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ABSTRACT

Dense prediction tasks such as semantic segmentation require representations that
capture both global semantics and local structure. Most self-supervised learning
methods prioritise image-level invariance, producing strong features for classifi-
cation but offering limited guidance for tasks requiring (or depending on) spatial
coherence. In parallel, several approaches have been proposed specifically for
dense prediction, but their improvements in local fidelity often come at the cost
of weaker global transfer. We present CRISP (Consistent Region-Informed Self-
Supervised Pretraining), a framework that enhances patch-level learning with
explicit region-level alignment. CRISP discovers coherent regions in a reference
image, projects them to augmented views via geometric correspondences, and
aggregates their patch features into concept tokens with a mask-guided module.
By enforcing consistency at the region, patch, and global levels, CRISP learns
representations that are both semantically strong and spatially coherent. Pretraining
on ImageNet-1K shows that CRISP achieves substantial gains on dense prediction
benchmarks while maintaining strong performance on global benchmarks. These
results establish region-level consistency as a critical ingredient for advancing
universal visual representations.

1 INTRODUCTION

Self-supervised learning (SSL) has emerged as a powerful paradigm for learning visual representations
without manual annotations, often achieving performance on par with, or even surpassing, supervised
pretraining in a wide range of downstream tasks. Beyond its strong results on mainstream computer
vision problems such as image classification (Ziegler & Asano, 2022), object detection (Amrani et al.,
2020), and semantic segmentation (Nandam et al., 2025), SSL has proven particularly valuable in
domains where labeled data is scarce, expensive, or impractical to obtain. Examples include medical
imaging (Krishnan et al., 2022; Marikkar et al., 2023), where expert annotations require significant
time and specialised knowledge; satellite and aerial imagery (Wang et al., 2022), where datasets span
vast geographic areas; underwater exploration (Yang et al., 2022), where visibility and conditions
make manual labeling challenging; and many others. This broad applicability underscores SSL’s
potential as a general-purpose representation learning strategy.

Within the broad spectrum of SSL approaches, invariance-based methods have gained particular
traction due to their ability to produce robust, transferable features that can be deployed off the shelf
without task-specific retraining. An influential direction is the DINO family of methods, starting
with DINO (Caron et al., 2021) and its extensions, iBot (Zhou et al., 2022), DINOv2 (Oquab et al.,
2024), and DINOv3 (Siméoni et al., 2025), which adopt a teacher–student framework with Vision
Transformers (ViTs) to enforce consistency between augmented views. These methods excel at global
tasks such as image classification but remain limited on dense prediction tasks. The patch-level
objective provides only weak supervision, where the student processes a masked version of an
augmented view and the teacher processes the unmasked version of the same view, with alignment
enforced only between corresponding patches. This setup ignores cross-view or cross-context
relationships, so patches are not encouraged to maintain consistent semantics beyond that single view.
In addition, patches are treated as independent units, as if each were a standalone concept, without
modeling their spatial coherence or relationships to neighboring patches. As a result, the learned
features are globally discriminative but spatially misaligned, which limits their ability to capture
fine-grained boundaries and region-level invariances essential for dense tasks.
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Figure 1: (a) CRISP discovers a coherent region in the reference image, tracks it across augmented
views, consolidates its patch features into a concept token, and aligns student–teacher tokens to
enforce region-level consistency. (b) We evaluate frozen representations using k-NN and linear
probes. CRISP outperforms prior baselines, scales well with model size, and in some cases surpasses
models pre-trained on much larger datasets. * pretrained on the LVD-142M dataset (≈142M images).

On the other hand, SSL methods explicitly designed for dense tasks (Xie et al., 2021; Hénaff et al.,
2021; Stegmüller et al., 2023; Lebailly et al., 2024; Dukić et al., 2025) emphasise pixel- or region-
level supervision, and often rely on heuristics, clustering strategies, or object-centric priors. While
effective, these hand-crafted mechanisms can introduce bias and limit scalability beyond the settings
they were designed for. Moreover, the strong focus on local detail can dilute global semantics
as supervision is concentrated at the patch or region level, models are encouraged to optimise for
local consistency rather than building representations that capture object identity, scene context, or
cross-image invariances. This in turn weakens transfer on recognition benchmarks. Addressing these
issues calls for more principled approaches to dense representation learning, methods that can deliver
strong spatial fidelity for dense prediction tasks while also preserving global semantics.

We address these limitations with CRISP (Consistent Region-Informed Self-Supervised Pretraining),
which enforces region-level consistency by leveraging the geometric relationships between augmented
views, information that is typically discarded in existing SSL methods. By maintaining explicit
links between corresponding regions, CRISP enables their features to be coherently aggregated into
higher-level concept tokens. Aligning student–teacher concept tokens then promotes invariance at
the region level, complementing global and patch-level objectives and yielding representations that
are both semantically rich and spatially precise. Through extensive experiments on ImageNet-1K
pretraining, CRISP achieves strong transfer performance across both global and dense benchmarks,
with state-of-the-art (SOTA) results on several segmentation and dense prediction benchmarks, refer
to Figure 1. Ablation studies further validate the impact of key design choices, showing that these
gains come with minimal additional computational cost.

The rest of this paper is organised as follows. We first review related works in Section 2. Section 3
then introduces the CRISP framework, followed by extensive experiments and ablations in Section 4.
Finally, Section 5 offers concluding remarks and outlines future directions.

2 RELATED WORK

Historically, early SSL methods relied on hand-crafted pretext tasks that encouraged models to learn
general-purpose features. Examples include colourisation (Zhang et al., 2016; Larsson et al., 2016;
2017), relative patch location (Doersch et al., 2015), solving jigsaw puzzles (Noroozi & Favaro, 2016;
Kim et al., 2018), cross-channel prediction (Zhang et al., 2017), predicting noise (Bojanowski &
Joulin, 2017), predicting image rotations (Gidaris et al., 2018), spotting artefacts (Jenni & Favaro,
2018), etc. While these tasks demonstrated the potential of SSL, their objectives were often too
narrow or low-level, and the resulting representations did not transfer strongly to downstream tasks.

This led to the emergence of instance discrimination methods, where each image is treated as its
own class. (Wu et al., 2018) introduced a memory-bank contrastive method, followed by SimCLR
(Chen et al., 2020), which maximise agreement between augmented views of the same image while
contrasting against others. While contrastive learning dominated early SSL, later work showed that
negative pairs were not strictly necessary. BYOL (Grill et al., 2020) introduced an online–target
Siamese framework with a predictor, learning effective features using only positive pairs by relying on
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batch normalisation (Ioffe & Szegedy, 2015), while SimSiam (Chen & He, 2021) simplified the setup
further by relying on weight sharing and a stop-gradient operation to prevent collapse. Barlow Twins
(Zbontar et al., 2021) and VICReg (Bardes et al., 2022) proposed alternative non-contrastive objectives
based on redundancy reduction and variance–covariance regularisation, further demonstrating that
stable and powerful representations can be learned without negatives. Clustering-based SSL offered
another direction. DeepCluster (Caron et al., 2018) and SwAV (Caron et al., 2020) performed online
clustering of features and used cluster assignments as pseudo-labels, thereby avoiding trivial collapse
without explicit negatives.

The introduction of Vision Transformers (ViTs) enabled richer structure. DINO (Caron et al., 2021)
applied teacher–student self-distillation to ViTs and showed that attention maps could localise objects
without supervision, revealing implicit object sensitivity. Building on this, iBOT (Zhou et al., 2022)
combined masked image modeling with distillation by predicting teacher patch tokens, leading to
semantically meaningful patch features and better transfer to dense tasks. DINOv2 (Oquab et al., 2024)
scaled this recipe to hundreds of millions of curated images and billion-parameter ViTs, producing
universal features transferable across recognition, segmentation, and depth estimation. DINOv3
(Siméoni et al., 2025) further scaled to multi-billion parameter models with training refinements like
Gram anchoring, yielding dense representations competitive with supervised pretraining.

In parallel, masked image modeling (MIM) (He et al., 2022; Xie et al., 2022; Atito et al., 2023)
emerged as a complementary paradigm, training models to reconstruct randomly masked patches with
an asymmetric encoder–decoder. MIM excels at learning spatially grounded, fine-grained features
but often struggles to capture high-level semantics, leading to weaker transfer on discriminative tasks.

Despite these advances, a gap remains. Invariance-based SSL produces strong global semantics but
lacks spatial precision, while reconstruction- or patch-based SSL captures local detail yet weakens
semantic coherence. This tension has motivated dense-focused SSL. Early approaches incorporated
region-level consistency using external cues, where some methods rely on pretrained models and
offline correspondence discovery to match regions across views, while others generate pseudo-
segmentation labels via heuristics before training (Xie et al., 2021; Hénaff et al., 2021). Building on
these ideas, CrOC (Stegmüller et al., 2023) learns dense region representations by jointly clustering
patch embeddings across two augmented views, enabling unsupervised segmentation without external
proposals. CrIBo (Lebailly et al., 2024) takes this further by aligning object-level nearest neighbors
across different images to disentangle multiple objects within scene-centric datasets. OCEBO (Dukić
et al., 2025) instead targets object-centric slot architectures, bootstrapping a target encoder via self-
distillation and filtering uninformative patches to achieve unsupervised object discovery on real-world
data. While effective, these approaches often depend on heuristics, clustering, or object-centric priors,
and can trade off global semantics for local fidelity.

Our work, CRISP, closes this gap by enforcing region-level consistency across augmented views
without relying on external labels or heuristics. In doing so, it learns representations that are both
globally semantic and spatially precise, effectively unifying the strengths of global and dense SSL.

3 METHODOLOGY

CRISP complements invariance-based SSL with the spatial precision needed for dense prediction.
We build on iBOT (Zhou et al., 2022), selected for its strong performance and architectural simplicity.
At its core, iBOT combines a global image-level loss on the [CLS] token with a patch-level loss that
aligns masked and unmasked patch embeddings within a single view. While effective for image-level
tasks, this design treats patches as independent units, limiting spatial precision and region-level
invariance. CRISP addresses this by adding a region-consistency objective that enforces alignment
of coherent regions across views. The framework unfolds in three stages: (1) region discovery via
similarity maps (Sec. 3.1), (2) cross-view region warping using geometric transforms (Sec. 3.2), and
(3) mask-guided concept token aggregation (Sec. 3.3). An overview of CRISP is shown in Figure 2.

3.1 REGION DISCOVERY

The first step in CRISP is to identify coherent regions within a reference image in a fully self-
supervised manner. While ViTs naturally operate on fixed-size patches, meaningful visual concepts
rarely align with the boundary of a single patch. Instead, semantically consistent parts of a scene,
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Figure 2: Overview of CRISP. (1) Region discovery: a seed patch computes cosine similarity to
all patches from teacher embeddings; thresholding yields a coherent region mask. (2) Cross-view
warping: the mask is mapped to augmented views via geometric transforms. (3) Mask-guided
aggregation: region patches are consolidated into a concept token for student–teacher matching.

such as head of an animal, door of a house, or handle of a cup, emerge as groups of correlated patches.
Our goal is therefore to discover such regions directly from self-supervised features.

To capture such regions, we leverage the semantic structure already present in the iBOT teacher
network, which we use as initialisation and continue to update during CRISP training. Its patch
embeddings provide a strong starting point for region discovery, allowing us to form contiguous,
semantically coherent areas that evolve as training progresses.

Formally, let x ∈ R3×H0×W0 denote the original image. To standardise the patch grid across the
batch, we resize x to a fixed square resolution H ×W , yielding the reference image xref . This image
is partitioned into n× n non-overlapping patches of size p× p pixels, where p = H/n.

The reference image is passed through the teacher ViT, and patch embeddings are extracted by
averaging the outputs of the last M transformer blocks to stabilise the similarity maps, obtaining
zref ∈ Rn2×d, where d is the embedding dimension of the ViT. Averaging the highest layers reduces
block-level noise and captures the stronger semantics present near the network head, yielding cleaner,
more contiguous region masks.

We then uniformly sample a seed patch token index s ∈ {1, . . . , n2} and compute the cosine similarity
between the seed and all other patch tokens in the image:

as(i) =
⟨zref [s], zref [i]⟩

∥zref [s]∥2 · ∥zref [i]∥2
, i = 1, . . . , n2 (1)

where ⟨·, ·⟩ denotes the dot product and the denominator applies ℓ2 normalisation. Finally, we reshape
the as into n× n, producing a spatial similarity map, which is then thresholded:

Mref(i, j) = 1
[
as(i, j) ≥ β

]
, Mref ∈ {0, 1}n×n, (2)

where β is a fixed similarity threshold. Because the teacher is initialised from iBOT and continues to
evolve under CRISP training, its embeddings reliably produce coherent, meaningful regions. The
region may not match exact object boundaries, but it is sufficient for reliable region-level alignment.

3.2 CROSS-VIEW REGION WARPING

Once a region is identified in the reference image, the next step is to track it across augmented views
v1 and v2. Each view is generated from the original image x via a composition of geometric and
photometric transformations: Tk = T geo

k ◦ T photo
k , k ∈ {1, 2}, where T geo

k includes operations such
as random cropping, resizing, and flipping, while T photo

k applies only appearance changes such as
color jittering, blurring, or grayscale conversion, that do not alter spatial coordinates.
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Since Mref is defined in patch coordinates on the resized reference image (H×W ), we first convert its
active patch indices into pixel coordinates in the original image resolution (H0 ×W0). This produces
a set of pixel-coordinate regions corresponding to the discovered coherent region in the original image.
We then apply the recorded geometric transformation T geo

k directly to these coordinates, yielding the
region location in view vk without any intermediate mask resampling. The transformed coordinates
are finally discretised into the patch grid of vk, producing Mk ∈ {0, 1}n̂k×n̂k , k ∈ {1, 2}.

By working directly in coordinate space rather than resampling masks after each augmentation,
this procedure preserves exact geometric alignment between M1 and M2, guaranteeing that they
correspond to the same region in both augmented views. At the same time, it avoids costly resampling
operations, making the method efficient and naturally suited for parallel execution across a batch.

3.3 MASK-GUIDED CONCEPT TOKEN AGGREGATION

Once a region is localised in both views, CRISP aggregates its information into a single concept
representation. Let zk ∈ Rn̂2

k×d denote the last-block ViT patch embeddings of augmented view vk
(student if k = 1, teacher if k = 2). From Sec. 3.2, the warped mask Mk defines the region index set
Ik = { i ∈ {1, . . . , n̂2

k} : Mk(i) = 1 }. We then prepend a learnable concept token c
(0)
k ∈ Rd to

the sequence of patch embeddings, yielding

Z
(0)
k =

[
c
(0)
k ; zk(1), zk(2), . . . , zk(n̂

2
k)

]
∈ R(1+n̂2

k)×d. (3)

To restrict the aggregation to the discovered region, we construct an additive mask Πk ∈
R(1+n̂2

k)×(1+n̂2
k) such that only the concept token (index 0) can attend to the region patches:

Πk(u, v) =

{
0, u = 0 and v ∈ Ik,

−∞, otherwise.
(4)

In practice, −∞ is implemented as a large negative constant. This ensures that the concept token
aggregates information exclusively from the region, and no other token interactions are permitted.

For a transformer block ℓ = 1, . . . , L, with Q(ℓ),K(ℓ), V (ℓ) the standard query, key, and value
projections of X(ℓ−1)

k , masked attention is computed as

Attn
(
Q(ℓ),K(ℓ), V (ℓ); Πk

)
= softmax

(
Q(ℓ)K(ℓ)⊤

√
d

+Πk

)
V (ℓ). (5)

After L such layers (with residual and MLP sublayers), the updated concept token is taken as the
region embedding ck ∈ Rd.

3.4 OVERALL TRAINING OBJECTIVE

CRISP extends iBOT by adding a region-level objective. The iBOT losses, Lglobal and Lpatch, follow
a teacher–student setup with online centering and temperature scaling. For the region objective, each
region embedding ck is projected as hk = gk(ck) ∈ Rd′

, where g1 and g2 are two-layer MLPs with
normalisation for student and teacher. Only the concept token is aligned where the student h1 is
matched with the teacher h2 through a region-consistency loss, ensuring stable representations across
views. To ensure that regions correspond to meaningful concepts, we exclude cases where either
augmented view contains fewer than t patches. This prevents matching regions that are too small to
capture semantic structure, or are not visible in one of the views. In our experiments, we set t = 4.

Lregion = 1
2

[
ℓreg

(
h1, sg(h2)

)
+ ℓreg

(
h2, sg(h1)

)]
, (6)

where sg(·) denotes stop-gradient and ℓreg is the same softmax cross-entropy over a teacher queue
used in the global and patch objectives.1 The full CRISP loss combines all objectives:

LCRISP = Lglobal + λpatch Lpatch + λregion Lregion, (7)
with λpatch and λregion are set to 1.0 for simplicity.

This multi-scale design integrates complementary signals where global objectives capture semantics,
patch objectives enforce local precision, and region-consistency bridges the two.

1Other contrastive or distillation-based losses could be used here; we follow iBOT for consistency.
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4 EXPERIMENTS

We assess the effectiveness of CRISP framework through a comprehensive set of experiments. Sec.
4.1 details the experimental setup. Sec.4.2 presents quantitative and qualitative results across both
dense prediction tasks and whole-image understanding tasks. Visualisaions are shown in Sec. 4.3
Finally, Sec. 4.4 provides targeted ablations that systematically validate the design choices of CRISP.

4.1 EXPERIMENTAL SETUP

We pretrain our models on ImageNet-1K without labels, using ViTs (ViT-S/16, ViT-B/16, and ViT-
L/16) as backbones with a patch size of 16× 16. For region discovery, we average teacher features
from the last M = 4 blocks, pick a seed patch uniformly at random, and threshold the resulting
similarity map with β = 0.75. For concept modeling, we add L = 1 transformer block whose
hidden size matches the backbone (e.g., 384 for ViT-S). The concept token and the patch tokens
share a projection head with two linear layers of width 2048 and GELU activations, followed by a
256-dimensional bottleneck. The CLS token uses the same design. All outputs are ℓ2 normalised and
each token type (concept, CLS, patch) is mapped to an 8192-dimensional embedding with its own
final linear layer. We follow the iBOT pretraining recipe, using AdamW with a cosine learning-rate
schedule. Training runs on four GPUs with per-GPU batch sizes of 64 for ViT-S, 40 for ViT-B, and
32 for ViT-L, and all models are pretrained for 200 epochs from iBOT initialisation.

4.2 MAIN RESULTS

Semantic Segmentation. A key aim of CRISP is to learn semantically rich, spatially localised
representations from patch features. We evaluate them using the k-NN and linear protocols of CAPI
(Darcet et al., 2025), reporting mean Intersection-over-Union (mIoU) on ADE20K (Zhou et al., 2017),
PASCAL VOC (Everingham et al., 2010), and Cityscapes (Cordts et al., 2016); refer to Table 1.
CRISP consistently outperforms prior approaches, most notably surpassing CAPI by a large margin,
particularly with small encoders, despite CAPI being pre-trained on 100× more data, and performs
on par with DINOv2. Across datasets, our k-NN scores show the largest gains, which emphasises the
strength and transferability of CRISP’s patch-level embeddings without task-specific heads.

Table 1: Comparison with SOTA methods on semantic segmentation using frozen features. We report
k-NN and linear probe performance. All models are evaluated with input resolution adapted to 256
patch tokens (i.e. 224× 224 for patch size 14, 256× 256 for patch size 16).

Model ADE-20K Pascal-VOC Cityscapes
k-NN Linear k-NN Linear k-NN Linear

ViT-Small
SiT 17.6 22.3 37.6 47.1 31.4 35.6
Dino 17.5 20.9 37.2 42.3 30.9 35.4
iBot 22.0 27.0 49.7 58.0 33.5 37.9
CrOC 19.6 24.2 49.0 58.5 29.1 34.6
CrIBo 24.9 27.4 60.9 66.0 33.3 37.9
CRISP (Ours) 28.2 30.5 61.9 67.3 34.3 39.1
CAPI* 20.6 25.8 50.5 59.4 31.3 36.5

ViT-Base
MAE 18.7 25.6 44.2 56.5 32.2 38.1
Data2Vec 2.0 18.4 22.2 46.9 48.4 28.3 35.0
iBot 27.0 31.8 56.6 67.1 35.9 39.6
CrIBo 26.9 30.0 61.2 68.1 33.7 38.4
CRISP (Ours) 29.7 32.8 65.3 71.5 36.0 41.0
CAPI* 28.3 33.6 61.8 70.3 36.9 41.9

ViT-Large
MAE 21.7 28.0 46.2 55.9 34.9 39.6
Data2Vec 2.0 23.6 27.0 49.8 50.7 33.1 38.6
iBot 27.2 32.6 58.6 67.8 36.7 41.9
CAPI 29.2 34.4 60.7 69.7 35.6 41.7
CRISP (Ours) 32.5 35.6 69.1 73.3 36.9 42.2
DINOv2* 34.0 39.0 63.0 72.8 42.0 46.8
CAPI* 32.1 37.2 63.8 72.7 38.9 44.3

6
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Video Instance Segmentation. Table 2 evaluates frozen features for mask propagation on DAVIS-
2017 (Caelles et al., 2018), YouTube-VOS (Xu et al., 2018), and MOSE (Ding et al., 2023). Following
the nearest-neighbour protocol of DINO, we propagate masks frame-to-frame using cosine similarity
in feature space, without any fine-tuning. Grey rows list larger backbones for reference.

Under identical backbones and pretraining data, CRISP surpasses SOTA methods, while remaining
competitive with much larger models, showing that its region-consistent pretraining produces stable,
object-aligned features transferable to video tracking without task-specific training.

Table 2: Video segmentation tracking evaluation. We report mean region similarity (Jm), mean
contour accuracy (Fm), and their average (J&F). All videos are resized to 480p.

Method Model DAVIS YouTube-VOS MOSE
J&F Jm Fm J&F Jm Fm J&F Jm Fm

iBot ViT-S/16 61.8 60.4 63.2 66.8 66.1 67.4 38.0 34.1 41.6
CrOC ViT-S/16 60.2 58.8 61.5 64.3 63.9 64.7 34.6 31.1 38.1
CrIBo ViT-S/16 61.5 60.0 63.0 66.5 65.9 67.2 36.7 33.1 40.4
CRISP ViT-S/16 63.8 62.2 65.4 67.1 66.4 67.8 37.8 34.1 41.6
DINOv2* ViT-g/14 63.9 – – 65.6 – – 40.4 – –
Web-DINO (Fan et al., 2025) ViT-7B/14 57.2 – – 43.9 – – 24.9 – –

Multi-label Classification. We evaluate linear probing for multi-label recognition in both low-
shot and full-data regimes using a ViT-S/16 encoder on 224× 224 resolution. On PASCAL VOC
(Everingham et al., 2010), we create 1-, 2-, and 5-shot splits by randomly sampling images per class
with a fixed seed. A linear classifier is trained on frozen features, and mAP is reported on the full
validation set. Full-set results are further reported on PASCAL VOC, MS COCO (Lin et al., 2014),
and Visual Genome (Krishna et al., 2017). Features are formed by concatenating the [CLS] token
with averaged patch features. Results are shown in Table 3.

Multi-class Classification. We also evaluate CRISP under standard k-NN and linear probing.

Across both settings, CRISP demonstrates strong low-shot performance, highlighting its data effi-
ciency. In contrast, dense-task methods such as CROC and CRIBO are decent on dense prediction
but underperform severely on classification, underscoring CRISP’s versatility and balanced design.

Table 3: mAP results for low-shot multi-label classifi-
cation on PASCAL VOC as long with the performance
on MSCOCO (MC) and Visual Genome (VG)

Pascal VOC MC VG1 Img 2 Imgs 5 Imgs Full
iBoT 44.3 58.8 70.2 93.9 58.2 32.3
CrOC 48.7 56.9 67.8 89.4 56.2 28.8
CrIBo 48.8 60.4 70.0 92.9 59.9 32.0
CRISP 49.3 61.0 71.1 95.2 63.0 33.0

Table 4: k-NN and Linear results on multi-
class classification benchmarks.

k-NN Linear1% 10% 100%
iBoT 62.3 68.9 75.1 77.9
CrOC 49.0 58.0 66.5 71.4
CrIBo 58.1 64.4 70.7 74.9
CRISP 63.7 69.4 75.2 78.0
CAPI* – – – 71.5

4.3 VISUALISATIONS

Sparse Correspondence. We evaluate patch matching between two images of the same class,
following iBOT’s strategy. Using a ViT-L/16 pre-trained on ImageNet-1K with CRISP, we visualise
the top 12 correspondences by self-attention on ImageNet validation pairs. As shown in Figure 3,
CRISP establishes meaningful matches despite large variations in texture, color, pose, and background,
highlighting the robustness and generalisation of its representations. Additional examples between
augmented views and across images from same class are provided in the Appendix.

Figure 3: Top 12 patch correspondences between two different images from same class with ViT-L/16.
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Dense Feature Representations via PCA. Following CAPI (Darcet et al., 2025), we perform PCA
on dense output features for qualitative evaluation. Figure 4 visualises the first three principal
components as an RGB composite, comparing CRISP against DINOv2 (trained on LVD 142M
samples), employing ViT-L backbone. CRISP produces more discriminative and spatially coherent
feature maps, where object boundaries emerge clearly with minimal noise. Additional baseline
comparisons are presented in the Appendix, along with visualisations of the first six principal
components individually, which further illustrate their distinct spatial structures.

Orig.

Dinov2*
(w reg.)

CRISP

Figure 4: PCA visualisations of dense features, showing CRISP yields clearer, more coherent object
boundaries than DINOv2 (ViT-L, LVD 142M).

Discovered Regions. Figure 5 shows regions discovered after pretraining. Additional visualisations
of discovered regions at the beginning and end of training are provided in the Appendix.

Figure 5: The blue dot marks the seed; the red area shows its discovered region.

4.4 ABLATION STUDIES

To better understand the contribution of each component in CRISP, we conduct a series of controlled
ablation studies. All ablations use the same ImageNet-1K pretraining protocol with a ViT-S backbone
trained for 50 epochs on 4 GPUs with a batch size of 64, starting from iBOT initialisation. We
evaluate both global representation quality (10% ImageNet-1K k-NN) and spatial coherence for dense
tasks (PASCAL VOC k-NN and linear). The default design choices of CRISP are highlighted in grey.

Layer Choice for Region Discovery (M ). We compare using features from the last layer only versus
averaging the last 2, 4, or 6 layers for region discovery. Averaging stabilises similarity maps by
reducing block-level noise. As shown in Table 5, the best trade-off arises from averaging the last four
layers, while six layers overly smooth features and blur boundaries.

Effect of β on Region Discovery. Region masks are built by thresholding cosine similarities between
a seed patch and all others, with β varied from 0.4 to 0.99. Low thresholds capture larger regions
that aid global features but add noise, weakening dense-task accuracy (though still above baseline).
High thresholds produce very compact regions, limiting their effectiveness for dense tasks. As shown
in Figure 6, we find β = 0.75 to be the best trade-off, yielding stable, coherent masks that align
well across views and support both global and dense objectives. At the extreme, β = 0.99 collapses
regions to essentially the same patch across views; while this surprisingly improves over baseline, the
lack of region-level context injects noise and reduces global performance.

Number of Transformer Blocks in the Mask Guided Aggregation Module (L). The module uses
a lightweight transformer to merge region tokens into a single concept embedding. As a baseline
(L=0), we replace the transformer with simple averaging before passing the features to the projection
head. We then vary the number of blocks L ∈ 1, 2, 4, 6. As shown in Table 6, gains diminish beyond
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L = 2. Although L = 2 achieves the highest accuracy, L = 1 provides the best balance of accuracy
and efficiency. Limited improvements at higher L may stem from additional randomly initialissed
parameters, which could become more effective with further optimisation.

Projection Head Sharing. CRISP uses separate MLP heads for [CLS], patch, and region tokens. We
test shared vs. partially shared heads and find full separation is crucial as showing Table 7, [CLS]
captures global objectives, while patch/region encode spatial detail.

Normalisation Sharing. We test sharing the final normalisation layers between [CLS] and patch
tokens. Sharing harms dense transfer since they follow different distributions, while separate normali-
sations preserve specialisation and improve dense performance without affecting classification.

Table 5: Layer Choice for Region Discovery.

M
Pascal VOC INet-10%

k-NN Linear k-NN
1 55.6 64.4 69.0
2 56.3 64.4 69.0
4 57.6 64.7 69.1
6 56.4 64.4 68.8

0.4 0.5 0.6 0.7 0.8 0.9 0.99

56

60

64

68

69

VOC-kNN VOC-Linear INet10%-kNN

Figure 6: Effect of β on Region Discovery.

Table 6: Number of Transformer blocks in
the Mask-guided Aggregation Module.

L
Pascal VOC INet-10%

k-NN Linear k-NN
0 54.6 63.2 69.0
1 57.4 64.7 69.1
2 57.6 64.7 69.1
4 56.4 64.4 68.8
6 56.1 64.3 68.8

Table 7: Projection head ablations. Notation: ✓=all
shared; ✗=all separate; C PR=cls separate, patch
and region shared.

MLP Last
Layer

Pascal VOC INet- 10%
k-NN Linear k-NN

✓ ✓ 55.6 63.9 67.9
✓ ✗ 56.3 64.4 68.9
✓ C PR 56.3 64.0 69.0
✗ ✗ 56.7 64.9 69.0

C PR C PR 57.0 65.0 69.0

5 DISCUSSION AND CONCLUDING REMARKS

We introduced CRISP, a framework that explicitly enforces region-level consistency across augmented
views while preserving the strengths of global and patch-level objectives. By discovering coherent re-
gions, warping them across views, and aggregating their features into concept tokens, CRISP achieves
high performance on dense tasks and bridges the gap between globally discriminative but spatially
coarse representations. CRISP demonstrates strong and versatile representations on ImageNet-1K,
improving dense tasks such as segmentation and video tracking while remaining competitive on
classification. Remarkably, it achieves these results with modest resources, highlighting its efficiency.
Visualizations further show clear object boundaries and robust correspondences, underscoring its
interpretability beyond standard invariance-based methods.

Limitations and Future Work. While CRISP performs strongly on both dense and global tasks,
several limitations remain. Our region discovery relies on a fixed similarity threshold applied uni-
formly across images, which may not adapt to scene complexity. Future work could explore adaptive
or learnable thresholds, or gradually relax them during training for greater robustness. CRISP also
treats regions as sets of correlated patches without explicitly modeling spatial connectivity. Intro-
ducing constraints such as radius-based neighborhoods or topology-aware grouping may yield more
coherent regions. Moreover, our experiments were conducted with modest resources; scaling model
size, training duration, and hyperparameter tuning could unlock further gains. Finally, extending
CRISP to domains such as medical imaging, remote sensing, or video analysis, potentially with
task-aware augmentations and multimodal inputs, offers exciting directions.

Reproducibility Statement: We ensure reproducibility by detailing all pretraining experimental
setup in Sec. 4.1, evaluation protocols in the Appendix, and ablations in Sec. 4.4. Complete code
and configurations are included in the supplementary material and will be publicly released upon
acceptance along with the pretrained weights to enable direct replication and extension of CRISP.
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A APPENDIX

A.1 EXPERIMENTAL SETUP FOR EVALUATION

All models are trained and evaluated under consistent conditions. For semantic segmentation, we
follow the official evaluation code provided by CAPI without modification, using a single GPU.
All models are evaluated at an input resolution corresponding to 256 patch tokens (i.e., 224× 224
for patch size 14 and 256× 256 for patch size 16). For video instance segmentation, we adopt the
evaluation code from DINO. Features are extracted from the last four transformer blocks, averaged,
and then used for evaluation. The input resolution is set to 480× 480, and training is conducted on a
single GPU. For multi-label and multi-class classification, we employ a linear probing setup using 4
GPUs. Each model is trained with inputs of size 224× 224, a learning rate of 0.001, and a per-GPU
batch size of 256. We train Pascal VOC for 500 epochs, while MS-COCO, Visual Genome, and linear
evaluations on ImageNet-1K are trained for 200 epochs.

A.2 VISUALISATIONS

Sparse Correspondence. We evaluate CRISP on a sparse correspondence task where patches from
two images of the same semantic class are expected to match. Our approach follows the strategy
introduced by iBOT. To assess performance, we visualise the top 12 correspondences with the highest
self-attention scores, obtained from a ViT-L/16 model pretrained on ImageNet-1K with CRISP. The
image pairs are sampled from the ImageNet validation set.

Figure 7 and Figure 8 show representative examples. In Figure 7, CRISP achieves near-perfect
matching between two augmented views of the same image, accurately aligning almost all patch
pairs. In Figure 8, CRISP establishes meaningful correspondences across different images of the
same class, despite large variations in texture, color, pose, and background. These results highlight
the robustness and generalisation of CRISP’s learned representations and demonstrate their suitability
for fine-grained, patch-level retrieval tasks.

Figure 7: Top 12 patch correspondences between two augmented views from same image

Figure 8: Top 12 patch correspondences across two different images from the same class.
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Qualitative Comparison of Dense Feature Representations via PCA. Following the qualitative
feature analysis proposed in CAPI (Darcet et al., 2025), we apply PCA to the dense output features.
In Figure 9, the first three principal components are visualised as an RGB composite, comparing
CRISP with state-of-the-art vision models using the ViT-L backbone (except I-JEPA, which employs
ViT-H).

Across methods, CRISP produces some of the most discriminative and spatially coherent feature
maps. The visualizations clearly delineate object boundaries with minimal noise in uniform regions.
Compared to CAPI and DINOv2, CRISP yields cleaner features, while in contrast to masked image
modeling (MIM) methods, it focuses more effectively on semantically meaningful regions.

Figure 10 provides a breakdown of the features. The second column again shows the first three
principal components as an RGB composite, while the following six columns depict each of the
first six components individually. Each component captures distinct semantic regions, highlighting
CRISP’s ability to encode meaningful visual concepts. Notably, components separate object parts
from background clutter, demonstrating the model’s capacity to disentangle structured elements of
the scene. These results underscore the spatially localised and interpretable nature of CRISP’s learned
representations.

Orig.

MAE

IJEPA

CAPI

CAPI*

Dinov2*
(w reg.)

CRISP

Figure 9: Comparison of dense features. We compare several vision backbones by projecting their
dense outputs using PCA and mapping them to RGB.
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Figure 10: Visualization of features produced by CRISP with a ViT-L/16 model on images at 1120-
pixel resolution. The images are randomly sampled from the ImageNet-1K validation set.

Performance vs. Epochs. We analyse how performance evolves with pretraining in Figure 11,
reporting results on ADE20K, PASCAL VOC, and Cityscapes. We observe a slight performance dip
in the early stage, likely due to the introduction of new parameters, after which the model quickly
recovers and continues to improve steadily with more pretraining. This trend highlights the stability
of CRISP and its ability to benefit consistently from extended pretraining.
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Figure 11: Performance on ADE20K, PASCAL VOC, and Cityscapes as a function of pretraining
epochs
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Figure 12: Discovered regions at the beginning of pretraining. The reference image (top row) shows
the randomly selected seed patch (blue dot) and its associated discovered region (red). The second
and third rows display the corresponding regions projected onto augmented views..

Figure 13: Discovered regions at the end of pretraining. The reference image (top row) shows the
seed patch (blue dot) and the discovered region (red). The second and third rows depict the aligned
regions across augmented views. Compared to the early stage, regions here are larger, semantically
coherent, and align well with object parts, demonstrating the effect of CRISP’s region-consistency
objective.

Evolution of Discovered Regions During Pretraining. To better understand the dynamics of region
discovery in CRISP, we compare regions obtained at the beginning and at the end of pretraining. At
initialisation, when the model is warm-started from iBOT, the discovered regions are generally very
small and fragmented (refer to Figure 12). This behavior is expected since the patch-level supervision
in iBOT treats each patch as an independent unit, providing little incentive to aggregate them into
larger, semantically consistent regions.

As training progresses under CRISP, the region-consistency objective encourages patches with
correlated semantics to group together. By the end of pretraining (refer to Figure 13, the discovered
regions evolve into coherent and interpretable clusters of tokens that align with meaningful parts of the
scene. These clusters effectively serve as concept-level units, capturing higher-level structure beyond
individual patches. This progression illustrates how CRISP transforms low-level patch features into
semantically grounded region representations, highlighting the role of region-level consistency in
shaping interpretable and transferable features.

A.3 TIME AND MEMORY REQUIREMENTS OF CRISP

CRISP takes about 49 minutes per epoch to pre-train a ViT-S/16 model using 4 GPUs with an
effective batch size of 256, consuming 18.5 GB of memory on an NVIDIA RTX 3090. Under the
same training setup, this is roughly 7 minutes longer per epoch and 2.3 GB more GPU memory than
iBOT. Although CRISP is slower by approximately 0.2 epochs per hour, the additional computational
cost is a reasonable trade-off for the improved spatial consistency, interpretability, and robustness of
the learned representations.
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