
Reinforcement Learning with Latent Flow

Wenling Shang∗
DeepMind

wendyshang@deepmind.com

Xiaofei Wang∗
UC Berkeley

w.xf@berkeley.edu

Aravind Srinivas
OpenAI

aravind_srinivas@berkeley.edu

Aravind Rajeswaran
Facebook AI Research, University of Washington

aravraj@fb.com

Yang Gao
Tsinghua University

gaoyangiiis@tsinghua.edu.cn

Pieter Abbeel
UC Berkeley, Covariant
pabbeel@berkeley.edu

Michael Laskin
UC Berkeley

mlaskin@berkeley.edu

Abstract

Temporal information is essential to learning effective policies with Reinforcement
Learning (RL). However, current state-of-the-art RL algorithms either assume
that such information is given as part of the state space or, when learning from
pixels, use the simple heuristic of frame-stacking to implicitly capture temporal
information present in the image observations. This heuristic is in contrast to
the current paradigm in video classification architectures, which utilize explicit
encodings of temporal information through methods such as optical flow and
two-stream architectures to achieve state-of-the-art performance. Inspired by
leading video classification architectures, we introduce the Flow of Latents for
Reinforcement Learning (Flare), a network architecture for RL that explicitly
encodes temporal information through latent vector differences. We show that
Flare recovers optimal performance in state-based RL without explicit access to
the state velocity, solely with positional state information. Flare is the most sample
efficient model-free pixel-based RL algorithm on the DeepMind Control suite when
evaluated on the 500k and 1M step benchmarks across 5 challenging control tasks,
and, when used with Rainbow DQN, outperforms the competitive baseline on Atari
games at 100M time step benchmark across 8 challenging games.

1 Introduction

Reinforcement learning (RL) [41] holds the promise of enabling artificial agents to solve a diverse
set of tasks in uncertain and unstructured environments. Recent developments in RL with deep
neural networks have led to tremendous advances in autonomous decision making. Notable examples
include classical board games [36, 37], video games [29, 6, 45], and continuous control [34, 28].
There has been a large body of research on extracting high quality features during the RL process,
such as with auxiliary losses [20, 27, 35] or data augmentation [25, 26]. However, another important
component in RL representation learning has been largely overlooked: a more effective architecture
to incorporate temporal features. This becomes especially crucial in an unstructured real-world setup
like the home when compact state representations such as calibrated sensory inputs are unavailable.
Motivated by this understanding, we explore architectural improvements to better utilize temporal
features for the problem of efficient and effective deep RL from pixels.
∗Equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Figure 1: Mean and median evaluation scores on DMControl[42] and Atari[3]. Flare is an architectural
modification that improves RAD and Rainbow, the base algorithms it integrates with.

Current approaches in deep RL for learning temporal features are largely heuristic in nature. A
commonly employed approach is to stack the most recent frames [29] as inputs to a convolutional
neural network (CNN). This can be interpreted as a form of early fusion [24], where information
from the recent time window is combined at the pixel level for input to the CNN. In contrast, modern
video recognition systems use alternate architectures that employ optical flow and late fusion [38],
where frames are processed individually with CNN layers before fusion and downstream processing.
Late fusion is typically beneficial due to better performance, fewer parameters, and the ability to use
multi-modal data [8, 21]. However, it is not straightforward how to directly extend such architectures
to RL. Real-time computation of optical flow for action selection can be computationally infeasible
for many applications with fast control loops like robotics. Furthermore, optical flow computation at
training time can also be prohibitively expensive. In our experiments, we also observe that a naive
late fusion architecture minus the optical flow yields poor results in RL settings (see Section 6.3).
This observation is consistent with recent findings in related domains like visual navigation [46].

To overcome the above challenges, we develop Flow of Latents for Reinforcement Learning (Flare),
a new architecture for deep RL from pixels (Figure 4). Flare can be interpreted as a structured
late fusion architecture. It processes each frame individually to compute latent vectors, similar to a
standard late fusion approach. Subsequently, temporal differences between the latent feature vectors
are computed and fused along with the latent vectors by concatenation for downstream processing.
By incorporating this structure of temporal difference in latent feature space, we provide the learning
agent with appropriate inductive bias.

We highlight the main empirical contributions from Flare in the following2:

1. Flare recovers optimal performance in state-based RL without explicit access to the state
velocity, solely with positional state information.

2. Flare achieves state-of-the-art performance compared to model-free methods on several
challenging pixel-based continuous control tasks within the DeepMind control benchmark
suite [42], while being the most sample efficient model-free pixel-based RL algorithm across
these tasks, outperforming the prior model-free state-of-the-art RAD on the 500k and 1M
environment step benchmarks respectively (Figure 1). A video demonstration of Flare
achieving SOTA performance on Quadruped Walk is in the supplementary materials.

3. When augmented over Rainbow DQN, Flare outperforms the baseline on 5 out of 8 chal-
lenging Atari games at 100M step benchmark. Notebly, Flare scores 1668 on Montezuma’s
Revenge, a signifcant gain over the baseline Rainbow DQN’s 900.

2 Related Work

Pixel-Based RL The ability of an agent to autonomously learn control policies from visual inputs
can greatly expand the applicability of deep RL [10, 32]. Prior works have used CNNs to extend RL
algorithms like PPO [34], SAC [14], and Rainbow [19] to pixel-based tasks. Such direct extensions
have typically required substantially larger number of environment interactions when compared to
the state-based environments. In order to improve sample efficiency, recent efforts have studied the
use of auxiliary tasks and loss functions [50, 27, 35], data augmentation [26, 25], and latent space

2Code: https://github.com/WendyShang/flare

2



dynamics modeling [16, 15]. Despite these advances, there is still a large gap between the learning
efficiency in state-based and pixel-based environments in a number of challenging benchmark tasks.
Our goal in this work is to identify where and how to improve pixel-based performance on this set of
challenging control environments.

Neural Network Architectures in RL Mnih et al. [29] combined Q-learning with CNNs to achieve
human level performance in Atari games, wherein Mnih et al. [29] concatenate the most recent
4 frames and use a convolutional neural network to output the Q values. In 2016, Mnih et al.
[30] proposed to use a shared CNN among frames to extract visual features and aggregate the
temporal information with LSTM. The same architectures have been adopted by most works to
date [27, 35, 25, 26]. Recently, new architectures for RL have been explored that explore dense
connections [39] as well as residual connections and instance norm [49]. However, the development
of new architectures to better capture temporal information in a stream of images has received little
attention in deep RL, and our work fills this void. Perhaps the closest to our motivation is the work of
Amiranashvili et al. [1] who explicitly use optical flow as an extra input to the RL policy. However,
this approach requires additional information and supervision signal to train the flow estimator, which
could be unavailable or inaccurate in practice. In contrast, our approach is a simple modification
to existing deep RL architectures and does not require any additional auxiliary tasks or supervision
signals.

Two-Stream Video Classification In video classification tasks, such as activity recognition [40],
there are a large body of works on how to utilize temporal information [9, 22, 44, 7, 47, 12]. Of
particular relevance is the two-stream architecture of Simonyan and Zisserman [38], where one
CNN stream takes the usual RGB frames, while the other the optical flow computed from the RGB
values. The features from both streams are then late-fused to predict the activity class. That the
two-stream architecture yields a significant performance gain compared to the single RGB stream
counterpart, indicating the explicit temporal information carried by the flow plays an essential role in
video understanding. Instead of directly computing the optical flow, we propose to capture the motion
information in latent space to avoid computational overheads and potential flow approximation errors.
Our approach also could focus on domain-specific motions that might be overlooked in a generic
optical flow representation.

3 Background

Soft Actor Critic (SAC) [14] is an off-policy actor-critic RL algorithm for continuous control with
an entropy maximization term augmented to its score function to encourage exploration. SAC learns
a policy network πψ(at|ot) and critic networks Qφ1

(ot, at) and Qφ2
(ot, at) to estimate state-action

values. The critic Qφi
(ot, at) is optimized to minimize the (soft) Bellman residual error:

LQ(φi)=Eτ∼B
[(
Qφi

(ot, at)− (rt + γV (ot+1))
)2]

,

where r is the reward, γ the discount factor, τ = (ot, at,ot+1, rt) is a transition sampled from replay
buffer B, and V (ot+1) is the (soft) target value estimated by:

V (ot+1)=min
i
Qφ̄i

(ot+1, at+1)− α log πψ(at+1|ot+1)],

where α is the entropy maximization coefficient. For stability, Qφ̄i
is the exponential moving average

of Qφi ’s over training iterations. The policy πψ is trained to maximize the expected return estimated
by Q together with the entropy term

Lπ(ψ) = −Eat∼π [min
i
Qφi(ot, at)− α log πψ(at|ot)],

where α is also a learnable parameter.

Reinforcement Learning with Augmented Data, or RAD [26], is a recently proposed training
technique. In short, RAD pre-processes raw pixel observations by applying random data augmenta-
tions, such as random translation or cropping, for RL training. As simple as it is, RAD has taken
many existing RL algorithms, including SAC, to the next level. For example, on many DMCon-
trol [42] benchmarks, while vanilla pixel-based SAC performs poorly, RAD-SAC—i.e. applying
data augmentation to pixel-based SAC—achieves state-of-the-art results both in sample efficiency
and final performance. In this work, we refer RAD to RAD-SAC and use random translation as data
augmentation.

3



Environment Step
Full-state SAC Flare Position-only SAC

Figure 2: Flare enables an RL agent with only access to positional state to recover a near-optimal
policy relative to RL with access to the full state. In the above learning curves we show test-time
performance for (i) full-state SAC (blue), where both pose and temporal information is given (ii)
position-only SAC (green), and (iii) state-based Flare (orange), where only pose information is
provided and velocities are approximated through pose offsets. Unlike full-state SAC, which learns
the optimal policy, position-only SAC either fails or converges at suboptimal policies. Meanwhile,
the fusion of positions and approximated velocities in Flare efficiently recovers near-optimal policies
in most cases. This motivates using Flare for pixel-based input, where velocities are not present in the
observation. These results show mean performance with standard deviations averaged over 3 seeds.

Rainbow DQN is an extension of the Deep Q Network (DQN) [29], which combines multiple
follow-up improvements of DQN to a single algorithm [19]. In summary, DQN [29] is an off-policy
RL algorithm that leverages deep neural networks (DNN) to estimate the Q value directly from
the pixel space. The follow-up works Rainbow DQN bring together to enhance the original DQN
include double Q learning [17], prioritized experience replay [33], dueling network [48], noisy
network [13], distributional RL [5] and multi-step returns [41]. Rainbow DQN is one of the state-of-
the-art RL algorithms on the Atari 2600 benchmark [3]. We thus adopt an official implementation of
Rainbow [31] as our baseline to directly augment Flare on top.

4 Motivation

We motivate Flare by investigating the importance of temporal information in state-based RL. Our
investigation utilizes 5 diverse DMControl [42] tasks. The full state for these environments includes
both the agent’s pose information, such as the joints’ positions and angles, as well as temporal
information, such as the joints’ translational and angular velocities.

First, we train two variants with SAC—one where the agent receives the full state as input (full-state
SAC), and the other with the temporal information masked out, i.e. the agent only receives the pose
information as its input (position-only SAC). The resulting learning curves are in Figure 2. While
the full-state SAC learns the optimal policy quickly, the position-only SAC learns much sub-optimal
policies, which often fail entirely. Therefore, we conclude that effective policies cannot be learned
from positions alone, and that temporal information is crucial for efficient learning.

While full-state SAC can receive velocity information from internal sensors in simulation, in the more
general case such as learning from pixels, such information is often not readily available. For this rea-
son, we attempt to approximate temporal information as the difference between two consecutive states’
positions. Concretely, we compute the positional offset δt=(spt−spt−1, s

p
t−1−spt−2, s

p
t−2−spt−3), and

provide the fused vector (spt , δt) to the SAC agent. This procedure describes the state-based version
of Flare. Results shown in Figure 2 demonstrate that state-based Flare significantly outperforms
the position-only SAC. Furthermore, it achieves optimal asymptotic performance and a learning
efficiency comparable to full-state SAC in most environments.

Given that the position-only SAC utilizes spt compared to Flare that utilizes spt and δt, we also investi-
gate a variant (stack SAC) where the SAC agent takes consecutive positions (spt , s

p
t−1, s

p
t−2, s

p
t−3).

Stack SAC reflects the frame-stack heuristic used in pixel-based RL. Results in Figure 3 show that
Flare still significantly outperforms stack SAC. It suggests that the well-structured inductive bias in
the form of temporal-position fusion is essential for efficient learning.

Lastly, since a recurrent structure is an alternative approach to process temporal information, we im-
plement an SAC variant with recurrent modules (Recurrent SAC) to compare with Flare. Specifically,

4



we pass a sequence of poses spt , s
p
t−1, s

p
t−2, s

p
t−3 through an LSTM cell. The number of the LSTM

hidden units h is set to be the same as the dimension of δt in Flare. The trainable parameters of the
LSTM cell are updated to minimize the critic loss. Recurrent SAC is more complex to implement
and requires longer wall-clock training time, but performs worse than Flare as shown in Figure 3.

Our findings from the state experiments in Figure 2 and Figure 3 suggest that (i) temporal information
is crucial to learning effective policies in RL, (ii) using Flare to approximate temporal information
in the absence of sensors that provide explicit measurements is sufficient in most cases, and (iii) to
incorporate temporal information via naively staking position states or a recurrent module are less
effective than Flare. In the next section, we carry over these insights to pixel-space RL.

Environment Step
Recurrent Stack SACFlare

Figure 3: We compare 3 ways to incorporate temporal information: i) Flare (orange) receives
(spt , s

p
t−spt−1, s

p
t−1−spt−2, s

p
t−2−spt−3), ii) stack SAC (green) stacks (spt , s

p
t−1, s

p
t−2, s

p
t−3) as inputs,

and iii) recurrent SAC (blue) uses recurrent layers to process (spt , s
p
t−1, s

p
t−2, s

p
t−3). Stack SAC and

recurrent SAC perform significantly worse than Flare on most environments, highlighting the benefit
of how Flare handles temporal information. Results are averaged over 3 seeds.

5 Reinforcement Learning with Latent Flow

To date, frame stacking is the most common way of pre-processing pixel-based input to convey
temporal information for RL algorithms. This heuristic, introduced by Mnih et al. [29], has been
largely untouched since its inception and is used in most state-of-the-art RL architectures. However,
our observations from the experiments run on state inputs in Section 4 suggest an alternative to the
frame stacking heuristic through the explicit inclusion of temporal information as part of the input.
Following this insight, we seek a general alternative approach to explicitly incorporate temporal
information that can be coupled to any base RL algorithm with minimal modification. To this end,
we propose the Flow of Latents for Reinforcement Learning (Flare) architecture. Our proposed
method calculates differences between the latent encodings of individual frames and fuses the feature
differences and latent embeddings before passing them as input to the base RL algorithm, as shown
in Figure 4. We demonstrate Flare on top of 2 state-of-the-art model-free off-policy RL baselines,
RAD-SAC [26] and Rainbow DQN [19], though in principle any RL algorithm can be used in
principle.

(ot, ot−1, ot−2)

ot

ot−1

ot−2

ot

ot−1

ot−2

zt

zt−1

zt−2

δt

δt−1

/DWHQW
'LIIHUHQFHV

B

B

/DWHQW
9HFWRUV

B 6XEWUDFWLRQ

�D��)UDPH�VWDFNLQJ�KHXULVWLF �E��,QGLYLGXDO�IUDPH�HQFRGLQJ �E��)ORZ�RI�/DWHQWV�IRU�5/��)ODUH�

πψ

Qϕ

πψ

Qϕ

πψ

Qϕ

δt−k = zt−k − zt−2k

Fusion by 
Concatenation

(b) Individual frame encoding(a) Frame stacking heuristic (c) Flow of Latents for RL (Flare)

δj = zj − zj−1

Figure 4: Flow of Latents for Reinforcement Learning (Flare): (a) the architecture for the frame
stacking heuristic, (b) an alternative to the frame stacking hueristic by encoding each image indi-
vidually, and (c) the Flare architecture which encodes images individually, computes the feature
differences, and fuses the differences together with the latents.

5



5.1 Latent Flow

In computer vision, the most common way to explicitly inject temporal information of a video
sequence is to compute dense optical flow between consecutive frames [38]. Then the RGB and the
optical flow inputs are individually fed into two streams of encoders and the features from both are
fused in the later stage of the pipelinee. But two-stream architectures with optical flow are not as
applicable to RL, because it is too computationally costly to generate optical flow on the fly.

To address this challenge and motivated by experiments in Section 4, we propose an alternative
architecture that is similar in spirit to the two-stream networks for video classification. Rather than
computing optical flow directly, we approximate temporal information in the latent space. Instead of
encoding a stack of frames at once, we use a frame-wise CNN to encode each individual frame. Then
we compute the differences between the latent encodings of consecutive frames, which we refer to as
latent flow. Finally, the latent features and the latent flow are fused together through concatenation
before getting passed to the downstream RL algorithm. We call the proposed architecture as Flow of
Latents for Reinforcement Learning (Flare).

5.2 Implementation and Architecture Details

Table 1: Evaluation on 5 benchmark tasks around 500K and 1M environment steps. We evaluate over 5 seeds,
each of 10 trajectories and show the mean ± standard deviation across runs. Flare substantially outperforms
RAD on a majority (3 out of the 5) of environments, while being competitive in the remaining

1M STEPS 500K STEPS

TASK FLARE RAD CURL FLARE RAD CURL

QUADRUPED WALK 488± 99 322± 102 38± 10 296± 62 206± 50 39± 22
PENDULUM SWINGUP 809± 14 520± 144 151± 48 242± 68 79± 33 46± 207

HOPPER HOP 217± 26 211± 12 44± 3 90± 25 40± 18 10± 17
FINGER TURN HARD 661± 141 249± 44 598± 100 282± 30 137± 44 328± 91

WALKER RUN 556± 42 628± 17 350± 17 426± 18 547± 21 255± 9

AVERAGE RETURN 546 388 236 267 201 136

To address this challenge and motivated by experiments in Section 4, we propose an alternative181

architecture that is similar in spirit to the two-stream networks for video classification. Rather than182

computing optical flow directly, we approximate temporal information in the latent space. Instead of183

encoding a stack of frames at once, we use a frame-wise CNN to encode each individual frame. Then184

we compute the differences between the latent encodings of consecutive frames, which we refer to as185

latent flow. Finally, the latent features and the latent flow are fused together through concatenation186

before getting passed to the downstream RL algorithm. We call the proposed architecture as Flow of187

Latents for Reinforcement Learning (Flare).188

5.2 Implementation and Architecture Details189

Algorithm 1 Pixel-based Flare Inference
Given πψ , fCNN

for each environment step t do
zj=fCNN(oj), j=t−k, .., t
δj=zj−zj−1, j=t−k+1, .., t
zt=(zt−k+1, · · ·, zt, δt−k+1, · · ·, δt)
zt = LayerNorm(fFC(zt))
at∼πψ(at|zt)
ot+1∼p(ot+1|at,ot = (ot, ot−1..ot−k))

We190

se-191

lect192

RAD193

as194

the195

base196

al-197

go-198

rithm199

to200

elab-201

o-202

rate the execution of Flare. Similar adaptations can be seamlessly applied to other RL algorithms203

such as Rainbow DQN. The RAD architecture, shown in Figure 4a, stacks multiple data augmented204

frames observed in the pixel space and encodes them altogether through an CNN. This can be viewed205

as a form of early fusion [23].206

Another preprocessing option is to encode each frame individually through a shared frame-wise207

encoder and perform late fusion of the resulting latent features, as shown in Figure 4b. However, we208

find that simply concatenating the latent features results in inferior performance when compared to209

the frame stacking heuristic, which we further elaborate in Section 6.3. We conjecture that pixel-level210

frame stacking benefits from leveraging both the CNN and the fully connected layers to process211

temporal information, whereas latent-level stacking does not propagate temporal information back212

through the CNN encoder.213

Based on this conjecture, we explicitly compute the latent flow δt = zt − zt−1 while detaching the214

zt−1 gradients when computing δt. We then fuse together (δt, zt). Next, since negative values in the215

fused latent embedding now possesses semantic meaning from δt, instead of ReLU non-linearity, we216

pass the embedding through a fully-connected layer followed by layer normalization, before entering217

the actor and critic networks as shown in Figure 4c. Pseudocode illustrates inference with Flare in218

Algorithm 1; during training, the encodings of latent features and flow are done in the same way219

except with augmented observations.220

6

We select RAD as the base algorithm to elab-
orate the execution of Flare. Similar adapta-
tions can be seamlessly applied to other RL al-
gorithms such as Rainbow DQN. The RAD ar-
chitecture, shown in Figure 4a, stacks multiple
data augmented frames observed in the pixel
space and encodes them altogether through an
CNN. This can be viewed as a form of early
fusion [24].

Another preprocessing option is to encode each
frame individually through a shared frame-wise
encoder and perform late fusion of the resulting
latent features, as shown in Figure 4b. However,
we find that simply concatenating the latent fea-

tures results in inferior performance when compared to the frame stacking heuristic, which we further
elaborate in Section 6.3. We conjecture that pixel-level frame stacking benefits from leveraging
both the CNN and the fully connected layers to process temporal information, whereas latent-level
stacking does not propagate temporal information back through the CNN encoder.

Based on this conjecture, we explicitly compute the latent flow δt = zt − zt−1 while detaching the
zt−1 gradients when computing δt. We then fuse together (δt, zt). Next, since negative values in the
fused latent embedding now possesses semantic meaning from δt, instead of ReLU non-linearity, we
pass the embedding through a fully-connected layer followed by layer normalization, before entering
the actor and critic networks as shown in Figure 4c. Pseudocode illustrates inference with Flare in
Algorithm 5.2; during training, the encodings of latent features and flow are done in the same way
except with augmented observations.

6 Experiments

In this section, we first present the main experimental results, where we show that Flare achieves
substantial performance gains over the base algorithm RAD [26] and Rainbow DQN [19]. Then we
conduct a series of ablation studies to stress test the design choices of the Flare architecture.

6.1 Environments and Evaluation Metrics

The DeepMind Control Suite (DMControl) [42], based on MuJoCo [43], is a commonly used bench-
mark for continuous control from pixels. On simpler environments in the suite, prior works [25, 26]
have made substantial progress on this benchmark and closed the gap between state-based and
pixel-based efficiency. However, on more challenging environments that feature partial observability,
sparse rewards, or precise manipulation, these algorithms struggle to learn optimal policies efficiently
. In this work, we focus on 5 of these more challenging tasks. The 5 environments include Walker

6



Table 1: Mean returns and standard errors on 5 challenging DMControl tasks evaluated at 500K
and 1M environment steps over 5 random seeds and 10 trajectories per seed. Flare substantially
outperforms RAD on a majority (3 out of the 5) of environments, while remaining competitive in the
remaining ones and achieving a substantially higher aggregate scores.

1M STEPS 500K STEPS

TASK FLARE RAD CURL FLARE RAD CURL

QUADRUPED WALK 488± 99 322± 102 38± 10 296± 62 206± 50 39± 22
PENDULUM SWINGUP 809± 14 520± 144 151± 48 242± 68 79± 33 46± 207

HOPPER HOP 217± 26 211± 12 44± 3 90± 25 40± 18 10± 17
FINGER TURN HARD 661± 141 249± 44 222± 14 282± 30 137± 44 207± 32

WALKER RUN 556± 42 628± 17 323± 35 426± 18 547± 21 245± 32

AVERAGE RETURN 546 388 156 267 202 109

Table 2: Due to large computational requirements for 100M Atari runs, we randomly select 8 Atari
games for evaluation. We run 5 random seeds for both Flare and Rainbow DQN [19], evaluate scores
at 100m training steps, and show the mean and standard error. Flare improves the Rainbow DQN in
most games and achieves a subtantially higher mean and median human normalized scores (HNS). †
refers to a comparison being made between Flare and Flare’s base algorithm Rainbow. Reference
values for DQN, Random, and Human baselines are taken from Bellemare et al. [4].

TASK FLARE RAINBOW DQN RANDOM HUMAN

DEFENDER 86982±13065 44694±1782 23633 2874.5 18688.9
PHOENIX 60974±8070 16992±1474 8485.2 761.4 7242.6
BERZERK 2049±188 1636±267 585.6 123.7 2630.4

MONTEZUMA 1668±472 900±161 0 0 4753.3
ASSAULT 12724±221 15229±1611 4280.5 222.4 742

BREAKOUT 345†±10 280±8 385.5 1.7 30.5
SEAQUEST 13901±3616 24090±5579 5860.6 68.4 42054.7

TUTANKHAM 248±9 247±5 68.1 11.4 167.6

MEDIAN HNS 3.4 2.0 0.8 0.0 1.0
AVERAGE HNS 6.7 5.8 3.0 0.0 1.0

Run (requires maintaining balance with speed), Quadruped Walk (partially observable agent morphol-
ogy), Hopper Hop (locomotion with sparse rewards), Finger Turn-hard (precise manipulation), and
Pendulum Swingup (torque control with sparse rewards). For evaluation, we benchmark performance
at 500K and 1M environment steps and compare against RAD.

The Atari 2600 Games [3] is another highly popular RL benchmark. Recent efforts have led to a
range of highly successful algorithms [11, 19, 23, 15, 2] to solve Atari games directly from pixel.
A representative state-of-the-art is Rainbow DQN (see Section 3). We adopt the official Rainbow
DQN implementation [31] as our baseline and simply incorporate Flare while retaining all the other
default settings, including hyperparameters and preprocessing. Note that the baseline Rainbow
DQN’s model architecture is also modified to the most comparable setup to that of Flare as described
in Section 5.2, including increasing the number of last layer convolutional channels (to match the
number of parameters) and adding a fully-connected layer plus layer normalization before the Q
networks. We evaluate on a diverse subset of Atari games at 100M training steps, namely Assault,
Breakout, Freeway, Krull, Montezuma Revenge, Seaquest, Up n Down and Tutankham, to assess the
effectiveness of Flare.

Evaluation and Training Protocol It is a common symptom in RL that evaluations appear noisy.
To ensure the most fair presentation of results, we follow this protocol: the main results in Section 6.2
report the mean over 5 random seeds with standard error, a standard RL practice [42, 31]. Furthermore,
we use the same 5 seeds for both the baseline and Flare.

7



6.2 Main Results

We present the main results of comparing Flare against the baselines, namely RAD and Rainbow
DQN. Flare outperforms the baselines on the majority of the environments. It is worth noting that
since these baselines already produce state-of-the-art level performances, any steady improvement
under our rigorous experimental protocol—even when the gain seems minor —is significant.

DMControl: Our main experimental results on the 5 DMControl tasks are presented in Table 1.
We find that Flare outperforms RAD in terms of both final performance and sample efficiency for
majority (3 out of 5) of the environments, while being competitive on the remaining environments.
Specifically, Flare attains similar asymptotic performance to state-based RL on Pendulum Swingup,
Hopper Hop, and Finger Turn-hard. For Quadruped Walk, a particularly challenging environment
due to its large action space and partial observability, Flare learns much more efficiently than RAD
and achieves a higher final score. Moreover, Flare outperforms RAD in terms of sample efficiency
on all of the core tasks except for Walker Run. The 500k and 1M environment step evaluations in
Table 1 show that, on average, Flare achieves 1.4× and 1.3× higher scores than RAD at the 1M step
and the 500K step benchmarks, respectively.

Atari: The results on the 8 Atari games are in Table 2. Again, we observe substantial performance
gain from Flare on the majority (5 out of 8) of the games, including the challenging Montezuma’s
Revenge. On most of the remaining games, Flare is equally competitive except for Seaquest. In
the appendix, we also show that Flare performs competitively when comparing against other DQN
variants at 100M training steps, including the original Rainbow implementations.

6.3 Ablation Studies

We ablate a number of components of the Flare architecture on the Quadruped Walk and Pendulum
Swingup environments to stress test the Flare architecture. The results shown in Figure 5 aim to
answer the following questions:

Q1: Do we need latent flow or is computing pixel differences sufficient?
A1: Flare proposes a late fusion of latent differences with the latent embeddings, while a simpler
approach is an early fusion of pixel differences with the pixel input, which we call pixel flow. We
compare Flare to pixel flow in Figure 5 (left) and find that pixel flow is above RAD but significantly
less efficient and less stable than Flare, particularly on Quadruped Walk. This ablation suggests that
late fusion temporal information after encoding the image is preferred to early fusion.

Q2: Are the gains coming from latent flow or individual frame-wise encoding?
A2: We address the potential concern that the performance gain of Flare stems from the frame-wise
ConvNet architectural modification instead of the fusion of latent flow. Concretely, we follow the
exact architecture and training as Flare, but instead of concatenating the latent flow, we concatenate
each frame’s latent vector after the convolution encoders directly as described in Figure 4b. This
ablation is similar in spirit to the state-based experiments in Figure 3. The learning curves in Figure 5
(center) show that individual frame-wise encoding is not the source of the performance lift: frame-
wise encoding, though on par with RAD on Pendulum Swingup, performs significantly worse on
Quadruped Walk. Flare’s improvements over RAD are hence most likely thanks to the explicit fusion
of latent flow.

Q3: How does the input frame count affect performance?
A3: We compare stacking 2, 3, and 5 frames in Flare in Figure 5 (right). We find that changing the
number of stacked frames does not significantly impact the locomotion task, quadruped walk, but
Pendulum Swingup tends to be more sensitive to this hyperparameter. Interestingly, the optimal num-
ber of frames for Pendulum Swingup is 2, and more frames can in fact degrade Flare’s performance,
indicating the immediate position and velocity information is the most critical to learn effective
policies on this task. We hypothesize that Flare trains more slowly with increased frame count on
Pendulum Swingup due to the presence of unnecessary information that the actor and critic networks
need to learn to ignore.

Q4: Do we need latent flow or is RNN over latent sufficient?
A4: Another approach of latent fusion would be applying a recurrent neural network on the latent
embeddings. We compare FLARE with LSTM baselines on DMControl. We found that RNNs

8



Pe
nd

ul
um

, S
w

in
gu

p
Ep

iso
de

 R
et

ur
n

Q
ua

dr
up

ed
, W

al
k

RAD

latent flow
(Flare)

pixel flow

Environment Step

frame stack
(RAD)

latent stack + flow 
(Flare)

latent stack only

2 frames

3 frames

5 frames

(a) pixel flow ablation (b) latent stacking ablation (c) frame count ablation

Figure 5: We perform 3 ablation studies: (a) Pixel flow ablation: we compare using pixel-level and
latent-level (Flare) differences. Flare is more stable and performs better. (b) Latent stack ablation: we
compare using latent stack with and without the latent flow. The latter performs significantly worse,
suggesting that the latent flow is crucial. (c) Frames count ablation: we test using different number
of frames for Flare.

perform worse than FLARE (see Fig 6), which is in agreement with our findings over the poor
performance of RNN on coordinate (i.e. compact) state representations in Section 4.

7 Broader Impacts and Limitations

Figure 6: The bars show the difference
in episode return between FLARE RAD
and RNN at 1M env steps. All experi-
ments are run on a fixed seed. FLARE
outperform the RNN baseline in all of
the experiments

Conclusion We propose Flare, an architecture for RL
that explicitly encode temporal information by computing
flow in the latent space. In experiments, we show that
in the state space, Flare can recover the optimal perfor-
mance with only state positions and no access to the state
velocities. In the pixel space, Flare improves upon the
state-of-the-art model-free RL algorithms on the majority
of selected tasks in the DMControl and Atari suites, while
matching in the remaining. All code assets used for this
project came with MIT licenses. For more details, we refer
the reader to the appendix.

Limitations Flare is a general approach to improve RL
algorithms on many environments and tasks but not the
panacea to single-handedly solve all. For instance, learn-
ing to control humanoid from pixels remains a challenge
even when augmenting RAD with Flare. Also, RAD without Flare in fact is preferred for Seaquest,
one of the Atari games. An additional limitation is that Flare is only useful if temporal information
such as velocities is visible in the input pixel images and may not work as well for partially observed
environments. Finally, Flare was only tested on model-free algorithms and it would be informative to
investigate its applicability in the model-based regime, which we leave for future work.

Broader Impacts Simple architectures that improve performance can be impactful due to their
ease of use and wide applicability. Prime examples of such innovations in vision are ResNets [18]
which have been widely adopted. A potential negative consequence of Flare and supervised RL
algorithms in general is that they rely on hand-designed reward functions which can be exploited. For
example, in the Quadruped task Flare learns a more optimal policy than prior model-free methods
but the resulting policy is extremely jittery since the simulator does not penalize jerk. This policy

9



would likely wear out the joints if deployed on real robot. To make architectures like Flare and RL in
general more applicable to real-world scenarios it would be useful to investigate how to generate safe
policies perhaps through constrained optimization or offline RL.

References
[1] Artemij Amiranashvili, Alexey Dosovitskiy, Vladlen Koltun, and Thomas Brox. Motion

perception in reinforcement learning with dynamic objects. In Conference on Robot Learning,
pages 156–168. PMLR, 2018.

[2] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark. In
International Conference on Machine Learning, 2020.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[4] Marc G. Bellemare, Will Dabney, and R. Munos. A distributional perspective on reinforcement
learning. In ICML, 2017.

[5] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. arXiv preprint arXiv:1707.06887, 2017.

[6] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[7] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the
kinetics dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6299–6308, 2017.

[8] Yevgen Chebotar, Mrinal Kalakrishnan, Ali Yahya, Adrian Li, S. Schaal, and S. Levine. Path
integral guided policy search. 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 3381–3388, 2017.

[9] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for
visual recognition and description. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2625–2634, 2015.

[10] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla:
An open urban driving simulator. arXiv preprint arXiv:1711.03938, 2017.

[11] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

[12] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for
video recognition. In Proceedings of the IEEE international conference on computer vision,
pages 6202–6211, 2019.

[13] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex
Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for
exploration. arXiv preprint arXiv:1706.10295, 2017.

[14] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

[15] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

10



[16] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. In International
Conference on Machine Learning, pages 2555–2565. PMLR, 2019.

[17] Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23:
2613–2621, 2010.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Society, 2016.
doi: 10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

[19] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-
ney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. arXiv preprint arXiv:1710.02298, 2017.

[20] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary
tasks. arXiv preprint arXiv:1611.05397, 2016.

[21] Divye Jain, Andrew Li, Shivam Singhal, Aravind Rajeswaran, Vikash Kumar, and Emanuel
Todorov. Learning Deep Visuomotor Policies for Dexterous Hand Manipulation. In International
Conference on Robotics and Automation (ICRA), 2019.

[22] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for human
action recognition. IEEE transactions on pattern analysis and machine intelligence, 35(1):
221–231, 2012.

[23] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
experience replay in distributed reinforcement learning. In International conference on learning
representations, 2018.

[24] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale
video classification with convolutional neural networks. In 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1725–1732, 2014.

[25] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

[26] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020.

[27] Michael* Laskin, Aravind* Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised
representations for reinforcement learning. Proceedings of the 37th International Conference
on Machine Learning, Vienna, Austria, PMLR 119, 2020. arXiv:2004.04136.

[28] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In ICLR, 2016.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[30] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International conference on machine learning, pages 1928–1937,
2016.

[31] John Quan and Georg Ostrovski. DQN Zoo: Reference implementations of DQN-based agents,
2020. URL http://github.com/deepmind/dqn_zoo.

11

https://doi.org/10.1109/CVPR.2016.90
http://github.com/deepmind/dqn_zoo


[32] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana
Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for
embodied ai research. In Proceedings of the IEEE International Conference on Computer
Vision, pages 9339–9347, 2019.

[33] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[34] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[35] Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip
Bachman. Data-efficient reinforcement learning with momentum predictive representations.
arXiv preprint arXiv:2007.05929, 2020.

[36] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lil-
licrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering
the game of go with deep neural networks and tree search. Nature, 529:484–503, 2016. URL
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html.

[37] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George Driessche, Thore Graepel, and Demis Hassabis.
Mastering the game of go without human knowledge. Nature, 550:354–359, 10 2017. doi:
10.1038/nature24270.

[38] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action
recognition in videos. In Advances in neural information processing systems, pages 568–576,
2014.

[39] Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and Animesh Garg. D2rl: Deep dense
architectures in reinforcement learning, 2020.

[40] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human
actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

[41] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

[42] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

[43] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In IROS, 2012.

[44] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spa-
tiotemporal features with 3d convolutional networks. In Proceedings of the IEEE international
conference on computer vision, pages 4489–4497, 2015.

[45] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh,
Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P.
Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin
Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu
Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McK-
inney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis,
Chris Apps, and David Silver. Grandmaster level in starcraft ii using multi-agent reinforce-
ment learning. Nature, 575(7782):350–354, 2019. doi: 10.1038/s41586-019-1724-z. URL
https://doi.org/10.1038/s41586-019-1724-z.

12

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://doi.org/10.1038/s41586-019-1724-z


[46] Aaron Walsman, Yonatan Bisk, Saadia Gabriel, Dipendra Misra, Yoav Artzi, Yejin Choi, and
Dieter Fox. Early Fusion for Goal Directed Robotic Vision. In International Conference on
Intelligent Robots and Systems (IROS), 2019.

[47] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
7794–7803, 2018.

[48] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas.
Dueling network architectures for deep reinforcement learning. In International conference on
machine learning, pages 1995–2003, 2016.

[49] Ziyu Wang, Alexander Novikov, Konrad Zolna, Jost Tobias Springenberg, Scott Reed, Bobak
Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, and Nando de Freitas.
Critic regularized regression, 2020.

[50] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus.
Improving sample efficiency in model-free reinforcement learning from images. arXiv preprint
arXiv:1910.01741, 2019.

13


	Introduction
	Related Work
	Background
	Motivation
	Reinforcement Learning with Latent Flow
	Latent Flow
	Implementation and Architecture Details

	Experiments
	Environments and Evaluation Metrics
	Main Results
	Ablation Studies

	Broader Impacts and Limitations

