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Abstract

Analyzing the similarity of internal representations within and across different models has
been an important technique for understanding the behavior of deep neural networks. Most
existing methods for analyzing the similarity between representations of high dimensions,
such as those based on Canonical Correlation Analysis (CCA) and widely used Centered
Kernel Alignment (CKA), rely on statistical properties of the representations for a set of
data points. In this paper, we focus on transformer models and study the similarity of rep-
resentations between the hidden layers of individual transformers. In this context, we show
that a simple sample-wise cosine similarity metric is capable of capturing the similarity and
aligns with the complicated CKA. Our experimental results on common transformers reveal
that representations across layers are positively correlated, albeit the similarity decreases
when layers are far apart. We then propose an aligned training approach to enhance the
similarity between internal representations, with trained models that enjoy the following
properties: (1) the last-layer classifier can be directly applied right after any hidden layers,
yielding intermediate layer accuracies much higher than those under standard training, (2)
the layer-wise accuracies monotonically increase and reveal the minimal depth needed for
the given task, (3) when served as multi-exit models, they achieve on-par performance with
standard multi-exit architectures which consist of additional classifiers designed for early
exiting in shallow layers. To our knowledge, our work is the first to show that one common
classifier is sufficient for multi-exit models. We conduct experiments on both vision and
NLP tasks to demonstrate the performance of the proposed aligned training.

Keywords: Representation Similarity, Transformer, Early Exit

1. Introduction

Transformer models (26) have revolutionized vision and NLP tasks, including image classi-
fication (4), image generation (30; 17; 31), and language understanding (3; 16; 32). While
larger models improve performance, they pose challenges in understanding and deploy-
ment (1). A promising direction for understanding these models is to study the representa-
tions across layers. Recent work has uncovered Neural Collapse (NC) (15; 5; 33; 22; 23) and
progressive NC (10; 18; 27), where last layer classifiers progressively compress within-class
features while enhancing the discrimination of between-class features from shallow to deep
layers. Another line of work attempts to compare the similarity between representations,
including CCA (21), CKA (13), OPT (9), and PNKA (12). These methods rely on sta-
tistical properties to support features with different dimensions for various architecture.
However, these approaches are computational expensive. This work focus on transformer
models, which stack several identical blocks with residual connections, resulting in consis-
tent feature dimensions across layers. This property motivates evaluating the layer-wise
representation similarity on a per-sample basis. Thus, we propose COsine Similarity (COS)
as a more efficient metric for transformers and verify that it also aligns well with statistical
methods like Centered Kernel Alignment (CKA). Base on it, we demonstrate that improving
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(a) CIFAR10 (b) ImageNet1K (c) CIFAR10 (d) ImageNet1K

Figure 1: COsine Similarity (COS) of each layer with last layer(a,b) and across all layer
pairs(c,d) on DeiT-S model.

layerwise COS can enhance layerwise accuracy and promote more early saturation events
(8) , potentially boosting efficiency through early exit strategies. Finally, to achieve im-
proved layerwise COS, we introduce an aligned training method that applies the final-layer
classifier after any hidden layer for both classification and text generation tasks.
Contribution In summary, our contributions include:

• Introduce the layer-wise COsine Similarity (COS) metric, calculated per sample, to mea-
sure representation similarity across layers.

• Develop aligned training to enhance the layer-wise COS. Specifically, we use a single
classifier after any hidden layer to improve the effectiveness of shallow layers.

• Conduct experiments using aligned training in both vision and NLP domains, like im-
age/text classification and text generation tasks. We show that this method improves
the inference efficiency while maintaining performance.

2. Measuring Layer-wise Representational Similarity in Transformer

A standard transformer consists of L identical layers. For image classification tasks, the
predictions typically rely on the last layer hidden states hL corresponding to the [CLS] token
after L transformations. To analyze how features evolve across layers, we study layerwise
similarity between the hidden states {h1,h2, ...,hL} of the [CLS] token.

A simple method for measuring layer-wise representational similarity in trans-
formers We propose measuring cosine similarity between features hℓ and hℓ′ at layers ℓ
and ℓ

′
:

COS = ⟨hℓ,hℓ′⟩/∥hℓ∥2∥hℓ′∥2.
This COsine Similarity (COS) metric provides a clear geometric interpretation of feature
alignment. Unlike CKA (13), COS is not invariant to all transformations except isotropic
scaling. COS is computed per sample and doesn’t rely on inter-example structures. We
average COS over all training samples in our experiments.

To verify the effectiveness of the sample-wise COS metric, we train the DeiT-S model
(24) on CIFAR-10 and ImageNet1K dataset from scratch. We computed COS as well as
the CKA between features in each layer and the last layer(Figure 1(a,b)), and plotted COS
between all layer pairs as heatmap(Figure 1(c,d)). We get the following key observations:

• COS aligns with CKA The COS effectively reflects layer-wise representation similarity
as it has the same trend as CKA. In appendix C.2, we show that COS is effective due to
residual connections between transformer blocks has eliminated the rotation ambiguity.
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(a) Cos Similarity (b) Layerwise Acc (c) Aligned (d) Multi classifiers

Figure 2: Comparison of ViT model for ImageNet by standard training, proposed aligned
training, and the multi-exit/classifiers, in terms of (a) cosine similarity, (b) layer-wise test-
ing accuracy, layerwise NC1 and linear probing accuracy at each layer, and (c-d) cosine
similarities between all pairs of layers.

• Positive layer-wise representation similarity The COS for all pair of layers is eval-
uated on the same model for small and large datasets. Small datasets exhibit a ridge-to-
plateau pattern, indicating that shallow layers drastically alter features while deep layers
maintain relatively stable representations. In contrast, large datasets display a consistent
ridge pattern, suggesting continuous feature refinement throughout the network.

• Correlation between cosine similarity and accuracy Applying the classifier to each
hidden layer reveals a high correlation between COS and layer-wise accuracy.

3. Aligned Training for Enhancing Layer-wise Representational
Similarity: Application for Multi-Exit Models with a Single Classifier

In the previous section, we observed that layer-wise similarity can be captured by a simple
sample-wise COsine Similarity (COS) metric. In this section, we propose an aligned training
method to enhance the COS across layers. Specifically, the last-layer classifier can be directly
applied after any hidden layers, enabling a multi-exit model that use a single classifier. To
the best of our knowledge, our work is the first to show that one common classifier is
sufficient for multi-exit models. As shown in appendix(see Table 1), a simple classifier can
significantly reduce the number of parameters for multi-exit models.

Aligned Training We enhance the layer-wise similarity by jointly optimizing the follow-
ing aligned loss that is the weighted average of the CE loss from all the layers,

Laligned(x,y) =
L∑

ℓ=1

LCE(Whℓ + b,y), (1)

Roughly speaking, the aligned loss (1) introduces CE loss for intermediate layers and would
encourage each layer features hℓ to align with the common classifier W—as implied by the
NC phenomenon—hence improving the representation similarity across layers.

Improved layer-wise representation similarity and accuracy Figure 2(a,c) show
increased layer-wise representation similarity from aligned training. This method aligns
features to a common classifier, significantly improving pair-wise feature similarity across
layers. As a result, Figure 2(b) demonstrates substantially higher layer-wise accuracies when
applying the last-layer classifier after each hidden layer, compared to standard training.
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(a) Layerwise Acc (b) Training Curve

Figure 3: Layer-wise accuracy between stan-
dard model and aligned model.

Determine minimal number of lay-
ers Determining the optimal number
of layers for a task can be challeng-
ing. Aligned training helps identify
the minimal layers needed by enhanc-
ing shallow layer performance and re-
ducing redundancy. As shown in Fig-
ure 3 for a DeiT-small model on CI-
FAR10, aligned training produces rapidly
increasing layer-wise accuracy then sat-
urate. The minimum layer count is the smallest layer achieving near-highest accu-
racy. No retraining is needed; selected layers can be used with the last-layer clas-
sifier. In contrast, standard training models show increasing accuracy without sat-
urating, even with 12 layers, requiring multiple model sizes to determine minimal
layer count. Interestingly, aligned training models truncated to 6 or 9 layers slightly
outperform standard models of the same size and converge faster(Figure 3 (b)).

Figure 4: Aligned/ stan-
dard training on COS and
saturation events.

More early saturate events A “saturate event” (8) oc-
curs when the model’s final predicted token becomes the top
candidate and remains unchanged across all subsequent lay-
ers. We validate the saturate events on vision models. Figure
4 illustrates the COS metric with last hidden states and the
number of saturate events at each layer. We observe that
aligned training encourages more early saturate events by in-
creasing the cosine similarity with last hidden states. This
demonstrates that the aligned model has a stronger potential
for supporting early exit.

Multi-exit model with a single classifier Multi-exit
models (28; 7; 29) use different classifiers for each layer. Our approach uses a single clas-
sifier for all layers, decreasing the model size and exploiting the representation similarity.
Compared to multi-exit training with multiple classifiers (29), our aligned training achieves
higher COS and comparable layer-wise accuracy, as shown in Figure 2. For early exits, we
use a confidence threshold. Figure 5 shows that in aligned training, most samples exit at
early layers, unlike standard training where most exit at the last layer.

Figure 5: Number of
samples exit at each
layer during inference.

Applications on Language Models We extend our aligned
training approach to NLP tasks, demonstrating its effectiveness
in fine-tuning Large Language Models (LLMs). For text clas-
sification tasks, we evaluate AlignedBERT (BERT-Base with
aligned loss) on GLUE benchmark tasks. Results show improved
performance over the baseline in early layers. For text generation
task, we evaluate AlignedGPT (GPT2 with aligned training)on
Wikitext-103 dataset. Result shows it can maintain text qual-
ity while enable efficient generation using shallower layers. More
results can be found in appendix B.
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rolles, and Hervé Jégou. Training data-efficient image transformers & distillation
through attention. In International conference on machine learning, pages 10347–
10357. PMLR, 2021.

[25] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

6

https://openreview.net/forum?id=GbkWw3jwL9
https://openreview.net/forum?id=V88BafmH9Pj


Extended Abstract Track
Short Title

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[27] Peng Wang, Xiao Li, Can Yaras, Zhihui Zhu, Laura Balzano, Wei Hu, and Qing Qu.
Understanding deep representation learning via layerwise feature compression and dis-
crimination. arXiv preprint arXiv:2311.02960, 2023.

[28] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic
early exiting for accelerating bert inference. arXiv preprint arXiv:2004.12993, 2020.

[29] Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin. Berxit: Early exiting for bert with
better fine-tuning and extension to regression. In Proceedings of the 16th conference of
the European chapter of the association for computational linguistics: Main Volume,
pages 91–104, 2021.

[30] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku,
Yuanzhong Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling
with improved vqgan. arXiv preprint arXiv:2110.04627, 2021.

[31] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay
Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregres-
sive models for content-rich text-to-image generation. arXiv preprint arXiv:2206.10789,
2(3):5, 2022.

[32] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large
language models. arXiv preprint arXiv:2303.18223, 2023.

[33] Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing
Qu. A geometric analysis of neural collapse with unconstrained features. Advances in
Neural Information Processing Systems, 34:29820–29834, 2021.

7



Extended Abstract Track
Appendix

Notations and Organizations. The appendix provides additional experimental results
and detailed information about the setup. Here, hℓ represents the feature of an individual
sample from layer ℓ of transformers. The appendix structure includes: parameter savings
using a single classifier (Appendix A), additional language model experiments (Appendix
B), sample-wise COS results (Appendix C.1), confirmation that residual connections in
transformers eliminate rotation ambiguity of features (Appendix C.2), and the setup for
the aligned training method (Appendix C.3).

Appendix A. Parameters Saving using Single Classifier

Table 1: Comparison of number of parameters across different architectures between mul-
tiple classifiers and single classifier(ours). Multiple classifiers refers to a multi-exit model
with a different classifier at each layer. The last column shows that the percentage of saved
parameters using single classifier.

Models Hidden Dim # of Classes # of Layers Multiple Classifiers (#Params) Single Classifier (#Params) #Param Saving

DeiT-S(24) 384 1,000 12 26.27M 22.05M 16.07%
DeiT-B(24) 768 1,000 12 95.02M 86.57M 8.89%
GPT-2(16) 768 50,257 12 541.57M 117.35M 78.39%
GPT-3(2) 12,288 50,257 96 233.67B 175.63B 25.10%
LLAMA-2 (25) 4,096 32,000 40 75.11B 70.35B 6.81%

Appendix B. Applications on Language Models

All the previous experiments mainly focus on ViT for vision tasks. In this section, we
will present additional experiments to demonstrate the performance of the aligned training
for fine-tuning LLMs for NLP tasks. Specifically, we empirically evaluate the approach
on text classification by fine-tuning the pretrained BERT models and generation tasks by
fine-tuning the GTP2 model. For comparison, we also independently finetune the baseline
models for both tasks using standard training.

AlignedBERT: text classification tasks We first study the text classification problem
using the BERT model, which is similar to ViT for image classification as BERT also employs
the [CLS] token for classification. We take a pretrained 12-layer BERT-Base model, extract
the feature tied to the [CLS] token from each layer, and apply the same classification head
to derive logits from each layer. Subsequently, we employ the aligned loss for fine-tuning
to obtain the so-called AlignedBERT. We test AlignedBERT on the General Language
Understanding Evaluation (GLUE) benchmark, which encompasses nine tasks that gauge
understanding of natural language. This includes single-sentence tasks such as CoLA and
SST-2, similarity and paraphrasing tasks like MRPC, STS-B, and QQP, as well as natural
language inference tasks - MNLI, QNLI, RTE and WNLI. The accuracy or F-1 score per
layer is depicted in Figure 6. AlignedBERT demonstrates better performance than the
standard baseline for layer-wise accuracy. This indicates that most layers are redundant
and that using only the first few layers of AlignedBERT can achieve good text classification
performance.
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(a) SST-2 (b) MRPC (c) QNLI

(d) RTE (e) QQP (f ) MNLI

Figure 6: Comparison of layer-wise scores for models trained with standard training and
the proposed aligned training strategy, with BertBase as the backbone.

(a) Prediction Accu-
racy

(b) Perplexity (c) Coherence (d) Diversity

Figure 7: Evaluation of standard training and aligned training for GPT2 model on Wikitext-
103 dataset in terms of (a) prediction accuracy, (b) perplexity, (c) coherence, and (d)
diversity. See definitions of these metrics in Appendix C.3

.

AlignedGPT: text generation tasks We then study open-ended text generation due
to its widespread applicability in various areas. In formal terms, given a human-written
prefix or context x, the task involves decoding a continuation from the language model
using the auto-regressive approach that predicts one token each time. The prediction of
the next token is the same to a classification problem: given current tokens x as input, the
transformer makes the prediction based on the feature hL of the last token. The transformer
is also trained with CE loss where the expected next token is the label and the last-layer
linear classifier (generation head) W represents the embeddings for all the possible tokens.
To improve representation similarity across layers so that features from early layers can also
predict the next token, we use aligned training to finetune the auto-regressive model as in
(1) that appends CE loss across shallow layers.
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For both the standard model and the model fine-tuned with aligned training, we can

generate text from the intermediate layers by extracting hidden states from these layers
and passing them to the last-layer classifier to get the next token logits. These logits are
then used by certain decoding methods to generate the new token. Following (20; 19), we
evaluate the generated text from two perspectives: (1) language modeling quality, which
assesses the intrinsic quality of the model and is measured by prediction accuracy and
perplexity, and (2) generation quality, which measures the quality of the text produced by
the model using coherence and diversity. Coherence is a measurement of relevance between
prefix text and generated text, while diversity considers the recurrence of generation at
varying n-gram levels. See the Appendix for the details.

In this experiment, we fine-tune GPT-2 on the Wikitext-103 dataset and show the results
in Figure 7. In terms of model quality, AlignedGPT outperforms the standard GPT-2 in
prediction accuracy and exhibits lower perplexity across intermediate layers, excluding the
last layer where the two models achieve comparable performance. Regarding the quality
of text generated from intermediate layers, AlignedGPT also excels in maintaining higher
coherence and diversity. This suggests that we can utilize the shallower layers for text
generation to improve inference efficiency without significantly reducing the quality of the
generated text.

Effects on transferability It is often claimed that shallow layers learn universal patterns
while deep layers fit to class labels. Questions arise about whether the proposed aligned
training approach is that aligning shallow layer features with deep layer features could cause
the shallow layers to lose their transferability. To resolve this question, we conduct two sets
of experiments:

• Distribution shift: we first train a DeiT on CIFAR10 with standard training and align
training, and then evaluate the layer-wise accuracy on CIFAR10.2 (14),

• Transfer to different tasks: we first train a DeiT on ImageNet with standard training
and align training, and then evaluate the layer-wise accuracy on CIFAR10 by only fine-
tune a linear classifier, with the feature mapping fixed.

(a) CIFAR10 to CIFAR10.2 (b) ImageNet to CIFAR10

Figure 8: The comparison of layer-wise accuracy between a standard model and an aligned
model.
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The results are plotted in Figure 8. We observe that for both cases, the distribution shift
and transferring to different tasks, layer-wise accuracy curves resemble those on the pre-
trained datasets shown in Figure 3 and Figure 2, demonstrating that aligned training not
only improves layer-wise accuracy for the pre-trained datasets but also for the downstream
datasets. In other words, the aligned training methods maintain transferability, ensuring
that the trained model can be effectively transferred.

Appendix C. Additional experiments

In this section, we first describe more details about the datasets and the computational
resource used in the paper. Particularly, CIFAR10, CIFAR10.2, ImageNet1K, GLUE, and
Wikitext-103 are publicly available for academic purpose under the MIT license. For exper-
iments on vision tasks, we run all experiments on 4 RTX A5000 GPUs with 24GB memory.
For experiments on NLP tasks, we run all experiments on single RTX A5000 GPU with
24G memory.

Implementation details for Vision Experiments. We conduct experiments on both
the CIFAR10 and ImageNet1K datasets. The CIFAR10 dataset includes 60,000 color images
in 10 classes, each measuring 32 × 32 pixels. ImageNet1K contains 1.2 million color images
distributed in 1000 classes. To increase the diversity of our training data, we use a data
augmentation strategy. This includes random crop and padding, random horizontal flip
with a probability of 0.5, and random rotation within 15 degrees. For optimization, we
employ AdamW with an initial learning rate of 0.1. This rate decays according to the
MultiStepLR at the 100th and 150th epochs, over a total of 200 epochs. We set the weight
decay at 1e-4. The global batch size for both datasets is set at 256.

Implementation details for NLP Experiments. The General Language Understand-
ing Evaluation (GLUE) benchmark comprises nine tasks for assessing natural language
understanding. In our AlignedBERT experiments on the GLUE dataset, we used a se-
quence length of 256. We employed AdamW for optimization with an initial learning rate
of 2e-5, and a batch size of 32. Each task underwent fine-tuning for three epochs. The
WikiText-103 language modeling dataset consists of over 100 million tokens extracted from
Wikipedia’s verified Good and Featured articles. For AlignedGPT experiments on the
WikiText-103 dataset, we maintained the sequence length at 256 and used AdamW with
an initial learning rate of 2e-5. In this case, we set the batch size to 8.

C.1. Box Plots of Sample-wise Cosine Similarity

There may be some rare samples with negative sample-wise cosine similarity between fea-
tures from layers that are far apart.

C.2. Residual Connections Eliminate Rotation Ambiguity

Section 2 demonstrates a consistent trend between COS and CKA. Additionally, when we
compute the cosine similarity of features from adjacent layers in Figure 10, most samples
exhibit high similarity. These findings suggest that Transformers do not have orthogonal
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(a) CIFAR10 (b) IN1K

Figure 9: Sample-wise cosine similarity of features from shallow layers and the last-hidden
layer. The DeiT-S model is trained with standard training on CIFAR-10 and ImageNet. It
shows there are rare samples with negative sample-wise cosine similarity.

transformations across layers. But why does this occur? In this section, we examine the
role of skip connections in preventing orthogonal transformations.

Most transformer architectures include skip connections, which are added after the (i)
self-attention layer and (ii) MLP layer. By combining (??) as a long branch part with the
identity part, we obtain:

hℓ+1 = MLP(LN(MSA(LN(hℓ) + hℓ)) + MSA(LN(hℓ)) + hℓ

= f(hℓ) + hℓ

(a) COS of adjacent layers (b) Norm Ratio

Figure 10: Cosine similarity of features from adjacent layers COS(hℓ−1,hℓ) and norm ratios
∥hℓ∥/||f(hℓ)|| distributions. The DeiT-Small model is trained on Imagenet-1K and evalu-
ated on its validation dataset.

To investigate the effect of residual connections, we calculate the norm ratio ∥hℓ∥/||f(hℓ)||.
Here, hℓ represents the hidden output from the (ℓ)-th layer using the skip connection, and
f(hℓ) is the transformation of hℓ from the long branch. The results are displayed in Figure
10. High norm ratios suggest that skip connections significantly influence the representa-
tional structure of ViT.

To provide further evidence that residual connections resolve the rotation ambiguity,
we compared the MLP model with and without these connections and computed their
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(a) Without residual con-
nections

(b) With residual connec-
tions

Figure 11: Comparison of layerwise accuracy, COS(COsine Similarity), and CKA (Centered
Kernel Alignment) with the last layer of the 9-layer MLP models with and without residual
connection on the MNIST validation dataset. The models are trained from scratch using
standard training. In the left figure, CKA fails to accurately reflect the change in layerwise
accuracy for the MLP without residual connection. In the right figure, the presence of
a residual connection is the reason why CKA works well, as it helps eliminate rotation
ambiguity.

COS and CKA values. For the MLP model without residual connections, as shown in
Figure 11(a), the CKA value is not consistent with accuracy and cosine similarity. A
high CKA value might indicate significant similarity between features across layers, but it
does not necessarily correlate with high classification accuracy. This inconsistency primarily
results from the fact that CKA does not account for rotation in the feature space, suggesting
that features could rotate without the residual connections. In contrast, for the MLP model
with residual connections, as depicted in Figure 11(b), the CKA value aligns with layerwise
accuracy, indicating that residual connections effectively eliminate the rotation ambiguity
of features.

C.3. Aligned Training

Illustration of Train Once and Fit all devices. Figure 12 illustrate how aligned
training support train once and fit all devices. After aligned training, one can directly fetch
from shallow to deep layers of transformer according to the device computational resources
and memory constrains.

Alternative Approach for Enhancing Layer-wise Representation Similarity. In
addition to using aligned training loss to enhance similarity, another method is to add the
cosine similarity as a regularization term to the loss function.

Lsim(hℓ,hL) =
L∑
l=1

λℓ(1 − cos(hℓ,hL))

And the total loss is the sum of this two term:

LCE-reg(x, y) = LCE(C(hL), y) + βLsim(hℓ,hL)

13



Extended Abstract Track

Figure 12: Aligned training of transformer using joint CE loss of all layer features with
common classifier and elastic inference for different memory constrains. Once the model is
trained using the aligned method, it can fit all devices. Features from darker layers indicate
better performance.

(a) Cos Similarity (b) Layerwise Acc

Figure 13: Cosine similarity with last layer and layerwise accuracy of standard training
using LCE(C(hℓ), y)), standard-Reg training using LCE-reg(x, y) and Aligned training using
Laligned(x, y) . The 12 layers DeiT model is trained on ImageNet1K dataset. Regularization
term helps little for improving the cosine similarity and layerwise accuracy. But our aligned
training improves both a lot.

where β > 0 is the regularization coefficient. According to Figure 13, the regularization
term contributes minimally to the improvement of cosine similarity and layer-wise accuracy,
compared to aligned training methods.

Using the CE-reg loss results in poor layerwise accuracy and lower cosine similarity
compared to the aligned loss. The likely reason for this is an imbalance between the COS
alignment objective and the primary classification objective. Our intuition is that directly
optimizing for high COS alignment may fail because the COS alignment loss primarily
focuses on aligning features across layers, without necessarily making the features discrim-
inative enough for the classification task. In contrast, the cross-entropy (CE) loss directly
optimizes for classification, and as a consequence, it naturally improves COS alignment.
This suggests that while COS alignment is important, it may not be sufficient on its own
without the robust guidance provided by the CE loss.
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Another approach involves adding the CKA term as a regularization term to the CE
loss. However, this approach may not be effective and has several drawbacks. First, CKA
is not always reliable in representing layer-wise similarity across all settings, particularly in
scenarios with rotation ambiguity or when residual connections are absent. Second, it is
computationally expensive, as it requires computing the Gram matrix to evaluate relation-
ships between features. Lastly, CKA might not perform better than the COS regularization
term and may yield similar results, falling short compared to the aligned loss. In transform-
ers, both COS and CKA measure feature similarity and tend to exhibit similar trends. As
shown in Figure 13, the COS regularization term contributes minimally to improving cosine
similarity and layer-wise accuracy. Based on this, we infer that using CKA as a regulariza-
tion term would similarly have a minimal impact on enhancing these metrics. Therefore,
aligned training approaches may be more effective than relying solely on regularization
terms.

Setup for Aligned Training. It’s reported (29) that training only with this aligned
loss would cause the performance drop in the last layer. So following (29), we choose the
”alternating” training approach, which alternates objectives based on the iteration number.
During odd-numbered iterations, we use the CE loss of the final layer LCE(C(hL), y). For
even-numbered iterations, the strategy involves using the aligned loss Laligned(x, y).

Note that this training strategy, which uses a common classifier, no longer requires the
KL-divergence term that is commonly used in mutli-exit/classifeirs training. This is because
the deep layers have been trained to capture the abstract and discriminative features of the
input data, effectively serving as the teacher model. The KL-divergence term is typically
used to guide the shallower layers. However, when we use a common classifier, our aligned
training method becomes a latent knowledge self-distillation method. The shallow layers can
mimic or align their feature representations with those of the deep layers by aligning with the
common classifier. As such, the deep layers, with their advanced feature representations, act
as the teachers, while the shallow layers, in their quest to improve their feature extraction
capabilities, assume the role of students. Therefore, the KL-divergence term is no longer
necessary.

Setup in AlignGPT. Our aligned training method can be used with any transformer-
based language models. In this study, we evaluated our method using the GPT-2 model.
We finetune the GPT2 models using aligned training methods and then use intermediate
layers of GPT2 to generate the texts.

• Model and Baselines We finetune GPT-2 on the Wikitext-103 dataset with the pro-
posed objective Laligned for 40k training steps and generate the text continuation with
nucleus sampling (11) with p = 0.95 decoding methods. For the standard baseline model,
we finetune the model with CE loss LMLE. The model is finetuned using a single 24G
RTX A5000 GPU for 70 hours.

• Evaluations Following (19), we evaluate the model from two perspectives: (1) language
modeling quality, assessing the inherent quality of the model, and (2) generation quality,
measuring the quality of the text the model produces. In assessing language modeling
quality, we calculate the prediction accuracy and perplexity of each layer. When evaluat-
ing generation quality, we measure the similarity between the prompt text and generated
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text using coherence. We employ generation repetition to gauge the diversity of the
generated text. The metrics are defined as follows

– Prediction Accuracy The accuracy is computed on the Wikitext-103 test set as,

Acc =
1

D

D∑
i=1

n∑
i=1

1[arg max pθ(x|x<i) = xi] (2)

where the D is the number of samples in the test dataset.

– Perplexity The perplexity is computed on the test set of Wikitext-103. It’s com-
puted as the exponential of the test loss.

– Coherence Coherence measures the relevance between the prefix text and the gen-
erated text. We apply the advanced sentence embedding method, SimCSE (6), to
measure the semantic coherence or consistency between the prefix and the generated
text. The coherence score is defined as follows,

Coherence = hT
xhx̂/∥hx∥∥hx̂∥ (3)

where x is the prefix text and x̂ is the generated text and hx = SimCSE(x) and
hx̂ = SimCSE(x̂). Higher coherence means more correlation to the given prompt.

– Diversity Diversity measures the occurrence of generation at different n-gram levels.
It is defined as:

Diversity =
4∏

n=2

|unique n-grams(x̂)|
—total n-grams(x̂)|

(4)

A higher diversity score suggests fewer repeated words in the generated text.
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