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Abstract

In content-based video retrieval (CBVR), dealing with large-
scale collections, efficiency is as important as accuracy; thus,
several video-level feature-based studies have actively been
conducted. Nevertheless, owing to the severe difficulty of em-
bedding a lengthy and untrimmed video into a single fea-
ture, these studies have been insufficient for accurate retrieval
compared to frame-level feature-based studies. In this paper,
we show that appropriate suppression of irrelevant frames
can provide insight into the current obstacles of the video-
level approaches. Furthermore, we propose a Video-to-Video
Suppression network (VVS) as a solution. VVS is an end-
to-end framework that consists of an easy distractor elimi-
nation stage to identify which frames to remove and a sup-
pression weight generation stage to determine the extent to
suppress the remaining frames. This structure is intended to
effectively describe an untrimmed video with varying con-
tent and meaningless information. Its efficacy is proved via
extensive experiments, and we show that our approach is not
only state-of-the-art in video-level approaches but also has
a fast inference time despite possessing retrieval capabilities
close to those of frame-level approaches. Code is available at
https://github.com/sejong-rcv/VVS

Introduction
Information retrieval is defined as finding the most relevant
information in a large collection. It has evolved from find-
ing text within a document (Griffiths, Luckhurst, and Willett
1986; Strzalkowski 1995; Bellot and El-Bèze 1999; Liu and
Croft 2004) to finding images within an image set (Arand-
jelovic et al. 2016; Tolias, Sicre, and Jégou 2016; Jun et al.
2019; Ko et al. 2019; Ko and Gu 2020; Gu and Ko 2020). In
recent years, with the fast growing trend of the video stream-
ing market, several studies (Kordopatis-Zilos et al. 2017b,
2019b; Shao et al. 2021; Jo et al. 2022; Ng, Lim, and Lee
2022) have actively been conducted in content-based video
retrieval (CBVR) to find desired videos from a set of videos.

The core of CBVR technology is to measure similarities
between videos of different lengths, including untrimmed
videos. This is divided into two streams according to the ba-
sic unit for measuring the similarity between two videos:
a frame-level feature-based approach and a video-level
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Figure 1: Q: Should the red boxes be suppressed? The red
boxes in both videos should be excluded because they are
unrelated to the topic in the video, although they are in-
cluded for a specific purpose or reason. In this work, we
demonstrate that the suppression of these red boxes en-
hances the distinctiveness of features when describing the
entire video at once.

feature-based approach. The former aggregates similarities
between frame-level features in two videos to calculate a
video-to-video similarity. Conversely, the latter describes
each video as a single feature and computes a video-to-video
similarity based on it. These two streams are in a trade-
off relationship because the key foundation for determining
similarity differs. The frame-level approach compares each
frame directly; it is less dependent on factors such as video
duration and whether or not it is trimmed. As a result, rel-
atively accurate searches are possible, but processing speed
and memory are expensive due to the necessity of numerous
similarity computations and a considerable amount of fea-
ture storage space. In comparison, the video-level approach
requires only one similarity calculation between a single pair
of features, which is more efficient in terms of processing
speed and memory. However, it is difficult to compress many
frames of a video into a single feature, making approaches
of this type generally inaccurate and sensitive to factors such
as duration and trimness.

Ideally, if a video-level approach could be as distinct as a
frame-level approach, it may be the best option in real-world
scenarios. However, there are some problems that must be
considered. First is that distractors in a video interfere with
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Figure 2: Speed-Accuracy Comparison on FIVR-200K. This
is a comparison between the proposed approach and exist-
ing state-of-the-art approaches in terms of speed and accu-
racy on the FIVR-200K. Speed is represented by the average
number of queries processed in 10 minutes, and accuracy is
represented by the mAP in ISVR, the most difficult task.

the description of video-level features. Distractors in this
context refer to frames with visual content that is unrelated
to the main topic. Indeed, as shown in the two video exam-
ples in Figure 1, it is obvious that the red box frames cor-
responding to the distractors are not helpful for recognizing
the topic of each video. We also present an experiment that
demonstrates quantitative performance improvements when
the distractors are manually eliminated from the previous
video-level feature-based schemes in the supplementary ma-
terial1. On the basis of these observations, this study proves
that the description of video-level features with optimal sup-
pression of distractors can be an ideal scenario for accurate
and fast retrieval.

The objective of this work is to understand the signif-
icance of frames to determine how much they should be
suppressed to produce a distinct video-level feature. To
this end, we propose a Video-to-Video Suppression net-
work (VVS). The VVS is an end-to-end framework con-
sisting of two stages: an easy distractor elimination stage
for removing frames that can be clearly recognized as dis-
tractors, and a suppression weight generation stage for de-
termining how much to suppress the remaining frames via
temporal saliency information and relevance of the topic.
Our solution is the first explicitly designed framework that
employs various signals for relevance, as opposed to earlier
approaches (Kordopatis-Zilos et al. 2017b; Shao et al. 2021;
Ng, Lim, and Lee 2022) where the model was implicitly
intended to generate weights. As shown in Figure 2, VVS
achieves state-of-the-art performance among video-level ap-
proaches, with search accuracy comparable to frame-level
state-of-the-art performance while retaining competitive in-
ference speed. In addition, extensive experiments included
in the later section demonstrate the effectiveness of the pro-
posed framework and the validity of the designed structure.

1Supplementary material can be found in the arxiv version:
https://arxiv.org/abs/2303.08906

In summary, our main contribution is as follows: 1) we
demonstrate that video-level features can be both accurate
and fast with proper suppression of irrelevant frames, 2) we
propose VVS, an end-to-end framework for embedding an
untrimmed video as a video-level feature while suppressing
frames via various signals, and 3) we show extensive ex-
periments that demonstrate the effectiveness of our design,
which acquires state-of-the-art performance.

Related Work
Frame-level Feature-based Approaches
There have been several recent studies in frame-level
feature-based approaches. Dynamic Programming (DP)
(Chou, Chen, and Lee 2015) detects a near-duplicate re-
gion by extracting the diagonal pattern from a frame-level
similarity map. Temporal Network (TN) (Tan et al. 2009)
distinguishes the longest route in a graph created by key-
point frame matching to discover visually similar frames
between two videos, and Circulant Temporal Encoding
(CTE) (Douze, M., Revaud, J., Verbeek, J., Jégou, H., &
Schmid, C 2016) compares frame-level features using a
Fourier transform. This allows frame information to be en-
coded in the frequency domain. The Video Similarity Learn-
ing (ViSiL) (Kordopatis-Zilos et al. 2019b) approach lever-
ages metric learning by basing its operations on a frame-
by-frame similarity map, while Temporal Nested Invariance
Pooling (Jo et al. 2022) uses a local context-invariant prop-
erty to design temporally robust pooling based on the stan-
dard (JTC1/SC29/WG11/N15339 2015). These approaches
have higher accuracy than existing video-level approaches,
but they are significantly slower in terms of search speed.

Video-level Feature-based Approaches
Various video-level approaches have also been explored in
recent studies. Hashing Code (HC) (Song et al. 2013) col-
lects and hashes a large number of local and global fea-
tures to handle accuracy and scalability issues. Deep Met-
ric Learning (DML) (Kordopatis-Zilos et al. 2017b) uti-
lizes frame-level features from a layer codebook gener-
ated for intermediate Maximum Activation of Convolu-
tion (iMAC) (Kordopatis-Zilos et al. 2017a) features and
fuses them to represent a video-level feature. Temporal
Matching Kernel (TMK) (Poullot et al. 2015) generates
a fixed length sequence for each video, regardless of the
total number of frames in the video, using periodic ker-
nels that take into account frame descriptors and times-
tamps. Furthermore, Learning to Align and Match Videos
(LAMV) (Baraldi et al. 2018) designs a learnable feature
transform coefficient based on TMK. Temporal Context Ag-
gregation (TCA) (Shao et al. 2021) learns frame-level fea-
tures into video-level features through self-attention and a
queue-based training mechanism, while Distill-and-Select
(DNS) (Kordopatis-Zilos et al. 2022) distills the knowledge
of the teacher network, which is optimized from the labeled
data, into a fine or coarse-grained student network to take
further advantage of learning from the unlabeled data. This
approach also maintains efficiency between the two types
of students via a selector network. Video Region Attention
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Graph (VRAG) (Ng, Lim, and Lee 2022) learns an embed-
ding for a video by capturing the relationship of region units
in frames via graph attention (Veličković et al. 2017) layers.

In general, these approaches can respond to a given query
more quickly than frame-level approaches, even if the re-
sponse is relatively inaccurate. However, our solution can
respond as precisely as frame-level approaches while main-
taining sufficient speed as a video-level approach. In addi-
tion, whereas DML, TCA, and VRAG (the most similar ap-
proaches to ours) ask FC layers, self-attention layers, and
graph attention layers, respectively, to implicitly fuse frame-
level features into a video-level feature (that is, only con-
trastive loss of fused features is used as the objective func-
tion), our approach is the first to generate video-level fea-
tures via explicit signals, such as low-level characteristics,
temporal saliency, and rough topic.

Approach
Problem Formulation
Given a video with a duration of T , our goal is to embed
it as a video-level feature V while suppressing frames cor-
responding to distractors. To determine which frame and to
what extent it should be suppressed, video frames are first
embedded in the frame-level features X = {x(t)}Tt=1 instead
of being embedded directly in the video-level feature V .
Next, T ′ frames are chosen by removing easy distractors
that are readily identifiable as distractors due to a lack of
information via the easy distractor elimination stage. In the
subsequent suppression weight generation stage, weights
W = {w(t)}T ′

t=1 indicating the necessary degree of the re-
maining frames are calculated. Consequently, these weights
are used to aggregate frame-level features into a video-level
feature V = Ψ({w(t) ⊗ x(t)}T ′

t=1), where Ψ represents the
Spatio-Temporal Global Average Pooling (ST-GAP) and ⊗
represents the Hadamard product. Figure 3 illustrates an
overview of the VVS pipeline.

Feature Extraction
LN -iMAC as a frame-level feature is first extracted for fair
comparisons with many other works (Kordopatis-Zilos et al.
2017b, 2019b; Shao et al. 2021; Ng, Lim, and Lee 2022).
Specifically, each frame is fed to the backbone network Φ
as input, and Regional Maximum Activation of Convolu-
tion (R-MAC) (Tolias, Sicre, and Jégou 2016) is applied to
its intermediate feature maps M(k) ∈ RS2×C (k)(k=1 ,··· ,K ).
Specifically, after obtaining feature maps from a total of
K layers in Φ, N types of region kernels are used, de-
pending on the granularity level, for applying R-MAC. As
a result, each of the K intermediate feature maps M(k)

have their own channel C(k) but the same spatial res-
olution S2. After these M(k) are concatenated on the
channel axis, they are generated as a frame-level feature
x∈RS2×C (C=

∑K
k=1 C(k)). After applying Principal Compo-

nent Analysis (PCA) whitening (Jégou and Chum 2012) to
each of the features x, the LN -iMAC feature X ∈RT×S2×C

is obtained. Although the dimension of the channel axis
could be reduced to different sizes for comparison with other

Figure 3: Pipeline Overview of VVS. The gray italic letters
represent the size of the feature in each process.

approaches when applying PCA whitening, for convenience,
the dimension of the frame-level feature is called C.

Easy Distractor Elimination Stage
In this section, we introduce the Distractor Discrimination
Module (DDM), which eliminates frames that are clearly
recognizable as distractors due to a lack of visual informa-
tion. An easy distractor is a frame with little variation in
pixel intensity and few low-level characteristics (edges, cor-
ners, etc.) in an image, such as the third frame of the first
video in Figure 1. In the training phase of DDM, frame-level
features corresponding to the easy distractor are injected into
an input with a length of T , and the model is optimized to
distinguish them. In the inference phase of DDM, frames
predicted as easy distractors are removed from the input.
This process results in the output length being longer than
the input length T in the training phase but shorter in the in-
ference phase. For convenience, the output length of DDM
is always called T ′. The overall flow is depicted in Figure 4.

Distractor Discrimination Module
To enable this module to learn to recognize an easy dis-
tractor, pseudo-labels are created using the magnitude of
the frame-level features. This is because frames with few
low-level characteristics have fewer elements to be activated
from the backbone network of LN -iMAC, which consists of
several activation layers, resulting in a smaller magnitude of
their intermediate feature map.

Specifically, before the training phase, a set of easy dis-
tractors with a magnitude lower than or equal to a mag-
nitude threshold λmag is constructed from all frame-level
features of the videos in the training dataset. Examples of
easy distractors included in this set can be found in the
supplementary material. During the training phase, features
of easy distractors are picked from the set and randomly
placed between the features X . In this case, only about
20–50% of T are injected, resulting in features of length
T ′. Simultaneously, the points where the distractors are in-
jected are set at 0 and the opposite position at 1, resulting
in a pseudo-label Ydi = {y(t)di }T

′

t=1. The injected features are
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Figure 4: Pipeline of DDM. The gray italic letters indicate
the size of the feature in each process. The number in paren-
theses in the layer blocks indicates the output dimension.

projected through multiple layers to calculate a confidence
Wdi = {w(t)

di }T
′

t=1. Because only the components within each
frame determine the criterion for identifying easy distrac-
tors, the multiple layers consist of only the Spatial Global
Average Pooling (S-GAP) and FC layers to handle each
frame independently without interaction between frames. As
a result, this module is optimized by discrimination loss Ldi,
computed as the binary cross entropy loss between the con-
fidence Wdi and the pseudo-label Ydi.

The objective of DDM is to convey features to the sub-
sequent stage, erasing features of frames that are deemed
to be easy distractors through thresholding for confidence.
In this case, since the threshold operation is not differen-
tiable during the training phase, the output is derived from
the Hadamard product of the confidence Wdi and the input
features X , and during the inference phase, from a thresh-
olding operation based on a distractor threshold λdi.

Suppression Weight Generation Stage
Even if easy distractors are excluded through the previous
stage, untrimmed videos still contain hard distractors that
cannot be easily distinguished and are unrelated to the over-
all topic of the video due to the various content entangle-
ments. In this section, the Temporal Saliency Module (TSM)
and Topic Guidance Module (TGM) are introduced for cal-
culating suppression weights, which indicate how close the
remaining frames are to the hard distractor. TSM assesses
the significance of each frame based on saliency information
derived from frame-level similarities, while TGM measures
the degree to which each frame relates to the overall topic
of the video. The weights obtained from these two mod-
ules are converted into the suppression weights W using the
Hadamard product.

Temporal Saliency Module
To measure the importance of each frame, saliency informa-
tion is extracted in the training phase. This is inspired by
ViSiL (Kordopatis-Zilos et al. 2019b), a model that refines
a frame-level similarity map during training and accumu-
lates it to a frame-level similarity via the Chamfer Similar-
ity (CS) (Barrow et al. 1977) operation. Specifically, as the
model is optimized, the CS operation leads to an increase in
locations, which helps improve video-level similarity within
a similarity map of a positive pair. Because of this, the in-
creased locations contain the frames with a strong correla-

Figure 5: Pipeline of TSM. The gray italic letters represent
the size of the feature in each process. The number in paren-
theses in the layer blocks indicates the output dimension.

tion between the positive pair (as proven in the supplemen-
tary material). Therefore, we propose a modified structure
that can exploit this correlation as saliency information in
TSM by extracting pseudo-labels based on these locations.

Technically, as shown in Figure 5, frame-level features of
the triplet are transformed by Tensor Dot (TD) and CS into
a similarity map for the positive pair (i.e., anchor and posi-
tive) and a similarity map for the negative pair (i.e., anchor
and negative). These similarity maps are then converted into
tuned similarity maps Dp and Dn for the positive pair and
the negative pair, respectively, through four convolutional
layers. Here, we generate a pseudo-label Ysa (i.e., saliency
label) based on the increasing value within Dp in order to
extract saliency information. This is formulated in Equa-
tion (1), where the superscript T is the transpose operation,
and H is the Heaviside step function. Furthermore, ρ is the
highest similarity of each frame in the anchor video for the
positive video. The saliency label consists of values where
ρi is 1 if it is greater than the average of ρ and 0 if it is less,
thereby labeling the frame locations that indicate a strong
correlation between the positive pair.

ρi = max
j∈[1,T ′′]

D(i,j)
p ,

ρ = [ ρ1, ρ2, · · · , ρi, · · · , ρT ′′ ]T ,

Ysa = H(ρ− 1

T ′′

T ′′∑
i=1

ρi) ∈ RT ′′
. (1)

After completing the procedure for creating the saliency
label, a self-similarity map is generated by applying TD and
CS to two inputs consisting solely of the anchor. The self-
similarity map is subsequently fed into the bottleneck layer,
the transformer encoder, and the sigmoid to yield saliency
weights Wsa = {w(t)

sa }T
′

t=1, as shown in Figure 5. Here, only
diagonal components are sampled from the output map of
the previous layer to match the input format when entered
into the transformer encoder, i.e., Diagonal Sampling (DS).
Consequently, to enable TSM to recognize salient frames
through training, the saliency loss Lsa is computed as the
binary cross entropy loss between the saliency weights Wsa

and the saliency label Ysa, where the nearest interpolation
is applied to the label to match the length of the output, T ′.
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The saliency loss Lsa is optimized with the frame loss Lfr

for tuning the similarity map of the positive pair, which is
covered in detail in the supplementary material. During the
inference phase, only a self-similarity map for a given target
video is fed into the layers to yield saliency weights.

Topic Guidance Module
The topic of the video is also one of the factors that deter-
mines the importance of frames. For this reason, we cre-
ate an initial state I that gives direct, video-specific in-
struction on the topic to help the model generate guidance
weights Wgu = {w(t)

gu}T
′

t=1. More specifically, a rough topic
representation G is initially constructed to roughly represent
the topic of the video. According to the claim (Lin et al.
2017) that statistical moments (i.e., mean, max, etc.) have
been mathematically proven to be invariant across multiple
transformations, the ST-GAP, which consists of average op-
erations, is used to create a G ∈ RC that is robust to spe-
cific transformations between the frame-level features X .
In fact, the topic of a video (even if untrimmed) is deter-
mined by what most of the content in that video represents.
Therefore, since the average operation yields the direction
in which most of the content vectors (i.e., frame-level fea-
tures) point, an approximate (even if simple) representation
of the topic can be obtained. As a result, the cosine similar-
ity between G and X is employed to build the initial state
I ∈ RT ′

, which guides the model to reference the topic. At
this time, for convenience of operation, the S-GAP is applied
to the frame-level features X to remove its spatial axis.

The initial state I is effective in directing the model in
a rough pattern along the optimal path to the goal; how-
ever, a process of refinement must be added with the pur-
pose of providing the guidance weights that more precisely
suggest topic relevance. Thus, as illustrated in Figure 6, ar-
chitecture is designed to refine the coarse pattern. With the
initial state I of length T ′ as input, the data is collected
by sliding 1×3 kernels in three convolutional layers, and
then a 1×1 convolutional layer reduces the channel dimen-
sion. As the preceding three layers are traversed, the recep-
tive field expands, indicating that the temporal spans of data
gathered by these layers extend from the short-term to the
long-term. Therefore, the output of the preceding three lay-
ers and the output of the 1×1 convolutional layer is designed
to channel-wise concatenate, which is referred to as a hi-
erarchical connection, to assist the model in grasping the
topic relevance of each frame through direct utilization of
the knowledge over various temporal spans. Then, a convo-
lutional layer is applied to shrink the dimension of the chan-
nel axis. Only this module employs the tempered sigmoid
proposed by (Papernot et al. 2021) rather than the sigmoid
to reliably learn the weights from noises that may arise dur-
ing the refining operation from rough patterns.

Video Embedding & Training Strategy
In the training phase, frame-level features are aggregated
into a video-level feature V ∈ RC by the Hadamard product
with the suppression weights W calculated for each video in
a triplet: an anchor, a positive, and a negative. At this time,
in the case of positive and negative, only Wgu is used as the

Figure 6: Pipeline of TGM. The gray italic letters represent
the size of the feature in each process. The number in paren-
theses in layer blocks indicates the output dimension.

suppression weights W because their weights are not han-
dled in TSM. As a result, the video loss Lvi is computed as
the triplet margin loss between the three video-level features
in the triplet. This loss, along with the three losses discussed
above, optimize the model according to Equation (2) as,

L = Lvi + Lfr + Lsa + αLdi. (2)

In addition, our approach follows the mining scheme
of (Kordopatis-Zilos et al. 2019b) for videos consisting of
triplets. α is a parameter for adjusting the learning of DDM
as it is faster than other modules when observed empirically.
Due to space limitations, further details can be found in the
supplementary material.

Experiments
Evaluation Setup
Our experiments were evaluated on two retrieval settings2

that are now widely used in CBVR: fine-grained incident
video retrieval (FIVR) and near-duplicate video retrieval
(NDVR). All performance evaluations are reported based on
the mean average precision (mAP) (Zhu 2004), and the im-
plementation details are covered in the supplementary ma-
terial. Furthermore, VCDB (Jiang, Jiang, and Wang 2014)
was used as a training dataset, and FIVR (Kordopatis-Zilos
et al. 2019a) and CC WEB VIDEO (Wu et al. 2009) were
used as evaluation datasets.

VCDB is aimed at video copy detection and consists of
528 core datasets with 9,236 partially copied pairs and about
100,000 videos with no additional metadata.

FIVR is equivalent to the FIVR task, which seeks
videos connected to certain disasters, occurrences, and in-
cidents. Furthermore, depending on the level of relevance
desired, it is evaluated using three criteria: duplicate scene
video retrieval (DSVR), complementary scene video re-
trieval (CSVR), and incident scene video retrieval (ISVR).
In this dataset, there are two types in the family: FIVR-5K
and FIVR-200K. FIVR-5K has 50 queries and 5,000 videos

2Some videos from EVVE (Revaud et al. 2013), a dataset for
event video retrieval (EVR), another common evaluation setting,
could not be downloaded. However, for further comparison, the
benchmark for a subset we own (≈70.5% of the original) is covered
in the supplementary material.
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Approach Dim.
FIVR-200K

DSVR CSVR ISVR
fr

am
e

TN - 0.724 0.699 0.589
DP - 0.775 0.740 0.632
TCAsym 1,024 0.728 0.698 0.592
TCAf 1,024 0.877 0.830 0.703
TNIP 1,040 0.896 0.833 0.674
ViSiLsym 3,840 0.833 0.792 0.654
ViSiLf 3,840 0.843 0.797 0.660
ViSiLv 3,840 0.892 0.841 0.702

vi
de

o

HC - 0.265 0.247 0.193
DML 500 0.398 0.378 0.309
TMK 65,536 0.417 0.394 0.319
LAMV 65,536 0.489 0.459 0.364
VRAG 4,096 0.484 0.470 0.399
TCAc 1,024 0.570 0.553 0.473

VVS500 (ours) 500 0.606 0.588 0.502
VVS512 (ours) 512 0.608 0.590 0.505
VVS1024 (ours) 1,024 0.645 0.627 0.536
VVS3840 (ours) 3,840 0.711 0.689 0.590

Table 1: Benchmark on FIVR-200K. The frame and video
refer to frame-level and video-level feature-based ap-
proaches. Dim. refers to the dimension of the basic unit for
calculating similarity in each approach (i.e., frame-level ap-
proaches use multiple features of that dimension, as many
as the number of all or most frames in a video, while video-
level approaches use only one feature of that dimension).
Only approaches that are trained from VCDB or do not re-
quire additional training are shown for a fair comparison.

in the database, while the FIVR-200K has 100 queries and
225,960 videos in the database, both of which have video-
level annotations. FIVR-5K is a subset of the FIVR-200K
used for ablation studies, and FIVR-200K is used for bench-
marking as a large-scale video collection.

CC WEB VIDEO corresponds to the NDVR task, which
aims to find geometrically or photometrically transformed
videos. It consists of 13,129 videos in a set of 24 queries and
has two types of criteria for evaluation which are divided
into evaluations within each query set or within the entire
video, and with the original annotation or the “cleaned” ver-
sion of the annotation by (Kordopatis-Zilos et al. 2019b).
The combination of these criteria provides four evaluations.

Comparison with Other Approaches
Based on the dimension C of a video-level feature V , the
proposed approach is referred to as VVSC . C is equal to
that of a frame-level feature X and is determined by di-
mension reduction during the PCA whitening procedure.
If dimension reduction is not applied, it is VVS3840 (as
used in (Kordopatis-Zilos et al. 2019b), the dimension of
LN -iMAC is 3840), and if dimension reduction is applied
to match the dimension with other approaches, it is VVS500,
VVS512 and VVS1024.

Table 1 shows comparisons with previous state-of-the-

Approach Dim.
CC WEB VIDEO

cc cc∗ ccc cc∗c

fr
am

e

TN - 0.978 0.965 0.991 0.987
DP - 0.975 0.958 0.990 0.982
CTE - 0.996 - - -
TCAsym 1,024 0.982 0.962 0.992 0.981
TCAf 1,024 0.983 0.969 0.994 0.990
TNIP 1,040 0.978 0.969 0.983 0.975
ViSiLsym 3,840 0.982 0.969 0.991 0.988
ViSiLf 3,840 0.984 0.969 0.993 0.987
ViSiLv 3,840 0.985 0.971 0.996 0.993

vi
de

o

HC - 0.958 - - -
DML 500 0.971 0.941 0.979 0.959
VRAG 4,096 0.971 0.952 0.980 0.967
TCAc 1,024 0.973 0.947 0.983 0.965

VVS500 (ours) 500 0.973 0.952 0.981 0.966
VVS512 (ours) 512 0.973 0.952 0.981 0.967
VVS1024 (ours) 1,024 0.973 0.952 0.982 0.969
VVS3840 (ours) 3,840 0.975 0.955 0.984 0.973

Table 2: Benchmark on CC WEB VIDEO. (*) refers to the
evaluation of the entire dataset, and the subscript c refers
to the use of cleaned annotations. All other notations and
settings are identical to those presented in Table 1.

Elim. Gen. FIVR-5K

DDM TSM TGM DSVR CSVR ISVR

(a) 0.692 0.700 0.651

(b) ✓ 0.715 0.725 0.672

(c) ✓ 0.702 0.710 0.661
(d) ✓ 0.716 0.724 0.677
(e) ✓ ✓ 0.719 0.726 0.680

(f) ✓ ✓ 0.724 0.732 0.683
(g) ✓ ✓ 0.738 0.746 0.698

(h) ✓ ✓ ✓ 0.744 0.752 0.705

Table 3: Module-wise Ablations for VVS3840. Elim. refers
to the easy distractor elimination stage, and Gen. refers
to the suppression weight generation stage. (a) represents
a baseline of the same dimension that weighs all frames
equally without any of the proposed modules, (b)-(g) rep-
resent module-wise ablations, and (h) represents VVS3840.

art approaches on the large-scale FIVR-200K dataset. In
this dataset, VVS3840 performs approximately 25% better
than the leading video-level approach in all tasks, which is
close to the borderline of the frame-level state-of-the-art ap-
proaches. In addition, our approaches VVS500, VVS512 and
VVS1024 are state-of-the-art regardless of whether their di-
mensions match or are smaller than those of other video-
level approaches. This trend is similar to the performance
on the CC WEB VIDEO in Table 2. This proves that our
method is the most optimal framework between the two
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DDM

Injection
Ratio

FIVR-5K

DSVR CSVR ISVR

0% - 20% 0.739 0.748 0.701
20% - 50% 0.744 0.752 0.705
50% - 80% 0.738 0.749 0.704

80% - 100% 0.728 0.743 0.701

Table 4: Distractor Injection Ratio in DDM. This demon-
strates the overall impact according to the sampling ratio of
the easy distractor set in DDM.

TSM

Frame
Loss Lfr

FIVR-5K

DSVR CSVR ISVR

0.742 0.749 0.702
✓ 0.744 0.752 0.705

Table 5: Existence of Frame Loss Lfr in TSM. This demon-
strates how frame loss affects TSM.

TGM FIVR-5K

Init. Refine. Hier. DSVR CSVR ISVR

Rand. ✓ ✓ 0.693 0.701 0.652
Const. ✓ ✓ 0.693 0.701 0.652

G 0.625 0.631 0.584
G ✓ 0.712 0.722 0.675
G ✓ ✓ 0.716 0.724 0.677

Table 6: Structure within TGM. This demonstrates the im-
pact of the structure within TGM. Init. refers to the initial
state I , Refine. to the refinement process, and Hier. to the
hierarchical connection. Rand. and Const. refer to situations
in which the initial state is formed from a random or con-
stant value (which is 0.5), not the rough topic representation
G. To facilitate independent evaluation, the framework ex-
cludes all modules except TGM.

streams, considering that video-level approaches are essen-
tially memory- and speed-efficient.

Ablation Studies & Analyses
Module-wise Ablations
This section covers ablation studies for each module in the
proposed framework VVS3840. As seen in Table 3, each
module (b)-(d) demonstrates a significant performance in-
crease over the baseline (a), demonstrating their value. In
addition, improvements are observed even when modules
are paired with one another (e)-(g), and the same is true
when they are all combined (h). Moreover, in the supple-
mentary material, by presenting further module-wise abla-
tions of VVS500, VVS512 and VVS1024, we show that all
modules in our approach have a similar impact.

Figure 7: Qualitative Results on FIVR-5K. The orange line
refers to the weights from TSM and TGM; the lower the
value, the more suppressed the frame. The gray region cor-
responds to easy distractors eliminated by DDM, and frames
that belong to this area are denoted by a red border.

Component-wise Ablations
This section covers ablation studies for components within
each module of the proposed framework.
Distractor Injection Ratio in DDM. Table 4 demonstrates
the effect of the sampling ratio from the easy distractor set
for injection during the training phase in DDM. The model
can learn slightly more cases for easy distractors compared
to a lower ratio when the input length is 20–50% relative
to T , leading to enhancements in the overall framework.
However, when selected at a higher ratio, the proportion of
frames corresponding to the distractor in a video increases
excessively, which hinders optimization.
Existence of Frame Loss in TSM. To assess the impact of
frame loss on TSM, Table 5 shows the outcomes of ablation
when only TSM exists with no other modules. In conclu-
sion, the frame loss allows the saliency information to be
tuned, resulting in a more exact saliency label and a boost in
performance.
Structure within TGM. To test the validity of the TGM
structure, ablation studies for each component are shown
in Table 6, and all modules other than TGM are omitted for
independent evaluation of each component. First, if random
or constant values are used instead of the rough topic repre-
sentation G while constructing the initial state, performance
deteriorates, as the model is implicitly required by relatively
unclear criteria rather than explicitly guided by the topic to
be well optimized. In addition, the performance gap demon-
strates that even with G, the refinement process with a hier-
archical connection is necessary to direct the model appro-
priately. Furthermore, as detailed in the supplementary ma-
terial, the hierarchical connection can make the model more
robust for various video lengths.

Qualitative Results
Figure 7 depicts the qualitative outcomes produced by the
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proposed framework. In the first example, where the topic is
“Warehouse fire”, it can be seen that the frames predicted by
DDM as the distractors have few low-level characteristics.
In addition, the fourth frame in this example is assigned a
relatively low weight because no visual clues directly related
to the topic appear. In the second example, where the topic
is “Marathon bombing”, it is shown that frames containing
only text and low-level characteristics are deleted by DDM,
as in the first example. Furthermore, among the remaining
frames, the weights of those visually related to the topic are
measured to be high, whereas the weights of the first and
fourth frames, in which the scene of the event is not shown
directly, are low. From these two examples, it is clear that
the proposed approach achieves its intended results.

Conclusion
In this paper, we demonstrate that suppression of irrelevant
frames is essential in describing an untrimmed video with
long and varied content as a video-level feature. To achieve
this, we present an end-to-end framework: VVS. VVS re-
moves frames that can be clearly identified as distractors
and determines the degree to which remaining frames should
be suppressed based on saliency information and topic rele-
vance. Thus, this approach is the first designed to be learned
by explicit criteria, unlike previous approaches that have op-
timized the model implicitly. Consequently, extensive ex-
periments proved the validity of this design and, at the
same time, demonstrated that it is closest to the ideal search
scenario among existing approaches due to its competitive
speed and efficient memory utilization, as well as its state-
of-the-art search accuracy. We hope that this work can con-
tribute to the advancement of real-world video search sys-
tems.
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