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Abstract

Standard reinforcement learning (RL) agents never intelligently explore like a
human (i.e. taking into account complex domain priors and adapting quickly
to previous explorations). Across episodes, RL agents struggle to perform even
simple exploration strategies, for example, systematic search that avoids exploring
the same location multiple times. Meta-RL is a potential solution, as unlike
standard-RL, meta-RL can learn to explore. We identify a new challenge with
meta-RL that aims to maximize the cumulative reward of an episode sequence
(cumulative-reward meta-RL). When the optimal behavior is to sacrifice reward in
early episodes for better exploration (and thus enable higher later-episode rewards),
existing cumulative-reward meta-RL methods become stuck on the local optima of
failing to explore. We introduce a new method, First-Explore, which overcomes this
limitation by learning two policies: one to solely explore, and one to solely exploit.
When exploring and thus forgoing early-episode reward is required, First-Explore
significantly outperforms existing cumulative meta-RL methods. By identifying
and solving the previously unrecognized problem of forgoing reward in early
episodes, First-Explore represents a significant step towards developing meta-RL
algorithms capable of more human-like exploration on a broader range of domains.
In complex or open-ended environments, this approach could allow the agent to
develop sophisticated exploration heuristics that mimic intrinsic motivations (e.g.,
prioritizing seeking novel observations).

Shortened Version Note

This paper is a shortened version submitted to the Intrinsically Motivated Open-ended Learning
workshop. For more details, please refer to the full and updated version at https://arxiv.org/
abs/2307.02276.

1 Introduction

Meta-RL [1–5] trains an agent to operate over a sequence of episodes τ1, . . . τn. In every episode τi,
the agent is able to make use of the observations, rewards, and actions of the previous episodes in
the sequence τ1, . . . , τi−1. There are several different approaches to meta-RL. This paper focuses on
cumulative-reward meta-RL: cumulative-reward meta-RL aims to optimize the sequence of episodes
so as to maximize the sum of expected episode returns E[

∑n
i=1G(τi)], where the episode returnG(τi)
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is the cumulative reward of episode τi. To maximize this sum, the agent should optimally balance
exploration and exploitation across the sequence, e.g., prioritizing exploration in early episodes so as
to better exploit in later ones.

Cumulative reward meta-RL has an unrecognized failure mode, where state-of-the-art (SOTA)
methods achieve low cumulative-reward regardless of how long they are trained. This dynamic
occurs in domains with the following properties: A. Maximizing the expected total reward requires
exploratory actions that forgo immediate reward, and B. The benefit of these exploratory actions only
occurs when they are reliably followed by good exploitation (i.e., if exploitation is too inconsistent,
then exploration results in lower total reward).

An example is a bandit domain where the first arm always provides a reward that is better than the
average arm, but not the highest possible. To maximize cumulative reward over many pulls, the
agent must explore the other arms, and then repeatedly exploit the best one. Property A holds, as
this optimal policy forgoes immediate reward by not sampling the first arm and its above-average
reward. Property B holds, as exploration (sampling arms other than the first) is only valuable when it
is followed by sufficiently consistent exploitation (reliably re-sampling the best arm).

The failure occurs as follows: 1. At the start of training, the agent, being randomly initialized, lacks
the ability to reliably exploit learned information. 2. As a result, the domain properties A and B
cause exploratory actions to lead to lower total reward than the other actions do. 3. This lower
reward trains the agent to actively avoid exploration. 4. This avoidance then locks the agent into poor
performance, as it cannot learn effective exploitation without exploration. This process occurs in
the bandit example. Initially, the agent cannot exploit (e.g., when it finds the best arm it does not
reliably resample it). The associated negative expectation of exploration then trains the agent to avoid
exploration by only sampling the first arm, with its above-average, but sub-optimal, arm reward.

Current SOTA meta-RL algorithms such as RL2 [4, 5], VariBAD [2], and HyperX [3] attempt to train
a single policy to maximize the cumulative reward of the whole episode sequence. This optimization
causes step 3 of the above-described failure process, and thus these methods suffer from the issue of
failing to properly learn (e.g., converging rapidly to a policy of not exploring), which we demonstrate
on multiple domains (Section 3). The issue is especially insidious because distributions of simple
environments (each trivially solved by standard-RL) can stymie these methods. Surprisingly, domains
such as bandits can be too hard for SOTA meta-RL.

We introduce a new approach, First-Explore (visualized in Fig. 1), which overcomes this problem
associated with directly optimizing for cumulative reward. Rather than training a single policy to
maximize cumulative reward, First-Explore learns two policies: an exploit policy, and an explore
policy. The exploit policy maximizes episode return, without attempting to explore. In contrast, the
explore policy explores to best inform the exploit policy, without attempting to maximize its own
episode return. Only after training are the two policies combined to achieve high cumulative reward.

Because the explore policy is trained solely to inform the exploit policy, poor current exploitation
no longer causes immediate rewards (property A) to actively discourage exploration. This change
eliminates step 3 of the failure process, and enables First-Explore to perform well in domains where
SOTA meta-RL methods fail. By identifying and solving this previously unrecognized issue, First-
Explore represents a substantial contribution to meta-RL, paving the way for human-like exploration
on a broader range of domains.

2 First-Explore

First-Explore trains two transformer [6] policies, one policy to explore and one policy to exploit.
Individually neither policy can achieve high cumulative-reward, but after weight-update training the
policies are combined to produce an inference policy that achieves high cumulative-reward. Fig. 1
visualizes this process. By not directly training a single policy to maximize the total reward of the
whole episode sequence, First-Explore avoids the failure mode of earlier approaches.

The explore policy πexplore performs successive episodes, at each point (in each episode) having
access to a context of all previous actions, observations, and rewards in the exploration-episode
sequence. The exploit policy πexploit is trained to take the context c from the explore policy that
has explored for a number of episodes between 1 and n, and to then run one further episode of
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Figure 1: First-Explore aims to maximize the cumulative reward of a sequence of n episodes on
a target distribution, by first training two separate policies, and then combining them to maximize
cumulative reward. A: First, two separate policies are trained on the distribution of environments: one
to explore (produce informative episodes) and one to exploit (obtain high reward). The exploit policy
πexploit maps → the current context ci = τ1, . . . , τi to an exploit episode τ ′i ∼ πexploit | τ1, . . . τi. The
policy is trained to maximize reward. The explore policy πexplore maps → the current context ci
to an exploration episode τi+1 ∼ πexplore | τ1, . . . , τi. The exploit policy aims to maximize reward
each episode. The explore policy aims to explore so as to maximally increase the rewards of the
subsequent exploit policy episode. Both policies have access to a context of all previous explorations
(visualized with arrows). B: After the two policies are trained in the previous phase, the optimal
number of explorations is estimated by selecting the number of explorations k that lead to highest
mean cumulative-episode reward on a large batch of new (unseen) environments sampled from
the target distribution. For each potential value of k, the exploration policy performs k sequential
rollouts, then the exploitation policy performs the remaining n− k rollouts. C: Once k is selected,
the two policies are composed to produce the inference policy, which then always performs the first k
episodes with the explore policy and the remaining n− k episodes with the exploit policy.

exploitation. During this episode, the exploit policy can also see in context the actions, observations
and rewards that have occurred so far in the current episode.

Each policy is incentivized differently. The explore policy is incentivized to produce episodes that
each, when added to the current context, result in maximally increasing the reward of the subsequent
exploit policy episode. The exploit policy is instead incentivized to produce episodes that each have
the highest reward (based on the current context). Training the exploit policy requires context from
the explore policy, and training the explore policy requires the rewards of subsequent exploits. This is
efficiently achieved by interleaving the policies as depicted in Fig. 1-A (with each rollout from the
explore policy followed by a rollout from the exploit policy).

Once the two policies are trained, they are then composed to create the inference policy πinference.
The inference policy first explores with the explore policy for a set number k of episodes. It then
switches to exploiting with the exploit policy. k is determined by evaluating each choice of k on
batches of new (unseen) environments sampled from the target distribution, selecting the k that leads
to highest mean cumulative reward (see Appendix K for an example). k is not a hyperparameter as
unlike hyperparameters, the majority of the training compute-expenditure is on policy weight updates
that are performed before k is chosen, with the subsequent selection of k only requiring minimal
compute.

πinference =

{
πexplore, if episode # ≤ k

πexploit, otherwise

3 Experiments

First-Explore was evaluated (Fig. 2) on three different domains (see Appendix D for details). In each
domain, existing SOTA cumulative-reward meta-RL algorithms performed poorly (becoming stuck
on a local optimum of not exploring well) when effective exploration required forgoing reward. Even
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Figure 2: On three different domains, First-Explore significantly outperforms meta-RL controls.
For each domain, multiple training runs are plotted superimposed, so as to faithfully represent the
variance between runs, and Random Actions (gray) is also included to provide an additional baseline
for each domain.

trivial seeming environments (bandits) flummox SOTA meta-RL methods. First-Explore escapes
these pitfalls and so outperforms all controls, on these challenging deceptive settings.

Bandit Domain (Fig. 2-Top): in this bandit [7] domain there is an arm guaranteed to always give
reward 0.5, and this reward is greater than the expected reward of an unseen arm. This dynamic
stymies RL2 [4, 5] (fuchsia) performance, as four of five RL2 training runs (overlaid bold fuchsia)
learning to only sample the guaranteed reward (achieving 50 reward after 100 pulls), the remaining run
(faint fuchsia) does better but still poorly. The best returns are achieved by methods that consistently
explore to find the most rewarding arm, and then exploit that knowledge. First-Explore (green) and
the non-meta-RL bandit algorithms, Thompson Sampling [8] (orange) and UCB [4] (purple), both
exhibit this behavior, although impressively, First-Explore achieves marginally greater reward than
even the specialized bandit algorithms despite being applicable to more general domains. HyperX
and VariBAD are not included in this plot because their performance was overly poor even on
non-deceptive versions of this domain. Deceptive Treasure Room (Fig. 2-Middle): First-Explore
massively outperforms the meta-RL algorithms RL2 (fuchsia), VariBAD (pale lilac) and HyperX
(brown), achieving significantly more cumulative reward (> 10x) in a ten-episode setting. The
meta-RL controls are unable to learn in such a deceptive environment. Ray Maze (Fig. 2-Bottom):
on the significantly more complex Ray Maze domain, First-Explore similarly achieves significantly
more reward than the meta-RL controls (> 7x), with the controls failing to perform well.
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4 Discussion

What makes the above environments deceptive to standard cumulative-reward meta-RL? To illustrate,
we will consider a simplified version of the bandit domain. Each bandit has ten arms. In each
episode the agent performs a single action a ∈ [1, 10]. If the first arm is selected then the reward is
always 0.5, and otherwise the reward is an associated arm value va. The arm means are distributed
normally va∈[2−10] ∼ N(0, 1). They are specified when the environment is sampled, and do not
change through repeated episodes in the same environment. In the first episode of a newly sampled
bandit, expected reward is maximized by pulling the first arm (as other arms give expected reward 0).
However, maximizing future reward requires finding a different and more rewarding arm (va > 0.5)
to enable exploiting the found arm repeatedly for higher payoff.

The issue is that, on a newly sampled environment, maximizing the expected cumulative-reward of
the pulls requires consistent exploitation: exploring in early episodes by sampling arms 2 − 10 is
only useful if followed by reliably resampling the arm that gave the highest rewards. For example, if
the agent correctly exploits (chooses the arm with highest expected reward based on past pulls) only
half the time then the reduction in reward from early exploration (repeatedly not obtaining arm 1’s
guaranteed 0.5 reward) may not be worth it, as half the potential exploitation upside is being missed.
Thus, the optimal exploration is only worthwhile if the agent is sufficiently skilled at exploitation.

The need for consistent exploitation prevents existing methods from learning optimal cumulative-
reward behavior. At the start of meta-RL training, the agent is unskilled at exploitation, and thus
the optimal exploration is punished (recall that pulling arms 2-10 have a lower expected immediate
payoff than arm 1). This punishment trains the agent to minimize exploration. However, once the
agent learns to avoid exploration, it can become impossible for the agent to learn good exploitation
(as good exploitation often requires having explored). The lack of good exploitation then continues to
punish exploration. The resulting dynamic locks the agent into the local optima [7] of exploring and
exploiting poorly, regardless of how long the methods are trained (see Appendix H for an example).

The central issue is that cumulative reward is readily deceptive. A reward is deceptive if there are
local optima such that all small changes to the current policy decrease reward. Because RL and
meta-RL train via a sequence of small changes (with changes only made if they increase average
reward), these local optima trap the policy and prevent learning the optimal behavior. This paper
highlights there are many problems, like these bandits, that are only deceptive (and thus challenging
to solve) in the cumulative-reward meta-RL setting, with standard-RL algorithms able to easily solve
all environments in the distribution. Returning to the bandit example, in the standard-RL context,
each episode and environment is optimized individually, and thus the agent is always in a state where
optimal action (i.e., pulling the correct bandit arm) is only a single action away (making finding and
reinforcing the global optima trivial).

5 Conclusion

We have discovered and shown that seemingly trivial problems such as the Meta-RL-Deceiving
Bandits (Fig. 1 & detailed in Appendix D.1) can deceive cumulative-reward meta-RL. To overcome
such deception, we introduce a novel meta-RL framework, First-Explore, that learns two separate
interleaved policies (one to first explore, another to then exploit). By combining the policies at
inference time, First-Explore is able to explore effectively and achieve high cumulative reward on
problems that hamstring SOTA methods.

Meta-RL shows the promise of finally fixing the main problem in RL – that it is extremely sample
inefficient – even producing human-level sample efficiency [9]. However, the promise of this approach
is limited, as we have shown, on a large set of important problems. We can only take advantage of
this approach if we can harness the benefits of meta-RL even on such problems, and First-Explore
enables us to do so, thus offering an important and exciting opportunity for the field.
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A Background

We define environments formally as Partially Observable Markov Decision Processes (POMDPs,
[7]). POMDPs are specified by a tuple (S,A, p, p0, R,Ω, O, γ), where S is the state space, A the
action space, p : S × A → S a probabilistic transition function mapping from the current state
and action to the next state, p0 a distribution over starting states, R : S × A → R a stochastic
reward function, Ω the space of environment observations, O : S → Ω a stochastic function mapping
from states to observations, and γ the discount factor. The environment starts (at t = 0) in a start
state s0 according to p0, s0 ∼ p0. Each subsequent time-step, the agent receives the current state’s
observations oi = O(si), takes an action ai, and the transition function p updates the environment
state si+1 = p(si, ai). An episode τ of length h is then a sequence of time-steps starting from t = 0 to
t = h. The sum of an episode’s γ-discounted rewards is called its return G(τ) =

∑∞
t=0 γ

tR(st, at).
Standard-RL generally aims to learn a policy π : O → A that maximizes the expected episode
return E [G(τ)].

Meta-RL generalizes several aspects of Standard-RL. First, instead of there being a single environ-
ment, there is a distribution D of environments Ei = (Si, Ai, pi, p0,i, Ri,Ωi, Oi, γi) ∼ D. Second,
the agent performs a sequence of n episodes τ0, . . . , τn. Third, the agent is provided with some form
of access to memory (e.g., via a sequence model), allowing it to adapt based on the history of states,
actions and rewards, including those from prior episodes in the sequence. Finally, meta-RL performs
meta-rollout, defined as follows: a new environment Ei is sampled, then the agent performs in a
sequence of episodes within that environment. Each episode, first the start state is resampled from the
environment start-state distribution pi, and then the agent acts until the end of the episode (e.g., for a
set number of time-steps or until a terminal state is reached). The agent’s memory persists across
episodes in the sequence. This capacity enables training the agent (via weight updates) to learn (via
in-context adaption) from earlier episodes, enabling higher rewards in later episodes.

Meta-RL methods can be split into two approaches that each solve a different problem, with specific
algorithms designed and used for each approach [1]2. Cumulative-Episode-Reward Meta-RL
trains a single policy to maximize cumulative reward

∑n
i=1G(τi). Final-Episode-Reward Meta-RL

aims to optimize solely for final episode reward G(τn). In this paper we compare and analyze
First-Explore in a cumulative-episode-reward setting. However, for the sake of completeness, we
discuss final-episode-reward meta-RL and its connection to First-Explore in Appendix L.

B Related Work

RL2 [4, 5] is one of the first meta-RL approaches, and uses a standard-RL algorithm with an RNN to
learn to in-context adapt. It has the advantage of simplicity, and attempts to converge to optimally
balance exploration and exploitation across successive episodes.

Subsequently, various meta-RL works have been produced. VariBAD [2] has been shown to improve
on RL2 performance on certain domains. VariBAD achieves this improvement via splitting training
into producing a posterior belief of the current task (task inference), and a task-posterior conditioned
policy. HyperX [3], which augments training rewards to incentivize exploration, has also been shown
to improve performance on some environments with sparse rewards. However, as Section 3 shows,
these methods can become trapped on local optima of not exploring, when good exploration requires
forgoing episode reward. On such challenging environments, First-Explore significantly outperforms
RL2, VariBAD and HyperX.

AdA [9] demonstrates that training meta-RL on a sufficiently advanced curricula (a tailored series of
learning challenges) can produce agents capable of human-like adaption on complex unseen tasks.
However, AdA may struggle to forgo reward: the AdA paper describes how their agent always behaved
to maximize current episode return, and failed to learn to prioritize exploration (to enable higher
future episode returns) at the cost of current episode return (even when provided the opportunity to
theoretically do so). This lack of prioritized exploration suggests AdA’s performance potentially relied
on training and testing on environments that do not require such sacrificial exploration. Unfortunately,
investigating AdA’s dynamics is far outside of the scope of this paper, as it would require a huge
compute expenditure that dramatically outstrips the capabilities of our academic lab.

2[1] use different, and in our view less clear terminology, calling Cumulative-Reward Meta-RL “Few-Shot
Meta-RL”, and Final-Episode-Reward Meta-RL “Zero-Shot Meta-RL”.
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C Architecture and Training

For the experiments in this paper, First-Explore was implemented with a GPT-2-style causal trans-
former architecture [6], due to the excellent temporal sequence modelling abilities of transformers.
For simplicity, the parameters are shared between the explore and exploit policies, differing only in
the final linear-layer head.

Training Method (see Appendix C.1 for pseudo code): Recall that the exploit policy is intended
to produce episodes that have high reward, and the explore policy is intended to produce episodes
that maximally inform the exploit policy (in the sense of leading to higher rewards). To achieve
these aims, the exploit policy πexploit is trained to produce episodes that meet or exceed the highest
achieved episode return in all preceding episodes in the meta-rollout sequence. These episodes are
termed ‘maximal.’ Because this maximal value is not defined for the first exploit episode (being
the maximum of an empty list), a baseline reward b seeds the list, which is set as a domain specific
hyperparameter (but could easily be set automatically via heuristics). Simultaneously, the explore
policy πexplore is trained to produce episodes that are followed by the exploit policy achieving higher
episode returns than those seen so far. These episodes are termed ‘informative.’

First, both rollout policies (πexplore, πexploit) are initialised with random weights. They are then copied
to produce a second set of predictor policies (ϕexplore, ϕexploit) that train to model the rollout polices
conditioned on them being maximal and informative, see Equation (1). The current exploit and
explore policies (πexplore, πexploit) then produce batched meta-rollouts. In each batch, the exploit
episodes τexploit ∼ πexploit that are maximal and the explore episodes τexplore ∼ πexplore that are
informative are recorded. For these criteria-satisfying episodes, a cross entropy loss is calculated
between the predicted actions of the predictor policies (ϕexplore, ϕexploit) and the actions taken in the
associated maximal or informative episodes. The predictor policy weights are then updated, using
gradient descent on the loss. In this way the predictor policies learn to emulate the conditioned rollout
policies (conditioned on producing maximal exploit episodes and informative explore episodes).

ϕexplore ≈ πexplore | ‘informative episodes’
ϕexploit,i ≈ πexploit | ‘maximal episodes’ (1)

After every T meta-rollout batches, the rollout policies πexplore, πexploit are set equal to the current
predictor policies ϕexplore, ϕexploit. This hyperparamter T determines the balance between maintaining
healthy behavioral diversity and learning iteration speed.

During training, the actions are sampled according to the predicted likelihood of the policy selecting
that action. However, during inference, the actions are selected greedily (taking the action that is
predicted most likely to lead to the desired episode property).

While preliminary experiments found this meta-RL training method performed better than others
tried (and lead to improved training stability), we believe the First-Explore meta-RL framework will
work with other training approaches too (e.g., common RL algorthims like PPO [10] and Q-learning
[11]).

C.1 Training Pseudocode
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def rollout(env, π, ψ, cπ, cψ):
### """perform a single episode
# inputs: the environment (env),
# the agent policy π, the prediction policy ψ,
# and the current policies' contexts cπ, cψ
### returns the episode return, temp_loss, and updated contexts"""
temp_loss, r = 0, 0
# n.b. temp_loss is only used if the episode meets a condition
# see (*) in the conditional_action_loss function
s = env.reset() # state s
for i in range(env.episode_length):

# calculate action probabilities pπ, pψ for both policies
# and update context
pπ, cπ = π.action_probabilities(s, cπ)
pψ, cψ = ψ.action_probabilities(s, cψ)
a = sample_action(pπ)
temp_loss += cross_entropy(a, pπ * pψ) # hardamard product
# * pπ ensures action diversity by weighting against likely actions
s = env.step(s, a)
r += s.reward

return r, temp_loss, cπ, cψ

def conditional_action_loss(φ, θ, D, b):
### """calculates First-Explore loss for both exploring and exploiting
# on domain D using the agent and predictor parameters φ, θ
### and baseline reward b"""
env = sample_env(D)
π_explore, π_exploit = load_policies(θ)
ψ_explore, ψ_exploit = load_policies(φ)
cπ, cψ = set(), set() # the agent and predictor contexts
loss, best_r = 0, b
for i in range(D.episode_num):

r_explore, l_explore, cπ, cψ = rollout(env, π_explore, ψ_explore, cπ, cψ)
r_exploit, l_exploit, _, _ = rollout(env, π_exploit, ψ_exploit, cπ, cψ)
# ^exploit context not kept
# (*) accumulate loss if:
if r_exploit >= best_r: # exploit episode is 'informative'

loss += l_exploit
if r_exploit > best_r: # explore episode is 'maximal'

loss += l_explore
best_r = r_exploit

return loss

Algorithm 1: Example First-Explore Cross-Entropy Loss.
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def train(epoch_num, T, D, b):
"""example First-Explore training (ignoring batchsize)
runs the meta-rollouts, accumulating a loss
this loss is then auto-differentiated"""
T_counter = 0
φ = θ = init_params()
for i in range(epoch_num):

# θ is the agent behavior parameters
# φ is the prediction parameter (for double-DQN-style updates)
∆φ = ∂

∂φ(conditional_action_loss(φ, θ, D, b))
φ -= step_size * ∆φ
# Update θ every T epochs
T_counter += 1
if T_counter == T:

θ = φ
T_counter = 0

return θ

Algorithm 2: Example of Training First-Explore using the Cross-Entropy loss and Auto-
Differentiation.
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D Detailed Domain Results:

D.1 Meta-RL-Deceiving Bandits

Problem Description: taking inspiration from Section 1, consider a distribution of bandit envi-
ronments. Each bandit has ten arms, and in the environment the agent acts by selecting an arm
to pull a ∈ [1 − 10]. The first arm always yields the reward µ1, while the other arms yield their
environment specific arm mean va∈[2−10] ∼ N (0, 1) plus (unlike in Section 1) a normally distributed
noise term N (0, 12 ), added to make the environments more challenging. The arm mean is fixed
once the environment is sampled, but the noise term is resampled each arm pull. The objective is to
maximize the expected reward obtained on a newly sampled bandit over 100 pulls. Treatments: RL2,
First-Explore and two specialized bandit algorithms were all evaluated on the bandit distribution
for two values of the guaranteed arm reward µ1 = 0 and µ1 = 0.53 The bandit algorithms: UCB-1
estimates an upper confidence bound and selects the arm that maximizes it, see Appendix M for
details. Thompson Sampling (TS) [8] samples arm means from the posterior distribution, and chooses
the arm with the best sampled mean.

Deceptive Bandits in the main paper Fig. 2 refers to the µ1 = 0.5 setting.

Results: First-Explore outperforms all other treatments for both values of µ1 (green lines above all
others in Fig. 3:A1 & A2), with First-Explore having the highest mean and median cumulative-reward
(Appendix G). The difference is statistically significant, with p < 2× 10−5 for outperforming TS in
the µ1 = 0.5 setting, and p < 6× 10−8 for all the other comparisons, as calculated by a two-tailed
Mann-Whitney U Test (TMWU). Furthermore, unlike First-Explore, RL2 is affected by deception.
When the guaranteed arm reward of µ1 is increased (raising the average arm-reward and making the
environment more rewarding), RL2 achieves significantly less reward (fuchsia lines lower in Fig. 3:A1
& B1 than in A2 & B2). The distributional difference is statistically significant, p < 6 × 10−8

(TMWU). First-Explore overcomes the deception, and achieves high cumulative reward regardless of
µ1.

3VariBAD and HyperX were also evaluated, however despite hyperparameter tuning, good performance
on either distribution could not be achieved. This performance is possibly due to these algorithms not being
suited to the large continuous task space caused by each bandit being specified by the 9 arm means va∈[2−10] ∼
N (0, 1),v ∈ R9. In contrast, [2] evaluates VariBAD on small discrete task spaces, e.g. a goal being in one of
25 locations.
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Figure 3: Mean performance (averaged across sampled bandits) of algorithms for µ1 = 0 and
µ1 = 0.5. 5 independent runs of each algorithm are plotted semitransparent for each µ1. A1 & A2
- Cumulative Environment Rewards: i) First-Explore (green) achieves the highest median and
mean cumulative rewards for both values of µ1. Outperforming specialized bandit algorithms – UCB
(purple) and TS (brown) – is significant as First-Explore is not specialized for this setting, and can be
readily applied (via training) to other non-bandit settings. ii) RL2 (light pink, and fuchsia when run
plots overlap) is hugely affected by the value of µ1 (unlike the other treatments). On the µ1 = 0.5
distribution, 4 of 5 training runs achieve an abysmal cumulative reward of 50 (which corresponds to
sampling the first arm every pull). B1 & B2 - Mean Arm Pull Rewards: i) First-Explore differs
from the other strategies in that it switches between exploration and exploitation (depending on the
automatically chosen k). This behavior is seen in the sharp shift in average First-Explore pull rewards
(green) around pull number 10. The individual First-Explore training runs have selected different
values of k, as seen by the reward shifts occurring at different pull numbers. ii) After the exploration
phase, First-Explore achieves the highest average arm-pull rewards, nearing the oracle performance
of always pulling the correct arm (dotted gray).

D.2 Dark Treasure-Rooms

Problem Description: Dark Treasure-Rooms (inspired by the Darkroom in [12]) are 9× 9 grids full
of treasures and traps. The agent starts in the middle of the grid, navigates (up, left, down, or right)
to find treasure, and cannot see its surroundings. Only its current (x, y) coordinates are observed.
Each environment has 8 objects (treasures or traps), and when the agent encounters a treasure or trap
it consumes/activates it, and receives an associated reward (positive or negative). The treasure and
trap values vi are uniformly distributed in the range ρ to 2, vi ∼ U [ρ, 2], with ρ being the maximum
trap penalty. The locations of the objects are sampled uniformly, with overlapping objects having
their rewards/penalties summed. Each episode has 9 steps, and the objective is to maximize the
expected cumulative episode returns on a newly sampled Dark Treasure-Room over multiple episodes.
Treatments: RL2, VariBAD, HyperX and First-Explore were all trained to maximize cumulative
reward on the Dark Treasure-Room distribution for two values of the maximum trap penalty: ρ = −4
and ρ = 0. For ρ = −4, these policies were trained to maximize reward over a greater number
of episodes (10 rather than 6) so as to highlight the compounding value of good early exploration.
Random action selection is also included as a baseline for both values of ρ.

Deceptive Treasure Rooms in Fig. 2 refers to the ρ = −4 Dark Treasure-Room setting.

Results: First-Explore outperforms all other treatments for both values of ρ (green lines above all
other lines in Fig. 4:A1 & A2), with First-Explore having the highest mean and median cumulative-
reward (Appendix G). The difference is statistically significant, with p < 6× 10−8 for all pairwise
comparisons (TMWU). Furthermore, for ρ = 4, RL2 and VariBAD converged to the local optima of
avoiding exploration, staying still the vast majority of the time (fuchsia and purple lines close to zero
in Fig. 4:B1). The issue is that a highly negative trap penalty means that achieving high cumulative
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reward requires forgoing reward in early episodes (as to find treasure, the agent must visit unseen
locations, which have negative expected value when ρ < −2). This requirement of forgoing early
episode rewards is deceptive, and can cause convergence to the local optima of not exploring (thus
risking no traps). First-Explore overcomes this deception, and performs well regardless of ρ.
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Figure 4: Mean performance (averaged across sampled Dark Treasure-Rooms) for two values of
the trap penalty ρ. For each ρ, 5 runs of each treatment are plotted (with the meta-RL algorithms
retrained for each run). Each run was independently evaluated on a large batch of sampled Dark
Treasure-Rooms (independent from those used in training). A1 & A2 - Cumulative Environment
Rewards: i) First-Explore (green) achieves higher rewards for both values of ρ, with every First-
Explore run outperforming all other runs. ii) By first exploring for two episodes using πexplore, and
then exploiting using πexploit, First-Explore’s inference policy πinference achieves significant cumulative
reward by the end of the ρ = −4 setting (despite having to brave a period of negative reward initially).
This behavior enables First-Explore to achieve vastly more cumulative reward than the other methods
(A1), with the other meta-RL methods – RL2 (light pink & fuchsia when run plots overlap), VariBAD
(purple), and HyperX (brown) – achieving close to zero reward, due to the meta-RL deception created
by the penalty. Random Action-Selection obtains significant negative reward due to repeatedly
encountering traps, highlighting how hostile ρ = −4 Dark Treasure-Rooms are. A2 shows that when
the environment is not hostile to exploration, no deception exists and all methods can achieve positive
cumulative reward (though First-Explore still outperforms them) B1 & B2 - Cumulative Time Stood
Still: The distribution is only deceptive when ρ = −4. This dynamic is reflected in how often the
policies move (risking encountering a trap). When ρ = 0 all policies move regularly (lines high in
B2, top right), but when ρ = −4, they mostly stay still. Only First-Explore (green) and two HyperX
runs (brown) move consistently in early episodes. While these two HyperX runs exhibit potential
exploration, HyperX fails to combine it with effective exploitation (A1).
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D.3 Ray Maze

Figure 5: Left: Raw agent observations
from a sampled ray maze converted to an
image. The agent receives the wall dis-
tances and the wall types. Portraying this
numerical data as an image, goal locations
are green, and the two wall orientations are
distinguished (east-west teal, and north-
south navy). To aid the eye, the floor has
been coloured in dark purple, and the sky
yellow. Although the goal is visible, it
could be a treasure or trap. Right: the
image produced direct ray casting (large
number of processed lidar measurements)
rather than the 15 the agent receives.

15 Rays 201 Rays

Problem Description: Ray Maze challenges the al-
gorithms with a more complex domain. The agent
must navigate a randomly generated maze of impassi-
ble walls (the maze layout is different for each sampled
Ray Maze) to find one of three goal locations. Each
goal location is either a trap or a reward, with a 0.3 prob-
ability of the goal being a treasure, and a 0.7 probability
of it being a trap. Treasures give reward 1, while traps
give penalty −1. In this domain, the agent can only re-
ceive one goal reward per episode, as triggering the first
prevents others activating. To perceive the maze, the
agent receives 15 lidar observations (see Fig. 5). Each
lidar observation reports the distance to the nearest wall
along an angle (relative to the agent’s orientation). It
further tells the agent whether the lidar ray hit a goal
location, as well as the wall orientation (east-west or
north-south). However, the lidar measurements do not
show whether a goal is a trap or a treasure. The agent
has 3 actions, turn left, go forward, and turn right, with
rotation turning the agent’s field of view.

Ray Maze is a challenging domain for several reasons.
It has a high-dimensional observation space (15 sep-
arate lidar measurements), complex action dynamics
(with actions not commuting, e.g. turn left then move
forward is different from move forward then turn left)
and a randomly generated maze that interacts with both movement and observation. Furthermore,
similarly to earlier environments, the agent must learn from experience, and risk the traps in early
episodes, so as to exploit and consistently find treasure in later ones. Because of how frequent traps
are, the agent can only obtain positive cumulative reward by a) consistently searching for treasures
in early episodes (at the cost of expected reward, as the average value of a goal is negative) and
b) repeatedly exploiting in later episodes (navigate to identified treasures, while avoiding potential
traps).

Results: On this challenging domain, First-Explore outperforms all other treatments (green lines
above all other lines), with First-Explore having the highest mean and median cumulative-reward.
The difference is statistically significant, with p < 6× 10−8 for all pairwise comparisons (TMWU).
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Figure 6: Mean performance averaged across a large sample of Ray Mazes for five runs of each
treatment. RL2 (fuchsia) and VariBAD (purple) learn to never move forward (and thus never risk
encountering traps) in all five independent training runs, hence achieving a constant zero cumulative
reward. Most HyperX (brown) runs move little (achieving near zero reward), with one HyperX
run achieving modest cumulative reward). Random action selection (gray) achieves highly negative
cumulative reward, highlighting the hostility of the domain. In contrast, all First-Explore runs
(green) achieves significant cumulative reward (outperforming all controls). The performance is
because each separate training run has learnt to sacrifice the rewards of the first episode to enable
significant subsequent cumulative reward.
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E Limitations and Future Work

As presented, First-Explore does not explore to better enable future exploration. The explore
policy πexplore,θ only trains to increase the expected reward of the subsequent exploit policy episode.
Unfortunately, even iterated optimal myopic exploration does not necessarily produce an optimal
sequence of explorations (Appendix J). A potential solution is to reward exploration episodes with
weighted sums of the rewards of all subsequent exploitation (analogous to summing discounted future
reward in standard-RL).

Another limitation is that First-Explore could be unsafe in certain environments. The risk is that
First-Explore’s explore policy readily receives highly negative rewards, and avoiding negative rewards
can be important for safety. For example, if a chef robot is learning a new recipe in a physical home
then it is vital the robot does not make mistakes that endanger humans or damage the kitchen, unlike
mistakes such as creating ugly or flavorless food. While this is only a subset of environments,
with many environments being safe (e.g., simulated environments), addressing this issue is an
interesting direction of future work. One potential solution is to separately penalize safety risks while
training both the explore and exploit policy (disabling the ability of the explore policy to forgo safety
associated incentives). This proposed version of First-Explore could actually result in in-context
adaption that is safer than standard-RL training, as the meta-RL policies would have learnt a strong
prior of avoiding potentially endangering actions. However, it could also be the case that a strong
penalty might prohibit effective training.

A final problem is the challenge of long sequence modelling, with certain environments requiring a
very large context and high compute (e.g., can one have a large enough context, and enough compute
to allow First-Explore to generalize and act as a replacement for standard-RL?). AdA [9] suggests
such a project might be possible. Progress on efficient long-context sequence modelling [13, 14],
research on RL transformer applications [12, 15], and Moore’s Law all make this application more
feasible.

Additionally, given that First-Explore learns a dedicated explore policy, and a dedicated exploit
policy, and both have been shown to work well (e.g., Fig. 3), the method may be applicable to
final-episode-reward meta-RL settings. Another interesting direction would be running a sequence
of explorations until sufficient information is obtained (just as standard-RL can be trained until
convergence). However, despite these applications being highly exciting directions of future work,
a proper investigation of either would require its own paper, including many different specialized
controls and environments pertinent to the setting.

F Further Discussion

Given that First-Explore uses RL algorithms to train the meta-RL policy, how might it solve hard-
exploration problems that standard-RL cannot, e.g. design a rocket for the first time? We believe that
given a suitably advanced curriculum, and sufficient compute, First-Explore could learn powerful
exploration heuristics (i.e., develop intrinsic motivations, e.g., an analogue of curiosity) and that
these heuristics would enable such hard problems to be tackled (with great sample efficiency). E.g.,
initially the First-Explore agent can only randomly explore and must learn to exploit based on random
exploration. Once it has learnt rudimentary exploitation, the agent can learn rudimentary exploration.
Then it can learn better exploitation, then better exploration, and so on, each time relying on there
being ‘goldilocks zone’ tasks [16] that are not too hard and not too easy.

Further, while curricula can aid all of meta-RL, e.g., RL2 and AdA, First-Explore can have a
significant training advantage on certain problems (e.g., in the ten-episode Dark Treasure-Room,
First-Explore achieves positive cumulative reward while the standard cumulative-reward meta-RL
methods catastrophically fail). This advantage could potentially allow far greater compute efficiency,
and allow training on otherwise infeasible curricula.

G Tabulated Results:
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Table 1: Meta-RL Deceiving Bandit Results
µ1 = 0 mean µ1 = 0 median µ1 = 0.5 mean µ1 = 0.5 median

First-Explore 128.36 128.62 127.74 128.45

RL2 117.90 116.99 56.12 50

UCB-1 116.05 115.84 116.83 116.71

TS 122.73 121.91 123.28 122.53

Table 2: Dark Treasure-Room Results
ρ = −4 mean ρ = −4 median ρ = 0 mean ρ = 0 median

First-Explore 1.99 1.81 11.07 11.04

RL2 0.16 0.16 7.04 7.26

VariBAD 0.15 0.18 9.58 9.68

HyperX -0.16 -0.11 7.22 8.10

H Control Convergence
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Figure 7: Control Training on the Dark Treasure-Room Environment. Top: RL2, VariBAD, and
HyperX average cumulative reward plotted against training time. RL2 (yellow) and VariBAD (gray)
converge to zero reward almost immediately. This transition corresponds to the policies learning
to stay still (as the coverage plots demonstrate in Fig. 4). HyperX (teal) reward increases (toward
zero) throughout meta-training. However, this increase in reward comes not from HyperX learning
an increasingly sophisticated policy, but instead is the result of the HyperX algorithm’s meta-training
exploration bonus being linearly reduced from the start to the end of meta-training. Thus, once that
bonus is near zero, HyperX also learns to stay still. Bottom: HyperX with different training lengths
(specified by number of episode steps). When HyperX is run for ten times as long (orange) or ten
times less long (blue) than the default training time (light blue) the same behaviour is observed (of
slow convergence to (slightly below) zero reward). This behaviour demonstrates the improvement in
reward comes from the HyperX algorithm reducing the exploration incentive during the meta-training.
It also implies that changing the length of training runs (including running for much longer) would
not change the final performance results.

I Compute Usage

Each training run commanded a single GPU, specifically a Nvidia T4, and up to 8 cpu cores. Table 3
gives the approximate walltime of each run.

Table 3: Compute Usage Per Training Run
Run Runtime

Meta-RL Deceptive Bandits First-Explore 18.5 hours
Meta-RL Deceptive Bandits RL2 40 hours (extended, see below)
Dark Treasure-Room First-Explore 50 hours
Dark Treasure-Room HyperX & VariBAD & RL2 10 hours (converges early, see Fig. 7 of Appendix H)
Dark Treasure-Room HyperX & VariBAD & RL2 10 hours (converges early, see Fig. 7)
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Notably, in the Dark Treasure-Room for ρ = −4, VariBAD and RL2 rapidly converges to a policy of
staying still, and while HyperX seems to slowly improve rewards, the reward increase is an artifact
caused by the HyperX having an exploration incentive that is gradually attenuated to zero. This
attenuation creates a slow convergence from negative reward (due to moving into traps and not
exploiting) to a higher near zero reward (obtained by mostly staying still). Because the attenuation is
designed to occur throughout the entire run, scaling the run length merely scales how long HyperX
takes to converge to close to zero reward (see Fig. 7 of Appendix H).

Due to a desire to not waste compute on converged policies, once this behaviour was verified, the
control runs on this setting were limited to 10 hours. In contrast, First-Explore was run for longer,
as it continued to improve with additional training. This is a fair comparison, as due to the controls
having converged, increasing the control run training time would not yield better policies, as Fig. 7
demonstrates. To this end, as RL2 showed gradual improvement at 10 hours, it was also trained for
longer.

Total compute used for the experiments would then be around 650 hours (5 runs for each treatment).
However, there was also hyperparameter search, e.g., for the RL2 bandit parameters. As such, total
compute may be over 1100 GPU hours. Furthermore, there were many preliminary experiments
to iterate on the First-Explore architecture as well as to research and identify cumulative-meta-RL
deception.
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J Myopic Exploration

Figure 8: Well-planned sequential exploration can sometimes significantly outperform a sequence of
optimal myopic explorations. For example, consider exploring a plain over four days, where each day
one must explore by walking from the plain’s center. Sequence of Optimal Myopic Explorations
one ‘optimal’ way of exploring is to perform a spiral from the center (e.g., the red spiral on the right).
This strategy achieves the optimal amount of exploration on day 1 as one never retraces one’s steps.
However, if one does a spiral on day 1 then on day 2, one must retread old ground - wasting time
otherwise spent exploring new locations. Each day bee-lining to unseen areas and then spiralling
from there is also optimal for that day, however it increases the amount of retreading tomorrow.
Optimal Sequence of Explorations: another optimal way of exploring on day 1 is to explore a
quadrant, visualized in red on the left. Again, as one does not backtrack, this strategy is optimal on
day 1. However, unlike the spiral strategy, this strategy is also part of an optimal sequence of four
explorations, as one can explore a new quadrant each of the four days, without ever retreading the
same ground.
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Figure 9: Demonstration of First-Explore’s k-selection phase, for the bandit distribution, with µ1 = 0.
Five separate First-Explore runs are plotted. The training runs select different values of k (due
to the relative strengths of each runs explore and exploit policy), with the associated selected k
corresponding to the peak of each curve (marked by a cross).
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L Final-Episode-Reward Meta-RL

Methods such as MetaCURE [17], EPI [18] and CCM [19] learn an exploration policy that aims
to extract maximum environment information (independent of whether such information informs
good exploitation). These approaches discard grounding exploration in (maximizing) future reward.
Not grounding exploration in future exploitation reward means that the policy may learn (via weight
updates) to spend meta-rollouts acquiring irrelevant information (e.g., the exact penalty of bad
actions). This distraction potentially prevents optimal exploration from ever being learnt.

E-RL2 [20] modifies RL2 to ignore the first-k episode rewards. This modification enables pure
exploration (that is not dissuaded by negative rewards). However, E-RL2 introduces an across-
episode value assignment problem: identifying which exploration episodes enabled good subsequent
exploitation. This problem potentially limits training sample efficiency. Further, the exploratory
episodes number k is set as a hyperparameter and constant across all tasks (both at training and at
inference), preventing efficient combination with a curriculum that contains different difficulty tasks
(as hard tasks may need significantly more exploration episodes than easy ones). Finally, hard coding
k limits the flexibility and usefulness of E-RL2 because one cannot explore until a satisfactory policy
quality is reached, preventing meta-RL in-context adaptation from off-the-shelf replacing standard
RL.

DREAM [21] also separately optimizes exploration and exploitation policies (and grounds exploration
in exploitation), but has four complex, manually designed, interacting components and a reliance
on knowing unique problem IDs during meta-training. This complexity enables increased sample-
efficiency by avoiding the chicken and egg problem of simultaneously learning explore and exploit
policies. Unlike E-RL2, because a part of DREAM’s machinery must learn to produce the right
information per problem based on the (unique, random) problem ID only, it is unable to generalize
or handle never-seen-before challenges during meta-training, raising questions about its scalability
and generality. For example, DREAM may potentially be difficult to apply to problems where each
training environment is unique (e.g., for environments with continuous variables, or samples from
otherwise vast search spaces). It may also struggle when each environment is a hard-exploration
challenge, as it may be difficult for the model to explore enough to learn which information is
required to solve the problem. We believe curricula are necessary to solve such environments.
However, because DREAM cannot generalize during meta-training (as described above), it cannot
take advantage of a curriculum to build an exploration skill set to tackle harder and harder exploration
challenges.

Applying First-Explore to a final-episode-reward meta-RL setting is a promising direction of future
work, as First-Explore i) learns grounded exploration ii) can explore until sufficient information is
obtained ( rather than having a fixed number of explorations), and iii) does not rely on privileged
information (problem IDS), allowing generalization during meta-training.

M Evaluation Details

Evaluation (sampling the multiple evaluation environments and performing iterated rollouts) was
with a single GPU. For the Bandit Results, each of the First-Explore evaluations sampled 128× 100
bandit environments, indepedent from those trained on. For the 5 RL2 bandit evaluations batch size
was reduced to 2, 000 (due to taking longer to evaluate). Since there is no meta-RL training variance
for UCB1 and TS, five independent evaluations were done, each with an independently sampled
10, 000 bandits.

UCB: UCB was implemented according to the description in [4], with c = 1. Namely, each pull,

UCB picks the arm that maximizes ucbi(t) = µ̂i(t−1)+
√

2 log t
Ti(t−1) , where µ̂i(t−1) is the estimated

mean reward of the ith arm, Ti(t− 1) is the number of times the ith arm has been pulled

For the Dark Treasure-Room all policies were evaluated on a batch of 1, 000 environments sampled
independently from those trained on.
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N Training Details

N.1 Controls:

The official VariBAD [2] (VariBAD and RL2) and HyperX [3] (HyperX) codebase ran the meta-RL
controls. Dark Treasure-Room trained with the default hyperparameters of the coded bases gridworld
environments. These were found to perform well, with variations tried not yielding improvement. To
provide a strong control on the Meta-RL Deceptive Bandits problem, the controls were advantaged
by having individual hyperparameter gridsearches for each µ1 value (unlike First-Explore). See the
SI attached configuration file for the exact hyperparameters. Both of these codebases are licensed
under a MIT license.

N.2 First-Explore:

The architecture for both domains is a GPT-2 transformer architecture [6] specifically the Jax
framework [22] implementation provided by Hugging Face [23], with the code being modified so
that token embeddings could be passed rather than token IDs. The different hyperparameters for the
two domains are given in Table 4. The code being provided with a Modified MIT License (allowing
free use with attribution).

For both domains each token embedding is the sum of a linear embedding of an action, a linear
embedding of the observations that followed that action, a linear embedding of the reward that
followed that action, a positional encoding of the current timestep, and a positional encoding of the
episode number. See the provided code for details. For the dark treasure-room environments a reset
token was added between episodes that contained the initial observations of the environment, and a
unique action embedding corresponding to a non-action. The bandit domain had no such reset token.

Table 4: Model Hyperparameters
Hyperparameter Bandit Dark

Hidden Size 128 128
Number of Heads 4 4
Number of Layers 3 4

For training we use AdamW [24] with a piece-wise linear warm up schedule that interpolates
linearly from an initial rate of 0 to the full learning rate in the first 10% training steps, and then
interpolates linearly back to zero in the remaining 90% of training steps. Table 5 gives the optimization
hyperparameters.

Table 5: Optimization Hyperparameters
Hyperparameter Value

Batch Size 128
Optimizer Adam
Weight Decay 1e-4
Learning Rate 3e-4

Hyperparameters were chosen based on a relatively modest amount of preliminary experimentation.
Finally, for efficiency, all episode rollouts and training was done on GPU using the Jax framework
[22].

For evaluation, we then sample by taking the argmax over actions, and do not add the ϵ-noise.
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Table 6: Training Rollout Hyperparameters
Hyperparameter Bandit Darkroom

Exploit Sampling Temperature 1 1
Explore Sampling Temperature 1 1
Policy Update Frequency every training step every 10, 000 training steps
ϵ chance of random action selection 0.05 0
Baseline Reward 0 0
Training Updates 200,000 1,000,000

O Dark Treasure-Room Visualizations

Figure 10: A visualization of the dark treasure-room. The agent’s position is visualized by the blue
square, positive rewards are in green, and negative rewards are in red, with the magnitude of reward
being visualized by the colour intensity. When the agent enters a reward location it consumes the
reward, and for that timestep is visualized as having the additive mixture of the two colours.

Here are example iterated First-Explore rollouts of the two trained policies, πexplore, πexploit, visualized
for a single sampled darkroom.
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Figure 11: The first (First-Explore) explore episode. Top left visualizes the last step of a First-Explore
explore episode, with the locations that are not in the cumulative context being coloured white, as
the agent is blind to them (having no observations or memory of those locations). This figure plots
the end of the first exploration, and shows a reward has been found. Bottom left visualizes the
coverage of the cumulative context by plotting the total number of unique locations visited by the
exploration against the cumulative episode step count. In this explore, the agent never doubled back
on itself, which is good as it is optimal to have as many unique locations visited as possible. Top right
visualizes a step in a First-Explore exploit episode, with the locations that are in context visualized.
The agent can effectively ‘see’ those locations in its memory. Bottom right plots the exploit reward
against the exploit episode timestep. As this figure plots before the start of the exploit episode, the
agent has yet to move and encounter rewards, but will have done so in the subsequent visualizations.
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Figure 12: The first (First-Explore) exploit episode. This figure uses the same visualization design
as Fig. 11. Left top and bottom are the same as in Figure Fig. 11, and of the explore context, not
the current exploit episode. Right top, the agent (the light blue square) has found the reward in the
first two steps. Consuming the reward is visualized by the agent colour and the reward colour being
combined. Right bottom, the associated episode reward is shown.
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Figure 13: The fifth (First-Explore) explore episode. At the end of the 5th explore episode the agent
has discovered a new positive reward at the top of the room, and can now ‘see’ it in memory. The
new information presents an opportunity for the exploit policy to obtain both rewards, but it only
has exactly enough time-steps in an episode to navigate to do so, and thus cannot make a mistake
navigating.

Figure 14: The first reward of the fifth (First-Explore) exploit episode. Two steps into the episode the
agent (in consuming, light blue) has consumed the nearby reward.
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Figure 15: The end of the fifth (First-Explore) exploit episode. After consuming the nearby reward
the agent has reached the newly discovered reward at the top of the room and consumed it. This
success required making no mistakes and pathing first to the nearby reward then to the top one on the
first try. This inference is possible because the quickest the agent can reach both rewards is exactly the
length of the episode (9 steps). The pathing in this episode is an example of intelligent exploitation,
as after the information reveal (the reward at the top) of a single episode the agent appropriately
changes its policy based on the context and using the learnt environment prior (e.g., how to navigate),
produces a highly structured behaviour (pathing with no mistakes).
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