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Abstract

Representation learning forms an essential
building block in the development of natu-
ral language processing architectures. To
date, mainstream approaches focus on learn-
ing textual information at the sentence- or
document-level, unfortunately, overlooking the
inter-document connections. This omission
decreases the potency of downstream applica-
tions, particularly in multi-document settings.
To address this issue, embeddings equipped
with latent semantic and rich relatedness infor-
mation are needed. In this paper, we propose
SMRC2, which extends representation learn-
ing to the multi-document level. Our model
jointly learns latent semantic information from
content and rich relatedness information from
topological networks. Unlike previous studies,
our work takes multi-document as input and in-
tegrates both semantic and relatedness informa-
tion using a shared space via language model
and graph structure. Our extensive experiments
confirm the superiority and effectiveness of our
approach. To encourage further research in sci-
entific multi-literature representation learning,
we will release our code and a new dataset from
the biomedical domain1.

1 Introduction

With the increasing amount of scientific publica-
tions, researchers progressively turn to intricate nat-
ural language processing (NLP) tools for paper dis-
covery and recommendation. However, most exist-
ing tools are tailored towards specific downstream
tasks(Lu et al., 2020; Viswanathan et al., 2021) and
thus their capabilities seem limited when presented
with more complex tasks. This is attributed to the
focus on either the content or topology information
of scholarly documents, instead of both.

An aspiring scholarly search engine offers re-
searchers with the capacity to comprehend query
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topics and access multiple appropriate publications,
or even more innovatively, a synthesized summary
of the overall set of sources. Such capabilities have
the potential to revolutionize the modern research
process (Wang et al., 2019; Zhang and Liu, 2016).
Unfortunately, existing methods only focus on sin-
gle document representation learning (SDRL) and
the recommended paper are selected based on the
rank of similarity between the learned representa-
tion and the embedding of input query.While lan-
guage models, such as Bert family(Devlin et al.,
2018; Maheshwari et al., 2021; Lee et al., 2020)
and GPT family(Brown et al., 2020; Ouyang et al.,
2022), has seen tremendous progress in understand-
ing scientific documents (Wei et al., 2022) and
graph-based approaches like GraphFormer(Yang
et al., 2021), SPECTER(Cohan et al., 2020) have
studied the relatedness of a scientific paper in its ci-
tation networks, little effort has been devoted to ex-
ploring scientific literature representation learning
at the multi-document level (MDRL). In this paper,
we extend the community’s attention of representa-
tion learning to multi-document level and explore
how to learn both semantic and relatedness infor-
mation from content and topological networks.

Intuitively, knowledge entities and text content
of the given paper can provide latent semantic in-
formation. For example, we could simply infer a
paper belongs the biomedical domain by knowing
its entities such as “diabetes”, “GPX1” (a gene),
etc. However, there is a risk of incorrect inference
when a computer science paper takes biomedical in-
stances as examples. Same situation for using text
content only, one can classify a paper simply by
reading its abstract. Unfortunately, an NLP model
will be hallucinated due to the close lexical similar-
ity of papers from different categories. Thus, how
to jointly learn from both entities and paper content
can be critical to provide latent semantic informa-
tion. Typically, entity-relation triplets will be mod-
eled in the form of a graph which poses a challenge



of balancing the learning between graph neural net-
works (GNNs) and language models (LMs). We
novelly introduce Wasserstein distance to enable
GNN and LM in parallel and interactively learn
from each other while ensuring the learning of the
latent semantic information.

By leveraging the multi-document relations, e.g.,
citation graph, graph neural networks can simply
enable each scientific paper to learn from its neigh-
bors via the message passing mechanism. For ex-
ample, An et al. (2021) proposed a citation graph-
based memorization model (CGSUM) to incor-
porate the information of both the source paper
and its references to obtain summarization. Wang
et al. (2022b) utilized a disentangled representation
based model DisenCite to encode paper accord-
ing to both textual contexts and structure informa-
tion for citation recommendation and generation.
These works share resemblances to our method
since they also take multi-document as input. How-
ever, our work aims to explore output representa-
tion equipped with latent semantic and rich relat-
edness information for each document, as well as
a unified embedding for the entire input. This ap-
proach enables the learned representations not to be
limited to specific tasks. Inspired by the effective
masking strategy(Hou et al., 2022), we propose to
use a graph neural network equipped with a novel
masking strategy to enable each document to learn
the relatedness of its neighbors.

To this end, we propose SMRC2 which learns
the Scientific Multi-literature Representation from
both Content information under Wasserstein con-
straint and Citation information via graph structure.
The main contributions of our work are a threefold:

• Conceptual: We extend scientific representa-
tion learning to multi-doc level and demonstrate its
necessity in various downstream tasks as well as
the main difference compared with existing work.
• Methodological: The proposed SMRC2, in-

corporates a Wasserstein constraint to optimize the
multi-view content learning and a graph masking
strategy to complete the multi-document topology
learning which enable us to learn both latent se-
mantic and rich relatedness information from a
scientific ecosystem.
• Experimental & Resource: We conduct exten-

sive experiments using three benchmarks on three
tasks and outperform several state-of-the-art base-
lines. We also release a new Bio-Sci dataset that
can be used for multiple downstream tasks.

2 Related Work

Representation Learning Most existing represen-
tation learning works in NLP focus on capturing
the dependency in word-level, token-level and
sentence-level(Peters et al., 2018; Devlin et al.,
2018; Wu et al., 2020). With the success in previ-
ous work, some efforts have been made to extend
the learning paradigm to document-level(Yasunaga
et al., 2022a; Li et al., 2021). However, these meth-
ods suffer from the massive noises introduced by
irrelevant words/sentences. Several Context-based
and Graph-based models are proposed(Jeong et al.,
2020; Wang et al., 2022b) to reduce noises in the
training stage. Given a document and its salient
entities, for example, graph-based models can
easily build a graph where the entities are nodes
and their relations are edges to derive/infer the
knowledge within this graph. Unfortunately, these
methods lack the consideration of rich relatedness
in citation networks. Recent works (Cohan et al.,
2020; Yasunaga et al., 2022b; Yang et al., 2021)
push the boundary forward by including citation
information. These works are orthogonal to ours as
the input to our model is also multi-literature with
citation relations, but the difference is that they
leverage citation information for enhancing the
source document’s representation while our work
is forcing each document to learn both semantic
and relatedness information and at the same time,
output a unified representation for the entirety. Fur-
ther, research work(Zhao et al., 2022; Chien et al.,
2021; Duan et al., 2022; Sun et al., 2020; Kong
et al., 2022) proposed to tackle the Text-Attributed
Graph learning task (TAG) are also similar to our
approach which aims at better schema for jointly
graph and language model learning. However, our
work goes beyond these approaches by explicitly
integrating semantic and relatedness information
in scientific multi-literature representation.
Multi-Document as Input In real-world scientific
document applications, obtaining information from
multiple documents is a common requirement.
Researchers may want to know the whole story
of a topic without reading every paper related
to it, which falls under the subfield of NLP
known as multi-document summarization (MDS).
While other multi-document tasks, such as multi-
document reading comprehension, which aims
to understand the content of multiple documents,
are also of interest, our focus in this paper is on
MDS to evaluate the learned multi-document rep-



resentation. Extractive methods usually produce a
summary by selecting the ranked sentences from
the given document set(Wan et al., 2015; Mendes
et al., 2019; Zhong et al., 2020). For example,
Nallapati et al. (2017) treats MDS as a sequence
classification problem where each sentence is
visited in sequential order and then adopts an RNN-
based model to decide whether the sentence should
be included in the summarization or not. Liu et al.
(2019) conceptualizes MDS to induce a multi-root
dependent tree representation of the documents.
However, similar sentences may be close in the
vector space and share close scores which would
cause redundancy problem(Narayan et al., 2018).
Recently, graph-based approaches which aim to
extract salient textual units from documents based
on graph structure representations of sentences
are proposed to eliminate this(Chen et al., 2021;
Pasunuru et al., 2021). Different from these works,
our method leverages document representation
with latent semantic information as nodes and
their citation relations as edges to construct the
multi-document level graph. Then, the message
passing mechanism can be resorted to equipping
relatedness information for the final representation
which can be applied in multi-document tasks.

3 Methodology

Problem Formulation Before going further, we
first give preliminary definitions of concepts in this
paper. Let P = {P1, ......, PN} denotes a paper
group with N papers and GP = (V,A,X ) is the
multi-doc graph of P with each node vi ∈ V rep-
resents a paper, A ∈ {0, 1}N×N is the adjacency
matrix and X ∈ RN×d is the node feature matrix.
Moreover, given fGE as the graph encoder, fLM as
the language model, and fGD as the graph decoder,
our goal here is to obtain the document representa-
tion Hi as well as the multi-document representa-
tion HM as follow:

hi = [fGE(P), fLM (P)]

HM = fGD(GP(H))
(1)

where hi ∈ H , [·, ·] is the concatenation operation.
Overview As can be seen in Figure 1, SMRC2

consists of two modules: Semantic representation
learning module and Relatedness representation
learning module. In the semantic learning module,
SMRC2 first in parallel obtain the entity-relation

graph embedding via a GNN encoder and the ab-
stract text2 embedding via a language model. These
two levels of information are then concatenated to
form the initialized node features, along with their
citation relations, to create a multi-doc graph. To
learn rich relatedness information, we randomly
mask some of their citation relations and train a
GNN-based decoder to recover them based on the
node features using the message passing mecha-
nism. By leveraging both the latent semantic and
rich relatedness information, SMRC2 is capable of
not only single document but also multi-document
applications.

3.1 Semantic Information Learning
Intuitively, the content of a scientific paper contains
abundant semantic information. However, using
the entire text content can be challenging since
it may exceed length and computation resource
limits, and would also introduce significant noise.
Various attempts have been made to learn seman-
tic representation from different aspects such as
entities(Pivovarova and Yangarber, 2018) and ab-
stract(Kim and Gil, 2019) etc. Our hypothesis is
that entities can provide a knowledge backbone
and abstract can provide an overall summary which
should be modeled and learned interactively to-
gether. Hence, we utilize two encoders for both
entities and text, and novelly introduce the Wasser-
stein constraint to jointly train them.
Entity-Level Salient entity information can be
used to somehow infer the content of a given pa-
per. For instance, consider a scientific paper such
as Zeng et al. (2020). If you know the "Dataset
(e.g.,DocRed)", "Metrics (e.g., F1 score)", "Task
(e.g., Relation Extraction)", "Method (e.g.,
GAIN)", you can conclude that this paper is using
GAIN to tackle relation extraction task and evaluate
their approach on DocRed with F1 scores. Moti-
vated by this, we follow Neumann et al. (2019);
Jain et al. (2020)’s work and extract the entities
within the given paper. Then we retrieve the re-
lations among entities from a pre-defined relation
set and use the extracted entities as nodes and their
relations as edges to build an entity-level graph.
Then we apply a two-layer GCN to obtain the rep-
resentation hEi as shown in Eq.2.

h
E(l)
i = ReLU((A+ I)h

E(l−1)
i W l

E) (2)
2Other sections are also considered, however, experiments

show that they would introduce noises and require more com-
putational resources.



Figure 1: The overall frame for SMRC2 involves first obtaining semantic embeddings for each document in a paper
group via the semantic information learning module. Then these embeddings serve as the initialized node features
and their citation relations serve as the edges to form the multi-doc graph, which can later learns the relatedness
information. The concatenation operation is denoted as [·, ·].

where h
E(l)
i is the l-th layer’s hidden embedding

(hEi = h
E(l)
i , h

E(l)
i = [h

e1(l)
i , ..., h

em(l)
i ] where

h
em(l)
i ∈ Rn×d and m is the number of entities), I

is the identity matrix and W l
E is trainable param-

eters. Notably, for entity starting from s-th word
to t-th word, hem(0)

i = 1
t−s+1

∑t
j=s gj , where gj is

the word embedding.
Text-Level However, relying solely on entity-level
information may not be sufficient for representing
the entire paper, as prescribed in Section 1. There-
fore, we opt to incorporate the abstract text since
it contains the most general content of a scientific
paper. Given the abstract of a scientific publication
Pi, a language model will generate a d-dimensional
embedding vector denoted as hTi ∈ Rd:

hTi = fLM (P abs
i ) (3)

where fLM is a language model.
Entity-Text Interaction Given P , the corre-
sponding distribution of document labels µ(y) =
µ({y1, y2, ..., yN}) can be the supervised signals
for fGE and fLM to learn salient semantic informa-
tion. However, relying solely on abstract or entity
information for predicting labels can be unreliable.
To overcome this limitation, we introduce a novel
approach using Wasserstein Distance (WD) to re-
strict fGE and fLM from learning independently
of each other while ensuring they predict accurate
labels for the documents. For LM and GNN, the
predicted distribution can be described as follows:

µT (yT |P) = Cat(yTi |ϕ(MLP (hTi )))

µE(yE |P) = Cat(yEi |ϕ(MLP (hEi )))
(4)

where ϕ is a Softmax function, MLP is a multi-
layer perceptron.

Kullback-Liebler divergence(Joyce, 2011) and
other likehood-based divergence methods suffer
from statistical limitations such as invariant to any
invertible transformation(Ozair et al., 2019). They
are also not suitable for representation learning due
to their sensitivity to the trivial differences in the
data samples. However, inspired by the success
of WD in GAN training(Arjovsky et al., 2017),
we consider using WD to enable fGE and fLM to
learn from each other by minimizing the distance
between their predicted label distributions. Wasser-
stein Distance is a metric-aware divergence derived
from transport optimal theory. It measures the dis-
crepancy between two distributions in terms of min-
imum total costs associated with some transport
function(Hou et al., 2020). Drawing inspiration
from Villani et al. (2009), we give the definition of
Wasserstein Constraint in our settings:

Definition 1. Given two distributions µ1, µ2, a
cost function cst: N ×N → R and the set of joint
probability η(µ1, µ2), the Wasserstein Distance
can be defined as:

Wcst(µ1, µ2) = inf
γ∈η(µ1,µ2)

∫
N×N

cst(y1, y2)dγ (5)

where y1 and y2 are data points in distributions
µ1 and µ2, respectively.

Therefore, our current objective can be refor-
mulated as minimizing the optimal cost function
while simultaneously forcing the encoders to learn
semantic information for accurate document label



prediction. Assuming that the optimal cost function
can be replaced with a certain metric d or its k-th
power dk with k ≥ 1, then the Wasserstein Loss of
our settings can be defined as:

W k
d(µ

T , µE) = inf
γ∈η(µT ,µE)

E(dk(yTi , yEi ), γ) (6)

where the set of joint distribution is η(µT , µE) =
{γ ∈ RN×N

+ : γ1 = µT , γT 1 = µE}, 1 is the
all-one vector. By calculating the derivative of µT ,
µE with respect to W k

d in an attempt to approach
true document label distribution, we can describe
the overall loss function of semantic representation
learning module as:

µ(ŷ) = Cat(ŷi|ϕ(MLP ([hTi , h
E
i ])))

l1 = W k
d + (−

∑
i∈N

P (yi)logP (ŷi))
(7)

where the second term is the Cross-Entropy loss.
By incorporating the Wasserstein Constraint, the
two encoders can enhance their learning ability by
leveraging each other’s outputs, while also captur-
ing the necessary semantic information for docu-
ment classification. As far as our knowledge ex-
tends, this is the first attempt to introduce Wasser-
stein Distance for multi-view semantic representa-
tion learning within a scientific document.

3.2 Relatedness Information Learning
To achieve effective multi-document representation
learning, it is imperative to consider the rich re-
latedness information of the topological network.
While the knowledge of each paper’s semantic in-
formation can aid in determining its content, it may
be challenging to produce summaries based solely
on this information. Relying solely on semantic
representation may also lead to sub-optimal results,
especially in cases with insufficient textual features.
Therefore, it is crucial to capture the semantic infor-
mation while also incorporating the rich relatedness
information. A promising aspect of Graph Neural
Networks (GNNs) is their ability to be aware of
their neighbors’ facts through the message-passing
mechanism (details can be seen in Appendix 5),
which can be described as follows:

h
(l)
i = σ(AGG(MSG(h

(l−1)
NB(i)),A)) (8)

where h
(0)
i = [hEi , h

T
i ], σ is an activation function

(e.g., ReLU), MSG(·) and AGG(·) stand for the
message and aggregation functions respectively,

NB(i) is the neighbor nodes of i. We can create GP
by considering each document in P as a node and
their citation relations as edges. Then the message-
passing mechanism can be leveraged to enable each
document to learn about the relatedness within its
citation network. Intuitively, one can judge the
possibility of citation relation between two papers
by knowing their semantic content (e.g., if two pa-
pers are all about using graph to learn document
representation, there exists a chance that they have
citation relation). Inspired by the success of mask-
ing strategy on Variational Graph Auto Encoder
(VGAE) to predict the adjacency matrix(Hou et al.,
2022), we employ a similar approach. We intu-
itively mask some of the citation relations and train
a VGAE to recover the citation relations. However,
the difference is that we don’t need the encoder part
of VGAE and instead of an unsupervised process,
we adopt self-supervised settings. Specifically, we
first initialized a random masking matrix M with
masking ratio ω and obtain the masked adjacency
matrix Amasked by applying element-wise multipli-
cation between M and A (e.g., ω of M are zeros
and the reset are ones). Then given the semantic
representation of each document as the initial node
embedding, GNN can iteratively update them by
applying Eq. 8 on GP = (V,Amasked, [h

T
i , h

E
i ]).

Now, our goal here becomes reconstructing the Â
in terms of learned l-th node embedding. However,
directly applying the final-layer hidden represen-
tation h

(l)
i can cause performance degradation for

producing Â since there would be long-distance
information lost and irrelevant inclusion problems
as the number of layers increase, hence we aim to
capture the cross-correlations for every node-pair:

hij = [h0i ⊙ h0j , ..., h
l
i ⊙ hlj ] (9)

where ⊙ denotes pair-wise element multiplication,
i, j ∈ [0, N ]. We now can reconstruct Â as:

p(Â|hij) =
N∏
i=1

N∏
j=1

p(Âij |hij)

with p(Âij = 1|hij) = σ(hTijhij)

(10)

where Âij is the element of Â and σ is an activation
function. By having Â and A, we follow Kipf and
Welling (2016b)’s work to optimize fGD as:

l2 = −
∑
i∈N

p(A)log p(Â) (11)



Task Type Dataset
Ogbn-Arxiv Ogbl-Citation2 Multi-XScience Bio-Sci

Document Classification SDT ✓ - - ✓
Citation Prediction - ✓ - ✓

Multi-doc Summarization MDT - - ✓ ✓

Table 1: Different tasks on different datasets

Model Type Ogbn-Arxiv Bio-Sci
Bio-Bert LM 68.21 ± 0.17 75.67 ± 0.17
Sci-Bert 73.80 ± 0.12 70.49 ± 0.31
EnGCN Graph 77.57 ± 0.07 85.27 ± 0.06

GraphSAGE 71.49 ± 0.21 79.35 ± 0.07
GIANT-XRT

LM+Graph
76.37 ± 0.11 84.81 ± 0.13

GLEM(Graph) 75.50 ± 0.24 82.93 ± 0.11
GLEM(LM) 74.53 ± 0.12 78.91 ± 0.07

SMRC2 LM+Graph 77.66 ± 0.17 88.41 ± 0.21

Table 2: Mean accuracy (%) ± one standard deviation
comparison for Document Classification in terms of
different types of baselines.

Now, with the latent semantic and rich relatedness
information, the learned representation is hi = h

(l)
i

according to Eq. 8 and HM = [..., hi, ...].

3.3 Training
Overall, we consider the semantic representation
learning module as a supervised process and the re-
latedness representation learning module as a self-
supervised process, the whole pipeline of SMRC2

can be trained through l as follows:

l = l1 + l2 (12)

We perform full-batch gradient descent on l which
enables SMRC2 to obtain both semantic and re-
latedness information within supervised plus self-
supervised learning settings for scientific multi-
literature representation learning.

4 Experiments

In this section, we empirically evaluate the perfor-
mance of our learned document representation hi
and the unified multi-doc representation HM .

4.1 Tasks & Datasets
Tasks The key distinguishing aspect of our work
from previous research is that our learned represen-
tation is applicable not only to single-document
tasks (SDT) but also to multi-document tasks
(MDT). Thus, we have evaluated our learned repre-
sentation on both SDT and MDT for four datasets,
as shown in the Table 1:

Document Classification (Doc Cla.) which
aims to predict the class for each paper using se-
mantic or structural information. Here, we resort

to predicting the labels by ŷ = ϕ(MLP (hi)). We
have selected several SOTA baselines of different
types to assess the efficacy of our model: LM - Bio-
Bert(Lee et al., 2020), Sci-Bert(Maheshwari et al.,
2021); Graph - EnGCN(Duan et al., 2022), Graph-
Sage(Kong et al., 2022); LM+Graph - GIANT-
XRT(Chien et al., 2021), GLEM(Zhao et al., 2022).

Citation Prediction (Cit Pre.) which refers to
predicting the citation relations by knowing the
semantic content of each paper. Our model pre-
dicts citation relations by reconstructing the adja-
cency matrix A via Eq. 10. For evaluating the
performance of our proposed model, we compare
it against several SOTA baselines: GCN(Kipf and
Welling, 2016a), GraphSage(Kong et al., 2022),
GraphSaint(Zeng et al., 2019).

Model Ogbn-Citation2 Bio-Sci
Full-batch GCN 83.14± 0.21 71.41± 0.17

GraphSage 82.60± 0.36 69.17± 0.31
GraphSaint 79.85± 0.39 70.31± 0.26

SMRC2 83.31± 0.27 73.97± 0.19

Table 3: MRR score in percent comparison for Citation
Prediction in terms of different baselines.

Multi-Document Summarization (MDS) aims
to generate a summary for given multiple docu-
ments. Here, we gauge the similarity between HM

and the sentences from a sentence set derived from
original papers. The top k sentences will be picked
and copied as the generated summary. SMRC2 out-
performs several baselines: HiMAP(Fabbri et al.,
2019), Pointer-Generator(See et al., 2017), Hier-
Summ(Liu and Lapata, 2019), KGSum(Wang et al.,
2022a), REFLECT(Song et al., 2022).
Datasets We choose three benchmark datasets ac-
cording to the tasks and would like to introduce a
new benchmark dataset for the community - Bio-
Sci which consists of 32,330 publications, 222,652
citation relations derived from PubMed Central3.
Specifically, we follow the work of Achakulvisut
et al. (2020) to extract the abstract, introduction and
citation sentence for each paper (Notably, we only
use abstract for LM in this work). Further, every

3https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/oa_comm/



Model Type Multi-XScience Bio-Sci
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

BioBertABS
Concat

24.77 4.01 21.67 31.66 5.91 28.43
SciBertABS 25.11 4.17 22.91 30.02 5.04 27.60
REFLECT 29.41 6.11 24.91 34.17 6.67 29.57

HIMAP

Multi

26.61 6.19 25.31 34.11 6.76 29.77
HIERSUMM 25.43 6.01 24.91 35.02 7.04 29.66

KGSum 30.16 6.24 25.37 34.98 6.91 30.07
SMRC2 31.47 6.73 26.03 36.23 7.31 30.63

Table 4: Rouge-1, Rouge-2, Rouge-L score comparison with different baselines.

paper is associated with an id called pmid which
enables us to find the citation relations by matching
the pmid. For each paper, we use its MeSH term
as its category label. Every paper group in Bio-Sci
consists of 10 papers and their citation relations4.

4.2 Implementation Details

For Bio-Sci, we follow the work of Wang et al.
(2021) and use SciSpacy(Neumann et al., 2019) to
obtain entity-relation graph can is detailed in Ap-
pendix 5, the base LM model is Bio-Bert(Lee et al.,
2020). For other datasets, we follow the work of
Ye et al. (2022) in the data processing stage and
use Sci-Bert(Maheshwari et al., 2021) as the base
language model. We leverage Adam(Kingma and
Ba, 2014) as the optimizer. Hyperparameters set-
ting can be seen in Appendix 5. For evaluation,
we follow the commonly used metrics on these
benchmarks. All experiments are conducted with
PyTorch(Ketkar and Moolayil, 2021) and Trans-
formers(Wolf et al., 2020) on 4 Tesla P100 GPUs.

4.3 Comparative Study5

As shown in Table 2, SMRC2 has demonstrated
a relatively 0.12% and 1.33% improvement over
the best baseline on Ogbn-Arxiv and Bio-Sci, re-
spectively. Generally, we can conclude that re-
lying solely on either LM or Graph alone is not
comparable in terms of results. This can be ex-
plained by the fact that plain text can introduce
noise, while graph structure can mitigate this issue.
Furthermore, the results highlight the effectiveness
of jointly leveraging Graph and LM, which validate
our efforts in modeling the interactions of different
modules. However, EnGCN produced competitive
results among all baselines which we attributed to
its ensemble training schema from multi-view of
input which boosts the convergence of the whole

4Detailed comparison can be seen in Appendix 5
5All baseline, we use the best parameter settings reported

in their paper and we keep the base language model the same
for fair comparison

model. Additionally, the citation prediction results
demonstrate the importance of node features in in-
ferring the connections among publications since
our model outperforms other baselines by aggregat-
ing the semantic embedding first as the initial node
features while other baselines use word embedding
solely. Furthermore, the learned multi-literature
embedding of our model holds great promise for
multi-document tasks such as multi-document sum-
marization due to its ability of aggregating both
latent semantic and rich relatedness information
into the final representation.

Table 4 confirms our assumption, as our model
outperforms current SOTA baselines. Surprisingly,
HiMAP, which adapts a pointer-generator model
for weight computation over multi-document, and
HierSumm, which leverages a ranking-based selec-
tion mechanism for sentence selection, perform bet-
ter than pre-trained large language models. We be-
lieve this is because these two models focus on find-
ing the most important parts over multi-document,
whereas pretrained models inevitably suffer from
noise by simply concatenating all documents to-
gether as a single document before performing
summary generation. It’s also very interesting that
on Bio-Sci, the goal is to recover abstract, sen-
tence selection based models such as HierSumm
and SMRC2 performs better than other models. We
also observe that KGSum outperforms REFLECT
which we attribute to the fact that REFLECT only
focuses on sentence selection which ignores the
fine-grained semantic information from entity level
and also the rewriting process is finished based on
the inner natural language understanding ability
of chosen pre-trained model without awareness of
topological information. However, it is evident that
our method surpasses KGSum which we attribute
to the fact that our method leverages a Wasser-
stein Constraint for modeling the interactions be-
tween entity-relation graph and semantic text in-
formation while KGSum learns only from salient



Type w/o w/ Doc Classification Citation Prediction Summarization

SMRC2(Part)

LM - 78.91± 0.14 69.33± 0.11 19.11
Graph - 79.61± 0.20 67.47± 0.10 23.71
WD - 82.91± 0.34 69.71± 0.02 24.31

- KL 81.31± 0.17 71.27± 0.14 20.51
- JS 85.77± 0.08 72.41± 0.22 24.41

SMRC2(Full) - - 88.41± 0.21 73.97± 0.19 26.03

Table 5: Ablation study on different components. w/o denotes without, w/ denotes with, all the metrics stay the
same as in Comparative Study (For the Summarization task, the metric used is ROUGE-L).

entity-sentence graph. Our model grasps not only
semantic information from LM but also related-
ness information from graph structure which help
to perform the best against all baselines.

4.4 Ablation Study

To further evaluate the completeness of SMRC2,
we conduct ablation study and the results are pre-
sented in Table 5. During experiments without LM,
we use random embedding initialization to replace
the initial embedding from LM which results in
the huge drop of performance in Document Clas-
sification task compared to experiments without
graph, showing the importance of semantic infor-
mation. The citation prediction results reveal that
solely using semantic information is not enough
for inferring the connections while graph structure
is necessary for including relatedness information.
We can also witness the superiority of introducing
Wasserstein Constraint as the performance drops
when we apply KL or JS divergence as a replace-
ment for semantic representation learning. Inter-
estingly, we found that KL divergence is not stable
during the training stage, with performance oscilla-
tion as the training iteration progresses, which we
attribute to its asymmetry. Introducing Wasserstein
Constraint not only solved the imbalance training
problem but also enabled our model to learn seman-
tic information from both text and entity aspects
while forcing it to make correct label predictions,
further confirming the necessity and superiority of
the entire structure of our model.

4.5 Masking Study

Settings Doc Cla. Cit Pre. MDS
10% 86.19± 0.11 74.13± 0.31 24.91
20% 88.41± 0.21 73.97± 0.19 26.03
30% 84.17± 0.07 70.31± 0.26 22.51

Table 6: Masking study on evaluating the effectiveness
of Masking Strategy, all the metrics stay the same as in
Ablation Study.

We assess the effectiveness of our masking strat-
egy applied in the relatedness learning module by
setting different values of ω. As can be seen in
Table 6, we can conclude that masking ratio can
influence the effectiveness of overall performance
since the masking strategy is associated with the
relatedness information learning. When masking
more edges, the performance of citation prediction
will inevitably decrease since the complexity of
recovering can be higher. However, further exper-
imentation revealed that 5% masking for citation
prediction produced a result of 70.21± 0.11, sug-
gesting a decrease due to the risk of overfitting. We
can also notice that the performance on Document
Classification and Multi-Doc Summarization tasks
decreased as masking more edges since there can
be semantic information lost and noise introduction
due to the update of hidden representations which
further validates the necessity of Eq. 9. Never-
theless, the recover process can be insufficient for
the model to learn relatedness information when
masking 10% of edges. The results suggest that
masking 20% can be the best choice for SMRC2.

4.6 Visualization

To further demonstrate the effectiveness of SMRC2,
we randomly select 100 papers for each category
from Bio-Sci and utilize t-SNE(Van Der Maaten,
2014) to visualize these learned embeddings by
SMRC2 and compared them with the ones gener-
ated by BioBert. We set the perplexity and the
number of iterations for t-SNE as 30 and 300, re-
spectively. As shown in Figure 2, the clusters of pa-
pers from different categories generated by SMRC2

are more compact than those by BioBert, indicat-
ing that our model is better at modeling semantic
information. Our model’s ability to learn rich re-
latedness information is also reflected by the inter-
category distance. Intuitively, diseases that share
high correlations should be close in the embedding
space. For instance, the relationship between dia-
betes and kidney disease is accurately reflected, as



(a) BioBert (b) SMRC2

Figure 2: Representation visualization of selected papers using t-SNE.

the representations of "Diabetes mellitus(green)"
and "Kidney disease(orange)" are close in the em-
bedding space, which is consistent with the fact
that diabetes is the leading cause of chronic kidney
disease, and people with kidney disease are at a
higher risk of developing diabetes. These findings
further confirm the ability of SMRC2 to capture
latent semantic and rich relatedness information.

5 Conclusion

As a conclusion, we have advanced the field of rep-
resentation learning to the multi-doc level for sci-
entific literature, with the introduction of SMRC2.
This novel approach effectively combines two el-
ements - semantic content and topological relat-
edness, to create a superior learning space. To
address the imbalance learning problem that occurs
during the semantic learning stage, we introduced
Wasserstein distance. To our best knowledge, this
is the first attempt to introduce WD for multi-view
content learning. The extensive experiments and
ablation study that we conducted validate the effec-
tiveness of the proposed model. Additionally, we
released a new dataset to encourage the community
to further explore the multi-document representa-
tion learning. These contributions advance research
in scientific literature mining and provide a useful
resource for the community to further investigate
this new but important topic.

Limitations

Despite its empirical success, the use of SMRC2

has two notable limitations. Firstly, its application
is restricted as it requires interconnections between
documents (e.g. a citation graph) to form the multi-
document graph. Secondly, the method incurs high
computational costs due to its inclusion of a Lan-

guage Model, two Graph Neural Network-based
modules, and multiple operations to be trained in
tandem. Furthermore, this multi-MLP embedding
concatenation process makes it challenging to parse
the encoded embeddings, thus potentially impact-
ing performance. These limitations suggest that
further investigations are needed to address the scal-
ability and generalizability of the proposed model
to improve its applicability in a broader range of
scientific data.
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Training Settings

The parameter settings of trainable module are de-
tailed in Table 7 and Table 8.

GCN Training
Parameter Value Parameter Value

Number of layers 1, 2, 3 learning rate 10−3, 10−5

emb size 100 dropout 0.3, 0.6
hidden size 512 batch_size 20, 50

weight decay 10−3

Table 7: The experimental settings of graph and training
with the best parameter settings are highlighted.

Pre-trained Model Transformer
Parameter Value Parameter Value

emb size 768 Num of Attention Head 8, 16, 32
max length 256, 512 Num of Layers 16, 32, 64, 128

dimension 512, 768

Table 8: The experimental settings of language model
with the best parameter settings are highlighted.

Dataset Statistics

Category Bio-Sci contains 11 different paper cate-
gories in total: Cardiovascular diseases, Kidney dis-
ease, Respiratory diseases, Diabetes mellitus, Di-
gestive diseases, Hiv, Hepatitis, Mental disorders,
Musculoskeletal disorders, Neoplasms, Neurologi-
cal disorders, of which "Cardiovascular diseases"
and "Mental disorders" take the most percent 26%,
18% respectively. Others share evenly for the rest.

Dataset Nodes Edges Avg. Node Degree
Ogbn-Arxiv 169,343 1,166,243 13.7

Ogbl-Citation2 2,927,963 30,561,187 -
Bio-Sci 32,330 222,652 13.7

Table 9: Statistics of datasts

SciSpacy Details

For SciSpacy usage, we use them to ob-
tain the entities with “en_core_sci_sm” and
“en_ner_bionlp13cg_md” corpus because these two
settings are trained in large-scale biomedical do-
main corpus. The f1 score is 67.87% on the entity
extraction task for “en_core_sci_sm”, and 76.75%
for “en_ner_bionlp13cg_md”. We mainly lever-
age “en_ner_bionlp13cg_md” in our experiments.
What we do for linking entities is we first extract
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the entities and retrieve the BKG to see if there are
matches for them.

Message Passing Mechanism Details

What we do for using MPM is that we use the
semantic information, hEi and hTi , learned from
Section 3.1 to initialize hi. As we obtain the initial-
ized document embedding, the MSG function is for
finding and collecting the embeddings of nearby
nodes for node i and the AGG function will be
used to perform aggregation (e.g., concatenation,
pooling etc.) of embeddings in terms of node i and
its neighbors. Eq. 8 will update the representation
of node i iteratively and thus both the semantic in-
formation of node i itself and its neighbors can be
learned and will be used in the following training
procedure.


