-
curacy and heuristics efficiency. Experiment 2. Demonstrate that our method can not only enhance
the efficiency but also improve the Quality of Results (QoR) of one of the most time-consuming LO
heuristics, Mfs2. Experiment 3. Perform ablation experiments to provide further insight into HIS.
Experiment 4. Show the appealing features of HIS in inference efficiency and interpretability.

Benchmarks We evaluate HIS on two widely used public benchmarks, EPFL (Amarú et al., 2015)
and IWLS (Albrecht, 2005). The EPFL benchmark comprises 20 circuits, including large-scale
cases with up to 214,335 nodes. The IWLS benchmark contains 21 circuits, including challenging
cases with up to 1,130 inputs and 1,416 outputs. We defer more benchmark details to Appendix D.1

Experimental setup Throughout all experiments, we use ABC (Brayton et al., 2010) as the backend
LO framework. ABC is a state-of-the-art open-source LO framework and is widely used in research
on machine learning for LO. Moreover, we choose the Mfs2 (Mishchenko et al., 2011)—one of
the most time-consuming LO heuristics—as the backend heuristic. Experiments are performed on
a single machine that contains 32 Intel XeonR E5-2667 v4 CPUs, which closely resembles a real-
world industrial deployment environment. More details are provided in Appendix E.1.
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Table 1: The results show that HIS consistently outperforms all graph-based and node-based base-
lines in terms of generalization top 50% prediction recall.

Circuits Hyp Square Multiplier DesPerf Ethernet Conmax

Method Recall↑ Recall↑ Recall↑ Recall↑ Recall↑ Recall↑
COG 0.87 0.81 0.82 0.81 0.55 0.75
CMO 0.79 0.94 0.87 0.79 0.59 0.73

Effisyn 0.18 0.04 0.13 0.28 0.88 0.05
Random 0.50 0.48 0.44 0.50 0.47 0.50

HIS (Ours) 0.82 0.94 0.94 0.83 0.99 0.75

Hyp Multiplier Square DesPerf Ethernet Conmax
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Figure 3: We compare our HIS with four competitive baselines on online runtime. The results
demonstrate that our approach achieves significant runtime improvement with the baselines.

Evaluation Metrics and Evaluated Methods Throughout all experiments, we evaluate our method
in two separate phases, i.e., the offline and online phases. In the offline phase, we focus on evaluat-
ing the prediction recall of effective nodes. The evaluation setup is detailed in two parts as follows:
(1) Evaluation metrics Under the pruning framework (see Figure 4), we formulate the prediction
task as a node scoring problem, where nodes with the top k scores are predicted to be positive.
Based on this formulation, we define the top k accuracy metric, which measures the fraction of
true positive nodes among those predicted as positive, i.e., prediction recall. As shown in Appendix
C.1, a higher prediction recall consistently leads to improved QoR. Therefore, achieving high recall
is essential for obtaining QoR comparable to the default heuristics. Further details of this metric
are provided in Appendix E.1.2. (2) Evaluated methods We compare five main approaches: COG
(Wang et al.), CMO (Bai et al.), Effisyn (Li et al., 2023), Random and our proposed HIS. COG is
a carefully designed 2-layer GNN. CMO is a graph-enhanced symbolic learning method. Effisyn
is a human-designed nonlinear function with parameters derived from circuit features. Random is
a heuristic method which randomly predicts the score between 0 and 1. Implementation details of
these baselines are deferred to Appendix E.2. In the Online phase, we evaluate both the efficiency
and QoR of HIS. The evaluation setup is as follows: (1) Evaluation metrics For efficiency, we
measure the runtime of the heuristics. For QoR, we primarily consider the number of optimized
circuit nodes, as this directly influences the final chip area. In addition, we evaluate the circuit depth
(i.e., level) of the optimized circuits, which serves as a proxy metric for chip delay. (2) Evaluated
methods We introduce a new heuristic, X-Mfs2, which incorporates a learned scoring function “X”
into the default Mfs2 heuristic. In our experiments, “X” corresponds to the baselines and our HIS.

Generalization Evaluation Strategy In practical industrial settings, it is desirable for the trained
model to generalize effectively to unseen circuits. To evaluate this capability, we design two gener-
alization strategies. In the first setting, we use the IWLS circuits as the training dataset and select
three hard-to-optimize circuits—Hyp, Multiplier, and Square—from the EPFL benchmark as test

7
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Table 2: We compare the Default Mfs2 heuristic with our HIS-Mfs2 heuristic with the hyperparam-
eter k set as 30%, 40% and 50% on six challenging circuits. Optimized Nd denotes the node number
(size) of circuits, and Lev denotes the level (depth) of circuits. We define an Improvement metric by
M(Default)−M(Ours)

M(Default) , where M(·) denotes the Optimized Nd, Lev, or Time.

Hyp Square

Method Lev ↓ Improvement ↑ Time (s) ↓ Improvement ↑ Optimized Nd ↓ Improvement ↑ Time (s) ↓ Improvement ↑
(Lev, %) (Time, %) (Optimized Nd, %) (Time, %)

Default(Mfs2) 8259.00 NA 265.93 NA 5701.00 NA 21.48 NA
HIS-Mfs2 (0.5, Ours) 8259.00 0.00 85.46 67.86 5703.00 -0.04 10.69 50.24
2HIS-Mfs2 (0.3, Ours) 5762.00 30.23 147.62 44.49 5553.00 2.60 16.21 24.54
2HIS-Mfs2 (0.4, Ours) 5762.00 30.23 192.51 27.61 5542.00 2.79 19.97 7.03

Multiplier DesPerf

Method Optimized Nd ↓ Improvement ↑ Time (s) ↓ Improvement ↑ Optimized Nd ↓ Improvement ↑ Time (s) ↓ Improvement ↑
(Optimized Nd %) (Time, %) (Optimized Nd, %) (Time, %)

Default(Mfs2) 7799.00 NA 16.91 NA 30853.00 NA 28.82 NA
HIS-Mfs2 (0.5, Ours) 7799.00 0.00 13.52 20.03 31035.00 -0.59 22.84 20.73
2HIS-Mfs2 (0.3, Ours) 7661.00 1.77 16.48 2.50 30104.00 2.43 24.88 13.65
2HIS-Mfs2 (0.4, Ours) 7659.00 1.80 20.60 -21.83 29493.00 4.41 31.71 -10.03

Ethernet Conmax

Method Optimized Nd ↓ Improvement ↑ Time (s) ↓ Improvement ↑ Optimized Nd, ↓ Improvement ↑ Time (s) ↓ Improvement ↑
(Optimized Nd %) (Time, %) (Optimized Nd, %) (Time, %)

Default(Mfs2) 13638.00 NA 27.00 NA 16509.00 NA 19.93 NA
HIS-Mfs2 (0.5, Ours) 13639.00 -0.01 13.19 51.16 16760.00 -1.52 13.63 31.59
2HIS-Mfs2 (0.3, Ours) 13511.00 0.93 14.84 45.06 15890.00 3.75 13.33 33.09
2HIS-Mfs2 (0.4, Ours) 13509.00 0.95 19.36 28.31 15782.00 4.40 16.77 15.87

cases. In the second setting, we reverse the roles by training on the EPFL circuits and testing on
three challenging circuits—DesPerf, Ethernet, and Conmax—from the IWLS benchmark. Due to
limited space, we provide more details about our designed generalization strategy in Appendix D.2

Experiment 1. Comparative Evaluation In this subsection, we compare the offline and online met-
rics of our HIS framework with the baselines. Following the established generalization strategy, we
conduct experiments on six challenging circuits from two widely used open-source benchmarks. In
the offline phase, we adopt the top 50% accuracy as the evaluation metric. Results in Table 1 show
that HIS consistently outperforms all baselines in terms of the prediction recalls, highlighting the
superior generalization ability of our method. Moreover, HIS achieves a prediction recall exceeding
80% on the majority of test circuits, indicating that it can preserve most of the effective transforma-
tions. In the online phase, we primarily focus on evaluating the efficiency of the X-Mfs2 heuristics.
To ensure a fair comparison for efficiency, we compare the runtime of different methods when they
achieve similar optimization performance. As larger top k accuracy improves the final performance,
we employ top 50% for our HIS, top 60% for COG and CMO, and higher k for the Effisyn and
Random baselines to achieve comparable optimization performance (see Table 7 in Appendix C.2
for the optimization results). Specifically, the results in Figure 3 indicate that our HIS-Mfs2 achieves
an average improvement of 11.96%, 21.82%, 19.24%, and 22.91% over CMO-Mfs2, Effisyn-Mfs2,
Random-Mfs2, and COG-Mfs2 in terms of the runtime, respectively. Overall, the offline and on-
line results show that our HIS can not only accurately predict the effective transformations but also
outperform all competitive baselines in terms of heuristic efficiency.

Experiment 2. Improving Efficiency and QoR of the LO heuristic In this subsection, we conduct
experiments on six challenging circuits to demonstrate that our method not only reduces runtime but
also improves QoR, measured by the size and level of the optimized circuits. These two metrics are
critical in chip design, as they serve as proxies for the final chip area and delay. We first show that
HIS can enhance the efficiency of the Mfs2 heuristic while maintaining comparable optimization
performance. Results in Table 2 demonstrate that our HIS with top 50% accuracy achieves an aver-
age runtime reduction of 40.27% with only a marginal 0.38% degradation in circuit size and level
across the six test circuits. In particular, HIS attains up to 3.1× faster runtime on the Hyp circuit.
Building on this efficiency advantage, we explore applying HIS-Mfs2 sequentially rather than once
(denoted as 2HIS-Mfs2) to further improve QoR. Since HIS-Mfs2 runs significantly faster than the
default Mfs2 heuristic, this repeated application is computationally feasible. To accelerate runtime,
we additionally consider smaller hyperparameter settings, using k = 30% and 40% instead of 50%.
When prioritizing optimization performance in real-world scenarios, we can set k = 40%. Table 2
shows that 2HIS-Mfs2 with k = 40% achieves an average reduction of 7.43% in size and depth while
also reducing runtime by 7.82% on the test circuits. When prioritizing runtime in real-world scenar-
ios, results in Table 2 show that 2HIS-Mfs2 with k = 30% achieves an average reduction of 6.95%
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Table 3: The ablation results show that each component plays an important role in our HIS.

Circuits Hyp Multiplier Square DesPerf Ethernet Conmax

Method Recall↑ Recall↑ Recall↑ Recall↑ Recall↑ Recall↑
HIS (Ours) 0.82 0.94 0.94 0.83 0.99 0.75

w/o hierarchical 0.81 0.91 0.74 0.77 0.81 0.72
w/o group optimization 0.88 0.89 0.90 0.51 0.87 0.74

w/o tree-structured aggregation 0.81 0.51 0.94 0.79 0.91 0.75

in size and depth, along with a runtime reduction of 27.22%. Overall, these results demonstrate that
the proposed HIS-Mfs2 framework can simultaneously deliver faster runtime and improved QoR,
highlighting its potential to yield significant economic benefits in practical chip design.

Experiment 3. Ablation Study In this subsection, we perform an ablation experiment to evaluate
the individual contribution of each component in HIS. Specifically, the results in Table 3 indicate
three key findings as follows. (1) The ’w/o hierarchical’ variant, which learns a complete symbolic
tree from the training data end to end rather than layer by layer, led to significant degradation in
the prediction recall. This highlights that our proposed hierarchical symbolic function representa-
tion can effectively capture circuit structural information for node classification; (2) The ’w/o group
optimization’ variant, which employs the single symbolic function’s reward rather than the group
rewards as the advantage, exhibits a noticeable reduction in prediction recall across the majority of
circuits. This demonstrates the effectiveness of the group advantage in improving symbolic expres-
siveness; (3) The ’w/o tree-structured aggregation’ variant, which omits the aggregation of parent
and sibling embeddings during token generation, exhibits a substantial decline in prediction recall.
This result highlights the necessity and effectiveness of our proposed approach in capturing tree-
structured information for high-performance symbolic trees generation.

Experiment 4. Strengths for Deployment In this subsection, we conduct extensive experiments to
demonstrate the appealing features of our HIS on inference efficiency and interpretability. Specifi-
cally, we present a detailed analysis as follows.

Inference Efficiency We compare the inference time of our HIS against both the SOTA graph-based
method COG and several lightweight baselines under a pure CPU industrial environment. As shown
in Table 5 in Appendix C.3, HIS achieves an average inference speedup of 296× over COG on
the EPFL circuits and 254× on the IWLS circuits, while maintaining inference times comparable
to other lightweight methods. These results demonstrate that HIS successfully learns a lightweight
graph symbolic scoring function that achieves both high prediction recall (see Table 1) and efficient
inference, making it well-suitable for deployment in real industrial scenarios.

Interpretability We visualize the discovered hierarchical symbolic functions for EPFL and IWLS
benchmarks in Table 6 and Figure 5 in the Appendix. Owing to the high interpretability of the
symbolic functions, these learned symbolic policies allow researchers to gain deeper insight into
the patterns extracted from circuit graphs and to trace how information is aggregated. Specifically,
we observe that: (1) All the discovered expressions aggregate information from both the root node
and the candidate node, which is consistent with the design in previous GNN-based approaches. (2)
The hierarchical symbolic tree structure successfully performs an efficient message-passing across
layers, wherein the node features in Layer i− 1 are updated through aggregation from Layer i.

6 CONCLUSION

To enable efficient Logic Optimization (LO), previous machine learning methods propose to use
scoring functions to predict and prune ineffective nodes in LO heuristics. However, the high in-
ference cost and limited interpretability of these approaches severely limit their wide application to
modern LO tools. To address this, we propose HIS, a novel Hierarchical Circuit Symbolic discovery
Framework that learns efficient, interpretable, and high-performance symbolic functions from the
circuit graph. Extensive experiments on two widely used benchmarks show that the learned graph
symbolic functions outperform previous state-of-the-art approaches in terms of efficiency and op-
timization performance. Moreover, HIS significantly enhances both the Mfs2 heuristic’s efficiency
and optimization performance on a CPU-based machine, achieving an average runtime improvement
of 27.22% and a 6.95% reduction in circuit size.
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A PROOF OF THEOREM 1

Consider a depth-L (L > 0) message-passing tree TL
v , whose GNN computation is yGNN(T

L
v ) =

Φ0 ◦ Φ1 ◦ · · · ◦ ΦL(HvL , HvL−1
), where Hvi denotes the node feature matrix at layer i. For each

l = 0, . . . , L, let Kl ⊂ Rdl be the compact domain of input features before the l-th message-
passing, K̂l ⊂ Rd̂l be the compact domain after the update, Al be the symbolic class, and C(Kl)
be the space of continuous real-valued functions on Kl. Assume that (i) The GNN map Φl is
continuous and Ll-Lipschitz on its compact domain, and (ii) the symbolic class Al is a subalgebra
containing basic operators (i.e., {+,−,×,÷}) and constants, hence uniformly dense in C(Kl) by
the Stone–Weierstrass theorem (De Branges, 1959). Then, the proof proceeds in three steps.

Step 1 (Existence of symbolic approximants via Stone–Weierstrass). Since each Φl is continuous
on the compact domain Kl, and Al ⊂ C(Kl) is a subalgebra containing constants and separating
points, the Stone–Weierstrass theorem implies that Al is uniformly dense in C(Kl). Thus, for any
εl > 0 there exists Fl ∈ Al satisfying

δl := sup
z∈Kl

∥Φl(z)− Fl(z)∥ ≤ εl.
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Step 2 (Defining partial compositions). Define the true and approximate compositions

Ψ(l) := Φ0 ◦ · · · ◦ Φl, Ψ̂(l) := F0 ◦ · · · ◦ Fl,

and let the error after layer l be

el(X) :=
∥∥Ψ(l)(X)− Ψ̂(l)(X)

∥∥.
Step 3 (Lipschitz error propagation). We prove by induction that

sup
X

el(X) ≤
l∑

j=0

(
δj

j−1∏
t=0

Lt

)
. (1)

The base case l = 0 is immediate:

e0(X) = ∥Φ0(X)− F0(X)∥ ≤ δ0,

which matches equation 1.

For the inductive step, assume equation 1 holds for l − 1. Then

el(X) =
∥∥Ψ(l−1)(Φl(X))−Ψ(l−1)(Fl(X))

+ Ψ(l−1)(Fl(X))− Ψ̂(l−1)(Fl(X))
∥∥

≤ ∥Ψ(l−1)(Φl(X))−Ψ(l−1)(Fl(X))∥+ el−1(Fl(X)).

By Lipschitz continuity of Ψ(l−1) we have

∥Ψ(l−1)(Φl(X))−Ψ(l−1)(Fl(X))∥ ≤
( l−1∏

t=0

Lt

)
δl.

Taking the supremum over X and applying the induction hypothesis to el−1 yields

sup
X

el(X) ≤
( l−1∏

t=0

Lt

)
δl +

l−1∑
j=0

(
δj

j−1∏
t=0

Lt

)
,

which is exactly equation 1 for layer l. Setting l = L gives the bound stated in the theorem. Hence,
if δl → 0 for all l, the HIS approximation error tends to zero.

B MORE DETAILS OF THE BACKGROUND AND RELATED WORK

Logic Optimization heuristics To tackle the LO task, many researchers have developed a rich set of
LO heuristics. For instance, researchers have developed Rewrite (Bertacco et al., 1997) and Resub
(Brayton, 2006) for pre-mapping optimization, while Mfs2 (Mishchenko et al., 2011) is designed
for post-mapping optimization. These LO heuristics follow the paradigm as shown in Figure 4.
Specifically, these heuristics traverse the Boolean network in a topological order from PIs to POs
and apply transformations to subgraphs rooted at each node sequentially for all nodes. However,
previous literature (Wang et al.) found that these heuristics can be highly time-consuming due to a
large number of ineffective transformations. To address this problem, we follow the new heuristics
paradigm proposed by (Wang et al.) that can significantly improve the efficiency of LO heuristics
by learning a classifier to predict nodes with ineffective transformations and avoid applying trans-
formations on these nodes. In this paper, we focus on optimizing the post-mapping operator Mfs2
(Mishchenko et al., 2011), which stands out as the most time-consuming one among all commonly
used LO heuristics.

Circuit Representation In the LO stage, a circuit is usually modeled by a directed acyclic graph
(DAG), where nodes correspond to Boolean functions and directed edges correspond to wires con-
necting these functions. A Boolean function takes the form f : Bn → B, where B = {0, 1} denotes
the Boolean domain. Given a node, its fanins are nodes connected by incoming edges of this node,

13
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> 0?

Update circuit

i += 1

𝐎𝐮𝐭𝐩𝐮𝐭: Optimized Circuit

𝐄𝐱𝐭𝐫𝐚𝐜𝐭 𝐧𝐨𝐝𝐞 𝐢𝐝 𝐬𝐞𝐭 𝐍

Node features extraction

𝐒𝐜𝐨𝐫𝐢𝐧𝐠 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧

Effective node id set N

𝐏𝐫𝐮𝐧𝐞 𝐅𝐫𝐚𝐦𝐞𝐰𝐨𝐫𝐤

Collect all nodes
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Full node id set N

Start

End

Optimization For Loop

Figure 4: An illustration of the pruning framework for LO heuristics. The scoring function aims to
predict and prune the ineffective node-level transformations to prompt efficient LO.

and its fanouts are nodes connected by outgoing edges of this node. The primary inputs (PIs) are
nodes with no fanin, and the primary outputs (POs) are nodes with no fanout. The size of a circuit
denotes the number of nodes in the DAG. The depth (level) of a circuit denotes the maximal length
of a path from a PI to a PO in the DAG. The size and depth of a circuit are proxy metrics for the area
and delay of the circuit, respectively.

Deep Symbolic Discovery Several recent approaches utilize deep learning for symbolic discovery.
These methods generally fall into two categories: pre-trained and search-based. The pre-trained
symbolic regression methods have shown advantages in fast inference and have successfully discov-
ered large input (with up to twelve) symbolic functions (d’Ascoli et al., 2023; Biggio et al., 2021;
Kamienny et al., 2022). However, these methods are limited by high training costs and data gen-
eralization challenges. The search-based approach explores the discrete symbolic operator space to
identify functions that maximize the fitness with respect to the given dataset. Mainstream symbolic
regression frameworks based on this paradigm typically employ sequence prediction models, such
as Transformers (Kuang et al.; Holt et al., 2023) and RNNs (Petersen et al., 2020), or leverage Monte
Carlo tree search (Sun et al., 2023; Xu et al., 2024). These methods have achieved state-of-the-art
performance across multiple benchmarks.

C ADDITIONAL RESULTS

C.1 THE IMPORTANCE OF THE PREDICTION RECALL ON OPTIMIZATION PERFORMANCE

In this subsection, we explore how prediction recalls of effective nodes influence the optimization
performance of heuristics. To do this, we assess the performance of the Random method with dif-
ferent values of the hyperparameter k, which denotes the percent of nodes to apply transformations.
Note that Random is a baseline that randomly assigns a score between [0, 1] for each node. The
recall and optimization outcomes (i.e., And Reduction) of Random for various values of k are sum-
marized in Table 8. The results reveal a near-linearly positive relationship between the value of k
and the recall, with a similar trend observed between the recall and the optimization performance as

14
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well. Therefore, to maintain the optimization performance of heuristics, it is essential for our model
to maximize prediction recall.

C.2 MORE RESULTS FOR COMPARATIVE EVALUATION

In this subsection, we provide further insights into the efficiency of our HIS compared to several
baselines, including COG-Mfs2, CMO-Mfs2, Effisyn-Mfs2, and Random-Mfs2. To ensure a fair
comparison, we select higher hyperparameter values for k in the baselines, which are necessary to
achieve comparable online optimization performance. While higher values of k improve optimiza-
tion performance, they also increase time costs, so this parameter is adjusted differently for each
circuit. Specifically, we use k = 60% for COG and CMO across most circuits, and higher values
of k for Effisyn and Random, based on the specific circuit. The results and details are shown in
Table 7. Additionally, when compared to COG-Mfs2 and CMO-Mfs2, our HIS achieves average
runtime improvements of 22. 91% and 11. 96%, respectively, while maintaining or even improving
the optimization performance across most circuits. Moreover, when compared to Random-Mfs2 and
Effisyn-Mfs2, with k values not lower than 70%, our HIS demonstrates average improvements of
19.24% and 21.82%.

C.3 MORE RESULTS FOR INFERENCE EFFICIENCY

In this subsection, we present further details on the inference efficiency of our HIS, compared to
COG, CMO, and Effisyn. Note that our HIS and COG both rely on graph inputs, which enhance
optimization performance but result in lower inference efficiency. As shown in Table 5, our HIS
achieves an average inference speedup of 296 × on the EPFL circuits and 254× on IWLS circuits.
These results reveal that HIS successfully learns a lightweight graph-based symbolic scoring func-
tion, delivering both high prediction recall and efficient inference. This makes HIS well-suited for
deployment in real-world industrial applications. Although CMO and Effisyn show higher inference
efficiencies than HIS, their actual runtimes are comparable.

D DETAILS OF DATASETS USED IN THIS PAPER

D.1 DESCRIPTION OF TWO WIDELY USED BENCHMARKS

We provide detailed statistics of the circuits from two open source benchmarks EPFL and IWLS
in Tables 9 and 10, respectively. These benchmarks contain 41 circuits in total. In general, nodes
denote logic gates and edges represent the wires connecting them. The fanins refer to the nodes that
provide inputs to it, while its fanouts are the nodes it drives. Primary inputs (PIs) are nodes without
fanins, and primary outputs (POs) are a subset of the network’s nodes. Latches are specialized nodes
found in sequential circuits, and cubes denote specific subsets of input variables. Lev refers to the
depth of the circuit, measured by the maximum number of edges between PIs and POs.

D.2 DATASETS FOR EVALUATION ON OPEN-SOURCE BENCHMARKS

For each circuit and a given X heuristic, we generate the circuit dataset by applying the X heuristic
to optimize the circuit, then collecting the graph features {Gi}ni=1 and labels {yi}ni=1. We observe
that a few circuits contain no effective nodes, and we exclude these from our analysis since no
transformations need to be applied to them, thus negating the need for model training.

In particular, employing the generalizable evaluation strategy with the EPFL benchmark, we con-
struct three datasets for evaluation. One of the three circuit datasets—–collected from Hyp, Mul-
tiplier, and Square—–serves as the testing dataset, while the circuits from the IWLS are used for
training. Similarly, using the generalization strategy with the IWLS benchmark, we create three
datasets, selecting one of these circuit datasets from DesPerf, Ethernet, and Conmax as the testing
dataset and using the EPFL circuits for training.
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E DETAILS OF METHODS AND EXPERIMENTAL SETTINGS

E.1 DETAILS OF EXPERIMENTAL SETUP

E.1.1 OPTIMIZATION SEQUENCE FLOWS

Optimization Sequence Flows for Data Collection and Evaluation In industrial practice, a se-
quence of Logic Optimization (LO) heuristics is typically applied to optimize an input circuit. We
adopt the same setting throughout all experiments unless stated otherwise. Specifically, for the Mfs2
heuristic, we use the sequence strash; dch; if -C 12; mfs2 -W 4 -M 5000 to collect graph data and
evaluate both the Default Mfs2 heuristic and our proposed HIS. Note that the optimization sequence
flow is a standard academic flow for evaluating the Default Mfs2 heuristic, which follows previous
work (Mishchenko et al., 2011; Li et al., 2023; Wang et al.).

Optimization Sequence Flows for Evaluating 2HIS-Mfs2 To apply our HIS twice, we adopt the
heuristic sequence strash; dch; if -C 12; mfs2 -W 4 -M 5000; strash; if -C 12; mfs2 -W 4 -M
5000 for evaluating the performance of 2HIS. The Mfs2 heuristic is a post-mapping optimization
technique that operates on a k-input look-up table graph (K-LUT). Specifically, the strash heuristic
(Rai et al., 2021) converts the circuit into an And-Inverter Graph (AIG) using one-level structural
hashing, while the if heuristic (Mishchenko et al., 2007) maps the AIG into K-LUTs. Finally, the
Mfs2 heuristic performs optimization on the resulting K-LUTs twice.

E.1.2 TOP K ACCURACY METRIC

A common challenge in many LO heuristics is the ineffective node-level transformations problem,
where the number of ineffective nodes substantially exceeds the number of effective ones. This im-
balance introduces a significant distribution shift in the training dataset, making the normal threshold
of 0.5 unsuitable for determining whether a sample is positive. To mitigate this issue, we adopt the
approach proposed in (Wang et al.), which reformulates the classification task as a ranking problem.
Specifically, all nodes are ranked according to the prediction scores assigned by the learned sym-
bolic functions, and the top-k nodes are selected as positives while the remainder are classified as
negatives. The evaluation metric, referred to as top-k accuracy, is defined as the proportion of true
positive nodes in the top-k predictions that are correctly identified, i.e., recall.

E.2 IMPLEMENTATION DETAILS OF THE BASELINES

In this part, we present a detailed description of all the baselines used in this paper.

COG. COG is a well-designed 2-layer graph convolutional neural network that can achieve high
optimization performance (Wang et al.). Specifically, it constructs a bipartite graph as input and
learns a domain-invariant representation to achieve high generalization capability.

CMO. CMO is a novel graph-enhanced symbolic discovery framework (Bai et al.). Specifically, it
employs a Monte Carlo method to explore the symbolic function space, while leveraging a well-
designed GNN as a teacher model to guide the search process. This approach achieves state-of-the-
art performance among lightweight scoring function methods.

Effisyn. Effisyn is a human-designed nonlinear symbolic function (Li et al., 2023). Specifically, in
human-designed symbolic scoring functions, experts manually design the structure of the function
and extract key parameters from training circuit data to form a complete symbolic scoring function.
This process involves identifying relevant characteristics of the circuit and carefully selecting or
engineering the symbolic terms that best capture the underlying behavior of the system. However,
designing and developing these functions is extremely challenging as it requires extensive expert
knowledge and manual tuning.

Random. Random is a baseline that randomly predicts a score between [0, 1] for each node, and
selects the top k nodes as positive samples to apply node-level transformations.
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E.3 IMPLEMENTATION DETAILS OF THE TRAINING DETAILS

In this subsection, we provide further details of the training process. The overall procedure of our
algorithm is illustrated in Algorithm 1, and the corresponding parameter settings are summarized
in Table 4, covering model, reinforcement learning, and symbolic tree configurations. Moreover,
we adopt a Best-of-N (BON) strategy during training. Specifically, the top-N expressions with
the highest training rewards are selected to construct an ensemble model. Owing to the lightweight
nature of the symbolic functions learned by HIS, the additional computational overhead is negligible,
while yielding substantial performance improvements. In our experiments, we set N = 4.

E.4 IMPLEMENTATION DETAILS OF THE CIRCUIT SUBGRAPH CONSTRUCTION

In this subsection, we describe the procedure for constructing circuit subgraphs and modeling them
as computation trees. Following (Wang et al.), a subgraph in LS heuristics is constructed by select-
ing a root node along with a limited set of its neighboring nodes. To enable more effective node
embedding alignment, we first transform the subgraph into a bipartite graph, where the root node
and the non-root nodes are treated as two distinct types of nodes. This bipartite graph is then con-
verted into a two-layer computation tree: the root node corresponds to the 0-th and 2-th layers, while
all candidate nodes in the subgraph are placed in the 1-th layer.

F THE USE OF LARGE LANGUAGE MODEL

In accordance with the ICLR 2026 policy, we disclose the use of Large Language Models (LLMs)
as an assistive tool in preparing this manuscript. The primary role of LLMs was to support improve-
ments in writing clarity and presentation quality.

Specifically, LLMs were used for the following purposes:

• Grammar and Spelling Correction: Detecting and correcting grammatical errors and
typographical mistakes.

• Clarity and Readability: Rephrasing sentences and suggesting alternative formulations to
enhance readability and flow.

• Conciseness: Streamlining sentences and paragraphs to make the writing more direct and
succinct.

All scientific contributions, analyses, and claims in this paper are solely the work of the human
authors. The use of LLMs was limited to language refinement and carried out responsibly in accor-
dance with academic and ethical standards.
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Figure 5: Visualization of the hierarchical symbolic functions for EPFL and IWLS benchmarks.

Algorithm 1 Circuit Symbolic Generation Framework

Input: Transformer model pθ, symbolic library L, dataset D = {(TL
vi , yi)}

n
i=1, number of gener-

ated expressions m, number of layers L
Output: Updated parameter θ.

for i = 1 to training epoch do
Initialize empty list of hierarchical symbolic trees
for j = 1 to m do

Initialize empty sequence τ
for l = 0 down to L do

while sequence not completed do
Sample a token: τ lk ∼ pθl(τ

l
k|τ l1, . . . , τ ll−1)

Apply constraints to τ lk
end while

end for
Merge L sequences {τ i}Li=0into a hierarchical symbolic tree τ
if τ contains updated feature tokens then

Substitute feature tokens with corresponding sequences
end if
Add τ to the list of generated trees

end for
Compute rewards for each tree τ :

r(τ ) = − 1

n

n∑
i=1

[
αyi(1− ŷi)

γ log(ŷi) + (1− α)(1− yi)ŷ
γ
i log(1− ŷi)

]
Update model parameters θ using PPO objective:

J(θ) = Eτ∼p(τ |θ)

[
min

(
pθ(τ )

pθold(τ )
Aθold(τ ), clip

(
pθ(τ )

pθold(τ )
, 1− ϵ, 1 + ϵ

)
Aθold(τ )

)]
end for
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Table 4: We provide comprehensive implementation details, including the arguments for training,
the Transformer model, and RL algorithms, along with a subset of the tokens library.

Parameter Value
Train Kwargs

number of expressions generated each epoch 512
data batch size 10240
number of expressions for RL training 96
number of expressions for recording 16
training epoch 2000

Transformer Kwargs

Transformer min length of each layer [4, 4, 4]
Transformer max length of each layer [48, 16, 8]
Transformer embedding dimension 32
Transformer attention heads 4
Transformer feedforward model dimension 128
Transformer number of layers 4

RL Kwargs

PPO learning rate 5e-5
PPO epochs at each iteration 10
PPO clipping threshold 0.2

Symbolic Tree Kwargs

Constant operators [0.1, 0.2, 0.5]
Math operators {+,−,×,÷, log, exp}
aggregation operators {min,max,mean, sum}
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Table 5: The model inference results show that our HIS is extremely efficient for inference compared
to the SOTA graph-based approach (COG) when executed on CPU-based LO tools.

EPFL Benchmark Hyp Square Multiplier Average
Method Inference time (s) ↓ Improvement ↑ Inference time (s) ↓ Improvement ↑ Inference time (s) ↓ Improvement ↑ Inference time (s) ↓ Improvement ↑

COG 5.631 NA 0.418 NA 0.865 NA 2.304 NA
CMO 0.003 2097 0.001 761 0.001 1080 0.001 1313

Effisyn 0.005 1228 0.001 760 0.001 1087 0.002 1025
HIS (Ours) 0.009 635 0.003 162 0.010 90 0.007 296

IWLS Benchmark DesPerf Ethernet Conmax Average
Method Inference time (s) ↓ Improvement ↑ Inference time (s) ↓ Improvement ↑ Inference time (s) ↓ Improvement ↑ Inference time (s) ↓ Improvement ↑

COG 2.507 NA 1.050 NA 1.388 NA 1.648 NA
CMO 0.002 1598 0.000 2501 0.001 1370 0.001 1823

Effisyn 0.003 907 0.001 1304 0.001 961 0.002 1057
HIS (Ours) 0.007 342 0.005 197 0.006 223 0.006 254

Table 6: The discovered hierarchical symbolic functions for the IWLS and EPFL benchmarks.

IWLS

layer0 Final output score
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Ĥ1

v0 −
(
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v0 − Ĥ9
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))

+ Ĥ0
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Ĥ1
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v0 Ĥ9
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v0

)
+ Ĥ1
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Table 7: We compare our HIS with four competitive baselines. The results demonstrate that our ap-
proach consistently outperforms all baselines in terms of online heuristics efficiency and optimiza-
tion performance. And Reduction (AR) denotes the reduced number of nodes, i.e., optimization
performance. Normalized AR denotes the ratio of the AR to that of the default heuristic.

Hyp Square
Method And Reduction(AR) ↑ Normalized AR ↑ Times(s) ↓ Method And Reduction(AR) ↑ Normalized AR ↑ Times(s) ↓

COG 435 0.66 198.09 COG 6 0.75 14.70
CMO 142 0.21 129.56 CMO 6 0.75 13.60

Random 563 0.85 238.22 Random 3 0.38 15.62
Effisyn 498 0.75 218.20 Effisyn 3 0.38 14.66

HIS (Ours) 566 0.85 85.46 HIS (Ours) 6 0.75 10.69

Multiplier DesPerf
Method And Reduction(AR) ↑ Normalized AR ↑ Times(s) ↓ Method And Reduction(AR) ↑ Normalized AR ↑ Times(s) ↓

COG 21 0.95 17.07 COG 732 0.65 29.01
CMO 22 1.00 15.08 CMO 900 0.81 22.82

Random 18 0.82 14.99 Random 906 0.81 23.30
Effisyn 22 1.00 15.51 Effisyn 886 0.79 24.68

HIS (Ours) 22 1.00 13.52 HIS (Ours) 936 0.84 22.84

Ethernet Conmax
Method And Reduction(AR) ↑ Normalized AR ↑ Times(s) ↓ Method And Reduction(AR) ↑ Normalized AR ↑ Times(s) ↓

COG 36 0.95 18.30 COG 259 0.33 16.66
CMO 2 0.05 20.88 CMO 730 0.93 14.43

Random 19 0.50 19.04 Random 579 0.74 14.25
Effisyn 24 0.63 20.93 Effisyn 593 0.76 16.76

HIS (Ours) 37 0.97 13.19 HIS (Ours) 647 0.83 13.63
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Table 8: We report the recall and optimization performance of the Mfs2 heuristic incorporated with
Random models. Percent denotes the hyperparameter k, i.e., the percent of nodes to apply transfor-
mations. And Reduction denotes the reduced number of nodes, i.e., optimization performance.

Hyp Multiplier
Percent Recall And Reduction(AR) Percent Recall And Reduction(AR)

0.10 0.11 33.33 0.10 0.10 3.00
0.20 0.20 69.00 0.20 0.18 5.33
0.30 0.30 111.33 0.30 0.28 6.67
0.40 0.40 164.67 0.40 0.39 9.33
0.50 0.50 225.33 0.50 0.44 10.00
0.60 0.60 295.00 0.60 0.56 12.33
0.70 0.70 374.33 0.70 0.67 14.00
0.80 0.80 464.33 0.80 0.78 16.67
0.90 0.90 561.33 0.90 0.89 19.00
1.00 1.00 664.00 1.00 1.00 22.00

Square DesPerf
Percent Recall And Reduction(AR) Percent Recall And Reduction(AR)

0.10 0.10 114.67 0.10 0.10 114.67
0.20 0.21 210.33 0.20 0.21 210.33
0.30 0.31 318.33 0.30 0.31 318.33
0.40 0.41 421.33 0.40 0.41 421.33
0.50 0.50 529.67 0.50 0.50 529.67
0.60 0.60 657.67 0.60 0.60 657.67
0.70 0.70 790.00 0.70 0.70 790.00
0.80 0.80 904.67 0.80 0.80 904.67
0.90 0.90 1001.33 0.90 0.90 1001.33
1.00 1.00 1118.00 1.00 1.00 1118.00

Ethernet Conmax
Percent Recall And Reduction(AR) Percent Recall And Reduction(AR)

0.10 0.11 0.00 0.10 0.10 95.00
0.20 0.19 0.00 0.20 0.20 188.00
0.30 0.28 0.33 0.30 0.30 251.00
0.40 0.38 1.33 0.40 0.40 330.67
0.50 0.48 2.33 0.50 0.50 411.67
0.60 0.56 3.00 0.60 0.59 493.33
0.70 0.65 3.67 0.70 0.69 557.67
0.80 0.75 4.33 0.80 0.78 625.00
0.90 0.89 6.67 0.90 0.90 718.67
1.00 1.00 8.00 1.00 1.00 782.00
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Table 9: A detailed description of circuits from the EPFL benchmark. Nodes denotes the sizes of
circuits, and Lev denotes the depths of circuits.

Circuit PI PO Latch Nodes Edge Cube Lev

Adder 256 129 0 1020 2040 1020 255
Barrel shifter 135 128 0 3336 6672 3336 12

Divisor 128 128 0 57247 114494 57247 4372
Hypotenuse 256 128 0 214335 428670 214335 24801

Log2 32 32 0 32060 64120 323060 444
Max 512 130 0 2865 5730 2865 287

Multiplier 128 128 0 27062 54124 27062 274
Sin 24 25 0 5416 10832 5416 225

Square-root 128 64 0 24618 49236 24618 5058
Square 64 128 0 18486 36969 18485 250

Round-robin ariter 256 129 0 11839 23678 11839 87
Alu control unit 7 26 0 175 348 174 10

Coding-cavlc 10 11 0 693 1386 693 16
Decoder 8 256 0 304 608 304 3

i2c controller 147 142 0 1357 2698 1356 20
Int to float converter 11 7 0 260 520 260 16
Memory controller 1204 1230 0 47110 93945 47109 114

Priority encoder 128 8 0 978 1956 978 250
Lookahead XY router 60 30 0 284 514 257 54

Voter 1001 1 0 13758 27516 13758 70

Table 10: A detailed description of circuits from the IWLS benchmark. Nodes denotes the sizes of
circuits, and Lev denotes the depths of circuits.

Circuit PI PO latch nodes edge cube lev

aes core 259 129 530 20797 40645 24444 28
des area 240 64 128 5005 9882 5889 35
des perf 234 64 8808 98463 180542 108666 28
ethernet 98 115 10544 46804 113378 72850 37

i2c 19 14 128 1147 2299 1375 15
mem ctrl 115 152 1083 11508 26436 14603 31

pci bridge32 162 207 3359 16897 34607 23130 29
pci conf cyc addr dec 32 32 0 109 212 128 6

pci spoci ctrl 25 13 60 1271 2637 1557 19
sasc 16 12 117 552 1148 766 10

simple spi 16 12 132 823 1694 1089 14
spi 47 45 229 3230 6904 4054 32

steppermotordrive 4 4 25 228 397 253 11
systemcaes 260 129 670 7961 18236 11648 44
systemcdes 132 65 190 3324 6304 3791 33

tv80 14 32 359 7166 16280 9352 50
usb funct 128 121 1746 12871 27102 16378 25
usb phy 15 18 98 559 1001 638 12
vga lcd 89 109 17079 124050 242332 146201 25

wb conmax 1130 1416 770 29036 77185 39619 26
wb dma 217 215 263 3495 7052 4496 26
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