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ABSTRACT

Generative models aim to produce synthetic data indistinguishable from real dis-
tributions, but iterative training on self-generated data can lead to model collapse
(MC), where performance degrades over time. In this work, we provide the first
theoretical analysis of MC in Rectified Flow by framing it within the context of
Denoising Autoencoders (DAEs). We show that when DAE models are trained on
recursively generated synthetic data with small noise variance, they suffer from
MC with progressive diminishing generation quality. To address this MC issue, we
propose methods that strategically incorporate real data into the training process,
even when direct noise-image pairs are unavailable. Our proposed techniques, in-
cluding Reverse Collapse-Avoiding (RCA) Reflow and Online Collapse-Avoiding
Reflow (OCAR), effectively prevent MC while maintaining the efficiency benefits
of Rectified Flow. Extensive experiments on standard image datasets demonstrate
that our methods not only mitigate MC but also improve sampling efficiency, lead-
ing to higher-quality image generation with fewer sampling steps.
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Data 2
Data 2

Data 3
Data 3

Model 1 Model 1Model 2 Model 2Model 3

... ...

Model 3

Model

Training Data
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Synthetic Data

Training

Self-Generated 
Data

Iterative Training with Model Collapse

10th Reflow (Baseline) 10th Reflow-RCA FID (Ours)

Iterative Training avoiding Model Collapse

Figure 1: Two Scenarios for Studying Model Collapse. Top: MC occurs when successive iter-
ations of generative models, trained on their own outputs, progressively degrade in performance,
ultimately rendering the final model ineffective. Left: Illustrates MC by replacing data with each
training iteration. Right: Depicts the scenario where original real data is added at each iteration,
demonstrating that incorporating real data prevents the model from collapsing. Bottom: The correc-
tion streams trained in both modes after 10 iterations. The baseline lacks color, and the images are
blurry and mixed. With our method, the images maintain their generated quality.

1 INTRODUCTION

Generative modeling aims to produce synthetic data that is indistinguishable from genuine data
distributions. While deep generative models have achieved remarkable success across images, audio,
and text (Rombach et al., 2022; Ramesh et al., 2022; Chen et al., 2020; Achiam et al., 2023; Touvron
et al., 2023), the increasing reliance on synthetic data introduces significant challenges. A critical
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Methods Variant Performance

Efficient Sampling Model Collapse Avoid

Neural ODE/SDE

Ours ✓ ✓
DDPM (Ho et al., 2020) ✗ ✗
FM (Lipman et al., 2022) ✓ (Weak) ✗
OTCFM (Tong et al., 2023) ✓ (Weak) ✗
RF (Liu et al., 2022) ✓ ✗

Distillation CD/CT (Song et al., 2023) ✓ (1-step) Unknown

Collapse Avoid

MAD (Alemohammad et al., 2023) ✗ ✓
Stability (Bertrand et al., 2023) ✗ ✓
MCI (Gerstgrasser et al., 2024) N/A ✓
MCD (Dohmatob et al., 2024) N/A ✓

Table 1: Comparison of various methods regarding efficient sampling and model collapse avoidance.
Symbols ✓ and ✗ indicate the presence or absence of a feature, respectively; ”Weak” denotes limited
capability, and ”Unknown” or ”N/A” indicates insufficient information or not applicable.

issue is model collapse (MC), where generative models trained iteratively on their own outputs
progressively degrade in performance (Shumailov et al., 2023). This degradation not only affects
the quality of generated data but also poses risks when synthetic data is inadvertently included in
training datasets, leading to self-consuming training loops (Alemohammad et al., 2023).

Simulation-free models and their variants—such as diffusion models (Song & Ermon, 2019; Song
et al., 2020b; Ho et al., 2020), flow matching (Lipman et al., 2022; Pooladian et al., 2023; Tong
et al., 2023), and Rectified Flow (Liu et al., 2022)—have drawn increasing attention. Among these
models, Rectified Flow stands out due to its rapid development and extensive foundational and large-
scale work (Esser et al., 2024). Unlike typical diffusion models, Rectified Flow’s Reflow algorithm
iteratively utilizes self-generated data as training data to straighten the flow and improve sampling
efficiency, which closely aligns with the definition of MC. This direct use of self-generated data
makes Rectified Flow an ideal candidate for studying and addressing MC. However, previous studies
on Rectified Flow have primarily focused on scaling up the model or applying distillation techniques
(Lee et al., 2024a; Liu et al., 2023; Esser et al., 2024), while neglecting a thorough analysis of MC
itself. Consequently, the observed decline in Reflow’s generation quality has been attributed to error
accumulation without exploring the underlying mechanisms of collapse.

To address these challenges, we first delve into a theoretical analysis of MC in the case of Denoising
Autoencoders (DAEs), then extend our investigation to Rectified Flow. We uncover the underly-
ing mechanisms that lead to performance degradation when diffusion models and Rectified Flows
are trained iteratively on their own outputs. Recognizing the limitations of previous approaches
that primarily attribute decline to error accumulation, we aim to provide a deeper understanding
of MC in this context. Building on this analysis, we propose novel methods to prevent MC in
Rectified Flow. Our approaches involve the strategic incorporation of real data into the training pro-
cess, even when direct noise-image pairs are not readily available. By leveraging reverse processes
and carefully balancing synthetic and real data, we straighten the flow trajectories effectively while
maintaining training stability. We validate our methods through extensive experiments on standard
image datasets. The results demonstrate that our approaches not only mitigate MC but also enhance
sampling efficiency, allowing for high-quality image generation with fewer sampling steps. This
confirms the effectiveness of our strategies in both theoretical and practical aspects.

Our main contributions are as follows: theoretical analysis:To the best of our knowledge, we are
the first to rigorously analyze model collapse in Rectified Flow and establish a theoretical frame-
work using Denoising Autoencoders (DAEs). Specifically, we identify the causes of performance
degradation due to iterative self-generated data training in Rectified Flow. We also introduce novel
methods to prevent MC, including Reverse Collapse-Avoiding (RCA) Reflow, Online Collapse-
Avoiding Reflow (OCAR), and OCAR-S, which preserve the efficiency of Rectified Flow while
mitigating collapse. Moreover, we are the first to experimentally validate that the Reflow training
method leads to a decrease in model performance, which suggests that most diffusion model distil-
lation approaches that rely on synthetic data are also susceptible to MC. Finally, through extensive
experiments on benchmark image datasets, we demonstrate that our methods effectively mitigate
MC, improving both generation quality and sampling efficiency.
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2 RELATED WORK

2.1 MODEL COLLAPSE IN GENERATIVE MODELS

The generation of synthetic data by advanced models has raised concerns about model collapse,
where models degrade when trained on their own outputs. Although large language models and dif-
fusion models are primarily trained on human-generated data, the inadvertent inclusion of synthetic
data can lead to self-consuming training loops (Alemohammad et al., 2023), resulting in perfor-
mance degradation (Shumailov et al., 2023). Empirical evidence of MC has been observed across
various settings (Hataya et al., 2023; Martı́nez et al., 2023; Bohacek & Farid, 2023). Theoretical
analyses attribute the collapse to factors like sampling bias and approximation errors (Shumailov
et al., 2023; Dohmatob et al., 2024). While mixing real and synthetic data can maintain perfor-
mance (Bertrand et al., 2023), existing studies often focus on maximum likelihood settings without
directly explaining MC. Our work extends these analyses to simulation-free generative models like
diffusion models and flow matching, specifically addressing MC in the Reflow method of Rectified
Flow and proposing more efficient training of Rectified flow.

2.2 EFFICIENT SAMPLING IN GENERATIVE MODELS

Achieving efficient sampling without compromising quality is a key challenge in generative mod-
eling. GANs (Goodfellow et al., 2014) and VAEs (Kingma & Welling, 2013) offer fast generation
but face issues like instability and lower sample quality. Diffusion models (Song et al., 2020b) and
continuous normalizing flows (Chen et al., 2018; Lipman et al., 2022; Albergo & Vanden-Eijnden,
2022), produce high-fidelity outputs but require multiple iterative steps, slowing down sampling.
To accelerate sampling, methods such as modifying the diffusion process (Song et al., 2020a; Bao
et al., 2021; Dockhorn et al., 2021), employing efficient ODE solvers (Lu et al.; Dockhorn et al.,
2022; Zhang & Chen, 2022), and using distillation techniques (Salimans & Ho, 2022) have been
proposed. Consistency Models (Song et al., 2023; Kim et al., 2023; Yang et al., 2024) aim for
single-step sampling but struggle with complex distributions. Rectified Flow and its Reflow method
(Liu et al., 2022; Lee et al., 2024b) promise efficient sampling by straightening flow trajectories,
needing fewer steps. However, they are prone to MC due to training on self-generated data, and
existing avoidance methods are ineffective as they do not provide the required noise-image pairs.
Our work addresses this gap by proposing methods to prevent MC in Rectified Flow.

3 PRELIMINARIES

3.1 FLOW MATCHING

Flow Matching (FM) is a training paradigm for CNF (Chen et al., 2018) that enables simulation-free
training, avoiding the need to integrate the vector field or evaluate the Jacobian, thereby significantly
accelerating the training process (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden,
2022). This efficiency allows scaling to larger models and systems within the same computational
budget. Let Rd denote the data space with data points x ∈ Rd. The goal of FM is to learn a vector
field vθ(t, x) : [0, 1] × Rd → Rd such that the solution of the following ODE transports noise
samples x0 ∼ p0 to data samples x1 ∼ p1:

dϕx(t)

dt
= vθ(t, ϕx(t)), ϕx(0) = x. (1)

Here, ϕx(t) denotes the trajectory of the ODE starting from x0. FM aims to match the learned vector
field vθ(t, x) to a target vector field ut(x) by minimizing the loss:

LFM(θ) = Et∼[0,1],x∼pt(x) ∥vθ(t, xt)− ut(t, xt)∥22 , (2)

where pt is the probability distribution at time t, and ut is the ground truth vector field generating
the probability path pt under the marginal constraints pt=0 = p0 and pt=1 = p1. However, directly
computing ut(x) and pt(x) is computationally intractable since they are governed by the continuity
equation (Villani et al., 2009): ∂tpt(x) = −∇ · (ut(x)pt(x)).
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(a) (b) (c) (d)

(B) Vanilla collapse-avoid methods introduce bends to the flow

(C) Our methods can avoid model collapse and straighten the flow
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Figure 2: 2D multi-Gaussian experiment demonstration. (A) Rectified Flow rewires trajectories
to eliminate intersecting paths, transforming from (a) to (b). We then take noise samples from
the distribution pz and their corresponding generated samples from the synthetic distribution px1 to
construct noise-target sample pairs (blue to orange) and linearly interpolate them at point (c). In
Reflow, Rectified Flow is applied again from (c) to (c) to straighten the flows. This procedure
is repeated recursively. (B) Since iterative training on self-generated data can cause MC, we can
incorporate real data (shown in red) during training to prevent collapse. (C) However, adding real
data introduces additional bends to the Rectified Flow because the pairs of real data and initial
Gaussian samples are not pre-paired. Our method employs reverse sampling generated real-noise
pairs (red to blue) to avoid MC while simultaneously straightening the flow.

To address this challenge, Lipman et al. (2022) proposes regressing vθ(t, x) on a conditional vector
field ut(x|z) and the conditional probability path pt(x|z), where z ∼ p(z) is an arbitrary condition-
ing variable independent of x and t (normally we set p(z) as Gaussian Distribution).

LCFM(θ) = Et∼[0,1],z∼p(z),x∼pt(x|z) ∥vθ(t, xt)− ut(t, xt|z)∥22 . (3)

Two objectives equation 2 and equation 3 share the same gradient with respect to θ, while equation 3
can be efficiently estimated as long as the conditional pair u(t, xt|x), pt(xt|x) is tractable. By setting
the xt = tz + (1− t)x, u(t, xt|z) = z−xt

1−t we get the loss of Rectified flow (Liu et al., 2022):

LRF(θ) = Et∼[0,1],z∼p(z),x1∼p1
∥vθ(t, tz + (1− t)x)− (x− z)∥22 . (4)

3.2 RECTIFIED FLOW AND REFLOW

Rectified Flow (RF) (Liu et al., 2022; Liu, 2022; Liu et al., 2023) extends FM by straightening
probability flow trajectories, enabling efficient sampling with fewer function evaluations (NFEs). In
standard FM, the independent coupling pxz(x, z) = px(x)pz(z) results in curved ODE trajectories,
requiring a large number of function evaluations (NFEs) for high-quality samples. RF addresses this
by iteratively retraining on self-generated data to rewire and straighten trajectories.

The Reflow algorithm (Liu et al., 2022) implements this idea by recursively refining the coupling
between x and z. Starting with the initial independent coupling p

(0)
x0z(x, z) = px0

(x)pz(z), we
can train the first Rectified flow θ0 by RF-loss equation 4 using stochastic interpolation data as input
(see 2 0th-Reflow). Then, we can generate noise-image pairs because we can draw (x1, z) following

4
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dxt = vθ0(xt, t)dt starting from z ∼ N which means we can have p
(1)
x1z(x, z) = px1

(x)pz(z) to
start the reflow. Reflow generates an improved coupling p

(k+1)
xz (xk+1, z) at each iteration k by:

1. Generating synthetic pairs (xk, z) sampled from the current coupling p
(k)
xz (xk, z).

2. Training a new rectified flow θk+1 by equation 4 using these synthetic pairs.

We denote the vector field resulting from the k-th iteration as the k-Reflow. This process aims to
produce straighter trajectories, thus reducing the NFEs required during sampling. However, iterative
training on self-generated data can cause model collapse, where performance degrades over itera-
tions. Existing MC avoidance methods are ineffective for RF because incorporating real data does
not provide the necessary noise-image pairs for Reflow training.

4 MODEL COLLAPSE ANALYSIS

4.1 CONNECTION BETWEEN DENOISING AUTOENCODERS AND DIFFUSION MODELS

Denoising Autoencoders (DAEs) are closely related to diffusion models through the concept of
score matching (Song & Ermon, 2019; Song et al., 2020b). Under certain conditions, training a
DAE implicitly performs score matching by estimating the gradient of the log-density of the data
distribution (Vincent, 2011). Specifically, given data x and Gaussian noise ϵ ∼ N (0, σ2I), the DAE
minimizes the reconstruction loss:

LDAE = Ex,ϵ ∥fθ(x+ ϵ)− x∥2 , (5)

where fθ is the DAE parameterized by θ. The residual between the output and input approximates
the scaled score function:

fθ(x+ ϵ)− x ≈ σ2∇x log p(x+ ϵ). (6)

We demonstrate that the training objectives of diffusion models and Flow Matching methods, such
as Rectified Flow, can be unified, differing only in parameter settings and affine transformations
(Esser et al., 2024). Specifically, diffusion models are special cases of Continuous Normalizing
Flow (CNF) trajectories (Lipman et al., 2022; Liu et al., 2022). Consequently, analyzing MC in
Denoising Autoencoders (DAEs) is essential for understanding collapse in diffusion models and
Rectified Flow. Since DAEs learn to denoise and approximate the score function, examining their
behavior under iterative training on self-generated data can reveal degradation mechanisms in more
complex generative models. In this work, we focus on a simplified scenario where a DAE is recur-
sively trained on its own generated data, enabling an analytical study of MC.

4.2 ANALYSIS OF DAE WITH RECURSIVELY LEARNING WITH GENERATIONAL DATA

To better understand the mechanisms behind MC, we investigate a simplified scenario where a linear
DAE is trained recursively on the data it generates. Studying this setting provides valuable insights
into how errors can accumulate over iterations, leading to performance degradation, which is chal-
lenging to analyze in more complex models.

Consider a two-layer neural network denoted by fθ(x) : X → X , which can be expressed in matrix
form as fθ(x) = W2W1x, where W2 ∈ Rd×d′

, W1 ∈ Rd′×d represents the weights of one layer
of the network, Φ = W2W1. We aim to optimize the following training objectives:

min
θ

L(θ) = min
θ

Ex̃∼p(x|z),z∼N

[
∥fθ(x̃)− x∥22

]
, (7)

where z ∼ N (0, σ2) denotes Gaussian noise, x ∼ p1 represents the original training data, and x̃ is a
perturbed version of x, defined by x̃ = αx+βz. The parameters α and β are affine transformations
that depend on the variable t. Here, we set α = β = 1 for the simplicity of analysis. In practice,
given a finite number of training samples, X = [x1 · · · xn], we learn the DAE by solving the
following empirical training objectives

θ⋆(X) := argmin
θ

∑
i

Ez∼N (0,σ2I)

[
∥fθ(xi + z)− xi∥22

]
, (8)

where θ⋆(X) emphasizes the dependence of the solution on the training samples X .
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4.2.1 SYNTHETIC DATA GENERATION PROCESS

Now we formulate the Reflow of linear DAE. Suppose we have training data X = [x1 · · · xn]
with xi = U⋆U⋆⊤ai,ai ∼ N (0, I). Start with X1 = X , in the j-th iteration with j ≥ 1, the
scheme for generating synthetic data is outlined as follows.

• Fit DAE: (W j
2 ,W

j
1 ) = θ⋆(Xj) by solving equation 8 with training data Xj

• Generate synthetic data for the next iteration: Xj+1 = W j
2W

j
1 (Xj + Ej), where each

column of the noise matrix Zj is iid sampled from N (0, σ̂2/n2I).

Theorem 1. In the above synthetic data generation process 4.2.1, suppose that the variance
of the added noise is not too large, i.e., σ̂ ≤ Cσ for some universal constant C. Then, with
probability at least 1− 2je−n, the learned DAE suffers from MC as

∥W j
2W

j
1 ∥2 ≤ ∥X∥2

σ2
(

∥X∥2

∥X∥2 + σ2
)j−1. (9)

Remark 1 (Connection to Diffusion Models). The primary gap between diffusion models and a
sequence of end-to-end DAEs lies in the initial step of the diffusion process. This perspective aligns
with discussions in Zhang et al. (2024), which examine the gap in the first step of diffusion models.
For a detailed explanation, see Appendix A.2. The proof of Theorem 1 can be found in Appendix A.

4.3 DOES MODEL COLLAPSE OCCUR IN RECTIFIED FLOW?

Building on our analysis of MC in DAEs, we investigate whether a similar collapse occurs in Recti-
fied Flow. Despite the differences between DAEs and Rectified Flow, we hypothesize that MC can
still manifest in Rectified Flow when trained iteratively on self-generated data.

Proposition 1. Let vθj (t,x)
∞
j=1

be a sequence of vector fields trained via Reflow in Rectified
Flow. As j → ∞, due to the sampling process of Rectified Flow, the generated result xj,1

at time t = 1 (i.e., the output of the j-th Reflow iteration) converges to a constant vector,
indicating model collapse.

To test this hypothesis, we conducted experiments with Rectified Flow under iterative training. Our
empirical results indicate that, without incorporating real data, the performance of Rectified Flow
degrades over successive Reflow iterations, consistent with MC. For a detailed theoretical analysis
and proof supporting this hypothesis, please refer to Appendix A.4.

4.4 PREVENTING MODEL COLLAPSE BY INCORPORATING REAL DATA

Incorporating real data into the training process is a strategy to prevent MC in generative models
(Bertrand et al., 2023; Alemohammad et al., 2023; Gerstgrasser et al., 2024). Mixing real and
synthetic data helps maintain performance and prevents degeneration caused by over-reliance on
self-generated data. Inspired by these approaches, we extend the analysis of DEA by integrating real
data. Recall the settings in 4.2.1, we modify the synthetic data generation scheme by adding real
data. Specifically, we augment the current synthetic data with real data by setting X̂j = [Xj X].
To analyze the impact of adding real data, we present the following proposition (detailed settings
and proof see Appendix A.3):

Proposition 2. In the above synthetic data generation process 4.2.1 with adding real data,
suppose that the variance of the added noise is not too large, i.e., σ̂ ≤ Cσ for some universal
constant C. Then, with probability at least 1− 2je−n, the learned DAE does not suffer from
model collapse as

∥W j
2W

j
1 ∥2 ≥ ∥X∥2

2∥X∥2 + σ2
. (10)
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Compared to Theorem 1, Proposition A.1 shows that by incorporating real data into the synthetic
data generation process, the learned DAE avoids model collapse, maintaining a fixed lower bound on
the weight norm. In contrast, Theorem 1 indicates that without adding real data, the DAE’s weight
norm decreases exponentially with the number of iterations, leading to model collapse.

5 AVOIDING MODEL COLLAPSE IN RECTIFIED FLOW

Building upon our exploration of MC in simulation-free generative models, we address this chal-
lenge within the Rectified Flow framework. Although Rectified Flow and its Reflow algorithm
(Liu et al., 2022) achieve efficient sampling by straightening probability flow trajectories, they are
susceptible to MC due to iterative training on self-generated data (see Figure 2(A)). Our analysis,
consistent with Bertrand et al. (2023); Gerstgrasser et al. (2024), shows that incorporating real data
can mitigate collapse. However, integrating real data in Rectified Flow is challenging because it re-
quires noise-image pairs that are not readily available, and directly pairing real images with random
noise invalidates the Reflow training (see Figure 2(B)).

To overcome this limitation, we generate the necessary noise-image pairs using the reverse ODE
process, commonly used in image editing tasks (Wallace et al., 2023; Zhang et al., 2023a). This
allows us to obtain exact inverse image-noise pairs given the pre-trained model and real images.
However, we face the issue of insufficient real image-noise pairs; for example, CIFAR-10 provides
only 50,000 real images, while Reflow requires over 5 million data pairs per iteration (Liu et al.,
2022). Our Gaussian experiments suggest that a synthetic-to-real data ratio of at least 7:3 is needed
to avoid collapse effectively (see Figure 4). Using the reverse SDE process with significant ran-
domness (Meng et al., 2021) leads to image-noise pairs dominated by randomness, undermining the
purpose of straightening the flow (like the vanilla collapse-avoid methods Figure 2(B)).

Therefore, the question arises: How can we generate sufficient real image-noise pairs while main-
taining forward-backward consistency? In the following sections, we detail the implementation of
RCA, which effectively mitigates MC while preserving the efficiency benefits of Rectified Flow.

5.1 REVERSE COLLAPSE-AVOIDING REFLOW (RCA)

To address the challenge of generating sufficient real image-noise pairs while maintaining forward-
backward consistency, we propose the Reverse Collapse-Avoiding (RCA) Reflow method. RCA
Reflow leverages the reverse ODE process to generate noise-image pairs from real data. These real
reverse pairs are then mixed with synthetic pairs obtained from the forward ODE process using a
mix ratio λ, effectively mitigating MC without compromising the straightness of the flow trajec-
tories. In RCA Reflow, we periodically regenerate all real reverse image-noise pairs after every α
epochs to prevent overfitting to stale data and maintain training effectiveness. The combined dataset
(z

(i)
j ,x

(i)
j ) consists of the mixed pairs, which are used to train the vector field vθj for the j-th Re-

flow iteration. The training involves sampling noise vectors z(i) from a standard normal distribution
N (0, I) and propagating them through the forward ODE to obtain synthetic images x̂(i). Simulta-
neously, we generate reverse image-noise pairs by propagating real images x(i) backward through
the reverse ODE to obtain corresponding noise vectors ẑ(i):

x̂(i) = ODEvθ
(0, 1, z(i)), ẑ(i) = ODEvθ (1, 0,x

(i)). (11)

Here, we define the first-order Explicit Euler ODE sampler as ODEvθ (t0, t1,x) : [0, 1] × [0, 1] ×
Rd → Rd, where vθ is the trained Rectified Flow. To create a balanced and diverse training dataset,
we mix the synthetic and real reverse pairs based on the mix ratio λ. Specifically, given n synthetic
pairs {(z(i), x̂(i))}ni=1 and n real reverse pairs {(ẑ(i),x(i))}ni=1, we randomly select λn synthetic
pairs and (1− λ)n real reverse pairs to form the combined dataset Dj :

Dj =
{
(z

(i)
j ,x

(i)
j )

}n

i=1
=

{
(z(i), x̂(i))

}λn

i=1
∪
{
(ẑ(i),x(i))

}(1−λ)n

i=1
(12)

This method ensures that the combined dataset comprises both synthetic and real reverse image-
noise pairs, maintaining data diversity and preventing MC by leveraging the strengths of both data
sources. We provide the detailed training procedure in Algorithm 1, which clarifies the steps in-
volved in RCA Reflow.
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Algorithm 1 Reverse Collapse-Avoiding Reflow Training

Require: Reflow iterations J ; real dataset {x(i)}; pre-trained vector field vθ0 ; mix ratio λ; ODE
solver ODE(t0, t1,x); regeneration parameter α.

Ensure: Trained vector fields {vθj}Jj=1

1: for j = 1 to J do
2: Sample {z(i)} from N (0, I)
3: Compute x̂(i) = ODE(0, 1, z(i)) ▷ Generate synthetic noise-image pairs
4: Compute ẑ(i) = ODE(1, 0,x(i)) ▷ Generate reverse image-noise pairs from real data
5: Randomly select λn synthetic pairs and (1− λ)n real reverse pairs
6: Dj = {(z(i)

j ,x
(i)
j )}ni=1 = {(z(i), x̂(i))}λni=1 ∪ {(ẑ(i),x(i))}(1−λ)n

i=1 ▷ Mix Pairs with Ratio λ
7: repeat ▷ Reflow training
8: for each (z

(i)
j ,x

(i)
j ) ∈ Dj do

9: Sample t ∼ U(0, 1)
10: Compute x

(i)
t = tx

(i)
j + (1− t) z

(i)
j

11: Compute loss:

LRF =
1

B

B∑
i=1

∥∥∥vθj (t,x(i)
t )− (x

(i)
j − z

(i)
j )

∥∥∥2
12: Update θj using gradient descent
13: if j mod α = 0 then ▷ Re-generate pairs every α epochs
14: Repeat Steps 2 and 4
15: until converged
16: Output: {vθj}Jj=1

5.2 ONLINE REVERSE COLLAPSE-AVOIDING REFLOW (OCAR)

Although the Reverse Collapse-Avoiding (RCA) Reflow method effectively prevents model collapse
and straightens the flow to reduce the sampling steps in Rectified Flow (Figure 2 (C)), it requires
substantial storage resources. For instance, Lee et al. (2024a) report using over 40 GB of memory
on the ImageNet 64 × 64 task just to store x̂(i) during one Reflow iteration. This high memory
consumption limits the applicability of RCA in high-dimensional image generation experiments.

To address this limitation, we consider the scenario where the regeneration parameter α approaches
zero. In this case, we obtain an online method that generates synthetic noise-image pairs and real
reverse image-noise pairs in every mini-batch, mixing them on the fly. This approach resembles the
distillation method proposed by Kim et al. (2023), who use real data to improve the performance of
consistency models (Song et al., 2023). However, there are key differences: First, we do not use
a fixed pre-trained model as a teacher; instead, we straighten the flow through repeated iterations.
Second, we do not rely on the assumption that the neural network can recover any sampled point
from any distribution on the generative path given any input. Instead, we maintain a straight path
that is easy to understand and has clear meaning. Research shows that a straight flow can be regarded
as a progressive approximation of the optimal transport map (Liu, 2022). The detailed algorithm for
the Online Collapse-Avoiding Reflow (OCAR) method can be found in Appendix B.1.

5.3 DOES ADDING RANDOMNESS HELP? REVERSE SDE SAMPLING

In the previous methods, we utilized the reverse ODE process to generate noise-image pairs for train-
ing. However, relying solely on the deterministic ODE means that the only source of randomness in
the training process comes from the initial latent variables z ∼ N (0, I). This limited randomness
may impact the diversity of generated samples and the robustness of the model (Zhang et al., 2023b).

To enhance diversity and potentially improve generation quality, we introduce controlled random-
ness into the reverse process by employing a reverse SDE. In practice, we set the noise scale σ to be
small (e.g., σ = 0.001) and perform sampling using methods like the Euler-Maruyama scheme with
an appropriate number of steps (e.g., leq100 steps). This controlled injection of noise increases vari-
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Figure 3: Reflow Process of the DAE on a 4-D Gaussian Distribution. The figure visualizes a slice
of the distribution along dimensions 0 and 1. Both kernel density estimation plots and sample points
are shown for the initial and target distributions.

(a) Rank of W (b) Wasserstain-2 Distance (c) Dim 0
Figure 4: Results from the reflow experiment with DAE on 4D Gaussian.

ability without significantly disrupting the straightening effect of the flow. We denote this method
as OCAR-S. More detail can be find in Appendix B.2

6 EXPERIMENTS

In this section, we first validate our analysis of model collapse in DAEs and its extension to dif-
fusion models and Rectified Flow. We then demonstrate that our proposed methods—Reverse
Collapse-Avoiding Reflow (RCA), Online Collapse-Avoiding Reflow (OCAR), and OCAR with
added Stochasticity (OCAR-S)—are capable of producing high-quality image samples on several
commonly used image datasets. Additionally, we show that our methods provide a more efficient
straightening of the sampling path, allowing for fewer sampling steps on CIFAR-10 (Krizhevsky
et al., 2009). Moreover, we demonstrate high-quality image generation on high-resolution datasets
such as CelebA-HQ 256 (Karras, 2017), combined with latent space methods (Rombach et al., 2022)
commonly used in Rectified Flow (Dao et al., 2023; Esser et al., 2024). We compare results using
the Wasserstein-2 distance (W2, (Villani et al., 2009), lower is better), Fréchet Inception Distance
(FID, (Heusel et al., 2017), lower is better), and the number of function evaluations (NFE, lower is
better). Due to limited space, we place the further settings of each experiment in the appendix.

6.1 GAUSSIAN TASK

The intermediate columns of Figure 3 illustrate the progression of the DAE Reflow process at dif-
ferent stages. They demonstrate that the original DAE Reflow leads to model collapse, whereas our
proposed collapse-avoiding DAE Reflow maintains the integrity of the generated data.

Figure 4 presents the key results from our DAE Reflow experiment on the 4D Gaussian task. The
findings demonstrate that adding real data effectively prevents model collapse and maintains the
integrity of the generated data. Specifically, incorporating real data helps maintain the rank of the
weight matrix W across Reflow iterations, our collapse-avoiding method consistently achieves a
lower Wasserstein-2 distance compared to the original DAE Reflow, and the stability of the first
principal component in PCA shows that our method effectively preserves the data structure over
iterations More details can be fund in Appenxix C.1

9
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Figure 5: Comparison of Reflow and Reflow-RCA We set λ = 0.5, α = 8 and use a half-scale
U-Net for the experiment. See Appendix 7 for full samples for reflow processing

CIFAR10 (32 × 32) CelebA-HQ (256 × 256)
10 NFE 20 NFE 50 NFE Best NFE 10 NFE 20 NFE 50 NFE Best NFE

0-RF (ICFM) 14.16 9.88 6.30 4.02/152 (2.58/127) – – – –
FM 16.00 10.70 7.76 6.12/158 (6.35/142) 16.51 8.40 5.87 5.45/89(5.26/89)
OTCFM 14.47 9.38 5.78 3.96/134 (3.58/134) – – – –

1-RF 10.83 9.75 7.49 5.95/108 (3.36/110) 12.04 7.34 5.76 5.73/71
1-RF-RCA (Ours) 8.68 7.47 6.98 5.61/112 11.39 7.27 5.61 5.57/69

2-RF 14.97 12.01 10.13 9.68/107(3.96/104) 13.27 8.71 7.05 6.28/67
2-RF-RCA (Ours) 11.47 9.12 8.58 7.64/102 12.89 8.50 6.91 6.10/67

OCRA (Ours) 7.02 6.30 5.96 4.27/96 10.89 7.12 5.60 5.52/69
OCRA-S (Ours) 7.45 6.01 5.19 4.15/94 10.86 6.99 5.53 5.49/70

Table 2: Comparison of model collapse avoidance methods on FID score (↓) for unconditional
generation. We set λ = 0.5, α = 2, and use full-scale U-Net for CIFAR-10 and DiT-L/2 for
CelebA-HQ. ”Best NFE” is shown as ”FID/NFE” using the DOPRI5 solver. Parentheses indicate
results from the original papers. Variations may exist due to different neural network settings or
random seeds; however, the comparison remains fair.

6.2 STRAIGHT FLOW AND FEWER-STEP IMAGE GENERATION

Reverse Collapse-Avoiding Reflow Our experiments on CIFAR-10 show that Reflow achieves more
efficient flows, enabling the use of fewer sampling steps. As illustrated in Figure 5(a), we observe
the following key findings: First, 0-Reflow (vanilla Rectified Flow or FM) fails to enable 1- or
2-step sampling, whereas 1-RF and larger variants of RF can; Second, our RCA Reflow method
effectively prevents model collapse, resulting in more efficient training, as shown in Figure 5(b).
Specifically, Table 2 demonstrates that Rectified Flow trained with RCA Reflow generates high-
quality images using only a few sampling steps, underscoring the improvement in flow straightness.
Detailed experimental settings and additional ablation studies can be found in Appendix C.3.

Online Collapse-Avoiding Reflow. RCA Reflow can be considered a pseudo-online method. For
OCAR, we employ a full-size U-Net using the same settings as in Lipman et al. (2022); Dao et al.
(2023). As shown in Table 2, both OCRA and OCRA-S outperform vanilla Reflow, achieving better
FID scores than our RCA method, without requiring additional storage.

7 CONCLUSION

We addressed model collapse in simulation-free generative models, focusing on Rectified Flow.
Through theoretical analysis, we identified how training on self-generated data leads to performance
degradation. To mitigate this, we introduced RCA Reflow and OCAR, which incorporate real data to
prevent collapse while maintaining efficiency. Experiments validate their effectiveness in improving
generation quality and sampling efficiency. Future work includes exploring model collapse in other
distillation methods, such as Consistency Distilling (CD), and further enhancing the robustness of
generative models under more challenging conditions.
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A PROOFS AND FORMULATIONS

A.1 PROOF OF THEOREM 1

Proof of Theorem 1. We can first expand the training loss in equation 8 as follows:

L(θ) = Ez∼N (0,σ2I)

[
∥W2W1xi − xi∥2 − 2⟨W2W1xi − xi,W2W1z⟩+ ∥W2W1z∥22

]
,

=

n∑
i=1

∥W2W1xi − xi∥2 + σ2∥W2W1∥2F . (13)

We denote by Φ = W2W1 to simplify the following analysis. The induced ℓ2 regularization in
equation 13 suggests that DAE performs denoising by learning a low-dimensional model. The opti-
mal solution for equation 13, written in terms of Φ, is simply given by (XX⊤)(XX⊤ + σ2I)−1.
When σ → 0, the solution converges to PCA. Plugging this into the process of recursively learning
DAE from generational data, we have Φj = W j

2W
j
1 = (XjX

⊤
j )(XjX

⊤
j + σ2I)−1.

Let λ(·) denote the largest eigenvalue of a matrix. Since Xj+1 = Φj(Xj +Ej) with each column
of Ej being iid sampled from N (0, σ̂2/n2I), it follows from (Vershynin, 2018, Theorem 4.6.1)
that there exists a constant C such that, with probability at least 1 − 2e−n, λ(Xj+1X

⊤
j+1) ≤

λ2(Φj)(λ(XjX
⊤
j ) + Cσ̂2). This together with λ(Φj) =

λ(XjX
⊤
j )

λ(XjX⊤
j )+σ2 implies that when σ̂2 ≤

σ2/C,

λ(Xj+1X
⊤
j+1) ≤ λ(XjX

⊤
j )λ(Φj)

λ(XjX
⊤
j ) + Cσ̂2

λ(XjX⊤
j ) + σ2

≤ λ(XjX
⊤
j )λ(Φj) (14)

holds with probability at least 1− 2e−n. Denote by τ = λ(XX⊤). In the following, we prove that
with probability at least 1− 2qe−n,[

λ(XqX
⊤
q )

]
≤ λ(XX⊤)(

τ

τ + σ2
)q−1. (15)

We prove this by induction. It holds when q = 0. Now assume equation 15 is true at q = j. We
prove it also holds at q = j + 1. Since equation 15 holds at j, we have λ(XjX

⊤
j ) ≤ λ(XX⊤),

and hence λ(Φj) =
λ(XjX

⊤
j )

λ(XjX⊤
j )+σ2 ≤ τ

τ+σ2 . Plugging this into equation 14 gives

λ(Xj+1X
⊤
j+1) ≤ λ(XjX

⊤
j )λ(Φj) ≤ λ(XX⊤)(

τ

τ + σ2
)j .

This proves equation 15. Finally, we can obtain the bound for λ(Φj) as

λ(Φj) =
λ(XjX

⊤
j )

λ(XjX⊤
j ) + σ2

≤
λ(XX⊤)( τ

τ+σ2 )
j−1

λ(XX⊤)( τ
τ+σ2 )j−1 + σ2

≤ λ(XX⊤)

σ2
(

τ

τ + σ2
)j−1.
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A.2 DETAILED EXPLANATION OF THE GAP BETWEEN DIFFUSION MODELS AND DAES

In this appendix, we delve deeper into the connection between diffusion models and sequences of
Denoising Autoencoders (DAEs), focusing on the initial step of the diffusion process.

Consider a diffusion model fθ(t,xt) with T time steps (e.g., T = 1000), which begins the sampling
process from pure Gaussian noise x0 ∼ N (0, I). The model predicts the target state using (here
we consider the image x-prediction which is equal to noise ϵ-prediction and velocity v-prediction
(Salimans & Ho, 2022)):

x1 = fθ(0,x0), (16)

where fθ(0,x0) approximates the denoising function at time t = 0. This step functions as a DAE
with pure Gaussian input.

Subsequent sampling steps involve Euler updates of the form:

x0+γ = x0 + γ (fθ(0,x0)− x0)

· · ·
xt+γ = xt + γ (fθ(t,xt)− xt) ,

(17)

where γ is a small time increment. In these steps, each input xt is a mixture of Gaussian noise and
previous model outputs, aligning with the typical input to a DAE trained on such mixtures.

The only significant gap between a sequence of DAEs and the diffusion model arises in the initial
step due to the pure Gaussian input. By analyzing the initial step separately, we can better align
the recursive DAE framework with the diffusion model. Specifically, if we consider the initial DAE
handling pure Gaussian inputs and subsequent DAEs processing mixtures of noise and signal, the
entire diffusion process can be viewed as a series of DAEs with varying input distributions.

However, an important question arises: Will a linear DAE learn any meaningful information from
the first step with pure Gaussian input? In the case of a linear DAE, learning from pure noise is
challenging because there is no underlying structure to capture. This limitation highlights why the
initial step differs from the rest and underscores the necessity of separating its analysis.

By acknowledging this gap, our analysis becomes more comprehensive, bridging the understanding
between DAEs and diffusion models. This perspective not only sheds light on the mechanics of
diffusion models but also provides a pathway for leveraging insights from DAE analysis to improve
diffusion-based generative models.

A.3 PROOF OF PROPOSITION 2

Now, we formulate the reflow process of a linear DAE incorporating real data. Recall the settings
from 4.2.1; suppose we have training data X = [x1 · · · xn] with xi = U⋆U⋆⊤ai, where
ai ∼ N (0, I). Starting with X1 = X , the scheme for generating synthetic data at the j-th iteration
(j ≥ 1) is outlined as follows.

• Add real data: X̂j = [Xj X].

• Fit DAE: (W j
2 ,W

j
1 ) = θ⋆(X̂j) by solving equation 8 with training data X̂j .

• Generate synthetic data for the next iteration: Xj+1 = W j
2W

j
1 (Xj +Ej), where each

column of the noise matrix Ej is i.i.d. sampled from N (0, σ̂2/n2I).

First, we examine the effect of incorporating real data into the training process. Let λ(·) denote the
largest eigenvalue of a matrix and λmin(·) denote the smallest eigenvalue of a matrix.
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Lemma A.1. Let Xj , X0 ∈ Rn×d be given matrices, and define the block matrix.

X̂j = [Xj X0] .

Then the maximum eigenvalue of X̂jX̂j
⊤

satisfies the following inequalities:

λmin(XjX
⊤
j ) + λ(X0X

⊤
0 ) ≤ λ(X̂jX̂j

⊤
) ≤ λ(XjX

⊤
j ) + λ(X0X

⊤
0 ).

Proof. First, observe that
X̂jX̂

⊤
j = XjX

⊤
j +X0X

⊤
0 . (18)

We aim to bound λ(X̂jX̂
⊤
j ) using the eigenvalues of XjX

⊤
j and X0X

⊤
0 . Recall that both XjX

⊤
j

and X0X
⊤
0 are symmetric positive semi-definite matrices.

Upper Bound:

Using Weyl’s inequality for eigenvalues of Hermitian matrices, we have

λ(A+B) ≤ λ(A) + λ(B), (19)

where A and B are symmetric matrices.

Applying this to A = XjX
⊤
j and B = X0X

⊤
0 , we obtain

λ(X̂jX̂
⊤
j ) ≤ λ(XjX

⊤
j ) + λ(X0X

⊤
0 ).

Lower Bound:

Similarly, Weyl’s inequality provides a lower bound:

λ(A+B) ≥ λmin(A) + λ(B). (20)

Applying this to A = XjX
⊤
j and B = X0X

⊤
0 , we have

λ(X̂jX̂
⊤
j ) ≥ λmin(XjX

⊤
j ) + λ(X0X

⊤
0 ).

Combining the upper and lower bounds from Equations equation 19 and equation 20, we establish
the inequalities in Equation equation A.1, thus proving the lemma.

Proposition A.1. In the above synthetic data generation process 4.2.1 with adding real data,
suppose that the variance of the added noise is not too large, i.e., σ̂ ≤ Cσ for some universal
constant C. Then, with probability at least 1− 2je−n, the learned DAE does not suffer from
model collapse as

∥W j
2W

j
1 ∥2 ≥ ∥X∥2

2∥X∥2 + σ2
. (21)

Proof. Following an analysis similar to the proof of Theorem 1, we have

Φj = (X̂jX̂
⊤
j )

(
X̂jX̂

⊤
j + σ2I

)−1

, (22)

where X̂j = [Xj X] ∈ Rn×2d. Since both Φj and X̂jX̂
⊤
j are symmetric positive semi-definite

matrices, their eigenvalues are real and non-negative. Therefore, the eigenvalues of Φj satisfy

λ(Φj) =
λ(X̂jX̂

⊤
j )

λ(X̂jX̂⊤
j ) + σ2

. (23)
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Applying the eigenvalue bounds from Lemma A.1, we obtain
λmin(X̂jX̂

⊤
j ) ≥ λmin(XjX

⊤
j ) + λmin(XX⊤), (24)

λ(X̂jX̂
⊤
j ) ≤ λ(XjX

⊤
j ) + λ(XX⊤). (25)

Substituting these bounds into the expression for λmin(Φj), we have

λ(Φj) ≥
λmin(XjX

⊤
j ) + λ(XX⊤)

λ(XjX⊤
j ) + λ(XX⊤) + σ2

. (26)

Since λmin(XjX
⊤
j ) ≥ 0, it follows that

λ(Φj) ≥
λ(XX⊤)

λ(XjX⊤
j ) + λ(XX⊤) + σ2

. (27)

Let us denote τ = λ(XX⊤) and assume that λ(XjX
⊤
j ) ≤ τ (we will justify this assumption later).

Then, we have

λ(Φj) ≥
λ(XX⊤)

2τ + σ2
.

Using a similar analysis as in the proof of Theorem 1, and the fact that Xj+1 = Φj(Xj + Ej),

where each column of Ej is independently sampled from N
(
0, σ̂2

n2 I
)

, we have

λ(Xj+1X
⊤
j+1) ≤ λ2(Φj)

(
λ(XjX

⊤
j ) + Cσ̂2

)
, (28)

with probability at least 1− 2e−n.

We will now prove that, with probability at least 1− 2qe−n, the following holds:
λ(XqX

⊤
q ) ≤ τ. (29)

We proceed by induction. For q = 0, the inequality holds by the definition of τ . Assume that
inequality equation 29 holds for q = j; we will show it also holds for q = j + 1.

Since equation 29 holds at iteration j, we have λ(XjX
⊤
j ) ≤ τ . Therefore,

λ(Φj) ≤
λ(XjX

⊤
j ) + λ(XX⊤)

λ(XjX⊤
j ) + λ(XX⊤) + σ2

≤ 2τ

2τ + σ2
.

Plugging this bound, along with the assumption σ̂2 ≤ σ2

2C , into inequality equation 28, we obtain

λ(Xj+1X
⊤
j+1) ≤

(
2τ

2τ + σ2

)2 (
τ + Cσ̂2

)
≤ τ.

This completes the induction step and proves inequality equation 29.

Recall the inequality equation 27:

λ(Φj) ≥
λ(XX⊤)

λ(XjX⊤
j ) + λ(XX⊤) + σ2

.

Since λ(XjX
⊤
j ) is bounded above by τ and λ(XX⊤) > 0, the right-hand side of inequality equa-

tion 27 is bounded below by a positive constant. Therefore, λ(Φj) is bounded below by a positive
constant, which implies that the learned DAE does not suffer from model collapse.

Remark A.1. To prevent model collapse in generative models, a common strategy is to incorpo-
rate real data into the training process. Previous studies (Bertrand et al., 2023; Alemohammad
et al., 2023; Gerstgrasser et al., 2024) have shown that mixing real data with synthetic data during
training helps maintain model performance and prevents degeneration caused by relying solely on
self-generated data. In diffusion models, integrating real samples can enhance model performance
and reduce the risk of collapse (Kim et al., 2023). By conditioning the model on both real and syn-
thetic data, the training process leverages the structure of real data distributions. Building on these
approaches, our work introduces methods to integrate real data into the training of Rectified Flow,
even when direct noise-image pairs are not available. By generating noise-image pairs from real
data using reverse processes and balancing them with synthetic pairs, we prevent model collapse
while retaining efficient sampling.
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A.4 MODEL COLLAPSE IN RECTIFIED FLOW

In the appendix, we provide the formal statement of our proposition and the detailed proof:

Proof. Consider the explicit Euler discretization of the Rectified Flow ODE. Starting from xj,0 = z,
where z ∼ N (0, I), we update:

xj,t+γ = xj,t + γ, vθj (t,xj,t), t ∈ [0, 1], (30)

with step size γ. If each small step of vθj acts similarly to a DAE, then based on Theorem 1, as
j → ∞, we have:

lim
j→∞

rank(vθj ) = 0. (31)

This implies vθj (t,xj,t) → 0, leading to xj,t+γ ≈ xj,t. Thus, the generated result remains near the
initial point, confirming model collapse as stated in Proposition 1.

Remark A.2. Although there is a theoretical gap between DAEs and Rectified Flow, our experimen-
tal results (Figure 6) support this proposition, suggesting that model collapse does occur in Rectified
Flow under iterative self-training.

B METHODS DETAILS

B.1 ONLINE REVERSE COLLAPSE AVOID REFLOW

Algorithm 2 Online Collapse-Avoiding Reflow Training

Require: Reflow iterations J ; real dataset {x(i)}; pre-trained vector field vθ0 ; mix ratio λ;
SDE/ODE solver SDE/ODE(t0, t1, ·); regeneration parameter α

Ensure: Trained vector fields {vθj}Jj=1

1: for j = 1 to J do
2: repeat ▷ Reflow training
3: for each mini-batch do
4: Sample {z(i)} from N (0, I)
5: Compute x̂(i) = SDE/ODE(0, 1, z(i)) ▷ Generate synthetic data
6: Sample {x(i)} from real dataset
7: Compute ẑ(i) = SDE/ODE(1, 0,x(i)) ▷ Generate reverse data
8: Randomly select λB synthetic pairs and (1− λ)B real reverse pairs
9: Dj = {(z(i)

j ,x
(i)
j )} = {(z(i), x̂(i))} ∪ {(ẑ(i),x(i))} ▷ Mix pairs according to λ

10: Sample t ∼ U(0, 1)
11: for each (z

(i)
j ,x

(i)
j ) in Dj do

12: Compute x
(i)
t = tx

(i)
j + (1− t) z

(i)
j

13: Compute loss:

LRF =
1

B

B∑
i=1

∥∥∥vθj (t,x(i)
t )− (x

(i)
j − z

(i)
j )

∥∥∥2
14: Update θj using gradient descent
15: until converged
16: Output: {vθj}Jj=1
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B.2 DOES ADDING RANDOMNESS HELP? REVERSE SDE SAMPLING

In the previous methods, we utilized the reverse ODE process to generate noise-image pairs for
training. However, when using only the deterministic ODE, the randomness in the training process
originates solely from the initial latent variables z ∼ N (0, I). This limited source of randomness
may impact the diversity of the generated samples and the robustness of the model (Zhang et al.,
2023b).

To enhance diversity and potentially improve generation quality, we consider introducing controlled
randomness into the reverse process by employing a reverse Stochastic Differential Equation (SDE).
The reverse SDE allows us to inject noise at each time step during the sampling process, defined as:

dx =
[
f(t,x)− g(t)2∇x log pt(x)

]
dt+ g(t)dw̃, (32)

where f(t,x) and g(t) are the drift and diffusion coefficients, respectively, and dw̃ denotes the stan-
dard Wiener process in reverse time. By introducing the diffusion term g(t)dw̃, we inject controlled
stochasticity into the reverse sampling.

In practice, we set the noise scale g(t) to be small (e.g., σ = 0.001) and perform sampling using
methods like the Euler-Maruyama scheme with an appropriate number of steps (e.g., 100 steps).
This controlled injection of noise increases the variability in the training data without significantly
disrupting the straightening effect of the flow. Specifically, the added randomness helps explore the
neighborhood of data samples, enriching the learning process. We denote this method as OCAR-S.

C EXPERIMENTS DETAILS AND EXTRA RESULTS

C.1 GAUSSIAN TASK

Setup for DAE. In the Reflow verification experiment for the DAE, we use a 4-dimensional Gaus-
sian distribution as both the initial and target distributions. The initial distribution is N (0, I), and the
target distribution is N (0, 5I), where 0 is a 4-dimensional zero vector, and I is the identity matrix.
We employ a neural network θ composed of two linear layers W1 and W2 without activation func-
tions and biases. We train the Reflow process for 20 iterations. The ”Ratio” refers to the proportion
of synthetic data to real data; a higher value indicates a greater proportion of synthetic data.

Figure 4 presents the results from the Reflow experiment using a Denoising Autoencoder (DAE) on
a 4-dimensional Gaussian distribution.

(a) illustrates the rank of the weight matrix W across different Reflow iterations. We set a threshold
of 2 × 10−1. Specifically, we perform Singular Value Decomposition (SVD) on Wj and count the
number of singular values greater than or equal to 0.2 to determine the rank of W . The results
demonstrate that incorporating real data effectively prevents model collapse, as indicated by the
maintenance of higher ranks. In contrast, relying solely on self-generated synthetic data leads to a
rapid decline in rank towards zero.

(b) shows the Wasserstein-2 (W2) distance between the true target data distribution and the generated
data distribution over Reflow iterations. This metric assesses the fidelity of the generated data in
approximating the target distribution.

(c) displays the evolution of the first principal component (Dimension 0) of the data as Reflow
iterations increase. We compare the original DAE, which does not utilize synthetic data, with our
DAE-CA model, which employs various ratios of synthetic data (ranging from 0.1 to 0.9), as well
as a fully synthetic DAE. The comparison highlights the effectiveness of our DAE-CA model in
maintaining the integrity of principal components, thereby preserving data structure and diversity.

Setup for Rectified Flow. In the Reflow verification experiment for linear neural network Rectified
Flow, we augment W1 by adding one dimension corresponding to time, resulting in a neural network
W1W2 : Rd+1 → Rd. Our experimental results can be found in the below and confirm our prop
1 We also test a nonlinear neural network consisting of three linear layers with SELU activation
functions and an extra dimension added to the first linear layer. The results are shown in
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(a) Wasserstain-2 Distance (b) Dim 0 (c) Dim 1

Figure 6: Results from the reflow experiment with linear Rectified flow on 10D Gaussian.
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Figure 7: Results from the reflow experiment in CIFAR-10 using half-scale U-net.

C.2 MODEL COLLAPSE IN LINEAR RCTIFIED FLOW

We experiment on a 10-dimensional Gaussian which starts from the initial distribution N (0, I), and
the target distribution is N (0, 5I). But to demonstrate our inference, we set dimension 1 of the
covariance matrix to 1e-3, which reduces the rank of the data as a whole. Figure 6a shows the
model collapse process of linear RF, the Figure 6b and Figure 6c demonstrates the correctness of
Propositio 1

C.3 STRAIGHT FLOW AND FEWER-STEP IMAGE GENERATION

In our RCA Reflow experiments, due to the high computational cost of Reflow training, we use a
half-size U-Net compared to the one used in Flow Matching (Lipman et al., 2022). For the qualita-
tive experiments on CIFAR-10 shown in Table 2, we use a full-size U-Net with settings consistent
with Lipman et al. (2022) to achieve the best performance. We used the standard implementa-
tion from the https://github.com/atong01/conditional-flow-matching reposi-
tory provided by Tong et al. (2023). All methods were trained using the same configuration, differing
only in the choice of the probability path or Reflow methods. Since the code for Lipman et al. (2022)
has not been released, some parameters may still differ from the original implementation. We sum-
marize our setup here; the exact parameter choices can be found in our source code. We used the
Adam optimizer with β1 = 0.9, β2 = 0.999, ϵ = 10−8, and no weight decay. To replicate the archi-
tecture in Lipman et al. (2022), we employed the U-Net model from Dhariwal & Nichol (2021) with
the following settings: channels set to 256, depth of 2, channel multipliers of [1, 2, 2, 2], number
of heads as 4, head channels as 64, attention resolution of 16, and dropout of 0.0. We also used
the ”ICFM” methods from Tong et al. (2023)’s repository to train Rectified Flow instead of using
the original repository open-sourced by Liu et al. (2022), because they use the same interpolation
methods and probability paths.
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Training was conducted with a batch size of 256 per GPU, using six NVIDIA RTX 4090 GPUs,
over a total of 2000 epochs. For Reflow, we generated 500,000 noise-image pairs for every Reflow
iteration, according to Liu et al. (2022)’s blog1. Although Liu et al. (2022) mention that they use
40,00,000 noise-image to get the best performance, we keep the regular 500,000 noise-image to save
time and training source. The learning rate schedule involved increasing the learning rate linearly
from 0 to 5 × 10−4 over the first 45,000 iterations, then decreasing it linearly back to 0 over the
remaining epochs. We set the noise scale σ = 10−6. For sampling, we used Euler integration with
the torchdyn package and the DOPRI5 solver from the torchdiffeq package.

Table 3: Summary of Configuration Parameters Across Experiments

CIFAR10-figure 1 CIFAR10-figure 5 CIFAR10-Table 2
Channels 256 128 256
Channels multiple 1,2,2,2 1,2,2,2 1,2,2,2
Heads 4 4 4
Heads Channels 64 64 64
Attention resolution 16 16 16
Dropout 0.0 0.0 0.0
Effective Batch size 256 256 256
GPUs 6 6 6
Noise-image pairs 100k 500k 500k
Reflow Sampler dopri5 Euler (100 NFE) dopri5
α 2 4 2
λ 0.1 / 0.5
Learning Rate 2e-4 5e-4 5e-4

In the CelebA-HQ experiments, we maintain the image resolution at 256 × 256. We utilize a
pretrained Variational Autoencoder (VAE) from Stable Diffusion (Rombach et al., 2022), where
the VAE encoder reduces an RGB image x ∈ Rh×w×3 to a latent representation z = E(x)
with dimensions h

8 × w
8 × 4. We used the standard implementation from the LFM repository

(https://github.com/VinAIResearch/LFM) provided by Dao et al. (2023). We also used
the DiT-L/2 (Peebles & Xie, 2023) checkpoint released in Dao et al. (2023)’s repository as the start-
ing point for our Reflow training. Training was conducted with 4 NVIDIA A800 GPUs.

For RCA Reflow, we tested λ ∈ 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 with α = 4. Note that when λ = 0.0,
we are using 100% real reverse image-noise pairs, which is not equivalent to the original Reflow
of Rectified Flow. Therefore, we train the original Reflow as the baseline. For the regeneration
parameter α, we fixed λ = 0.5 and compared α ∈ 2, 4, 10,∞, where ∞ means we never regenerate
new data within a single Reflow training. We evaluated the models using both the adaptive sampler
”dopri5” (consistent with Lipman et al. (2022)) and fixed, low numbers of function evaluations
(NFEs) 10, 20, 50 to demonstrate the elimination of model collapse and the maintenance of flow
straightness by our method. This allows us to assess both generation quality and sampling efficiency
simultaneously.

C.4 EXTRA RESULTS

Parameter Ablation Here we set the same setting in table 3 column 2.

Table 4: Performance of RF-RCA Models under Different λ Values

λ 0.1 0.3 0.5 0.7 0.9 1.0

1-RF-RCA 5.87 6.21 6.37 6.81 6.93 7.05
2-RF-RCA 6.37 7.10 7.96 8.53 8.98 9.97
3-RF-RCA 8.02 10.29 12.37 14.74 18.01 20.15

1https://zhuanlan.zhihu.com/p/603740431

22

https://github.com/VinAIResearch/LFM
https://zhuanlan.zhihu.com/p/603740431


1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 5: Performance of RF-RCA Models under Different α Values

α 2 4 8 ∞
1-RF-RCA 6.09 6.37 6.70 7.05
2-RF-RCA 6.92 7.10 8.14 9.97
3-RF-RCA 9.71 10.29 13.37 20.15

Precision and Recall Here we set the same setting in table 3 column 2.

Table 6: Precision and Recall Performance on CIFAR10 and CelebA-HQ Datasets

Precision/Recall CIFAR10 CelebA-HQ

0-RF 0.652 / 0.594 0.863 / 0.610
1-RF 0.667 / 0.556 0.857 / 0.514
1-RF-RCA 0.658 / 0.587 0.859 / 0.549
2-RF 0.673 / 0.528 0.872 / 0.436
2-RF-RCA 0.661 / 0.563 0.867 / 0.501

1/2 step results for CIFAR10

Table 7: Performance of RF-RCA models under different NFEs. Original data from the cited papers
are provided in brackets when available. We set λ = 0.5, α = 2, and use full-scale U-Net for
CIFAR-10.

NFE 1 2

0-RF 351.79 (378) 154.65
1-RF 15.27 (12.21) 11.49
2-RF 19.27 (8.15) 17.57
1-RF-RCA 12.27 10.89
2-RF-RCA 16.04 14.99
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