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Abstract

Sim2real transfer, knowledge transfer from computational data to experimental data,
has received increasing attention as a promising solution to small data problems
in materials. We proposed a sim2real transfer method that significantly enhances
catalyst activity predictions by harnessing the knowledge of catalyst chemistry. The
proposed method transforms the feature space of source computational data into
that of target experimental data, and then solves the problem as a homogeneous
transfer learning. Through the demonstration, we confirmed that transfer learning
model exhibits positive transfer on accuracy and robustness. Notably, significantly
high accuracy was achieved despite using a few (less than 10) target data, whose
accuracy is compatible with a full scratch model with more than 70 target data.
This result indicates that the proposed method leverages the prediction performance
with few target data, which helps saving the number of trials in real laboratories.

1 Introduction

In recent years, the rapid development of machine learning technology has paved the way for
data-driven approaches to materials design and has attracted considerable attention. However, the
data-driven approach for materials currently faces the problems of small data due to the high cost of
data preparation, the difficulty of formatting data structure, and the exploration bias. The situation
is particularly serious for catalyst chemistry, as both preparation and evaluation require significant
time and human resources. Although there are attempts to obtain relatively large datasets by running
high-throughput experiments [1, 2, 3], data sizes are typically on the order of O(100), which is still
below the requirements of advanced methods such as neural networks (NNs).

Instead of conducting experiments in the real world, there are also attempts to produce data employing
first-principles calculations [4, 5, 6]. In general, such simulations can generate data at reasonable cost
and enable to generate relatively large data sets. Nevertheless, exact reproduction of real materials is
unfeasible, thus we have to solve idealised models by sacrificing the fidelity. Therefore, computation
data and experimental data are complementary, and this is the motivation for introducing transfer
learning; Computational data transfer their abundant knowledge to fill a lack of experimental data,
while experimental data complement the low fidelity of computational data. Such a transfer scheme
is called as the sim2real (simulation-to-real) transfer.
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Figure 1: Schematics of the sim2real transfer model.

Despite of those advantages, applying the sim2real transfer approach to materials discovery is not
straightforward due to the domain differences between computational and experimental data. Most
critical is the difference in scale: whereas a first-principles calculation gives a microscopic picture on
a single (often simple) surface structure at a single elementary process of reaction, an experimental
measurement gives a macroscopic picture of an entire reaction path on complex surfaces involving
various facets, reconstructions, and support interactions. The central challenge addressed in this study
is to bridge this gap by harnessing the domain knowledge of catalyst chemistry and enabling sim2real
transfer.

This study proposes a transfer learning scheme from calculation to experiment and assesses its
feasibility through catalyst activity prediction for the reverse water gas shift reaction (RWGS) as an
example. This paper first gives an overview of the proposed method and then presents experimental
results of the sim2real transfer.

2 Method

2.1 Datasets

Throughout this study, we use the Open Catalyst 2020 (OC20) [4], a simulation dataset based on the
density functional theory (DFT), for a source computational dataset. It presents a large collection of
pairs of a slab structure xSM and an adsorption energy ySM per adsorbate M , including approximately
106 entries (∼2000 structures × 48 adsorbates).

Regarding a target dataset, we refer a high-throughput experimental dataset opened by Wang et al. [3].
Their dataset provides 300 pairs of a catalyst composition xT and an activation energy yT. Here, we
disregard the compositions including lanthanoids as they exceed the coverage of the OC20, reducing
the data size from 300 to 141.

Let the domain be Dr ≡ (X r ×Yr, P r
X,Y ) with the feature space, X r, and the output space, Yr, and

the joint distribution of probability, P r
X,Y where r = S or T for source or target. We express the

source dataset as {DSM }M where DSM ≡ {(xSM
i , ySM

i )}∼2000
i=1 with xSM

i ∈ X SM , ySM
i ∈ YSM and

the target dataset as DT ≡ {(xT
i , y

T
i )}141i=1 with xT

i ∈ XT, yTi ∈ YT.

2.2 Model

The proposed method consists of two stages, a domain transformation part and a transfer learning
part, as shown in Figure 1. The first part, domain transformation, maps the source domain to the
target domain as DS = (X S × YS, P S

X,Y ) → D′S = (XT × YT, P S
X,Y ) so that P S

Y |X ≈ PT
Y |X . This

procedure reduces the problem to a homogeneous domain shift, enabling standard transfer learning
methods to solve.

The transformation proceeds as follows:

Step 1: conversion from structures to a composition We first convert structures {xSM } ∈ {X S}n
to the corresponding composition x′SM ∈ XT by marginalizing their atomic positions. Since
structures and compositions have a many-to-one relationship with the multiplicity n, a corresponding
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adsorption energy cannot be determined uniquely. In this work, we simply adopt the lowest adsorption
energy among the same compositions as a representative value, that is, ȳSM

j = min{ySM
i | xSM

i =

x′SM

j }i ∈ YS.

Step 2: extraction of the product set Next, we arrange intersection datasets with respect to
compositions, that is, {D∩M }M ≡ {(ȳSM

i , yTi ) | x′SM

i = xT
i }i. This datasets will be used in the

following step to determine a map of ȳSM onto YT.

Step 3: function estimation for linear scaling Let F : (YS)m → YT be a projection function
from {ȳSM }M to y′

S ∈ YT. Using {D∩
M}M , we estimate F by solving a regression problem,

F̂ = argmin
F

1

N

N∑
i

LMSE(F ({ȳSM
i }M ), yTi ), (1)

where LMSE is the mean squared error (MSE) loss function. The function form of F is assumed as a
linear model,

F ({ȳSM }M ) = fM∗(ȳ
SM∗ ), FM (y) = aMy + bM , (2)

where M∗ is the adsorbate that best fits yT. This hypothesis relies on the established fact that an
activation energy is linearly scaled with the adsorption energy of the rate-determining step[7]. At
this process, unanticipated effects involved in the experiments, such as support interactions, may be
integrated into the source model, thereby complementing the low-fidelity of simulations.

Step 4: conversion from adsorption energies to an activation energy We convert {ȳSM
i }M to

y′
S with the estimated function F̂ , resulting a source data on the target space, D′S = {(x′S, y′

S
)},

with the transformed source domain, D′S = (XT × YT, P S
X,Y ).

These processes correspond to the transformation of microscopic instances into macroscopic ones.
Further details are discussed in Appendix B.

The transfer learning pert performs domain adaptation based on a NN model. The model is designed as
a fully connected network with five layers. The number of units in each layer decreases progressively,
starting from the input dimension, d, in the first layer, followed by 0.8d, 0.6d, 0.4d, and 0.2d, with
the final output layer having one unit. All units are activated by ReLU (rectified linear unit) and
applied dropout at a rate of 0.1.

For the model input, the composition is converted into the (standardized) chemical descriptors
generated by XenonPy code [8]. While XenonPy originally provides 290 features, we omit the ’sum’
features, that is identical to the ’average’ features on a compositional data. It reduces the number of
features from 290 to 232.

To construct a prediction model, we first prepare a source model from D′S. With the target training,
we compare two different method: the fine-tuning (FT) that re-optimises all layers, and the transfer
learning (TL) that fixes the middle layers and retrain only the final layer. During both training phases,
the parameters are optimized so that minimizing the mean squared error loss by the stochastic gradient
descent algorithm with 16 batches, which is implemented in the PyTorch framework [9].

3 Results

3.1 Function estimation for linear scaling

The linear scaling function F̂ was estimated by the linear regression in Eqs. (1) and (2). To determine
M∗, the regression performance for each M was scored with the coefficient of determination, R2.
Figure 2 shows the results of the best 5 adsorbates in order of R2. As the result, we eventually
obtained F̂ = 0.136ySOH + 0.663 with R2 = 0.75 from D∩OH that has 9 compositions.

3.2 Training and catalyst activity prediction

We constructed a prediction model according to the method shown in Section 2.2. After domain
transformation, the source model was trained using D′S, then the prediction models were prepared by
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Figure 2: Linear regression of activation energy
by adsorption energy.
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Figure 3: Test root mean squared error as a func-
tion of the size of training data.

retraining the source model on DT. Here, we use 80% of the target data for retraining and separate
the remaining 20% as the test data. To prevent leaks, test data were sampled avoiding D∩OH whose
data have already been used. Further details of training are presented in Appendix. C.

The effects of sim2real transfer were measured by evaluating the test loss as a function of the target
training data size, as shown in Figure 3. Here, we evaluate the mean loss and its standard deviation
over five trials where the data were randomly selected from the training data pool in each trial.

As the result, we observed a sign of positive transfer; Both the FT and the TL model show lower
losses than the full scratch model. In comparison with the FT and the TL, although the later is more
stable as showing the smaller standard deviations than the former, there are little difference. It is
noteworthy that the losses of transferred models have minimized even without the target training
steps, indicating that the source model has almost converged on optimal parameters in the target
space. Although the source model knows only 9 data used in estimating F , it achieves an accuracy of
0.026eV, which is comparable to that of full scratch model with > 70 target data. In addition, the
transferred models are more robust than the full scratch model that shows a tendency of over-fitting
as decreasing accuracy with adding training data. We also performed some additional examinations,
shown in Appendix. D

4 Conclusion

In this work, we proposed a machine learning method for catalyst activity prediction based on transfer
learning from computational data to experimental data across their gap harnessing the knowledge of
catalyst chemistry.

The proposed method transforms the feature space of microscopic computational data into that of
macroscopic experimental data by using the linear scaling relation in catalysis, and then solves the
problem as a homogeneous transfer learning.

Using the Open Catalyst 2020 as the source dataset and the high-throughput experimental dataset
from Wang et al. as the target dataset, we construct a neural network prediction model for activation
energy of the reverse water gas shift reaction. Our demonstration confirmed that the proposed method
shows a positive transfer of increasing accuracy and robustness compared to the model trained only
with target data. Moreover, the source model has already been optimised in the target space, despite
only using few target data during the domain transformation. This result indicates the importance of
appropriate domain transformation, and suggests that the prediction performance can be improved
efficiently by expanding the data so that there is more overlap between calculations and experiments.

In conclusion, we believe that our proposed method helps saving the number of trials in real laborato-
ries significantly, leading drastic reduction of the cost and time of exploring novel catalysts. Since this
work is still at the stage of proof of concept, there is a number of implications for further improvement.
Future works should include the improvement of each procedure, for instance, designing the mapping
functions F and G, or tailoring the architecture of prediction models.
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A Dataset preparation and preprocessing

A.1 Computational dataset

Open Catalyst 2020 (OC20) [4] is a set of simulated data on molecular adsorption processes at metal
surfaces, obtained by first-principles calculations based on the density functional theory (DFT). While
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it consists of several tasks, we particularly focus on the initial structure to relaxed energy (IS2IR)
dataset because we are interested in the adsorption energy. IS2IR is a large collection of pairs of
slab structures S and adsorption energies EM per adsorbate M , including approximately 106 entries
(∼2000 catalysts × 48 molecules).

Let the source domain be DS ≡ (X S × YS, P S
X,Y ) with the source input (output) space, X S(YS),

and the joint distribution on source space, P S
X,Y . We express the source dataset as {DS

M} with
DS

M ≡ {(xSM
i , ySM

i )}∼2000
i=1 , that is, xSM

i ∈ X S and ySM
i ∈ YS.

A.2 Experimental dataset

Wang et al. presents measured data on the activity of RWGS on Pt-based catalysts synthesised
on TiO2 supports [3]. The catalysts are prepared such that their compositions are Pt(3)/M1(X1)-
M2(X2)-M3(X3)-M4(X4)-M5(X5)/TiO2 where Mi is an element contained in a loading amount
Xi (wt%) with the 3 wt% Pt, on the TiO2 support. This dataset consists of pairs of loading amount
and CO formation rate, rCO, and is one of the largest experimental dataset of catalyst with a total of
300 entries (45 initial compositions and 255 compositions obtained by Bayesian search). Here, we
disregard the compositions including lanthanoids as they exceed the coverage of OC20, reducing the
entries to 141 (38+103).

For simplicity, we assume that each catalyst is characterised by a single compositional data among
{Mi} plus Pt as xT. We derive the activation energy yT from the CO formation rate using the
Arrhenius equation,

rCO = Aexp

(
yT

kT

)
, (3)

where k is the Boltzmann constant, T is the experimental temperature, A is called the pre-exponential
factor. yT is measured in the unit of eV.

In this work, A is represented by the value of Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2, irre-
spective of composition. Eventually, we consider the target dataset as DT ≡ {(xT

i , y
T
i )}141i=1 with

xT
i ∈ XT and yTi ∈ YT on the target domain DT ≡ (XT × YT, PT

X,Y ).

B Detailed discussions on transformation functions

Physically, Steps 2 and 3 in the transformation part are the projections from microscopic to macro-
scopic and may be defined according to the theory of thermodynamics.

Step 2 applies a function that discards the information on atomic positions from the structure
and extracts only its composition. In general, structures and compositions have the many-to-one
relationship, and two or more structures can give the same composition. Ideally, it should be a
good approximation of adsorption on real surfaces by taking thermostatistical averages for possible
(meta-)stable surfaces and adsorption sites. However, as the OC20 is based on random sample from
low-index surfaces of relatively simple alloys, it does not necessarily include the active sites of real
catalysts. Since exploration of stable surfaces is beyond the scope of this study, we adopt the structure
that gives the lowest adsorption energy among duplicates as the representative sample instead.

F mediates between the adsorption energies and the activation energy, and is related to microkinetic
analysis of the reaction path, assumed as Eqs. (1) and (2). This assumption is based on the following
empirical row, which is well-established in catalyst chemistry:

1. In many cases, catalytic activity is determined by a rate-determining step (RDS) in the
reaction path. Thus, an adsorbate related to the RDS is sufficient for consideration.

2. There is a linear scaling between the activation energy and the adsorption energy in RDS
[7], known as the Brønsted–Evans–Polanyi relation.

With regard to the latter, if we consider the Sabatier principle, which states that adsorption energy
should be neither too strong nor too weak as it follows a volcano curve, we can improve the prediction
by extending a piecewise linear model. However, in this study, a simple linear model was employed
due to the limited quantity of training data.
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Figure 4: Source training curve with respect to the losses of training, validation, and test, as functions
of the number of epochs.

C Experimental details

C.1 Source training

Figure 4 shows the training curves with source data, displaying the mean and the standard deviation
of losses obtained by 10-fold cross validation. Here, we separated the 20% of source data for testing,
and performed cross validation with the remaining 80%. Apart from the validation, the source model
was trained using all the source data, and carried out early stopping on 100 epochs.

C.2 Target training

Figure 4 shows the target training curves for each retraining methods of the full scratch, the fine
tuning, and the transfer learning, explained in Section 2.2. The mean and the standard deviation of
validation losses obtained by 10-fold cross validation are displayed. With the prediction models, we
stopped training after 100 epochs.

D Supporting experiments

We conducted some additional experiments to analyse the results discussed in Section 3.2. Since
the fine tuning and the transfer learning exhibit almost identical performance, we only show the
results with the later. First, to investigate the impact of choosing M∗, we compare the case if we
differentiate M∗ = OH to, for instance, M∗ = CH3CO, that gives F̂ = 0.0667ECH3CO + 0.790
with R2 = 0.47. Figure 6 shows the comparison, suggesting that a wrong choice of M∗ degrades
accuracy. Interestingly, even in such case, the transferred model starts with better initial conditions
and gets optimised earlier than the full scratch model.

In order to check whether the parameters fall into a local minimum or not, we apply a white noise to
the parameters before starting target training. Figure 7 shows the of retraining the model with white
noise of different amplitudes, 0.025, 0.05, and 0.1. We can see the performance degradation due to
noises, but if it is small, the performance will be recovered while learning the target data. Otherwise,
the test error converges on a worse value. This result confirms that the pre-training model reached an
optimal solution, at least under these conditions.
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