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Abstract

In this study, we present a novel computational method for generating molecular
fingerprints using multiparameter persistent homology (MPPH). This technique
holds considerable significance for key areas such as drug discovery and materi-
als science, where precise molecular property prediction is vital. By integrating
SE(3)-invariance with Vietoris-Rips persistent homology, we effectively capture
the three-dimensional representations of molecular chirality. Chirality, an intrinsic
feature of stereochemistry, is dictated by the spatial orientation of atoms within a
molecule, defining its unique 3D configuration. This non-superimposable mirror
image property directly influences the molecular interactions, thereby serving as
an essential factor in molecular property prediction. We explore the underlying
topologies and patterns in molecular structures by applying Vietoris-Rips persistent
homology across varying scales and parameters such as atomic weight, partial
charge, bond type, and chirality. Our method’s efficacy can be further improved by
incorporating additional parameters such as aromaticity, orbital hybridization, bond
polarity, conjugated systems, as well as bond and torsion angles. Additionally, we
leverage Stochastic Gradient Langevin Boosting (SGLB) in a Bayesian ensemble
of Gradient Boosting Decision Trees (GBDT) to obtain aleatoric and epistemic un-
certainty estimates for gradient boosting models. Using these uncertainty estimates,
we prioritize high-uncertainty samples for active learning and model fine-tuning,
benefiting scenarios where data labeling is costly or time consuming. Our approach
offers unique insights into molecular structure, distinguishing it from traditional
single-parameter or single-scale analyses. When compared to conventional graph
neural networks (GNNs) which usually suffer from oversmoothing and oversquash-
ing, MPPH provides a more comprehensive and interpretable characterization of
molecular data topology. We substantiate our approach with theoretical stability
guarantees and demonstrate its superior performance over existing state-of-the-art
methods in predicting molecular properties through extensive evaluations on the
MoleculeNet benchmark datasets.

1 Introduction

Molecular property prediction has received substantial interest in recent years to accelerate the drug
discovery process [57] and predict the 3D structure of proteins [34], with models showing potential
to solve contemporary problems in materials science [51] and quantum chemistry [15]. Recent
adaptations of GNNs, including GIN [65, 49], GAT [61, 63], and MPNN [67], have demonstrated
leading performance in molecular representation learning, excelling across various compound datasets
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Figure 1: Chirality (a, b) 2D chemical representation of (a) S-amlodipine, an FDA-approved calcium channel inhibitor and its
enantiomer (b) R-amlodipine, a compound lacking calcium channel activity. The stereocenters on each are labeled in blue and magenta,
respectively. (c, d) 3D representations of these molecules, with differences in 3D space highlighted. (e) Model of S-amlodipine bound within its
binding pocket on a calcium channel, generated from empirical structural data (PDB ID: 7JPX [24]). (f) A model of R-amlodipine bound to the
same pocket. The red asterisk marks a steric clash between the molecule and the binding pocket, indicating the inability of R-amlodipine to bind
this pocket in this orientation. The inability of R-amlodipine to form a productive binding interaction is consistent with its lack of biological
activity on this channel.

for bioactivity and molecular property prediction tasks. Despite their success, utilization of GNNs for
molecular property prediction suffers from 3 severe limitations:

Oversmoothing: Neighborhood information is typically aggregated by permutation invariant, but
non-injective operations such as an average, sum or max. This leads to an oversmoothing problem,
where node embeddings converge to similar values and the information-to-noise ratio of the message
received by the nodes decreases [9, 47].

Oversquashing: GNNs are susceptible to a bottleneck known as oversquashing. This occurs when
the amount of information aggregated from an exponentially growing receptive field exceeds a node’s
capacity to process. As the number of GNN layers (and thus the receptive field) increases, all the
information is compressed into fixed-length node vectors, potentially causing the loss of important
information from more distant nodes [4].

Capturing 3D spatial information or conformational changes: Traditional GNNs primarily focus on
atomic connectivity through ionic and covalent bonds, often neglecting crucial intermolecular forces
like hydrogen bonds, dipole-dipole interactions, and Van der Waals forces. These forces, although
subtle, significantly impact molecular conformation and the resulting physical, chemical, and reactive
properties of molecules. Despite their seemingly weak nature, the incorporation of 3D molecular
conformers into analysis improves the accuracy of molecular property prediction [52, 27, 38, 25].
Yet, generating low energy stable 3D conformers for large-scale applications is computationally
demanding [66, 53, 23]. Some methods instead use bond lengths, angles, or torsion angles as
additional 3D features [10, 27, 25].

Chirality is a concept in stereochemistry, a branch of chemistry focused on the 3D arrangement of
atoms in molecules, and the effects of these arrangements on the chemical properties and reactions of
those molecules. A molecule is said to be chiral if it cannot be superimposed on its mirror image
[8]. It is paramount in drug design as it can lead to chiral sets of molecules, despite their similar
physicochemical properties, exhibiting significantly different affinities, efficacies, and potencies when
interacting with drug targets [55]. An example of this is the common cardiovascular medication,
amlodipine (Figure 1) [19]. Amlodipine, functioning by inhibiting voltage-gated calcium channels
(VGCCs)[5], exists as two chiral forms: S-amlodipine and R-amlodipine, with the former being
therapeutically active and the latter mostly inactive [30]. Despite their similar chemical structures, the
distinct 3D orientations allow S-amlodipine to bind to a VGCC pocket and inhibit its activity, while
preventing R-amlodipine from doing the same [24]. Consequently, S-amlodipine exhibits significant
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therapeutic value, unlike R-amlodipine. This underscores the necessity to consider chirality in drug
design for achieving high specificity and minimal side effects.

One of the most common manifestations of chirality in organic molecules is tetrahedral (point)
chirality, where a central atom, typically carbon, is bonded to four non-equivalent chemical groups.
This arrangement results in non-superimposable mirror images called enantiomers [8]. Enantiomers
are denoted by dashed (Figure 1a) and bold (Figure 1b) wedges, indicating the orientation of the
bonds relative to the plane of the molecule. Accurately differentiating enantiomers poses a challenge
for Euclidean group [E(3)]-invariant GNNs that solely consider pairwise atomic distances or bond
angles in their message updates, like SchNet [52]. These models struggle to distinguish between
enantiomers due to the inversion of chiral centers upon reflection. To address this, incorporating
Special Euclidean group [SE(3)]-invariance becomes crucial in molecular property prediction [2, 39].
By accounting for SE(3)-invariance, models can effectively generalize across various molecular
conformations, including chiral systems, leading to enhanced performance even with limited training
data.

The key contributions of this paper are:

1. We introduce a novel compound fingerprinting method by integrating SE(3)-invariance
into Vietoris-Rips persistent homology, generating robust and versatile representations for
chiral compound property prediction, thereby eliminating the need for multi-conformer
data augmentation and expensive equivariant operations, such as spherical harmonics and
Clebsch-Gordan coefficients.

2. We leverage Stochastic Gradient Langevin Boosting (SGLB) [60] in a Bayesian ensemble
of Gradient Boosting Decision Trees (GBDT) [41]. This allows us to separately quantify
both aleatoric and epistemic uncertainties, aiding in error prevention and the identification
of informative compounds for data collection.

3. We establish theoretical guarantees for the stability of compound fingerprints derived
through MPPH.

4. Our method, validated through empirical evaluations on MoleculeNet benchmark datasets,
surpasses state-of-the-art baselines significantly, proving the superior predictive performance
of the MPPH-based approach.

2 Related Work

There are two primary strategies for predicting the physical and chemical properties of molecules: 1)
The utilization of established models such as random forest or gradient boosting decision trees, which
rely on expert-engineered descriptors or molecular fingerprints, and 2) The optimization of GNN
model architectures. In the first strategy, models operate on molecular fingerprints like SMILES [71],
Dragon descriptors [43], Extended Connectivity Fingerprints (ECFP) [50, 70] or eigenspectrum of
Coulomb matrices [46]. Enhancements in this approach can be achieved by enriching the feature
representation of nodes (atoms) with additional chemical information. Additionally, some studies
have used explicit 3D atomic coordinates to further improve performance [52, 36, 18, 20]. The
second strategy emphasizes optimizing model architecture and enhancing neighborhood aggregation.
Graph Convolutional Neural Networks (GCN), for instance, generate a compound’s feature represen-
tation through the convolution operations performed in the spectral domain of the compound’s 2D
graph [64], which is obtained by transforming the graph into a set of eigenvectors and eigenvalues.
Similarly, Message Passing Neural Networks (MPNN)[29] update node and edge representations by
passing messages between nodes, iteratively constructing a graph representation. Recently, conformer
generation, accounting for molecules’ 3D structures, has become crucial in property prediction [7].
This is particularly important for non-rigid molecules that can adopt diverse conformations under
varying conditions. 3D Infomax [56] pre-trains a 2D network by maximizing the mutual information
(MI) between its representation of a molecular graph and a 3D representation produced from the
molecules’ conformers. The weights of 2D network are then fine-tuned to predict properties.

Additionally, the development of chiral-sensitive molecular representations is an area of significant
interest in computational chemistry. DimeNet [27] and its faster successors DimeNet++ [26] and
GemNet [25] use spherical harmonics and Clebsch-Gordan coefficients to represent the relative
directional information. SphereNet [38] improves computational efficiency by proposing spherical
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Figure 2: Graph Decomposition involves masking certain vertices based on their parameter values, and then considering only the
remaining vertices and edges. In the given dataset, 10 unique atoms (H, C, N, O, F, P, S, Cl, Br, I) are identified, leading to the creation of 10
subgraphs. The atoms are color-coded as follows: Gray for Hydrogen, Black for Carbon, Blue for Nitrogen, Red for Oxygen, and Yellow for
Sulfur. Note that some subgraphs may be identical. The original compound, lamivudine (a hepatitis B antiviral), is displayed in the last column.
Vertices with the highest atomic mass are masked first and added in ascending order of atomic mass. Figure 2 illustrates the graph evolution
along the y-axis in the initial column of Figure 6. Our framework builds the Vietoris-Rips complexes for each subgraph, as shown in the rows of
Figure 6, and computes the rank of the homology groups of dimensions 0 and 1 for each sequence of simplicial complexes. The process is then
repeated using different parameters: partial charge (in ascending order of decile groups in the partial charge histogram) and bond types (starting
with vertices forming a ring structure, then adding vertices connected by triple, double, and finally, single bonds).

message passing, while SE(3)-Transformer[22] leverages Wigner-D matrices for learning SO(3)’s
irreducible representations. While these models can potentially learn chirality, their efficacy for
molecular property prediction remains unexplored. Moreover, they utilize computationally inten-
sive equivariant operations, such as spherical harmonics and Clebsh-Gordan coefficients [59, 22].
This introduces increased computational complexity and high-dimensional representations, thereby
complicating model implementation and optimization.

In this paper, we build upon our previous work, ToDD [13, 14], enhancing its utility in ligand-
based virtual screening and molecular property prediction. We generate topological fingerprints that
remain invariant under SE(3) group actions, accurately representing relative atomic arrangements and
tetrahedral chiral configurations.

3 Invariance of Persistent Homology Under E(3) Transformations

We present the concept of multiparameter persistent homology as a three-step process in Section C.
Firstly, the process involves ’graph decomposition’ (Figure 2), where vertices are masked based on
their values in either ascending or descending order, subsequently breaking down a larger graph into
smaller subgraphs. Secondly, ’persistent homology’ comes into play, tracking changes in topological
features like birth and death times within each subgraph’s sequence of simplicial complexes. Lastly,
in the ’vectorization’ step, these records are converted into a vector, a form that can be readily used in
machine learning models.

In this section, we establish the invariance of persistent homology induced by Vietoris-Rips filtration
under E(3). We first present a lemma related to the preservation of pairwise distances under E(3)
transformations and then prove a theorem that demonstrates the E(3) invariance of Vietoris-Rips
persistent homology.

Lemma 3.1. Preservation of Pairwise Distances under E(3): Let X ⊂ R3 be a finite set of points,
and let g ∈ E(3) be an Euclidean transformation. Then, for any two points xi, xj ∈ X , the pairwise
distance between xi and xj is preserved under the action of g, i.e., ∥g(xi)− g(xj)∥ = ∥xi − xj∥.

Proof. Let g be an Euclidean transformation represented by a rotation matrix R ∈ SO(3), a transla-
tion vector t ∈ R3, and a reflection matrix M ∈ O(3) \ SO(3). Then, for any two points xi, xj ∈ X ,

∥g(xi)−g(xj)∥ = ∥M(Rxi+t)−M(Rxj+t)∥ = ∥M(R(xi−xj))∥ = ∥R(xi−xj)∥ = ∥xi−xj∥.
(1)
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The second equality holds because reflections preserve distances, and the third equality holds because
rotations preserve distances.

Theorem 3.2. E(3) Invariance of Vietoris-Rips Persistent Homology: Let X ⊂ R3 be a finite
set of points, and let g ∈ E(3) be an Euclidean transformation. Then, the Vietoris-Rips persistent
homology of X is invariant under the action of g, i.e., PH(V Rϵ(X)) ∼= PH(V Rϵ(g(X))) for all
ϵ > 0.

Proof. Let X ′ = g(X). By Lemma 3.1, the pairwise distances between points in X are preserved
under the action of g. Therefore, for any ϵ > 0, a simplex σ is included in V Rϵ(X) if and only if
the corresponding simplex g(σ) is included in V Rϵ(X ′). This implies that the simplicial complexes
V Rϵ(X) and V Rϵ(X ′) are isomorphic for all ϵ > 0, and consequently, their homology groups are
isomorphic as well. Since the persistent homology is derived from the homology groups of the
Vietoris-Rips complexes for all ϵ > 0, it follows that PH(V Rϵ(X)) ∼= PH(V Rϵ(g(X))).

4 Incorporating SE(3)-Invariance into Multiparameter Persistent Homology

In the chiral-sensitive property prediction task, the filtration function f assigns to each atom a value
that represents whether it’s a chiral center and, if so, what type of chiral center it is. Let M denote
a molecule, modeled as a connected graph where vertices represent atoms and edges represent
bonds. Denote the vertex set of M as V (M). For each vertex v ∈ V (M), let C(v) be the set of its
neighboring vertices, ordered according to the Cahn-Ingold-Prelog (CIP) priority rules. We define a
chiral center as a vertex v with four different groups attached, i.e., |C(v)| = 4 and all elements of
C(v) are distinct. The configuration of a chiral center v, determined by the CIP rules, is denoted as:

config(v) =
{
1 if the order of elements in C(v) is clockwise,
2 if the order of elements in C(v) is counterclockwise.

The filtration function f : V (M) → {0, 1, 2} can now be defined compactly as:

f(v) =

{
0 if |C(v)| ≠ 4,

config(v) otherwise.

For each value r ∈ R, the sublevel set Xr = f((−∞, r]) is the set of all atoms with f -values less
than or equal to r. The nested sequence of sublevel sets Xr1 ⊆ Xr2 ⊆ · · · induces a nested sequence
of Vietoris-Rips complexes V Rϵ(Xr1) ⊆ V Rϵ(Xr2) ⊆ · · · . If we build a VR complex and compute
the persistent homology based on this filtration function, we obtain a characterization of the molecule
that identifies and distinguishes its chiral centers. Importantly, this characterization depends only
on the relative configuration of the atoms, not on the absolute position/orientation of the molecule.
Therefore, it’s expected to be invariant under SE(3) transformations.

The persistent homology of this nested sequence of complexes is a sequence of homology groups
PH(V Rϵ(Xr1)), PH(V Rϵ(Xr2)), . . . and homomorphisms between them, which capture the topo-
logical features (connected components, loops, and voids) of the molecule that persist across multiple
scales r1, r2, . . ..

Theorem 4.1. The Vietoris-Rips complex and its persistent homology are invariant under SE(3)
transformations, assuming that the filtration function, f , is also SE(3)-invariant.

Proof. Let T : R3 → R3 be a transformation in SE(3), let X ⊆ R3 be the set of atoms in the
molecule, and let X ′ = T (X) be the transformed set of atoms. Let f be the filtration function, and
let f ′ = f ◦T be the transformed filtration function. Note that f ′ assigns to each atom in X ′ the same
value that f assigns to the corresponding atom in X , because f is assumed to be SE(3)-invariant.

First, we show that the Vietoris-Rips complex is invariant under T . For any ϵ > 0 and r ∈ R, we
have V Rϵ(Xr) = V Rϵ(X

′
r), where Xr and X ′

r are the sublevel sets of f and f ′ at r, respectively.
This is because for any two atoms x, y ∈ Xr with d(x, y) < ϵ, their transformed counterparts
x′ = T (x), y′ = T (y) ∈ X ′

r also satisfy d(x′, y′) < ϵ. This is a result of the fact that T is an
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isometry (i.e., it preserves distances), which is a property of all transformations in SE(3). Therefore,
any simplex in V Rϵ(Xr) corresponds to a simplex in V Rϵ(X ′

r), and vice versa.

Next, we show that the persistent homology is also invariant under T . The persistent homology
is computed from the nested sequence of Vietoris-Rips complexes, which we have shown to be
invariant under T . Furthermore, the homomorphisms between the homology groups in the sequence
are induced by the inclusions Xr1 ⊆ Xr2 ⊆ · · · , which correspond under T to the inclusions
X ′
r1 ⊆ X ′

r2 ⊆ · · · . Therefore, the entire structure of the persistent homology, including both the
homology groups and the homomorphisms between them, is preserved under T .

Theorem 4.2. Assuming that the filtration function, f , accurately identifies the chiral centers and
their configurations in a compound, and is non-invariant under reflection, the Vietoris-Rips Persistent
Homology, which operates on the nested sequence of subgraphs induced by f , is also non-invariant
under reflection.

Proof. Consider a molecule M and its reflection ρ(M). By the definition of f , f(v) ̸= f(ρ(v))
for any chiral center v with ’R’ or ’S’ configuration due to the inversion of the configuration
under reflection. Denote by V Rf (M) and V Rf (ρ(M)) the filtered Vietoris-Rips complexes of
M and ρ(M) with the filtration function f . Then, due to the difference in f values, V Rf (M) ̸∼=
V Rf (ρ(M)). As persistent homology is derived from the filtered Vietoris-Rips complex, the non-
isomorphism of the complexes implies non-isomorphism of the corresponding homologies.

4.1 Stability of MPPH Fingerprints

Stability in single parameter persistence vectorizations pertains to the consistency of the mapping from
the space of persistence diagrams to the space of functions or vectors, assessed using the Wasserstein
distance metric [1, 54]. Essentially, minor changes in the persistence diagram shouldn’t drastically
alter the vectorization. This concept has been leveraged to demonstrate the stability of Multiparameter
Persistent Homology (MPPH) Fingerprints, where changes in the vectorizations are bounded by
changes in the corresponding persistence diagrams. The induced matching distance between multiple
persistence diagrams (Equation 3) and the distance between induced MPPH Fingerprints (Equation 4)
are defined to uphold this stability. For more in-depth explanation and proof of the following theorem,
please refer to D.
Theorem 4.3. If φ is a stable, single-parameter persistence vectorization, the resulting MPPH
Fingerprint Mφ is also stable. That is, for any pair of graphs G+ and G−, a certain constant
Ĉφ > 0 exists, ensuring the following inequality:

D(Mφ(G+),Mφ(G−)) ≤ Ĉφ ·Dpφ({PD(G+)}, {PD(G−)})

5 Experiments

We thoroughly evaluate the performance of our methods against the 8 state-of-the-art baselines:
GraphConv [16], Weave [35], SchNet [52], Node-MPN [29], D-MPNN [67, 68], MGCN [40],
GRAPHCL [69] and 3D Infomax [56] on 6 benchmark datasets (Lipophilicity, FreeSolv, ESOL,
BACE, BBBP, ClinTox), primarily sourced from MoleculeNet [64] (a large scale benchmark for
molecular machine learning) and adopt the 80/10/10 scaffold splits provided by OGB [32]. See
Section G.1 for further details.

5.1 Uncertainty Quantification via SGLB Ensembles

The gradient boosting algorithm [21], enhanced by Stochastic Gradient Langevin Boosting (SGLB),
iteratively builds a model F to minimize empirical risk L(F |D), where D is the set of N data
points (x1, y1), (x2, y2), ..., (xN , yN ). In this context, x represents the MPPH Fingerprint given
in tabular data form, and y is the associated property. The model update equation is F (t)(x) =
F (t−1)(x) + ηh(t)(x, ϕ(t)), where F (t−1) is the prior model, h(t) is a selected weak learner, ϕ(t) is
the model parameters, and η is the learning rate. SGLB creates an ensemble of models, estimating
uncertainty through the entropy of their predictive distributions. Bayesian inference approximates
the true posterior p(θ|D) of this ensemble, with total uncertainty, aleatoric uncertainty (knowledge
uncertainty), and expected episdemic uncertainty (data uncertainty) estimated via entropy and variance
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calculations. In the case of continuous-valued targets, estimates are obtained using the law of total
variance. To reach a globally optimal solution, SGLB injects Gaussian noise into the gradients and
introduces a regularization term that moderates the influence of preceding models. For detailed
mathematical explanations, refer to F.1, and for implementation specifics, see F.2.

5.2 Experimental Results

We adopt a GBDT model, leveraging SGLB optimization with SE(3)-invariant multiparameter
persistent homology (MPPH) Fingerprints as the input feature set. The model, comprising 1000
boosting stages, is trained with a refined maximum tree depth of 6, ascertained through exhaustive
hyperparameter tuning. A learning rate of 0.05 is employed, and the criterion for splitting a node
within the tree is stipulated as a minimum of 2 samples. Our method surpasses contemporary state-
of-the-art GNNs as well as conventional Random Forest (RF) models, trained on ECFP-4 fingerprints
as shown in Table 1.

Our SE(3)-invariant MPPH methodology outperforms top MoleculeNet models on FreeSolv [45],
ESOL [12], BACE [58], BBBP [42], ClinTox [28], while demonstrating comparable results on
Lipophilicity. These outcomes suggest that MPPH not only exceeds the performance of the leading
MoleculeNet models but does so without necessitating the training of large-scale GNNs or generating
3D conformations. Moreover, our method displays a marked improvement over all GNN baselines
on FreeSolv, ESOL, and ClinTox. We postulate two reasons for these superior results. Firstly, enan-
tiomers, despite sharing similar physiochemical properties, can display drastically different biological
activities. Hence, our approach is expected to excel in biological systems such as drug potency
(BACE), blood-brain barrier penetration (BBBP), and clinical trial toxicity (ClinTox) compared to
those evaluating physiochemical properties like lipid solubility (Lipophilicity), and aqueous solubility
(FreeSolv and ESOL). BBBP might represent a balanced case between physiochemical and biological
factors [48]. Secondly, the performance of GNNs can be affected worse on smaller datasets like
FreeSolv and ESOL due to the restricted number of training samples. The limited size of datasets (up
to ∼ 1000 training molecules) negatively affects the performance of GNNs due to data sparsity [67].
Furthermore, MPPH can effectively leverage domain knowledge to improve property prediction
scores. For instance, it is a commonly acknowledged principle that the introduction of nonpolar
groups, such as methyl groups, into a molecule can elevate its lipophilicity. MPPH, by incorporating
bond polarity as an auxiliary parameter, effectively integrates crucial domain information, thereby
augmenting the performance of lipophilicity prediction.

Table 1: SE(3)-Invariant MPPH vs. state-of-the-art baselines. Shown is the root mean squared error (RMSE)
for Lipophilicity, FreeSolv, ESOL (lower is better), and the area under the ROC-curve (ROC-AUC) for BACE,
BBBP, ClinTox (higher is better). Best in bold, top baseline underlined. Improvement and deterioration against
top baseline are color-coded.

Model Lipophilicity
y FreeSolv

y ESOL
y BACE

x BBBP
x ClinTox

x
ECFP-4+RF 0.706±0.011 0.560±0.066 1.399±0.177 0.881±0.027 0.924±0.024 0.859±0.023
GraphConv 0.712±0.049 2.900±0.135 1.068±0.050 0.854±0.011 0.877±0.036 0.845±0.051
Weave 0.813±0.042 2.398±0.250 1.158±0.055 0.791±0.008 0.837±0.065 0.823±0.023
SchNet 0.909±0.098 3.215±0.755 1.045±0.064 0.750±0.033 0.847±0.024 0.717±0.042
D-MPNN 0.646±0.041 1.010 ± 0.064 0.980±0.258 0.878±0.032 0.913±0.026 0.894±0.027
MGCN 1.113±0.041 3.349±0.097 1.266±0.147 0.734±0.030 0.850±0.064 0.634±0.042
Node-MPN 0.672±0.051 2.185±0.952 1.167±0.430 0.815±0.044 0.913±0.041 0.879±0.054
GRAPHCL 0.714±0.011 3.744±0.292 0.959±0.047 0.772±0.040 0.711±0.020 0.511±0.055
3D Infomax 0.695±0.012 2.337±0.227 0.894±0.028 0.794±0.019 0.691±0.011 0.594±0.032

SE(3)-I MPPH 0.738±0.025 0.354±0.053 0.612±0.083 0.897±0.012 0.940±0.021 0.993±0.004

Relative gains - -36.8% -31.5% +0.016 +0.016 +0.099

In highly imbalanced datasets such as BBBP and ClinTox, the ROC-AUC score provides an overly
optimistic view of the model’s performance, as the false positive rate does not change significantly
with different thresholds in the presence of a large number of negative samples. To get a more
comprehensive assessment of the model’s performance on these datasets, we also present the PRC-
AUC and F1-scores in Section G.3. In contrast to the RF model trained on ECFP-4 fingerprints, which
significantly overfits to the majority class (negative labels), MPPH displays superior performance.
Its PRC-AUC and F1-score metrics particularly highlight MPPH’s proficiency in handling class
imbalance, notably in the ClinTox dataset. Figure 3 illustrates the combined aleatoric and epistemic
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uncertainty, as derived from SGLB, associated with regression predictions. Additional details on
quantifying uncertainty in property predictions from classification models can be found in G.4.

2
1
0
1
2
3
4
5

Li
po

ph
ili

ci
ty

 (l
og

D
)

(a) Lipophilicity

1.5

1.0

0.5

0.0

0.5

1.0

1.5

H
yd

ra
tio

n 
Fr

ee
 E

ne
rg

y 
(k

ca
l/m

ol
)

(b) FreeSolv

6

4

2

0

2

4

Aq
ue

ou
s 

So
lu

bi
lit

y 
(m

ol
/l)

(c) ESOL

Figure 3: The red curve signifies the mean prediction, and the surrounding blue band represents the total
uncertainty around the mean. The inference of our model appears to be effectively rational, as the congruity
between both the mean and its associated uncertainty provides an apt fit to the data.

In our ablation study, as detailed in Table 2, we demonstrate that incorporating domain-specific
features, specifically SE(3)-invariance and chirality, significantly improves our model’s performance
across various metrics. We explore the impact of single-parameter persistence, focusing on factors like
atomic mass, partial charge, bond type, and notably chirality, each influencing model effectiveness
uniquely. Our approach combines Betti vectorizations from these parameters, including chirality and
SE(3)-invariance, creating a holistic representation. This integration of orthogonal and complementary
data enhances the model’s ability to accurately depict molecular structures, thereby improving
predictive accuracy in a chemically meaningful manner. The inclusion of SE(3)-invariance, in
particular, aligns the model with the inherent symmetries of three-dimensional space, a key aspect for
modeling molecular interactions. This feature ensures consistent model predictions, independent of
the molecule’s spatial orientation or position.

Table 2: Comparative Analysis of SE(3)-Invariant MPPH, MPPH, and Single Parameter Persistent
Homology. This figure displays the performance contrasts among SE(3)-Invariant MPPH (depicted in the last
column), MPPH (represented in the penultimate column), and Single Parameter Persistent Homology. The
superior performance across different metrics and datasets is indicated in bold and highlighted. The juxtaposition
first provides the efficacy and robustness of multiparameter persistent homology, and then highlights the superior
performance of SE(3)-Invariant MPPH.

Dataset Metric Atomic Mass (AM) Partial Charge (PC) Bond Type (BT) Chirality AM+PC+BT All Params.

Lipophilicity RMSE ↓ 1.018 1.121 1.028 1.194 0.765 0.738
FreeSolv RMSE ↓ 0.542 0.427 1.107 0.773 0.378 0.354
ESOL RMSE ↓ 0.991 0.977 1.339 1.496 0.624 0.612

BACE ROC-AUC ↑ 0.833 0.852 0.840 0.802 0.885 0.897
BACE PRC-AUC ↑ 0.748 0.829 0.808 0.757 0.880 0.905
BACE F1 ↑ 0.682 0.762 0.828 0.778 0.800 0.815

BBBP ROC-AUC ↑ 0.876 0.828 0.910 0.810 0.928 0.940
BBBP PRC-AUC ↑ 0.956 0.923 0.975 0.920 0.978 0.987
BBBP F1 ↑ 0.924 0.901 0.921 0.890 0.920 0.936

ClinTox ROC-AUC ↑ 0.693 0.702 0.986 0.735 0.988 0.993
ClinTox PRC-AUC ↑ 0.318 0.182 0.896 0.294 0.900 0.923
ClinTox F1 ↑ 0.296 0.091 0.857 0.231 0.864 0.870

6 Conclusion

We have developed a novel method that employs multiparameter persistent homology for molecular
fingerprinting. This method adeptly captures tetrahedral chirality by combining SE(3)-invariance with
Vietoris-Rips persistent homology. This produces topological descriptors of molecules that depend
only on the relative atomic configurations, not on the absolute position/orientation of the molecule.
Paired with a Bayesian ensemble, our method estimates both epistemic and aleatoric uncertainties.
Our approach is backed by theoretical stability guarantees, and outperforms GNN variants on the
MoleculeNet benchmark datasets.
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Appendix
A Stereochemistry and Special Euclidean Geometry in the Context of

Molecular Property Prediction

In this paper, we explore the rigorous connection between stereochemistry and Special Euclidean ge-
ometry [SE(3)] in the context of molecular property prediction. We provide mathematical definitions,
lemmas, theorems, and proofs to elucidate the relationship between the 3D arrangement of atoms
in molecules and their properties. Our findings have significant implications for the development
of new SE(3)-based molecular representations and algorithms that can more effectively exploit the
3D geometric information of molecules, leading to improved prediction of their properties and
interactions. Stereochemistry is concerned with the study of molecules in 3D space. The spatial
arrangement of atoms in a molecule is known as its conformation. We give the definitions of some
key concepts in stereochemistry and Euclidean geometry in A.1.

A.1 Preliminaries

Definition A.1. Isomers are molecules with the same molecular formula but different arrangements
of atoms in space.

Definition A.2. Chirality is a property of a molecule that makes it non-superposable on its mirror
image.

Definition A.3. A molecule is a set of atoms G = a1, a2, . . . , an, where each atom ai has a unique
identifier and a position in 3D space denoted by the vector xi ∈ R3.

Definition A.4. A molecular conformation C is a set of positions x1,x2, . . . ,xn representing the
arrangement of atoms in a molecule M .

Definition A.5. Orthogonal Group, O(3), is the set of all 3× 3 orthogonal matrices, i.e., the set
of all real matrices A ∈ R3×3 that satisfy the condition AAT = ATA = I , where AT denotes the
transpose of A, and I is the 3× 3 identity matrix.

A represents linear transformations that preserve the lengths of vectors and the angles between them.
In the context of Euclidean transformations, elements of O(3) are used to represent rotations and
reflections in 3D space.

Definition A.6. Special Orthogonal Group, SO(3), is the set of all 3 × 3 orthogonal matrices
with determinant equal to 1, i.e., the set of all real matrices A ∈ R3×3 that satisfy the conditions
AAT = ATA = I and det(A) = 1.

SO(3) is a subgroup of the orthogonal group O(3), and represents the set of all proper rotations in
3D space, i.e., these transformations do not involve reflections.

Definition A.7. Euclidean transformations, E(3), are transformations that preserve distances in
3D space. They can be represented as a combination of a rotation matrix R ∈ SO(3), a translation
vector t ∈ R3, and a reflection matrix M ∈ O(3) \ SO(3).

Definition A.8. Special Euclidean group, SE(3), is a group of rigid transformations in 3D space,
which includes translations and rotations, and is defined as SE(3) = T (R, t)|R ∈ SO(3), t ∈ R3,
where SO(3) is the group of all rotation matrices R and t is a translation vector. Invariance under
SE(3) transformations means that a property doesn’t change under any rotation or translation of the
entire system in 3D space, but varies with reflection.

A.2 Stereochemistry and SE(3)

In this section, we establish the link between stereochemistry and SE(3) geometry by examining the
effect of rigid transformations on molecular conformations. We first present a corollary related to
molecular isomorphism and then prove a theorem that connects molecular chirality to the concept of
orientation preservation in SE(3) geometry.

Theorem A.1. The relative arrangement of atoms in a molecule G is preserved under any rigid
transformation T (R, t) ∈ SE(3).
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1.0Figure 4: Vietoris-Rips Filtration and Topological Evolution of Cytosine Molecule. The subplots
illustrate the gradual connection of the molecule’s atoms based on the geodesic distance between them. Starting with all vertices (atoms)
disconnected, each subsequent plot connects atoms within an increasing geodesic distance. The atoms are color-coded based on their atomic
number: Hydrogen (blue), Carbon (black), Nitrogen (green), and Oxygen (red). This visualization reveals the topological changes in the
molecule’s structure.

Proof. Let C = x1,x2, . . . ,xn be a molecular conformation of the molecule G. For any two
atoms ai and aj in G, their distance dij is given by the Euclidean distance between their positions,
dij = |xi − xj |. After applying the rigid transformation T (R, t), the new positions of the atoms
are x′

i = Rxi + t and x′
j = Rxjt. The distance between the transformed atom positions is

d′ij = |x′
i − x′

j | = |Rxi + t − (Rxj + t)| = |R(xi − xj)|. Since R is a rotation matrix from
the group SO(3), it preserves distances, and we have |R(xi − xj)| = |xi − xj |. Thus, d′ij = dij ,
and the relative arrangement of atoms in the molecule is preserved under the rigid transformation
T (R, t).

One direct application of the link between stereochemistry and SE(3) geometry is the development of
SE(3)-invariant molecular representations. These representations preserve the geometric information
of the molecule while remaining invariant under SE(3) transformations, which can improve the
performance of machine learning models for molecular property prediction.

A.3 Implications of SE(3)-Invariance for Molecular Property Prediction

The interplay between stereochemistry and SE(3) geometry provides a theoretical foundation for the
development of novel molecular representations and algorithms rooted in SE(3) geometry. This also
provides a platform for designing innovative algorithms for molecular property prediction. Firstly,
this connection suggests that embedding SE(3) geometric information into machine learning models
can enhance their predictive capabilities regarding molecular properties. For instance, SE(3)-based
graph neural networks can be employed to learn meaningful embeddings of molecules, taking into
account their three-dimensional structure and chirality. Secondly, optimization algorithms that make
use of SE(3) geometry can be engineered to explore for optimal molecular conformations or to align
molecules in a way that acknowledges their stereochemical properties.

B Persistent Homology

Figure 5: Persistence Diagram of
Vietoris-Rips (VR) Filtration for Cyto-
sine.

In this section, we delve deeper into the concept of single pa-
rameter persistent homology. Broadly, the persistent homology
(PH) procedure involves a three-step process.

The first phase, known as the graph decomposition stage, fa-
cilitates the incorporation of domain-specific information into
the process. This procedure structures the data by creating a
filtration sequence of simplicial complexes.

Subsequently, in the persistence diagrams stage, the mechanism
records the emergence and disappearance (birth/death times)
of topological features throughout the filtration sequence. This
step meticulously documents the chronological evolution of these topological attributes.

As an example in Figure 5, we capture the birth and death of topological features (H0 and H1) as
the filtration progresses. Each dot represents a feature, with the x-coordinate denoting the ’birth’
time (when the feature first appears), and the y-coordinate indicating the ’death’ time (when the
feature disappears). The H0 points (connected components) typically appear along the diagonal,
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reflecting that atoms (vertices) are born at the start of the filtration and die as they merge with other
components. Conversely, H1 points (1-dimensional holes) lie above the diagonal, arising when a
cycle is formed and dying when it’s filled in. The multiplicity of H0 and H1 points represents the
number of connected components and holes, respectively, at different stages of the VR-filtration,
providing insight into the molecule’s topological complexity. In this example the multiplicity of H0

is 12 and H1 is 1.

The final stage involves vectorization or fingerprinting. In this step, the records generated in the
persistence diagrams stage are transformed into a function or vector. These vectors are then ready for
integration into appropriate machine learning models.

In essence, this three-step process transforms complex topological data into a simplified, machine-
readable form, thereby enabling more effective analysis and predictions.

B.1 Vietoris-Rips Filtration

Persistent Homology (PH) is a powerful tool for the chronological documentation of the topological
transformations inherent in a sequence. The essence of this process lies in the assembly of the
sequence, denoted as Ĝ1 ⊆ . . . ⊆ ĜN . Herein, we leverage domain-specific data, such as atomic
mass, partial charge, bond type and chirality, to enrich the PH sequence. The techniques employed
in the creation of this PH sequence, also known as filtration methods, are manifold. However, we
will primarily concentrate on two prevalent techniques: the Sublevel/Superlevel filtration and the
Vietoris-Rips (VR) filtration.

Initiating with an unweighted graph, or compound, G = (V, E) - where V = v1, . . . , vm represents
the nodes (atoms) and E = ers symbolizes the edges (bonds) - the frequently used approach deploys
a filtration function f : V → R. This function is coupled with a set of thresholds I = αi that follow
the rule α1 = minv∈V f(v) < α2 < . . . < αN = maxv∈V f(v).

For each αi in I , we identify a subset Vi that encompasses the nodes where the function value is less
than or equal to the threshold, mathematically expressed as Vi = vr ∈ V | f(vr) ≤ αi. The function
f may stand for a variety of domain-specific factors - from atomic mass and electron affinity to more
abstract concepts like bond type and ionization energy. In addition, we could employ graph-based
functions like node degree or betweenness centrality.

Following this, we conceive a series of nested subgraphs G1 ⊂ G2 ⊂ . . . ⊂ GN = G that are induced
by the subsets Vi, such that Gi = (Vi, Ei) where Ei = ers ∈ E | vr, vs ∈ Vi. To further the filtration
process, each subgraph Gi is then affiliated with a simplicial complex Ĝi.
One of the popular methods to do this is by assigning a k-simplex to every complete (k+1)-subgraph
in G. This method is known as the Sublevel filtration with clique complexes. Similarly, a Superlevel
filtration can be obtained by changing the condition from f(vi) ≤ αi to f(vi) ≥ αi.

For a graph equipped with weights (akin to bond strengths), the sublevel filtration on these weights
would serve to encapsulate domain-specific information implicit in these weights. Although the
Sublevel/Superlevel filtration with clique complexes is widely used due to its computational efficiency,
our focus in this paper would be the more intricate Vietoris-Rips (VR) filtration, a distance-based
method.

The VR filtration technique, albeit more computationally demanding, offers an in-depth understanding
of the innate characteristics of a graph. Starting with a given graph G = (V, E), we calculate the
distance d(vr, vs) = drs between each pair of nodes, defined as the minimum number of edges
needed to travel from vr to vs in G.

Subsequently, we construct a sequence of graphs, Γn = (V, En), where En = ers | drs ≤ n, which
signifies the addition of an edge for every pair of vertices with a distance less than or equal to n in
G. Then, we build the simplicial complex ∆n = Γ̂n - the clique complex of Γn - which results in a
filtration ∆0 ⊂ ∆1 ⊂ · · · ⊂ ∆K . Here, K represents the maximum distance between any two nodes
in the graph G.

In essence, through these filtration techniques of PH, we can observe and comprehend the complex
molecular structures in computational chemistry, thereby enhancing our ability to manipulate and
exploit these structures for domain-specific applications.
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B.2 Persistence Diagrams

The next phase in the Persistent Homology (PH) process involves the construction of Persis-
tence Diagrams (PDs) from the filtration sequence, denoted as ∆0 ⊂ ∆1 ⊂ · · · ⊂ ∆K . As
expounded earlier, PDs are an aggregation of 2-tuples, denoting the birth and death times of
topological characteristics surfacing in the filtration, mathematically formulated as PDk(G) =
(bσ, dσ) | σ ∈ Hk(∆i) for bσ ≤ i < dσ . This is a conventional step and numerous software libraries
exist to simplify this task.

The subsequent phase involves the examination of an essential family of Stable Persistence (SP)
vectorizations known as Persistence Curves. This term encompasses a variety of SP vectorizations
like Betti Curves, Life Entropy, Landscapes, and others. Given that Persistence Curves generally
yield a single-variable function, they can be expressed as 1D-vectors using an appropriate mesh
size depending on the number of thresholds employed. The Multidimensional Persistence (MP)
Fingerprint framework uses Betti Curves, one of the most commonly used Persistence Curves, to
create multidimensional vectorizations. We will now elaborate on Betti Curves.

Betti curves offer a simplistic approach to SP vectorization as they quantify the presence of topological
features at a given threshold interval. Specifically, βk(∆) signifies the total number of k-dimensional
topological features in the simplicial complex ∆, defined as βk(∆) = rank(Hk(∆)). Subsequently,
βk(G) : [ϵ1, ϵq+1] → R is a step function defined as βk(G)(t) = rank(Hk(Ĝi)) for t ∈ [ϵi, ϵi+1),
where {ϵi}q1 represents the thresholds for the filtration used.

Considering that this is a step function where the function remains constant for each interval [ϵi, ϵi+1),
it can be accurately represented by a vector of size 1× q as β⃗(G) = [β(1) β(2) β(3) . . . β(q)].

With the threshold set {βj}nj=1 for the second filtration function g, β⃗i = β⃗(PD(Gi, g)) will be a
vector of size 1 × n. This means that for each 1 ≤ i ≤ m, Mi

β = β⃗i and the MP Betti Summary
Mβ(G) would be a 2D-vector (matrix) of size m× n. Specifically, each entry Mβ = [mij ] is simply
the Betti number of the corresponding clique complex in the bifiltration Ĝij , i.e., mij = β(Ĝij). This
matrix Mβ , also referred to as the bigraded Betti numbers in the literature, offers computational
advantages over other vectorizations, making it a preferred choice for many applications.

C Multiparameter Persistent Homology for Compound Fingerprinting

Graph Decomposition: Given an unweighted graph or compound G = (V, E), where V =
v1, . . . , vm denotes nodes (atoms) and E = ers denotes edges (bonds), we decompose G into
subgraphs using a function f : V → R and threshold sets I = {αi}mi=1. Here, α1 = minv∈V f(v) <
α2 < . . . < αm = maxv∈V f(v). We then define Vi = vr ∈ V | f(vr) ≤ αi, the sublevel sets for f ,
creating a hierarchy V1 ⊂ V2 ⊂ · · · ⊂ Vm = V among nodes relative to function f , resulting in a
nested sequence of subgraphs (Figure 2). In molecular machine learning, f can represent properties
like atomic mass, partial charge, bond type, electron affinity, or ionization energy. Alternatively, f
can be graph-induced functions like node degree or betweenness.

Constructing Vietoris-Rips (VR) Simplicial Complexes: The first step involves calculating the
shortest path distances (geodesic distances) between each node in the graph G, denoted as d(vr, vs) =
drs. With K = max drs, we define a VR-filtration for each vertex set Vi0 , yielding a sequence
∆i00 ⊆ ∆i01 ⊆ . . . ⊆ ∆i0K (Figure 6). This results in m × (K + 1) simplicial complexes ∆ij ,
forming the bipersistence module.

The bipersistence module can be viewed with Vi sequence increasing in the vertical direction, and
induced VR-complexes ∆ij in the horizontal direction. The slicing direction is fixed horizontally
(VR-direction), from which persistence diagrams are derived.

A small graph G serves as a toy example in Figure 6. The sublevel filtration (vertical direction) uses
the valency function, and each row develops a VR-filtration of the subgraph based on graph distances
between nodes. With each subsequent column, edges are added based on nodes with an increasing
geodesic distance, resulting in complete graphs in the final column.

Upon bifiltration completion, a single filtration Vi0 = ∆i00 ⊆ ∆i01 ⊆ . . . ⊆ ∆i0K is obtained for
each 1 ≤ i0 ≤ m in the horizontal direction. Each VR filtration threshold level provides a persistence
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Figure 6: Vietoris-Rips (VR) Simplicial Filtrations. The illustration demonstrates a bifiltration of the graph G located
in the top left corner, integrating a vertical sublevel filtration according to node degree (with valency thresholds of 1, 2, 3, 4) and a horizontal
Vietoris-Rips (VR) filtration based on geodesic length. The columns represent varying geodesic lengths: black edges for distance ≤ 1, gray
edges for distance ≤ 2, red edges for distance ≤ 3, and blue edges for distance ≤ 4. The color of the nodes corresponds to their valency.

diagram PD(Vi0), yielding m persistence diagrams PD(Vi). Applying a vectorization, φ, to each
persistence diagram results in m row vectors of fixed size r, i.e., φ⃗i = φ(PD(Vi)). This generates a
2D-vector Mφ of size m× (K + 1).

Persistence Diagrams: Following VR filtration, we monitor the evolution of topological features
in the simplicial complexes sequence {Ĝi}Ni=1. These k-dimensional topological features could
represent connected components (0-dimension), loops (1-dimension), or voids (2-dimension). Each k-
dimensional topological feature σ is associated with a unique pair (bσ, dσ), where 1 ≤ bσ < dσ ≤ N
represents the first appearance and disappearance of σ in the filtration sequence, respectively. This
pair is termed the birth time and death time of σ, with dσ−bσ as its lifespan or persistence. Persistence
diagrams capture these birth and death times of topological features. For any 0 ≤ k ≤ D (with D
as the highest dimension in the simplicial complex ĜN ), the kth persistence diagram is defined as
PDk(G) = (bσ, dσ) | σ ∈ Hk(Ĝi) for bσ ≤ i < dσ. Here, Hk(Ĝi) denotes the kth homology group
of Ĝi, which retains information about the k-holes in the simplicial complex Ĝi. Our implementation
utilizes 0 and 1 dimensional homology features, i.e., PD0(G) and PD1(G).
Persistence Diagram Vectorizations (Fingerprinting): While persistent homology reveals con-
cealed patterns in data via persistence diagrams (sets of points in R2), these are not inherently suitable
for statistical or machine learning applications. Persistence diagrams are commonly transformed
into a format amenable to machine learning through kernels [37] or vectorizations [31]. This process
essentially converts persistence diagrams into data fingerprints for machine learning usage. In our
methodology, we adopt Betti curve vectorization [11] to translate the information encapsulated in
persistent homology, represented as persistence diagrams, into a feature vector.

D Stability of Multiparameter Persistent Homology

A specific persistence diagram vectorization, denoted as φ, can be thought of as a mapping from
the space of persistence diagrams to the space of functions. The concept of stability refers to the
smoothness of this transformation. Essentially, it assesses whether a slight perturbation in the
persistence diagram results in a significant change in the vectorization. To make this assessment
meaningful, it is necessary to establish a metric in the space of persistence diagrams that defines
what constitutes a “slight perturbation”. The most commonly used metric for this purpose is the
Wasserstein distance, also known as the matching distance, which is defined as follows.

Let PD(X+) and PD(X−) be persistence diagrams two datasets X+ and X− (We omit the dimen-
sions in PDs). Let PD(X+) = {q+j } ∪∆+ and PD(X−) = {q−l } ∪∆− where ∆± represents the
diagonal (representing trivial cycles) with infinite multiplicity. Here, q+j = (b+j , d

+
j ) ∈ PD(X+)

represents the birth and death times of a topological feature σj in X+. Let ϕ : PD(X+) → PD(X−)
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represent a bijection (matching). With the existence of the diagonal ∆± in both sides, we make sure
the existence of these bijections even if the cardinalities |{q+j }| and |{q−l }| are different.

Definition D.1. Let PD(X±) be persistence diagrams of the datasets X±, and M = {ϕ} represent
the space of matchings as described above. Then, the pth Wasserstein distance Wp defined as

Wp(PD(X+), PD(X−)) = min
ϕ∈M

(∑
j

∥q+j − ϕ(q+j )∥
p
∞

) 1
p

, p ∈ Z+.

Now, let’s define the stability of vectorizations. A vectorization can be viewed as a mapping from the
space of persistence diagrams, P, to the space of functions or vectors Y, for example, Ψ : P → Y.
In particular, if Ψ is the persistence landscape, then Y = C([0,K],R) and if Ψ is the Betti summary,
then Y = Rm. The stability of the vectorization Ψ refers to the continuity of Ψ as a mapping. Let
d(., .) be a suitable metric on the space of vectorizations. The stability of Ψ can then be defined as
follows:

Definition D.2. Let Ψ : P → Y be a vectorization for single persistence diagrams. Let Wp,d be
the metrics on P and Y respectively as described above. Let ψ± = Ψ(PD(X±)) ∈ Y. Then, Ψ is
called stable if

d(ψ+, ψ−) ≤ C · WpΨ(PD(X+), PD(X−))

In this context, the constant C > 0 is independent of X±. The stability inequality states that the
changes in the vectorizations are limited by the changes in persistence diagrams. The proximity of two
persistence diagrams is reflected in the proximity of their respective vectorizations. A vectorization φ
is referred to as stable if it satisfies this stability inequality for a given d and Wp [6].

Now, we are ready to show the stability of MPPH Fingerprints. Consider two graphs, G+ = (V+, E+)
and G− = (V−, E−). A stable single parameter persistence vectorization is represented by φ, and it
satisfies the stability equation,

d(φ(PD(G+)), φ(PD(G−))) ≤ Cφ · Wpφ(PD(G+), PD(G−)) (2)

for some 1 ≤ pφ ≤ ∞. Here, φ(G±) represent the corresponding vectorizations for PD(G±) and
Wp represents Wasserstein-p distance as defined in Definition 4.1.

Now, let f : V± → R be a filtration function with threshold set {αi}mi=1. Then, define the sublevel
vertex sets V±

i = {vr ∈ V± | f(vr) ≤ αi}. For each V±
i , construct the induced VR-filtration

∆±
i0 ⊂ ∆±

i1 ⊂ · · · ⊂ ∆±
iK as before. For each 1 ≤ i0 ≤ m, we will have persistence diagram

PD(V±
i0
) of the filtration {∆±

i0k
}.

The induced matching distance between multiple persistence diagrams is defined as follows,

Dp,f (G+,G−) =

m∑
i=1

Wp(PD(V+
i ), PD(V−

i )). (3)

Now, we define the distance between induced MPPH Fingerprints as,

Df (Mφ(G+),Mφ(G−)) =

m∑
i=1

d(φ(PD(V+
i )), φ(PD(V−

i ))) (4)

Theorem D.1. Let φ be a stable single parameter persistence vectorization. Then, the induced
MPPH Fingerprint Mφ is also stable, i.e., with the notation above, there exists Ĉφ > 0 such that for
any pair of graphs G+ and G−, we have the following inequality.

D(Mφ(G+),Mφ(G−)) ≤ Ĉφ ·Dpφ({PD(G+)}, {PD(G−)})

Proof: Given φ’s stability by Equation 2, for every 1 ≤ i ≤ m, a certain constant Cφ > 0
makes the following true: d(φ(PD(V+

i )), φ(PD(V+
i ))) ≤ Cφ · Wpφ(PD(V+

i ), PD(V−
i )), where

Wpφ denotes the Wasserstein-p distance. With this, we can simplify the distance between MPPH
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Fingerprints of two graphs as:

D(Mφ(G+),Mφ(G−)) =

m∑
i=1

d(φ(PD(V+
i )), φ(PD(V−

i )))

≤
m∑
i=1

Cφ · Wpφ(PD(V+
i ), PD(V−

i ))

= Cφ

m∑
i=1

Wpφ(PD(V+
i ), PD(V−

i ))

= Cφ ·Dpφ(G+,G−)

where the first and last equalities are due to Equation 3 and Equation 4 respectively, while the
inequality follows from Equation 2, which is valid for any i.

E Computational Complexity of MPPH Fingerprints

The computational complexity (CC) of producing the MPPH Fingerprint, denoted as Md
ψ, hinges

on two factors: the vectorization method, symbolized by ψ, and the number of filtration functions,
represented by d. For single parameter persistence, the worst case CC is O(N 3), where N is the
count of k-simplices [62]. This complexity arises from the cubic time complexity of Gaussian
elimination, employed to simplify the boundary matrix that encodes the simplicial complex [17].
However, multiparameter persistence is inherently more complex. The CC for the MPPH Fingerprint
is O(d · r · N 3 · Cψ(m)). Here, r stands for the resolution of the multipersistence grid, and Cψ(m)
indicates the CC of the chosen vectorization technique, with m being the number of barcodes in our
k-dimensional persistence diagram. For instance, if we use the persistence landscape as ψ, Cψ(m)
equals m2. Hence, for a multiparameter persistence landscape with four filtration functions, the
CC would be O(4 · r · N 3 ·m2). However, Betti curve vectorization simplifies the computation. It
bypasses the need for persistence diagrams and concentrates on calculating the rank of homology
groups in the multiparameter persistence module. Utilizing minimal representations significantly
reduces the CC for Betti vectorization. To further optimize the process, we employ parallel processing
across an Intel Core i7 CPU’s eight cores, supported by 100 GB of RAM. More specifics regarding
the computational time for MPPH Fingerprint generation from different datasets are presented in G.2.
Compared to graph-based models like those identifying common molecular fragments or motifs,
MPPH requires fewer computational resources during the training phase.

F Uncertainty Quantification

In drug discovery and materials science, accurate prediction of molecular properties is crucial for
decision-making processes, and gauging the level of uncertainty provides valuable information about
the reliability and confidence of the predictions. This enables researchers to make well-informed
decisions, assess risks, efficiently allocate resources, and improve model performance. For instance,
in the context of drug discovery, if a candidate molecule exhibits high uncertainty in its predicted
bioactivity, it may warrant additional experimental validation before proceeding to expensive and time-
intensive developmental stages. The benefits of incorporating uncertainty estimation in molecular
property prediction include:

1. Model evaluation and selection: Uncertainty estimation can help assess the performance
of different models/algorithms by comparing their uncertainties. A model with lower
uncertainty in its predictions is generally preferred, as it indicates higher confidence in the
predicted properties.

2. Active learning and data acquisition: Uncertainty estimation can guide active learning
strategies by identifying the most informative data points to acquire next. By prioritizing data
points with high uncertainty, researchers can efficiently allocate resources to experiments
that are expected to provide the most significant improvements in model performance.

3. Interpretability and understanding of model limitations: Uncertainty estimation can help
researchers understand the limitations of their models, such as areas where the model might
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not generalize well due to inherent class overlap or measurement noise (aleatoric uncer-
tainty) or where it lacks sufficient training data (episdemic uncertainty). This understanding
can lead to the development of better models or the identification of areas that require more
focused experimental data collection.

F.1 Uncertainty Quantification via SGLB Ensembles

The gradient boosting algorithm [21] iteratively builds a model F to minimize the empirical risk
L(F |D), where D represents the dataset and L is a loss function. This model is updated at each step
t, given by:

F (t)(x) = F (t−1)(x) + ηh(t)(x) (5)

In this equation, F (t−1) denotes the model from the last step, h(t)(x) is a weak learner selected from
a function family H, and η symbolizes the learning rate. The weak learner h(t) is typically chosen to
approximate the negative gradient −g(t)(x, y), as per:

h(t) = argmin
h∈H

ED
[
−g(t)(x, y)− h(x)

]2
(6)

When considering an ensemble of probabilistic models P (y|x; θ(m))
M

m=1 drawn from the posterior
p(θ|D), each model P (y|x, θ(m)) offers a unique estimate of data uncertainty, signified by the
entropy of its predictive distribution. Knowledge uncertainty is expressed as the level of variance, or
"disagreement", among models in the ensemble.

Exact Bayesian inference is often unfeasible, leading to the use of an explicit or implicit approximation
q(θ) to the true posterior p(θ|D). While various approximations have been investigated for neural
network models, the exploration of Bayesian inference for gradient-boosted trees remains less
explored.

Considering p(θ|D), the predictive posterior of the ensemble is calculated by taking the expectation
concerning the models in the ensemble:

P (y|x,D) = Ep(θ|D)P (y|x; θ) ≈
1

M

M∑
m=1

P (y|x; θ(m)), θ(m) ∼ p(θ|D) (7)

The entropy of the predictive posterior estimates total uncertainty:

H[P (y|x,D)] = EP (y|x,D) − lnP (y|x,D) (8)

Total uncertainty emerges from both data uncertainty and knowledge uncertainty. In applications
like active learning and out-of-domain detection, it is beneficial to estimate knowledge uncertainty
separately. The sources of uncertainty can be decomposed by considering the mutual information
between the parameters θ and the prediction y:

I[y, θ|x,D] = H[P (y|x,D)]− Ep(θ|D)H[P (y|x; θ)] (9)

where I[y, θ|x,D] represents knowledge uncertainty, H[P (y|x,D)] denotes total uncertainty, and
Ep(θ|D)H[P (y|x; θ)] signifies expected data uncertainty.

This can be approximated by:

≈ H

[
1

M

M∑
m=1

P (y|x; θ(m))

]
− 1

M

M∑
m=1

H[P (y|x; θ(m))] (10)

In the case of ensembles of probabilistic regression models p(y|x; θ(m))
M

m=1 over a continuous-valued
target y ∈ R, tractable estimates of the entropy of the predictive posterior, and consequently, mutual
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information, are not achievable. Here, uncertainty estimates can be alternatively derived using the
law of total variance:

Vp(y|x,D)[y] = Vp(θ|D)Ep(y|x,θ)[y] + Ep(θ|D)Vp(y|x,θ)[y] (11)

where Vp(y|x,D)[y] signifies total uncertainty, Vp(θ|D)Ep(y|x, θ)[y] denotes knowledge uncertainty,
and Ep(θ|D)V p(y|x, θ)[y] symbolizes expected data uncertainty.

Knowledge uncertainty can be estimated by evaluating an ensemble of models p(y|x; θ(m))
M

m=1
drawn from the posterior p(θ|D). The degree of variation or "disagreement" among the models serves
as an estimate of knowledge uncertainty. One method to create an ensemble is to consider multiple
independent models produced via Stochastic Gradient Langevin Boosting (SGLB). SGLB merges
gradient boosting with stochastic gradient Langevin dynamics to achieve convergence to the global
optimum even for non-convex loss functions. Initially, Gaussian noise is directly injected into the
gradients, replacing the earlier weak learner equation with:

h(t) = argmin
h∈H

ED
[
−g(t)(x, y)− h(x, ϕ) + ν

]2
, ν ∼ N

(
0,

2

βη
I|D|

)
(12)

Here, β is the inverse diffusion temperature and I|D| is an identity matrix. This random noise ν aids
in the exploration of the solution space to find the global optimum, and the diffusion temperature
manages the level of exploration. ϕ denotes a set of parameters in the model. Specifically, it’s used
in the weak learner h(t)(x, ϕ(t)) to denote the parameters at iteration t. This indicates that the weak
learner at each iteration can be parameterized differently, enabling the model to learn and adapt over
time.

Secondly, the previous update equation is modified as:

F (t)(x) = (1γη)F (t−1)(x) + ηh(t)(x, ϕ(t)) (13)

In this equation, γ represents a regularization parameter. This alteration introduces a regularization
term that moderates the influence of the preceding model F (t−1)(x) on the present model F (t)(x),
and the weak learner h(t)(x, ϕ(t)) is now contingent on the parameters ϕ(t). These modifications in
SGLB offer a more resilient and globally optimal solution compared to the conventional Gradient
Boosting.

F.2 Macro Setup

We employed the CatBoost gradient boosting library to construct distinct classification and regression
models. The classification model was configured with 1,000 iterations, a maximum tree depth
of 6, a learning rate of 0.05, and used the Logloss loss function for binary classification. For
reproducibility, we set the random seed to 0. The regression model was similarly configured, with
the RMSEWithUncertainty as the loss function. Both models’ parameter settings were meticulously
optimized using the Optuna hyperparameter optimization framework [3]. This facilitated a thorough
exploration of the hyperparameter space, enabling us to find the optimal combination for our models.

G Further Experimental Details

G.1 Dataset Statistics

Lipophilicity1 is a crucial characteristic of drug molecules that impacts both permeability through
membranes and solubility. The dataset, sourced from the ChEMBL database, contains experimental
results for the octanol/water distribution coefficient (logD at pH 7.4) of 4200 compounds.

FreeSolv2 is a compilation of both calculated and experimentally determined hydration free energies
for 642 small molecules in water.

1https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/Lipophilicity.csv:
2https://deepchemdata.s3.us-west-1.amazonaws.com/datasets/freesolv.csv.gz:
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ESOL3 is a collection of 1128 chemical compounds and their corresponding water solubility values.

BACE4 offers quantitative IC50 values and qualitative binding results for 1513 human β-secretase 1
(BACE-1) inhibitors. Among these inhibitors, 691 are classified as active, while 822 are inactive.

BBBP5 contains binary labels for 2050 compounds, aims to model and predict blood-brain barrier
(BBB) permeability, a crucial factor in developing drugs targeting the central nervous system. Among
these compounds, 1567 are capable of penetrating the blood-brain barrier, while 483 are not.

ClinTox6 contains 1479 drugs, each annotated with two binary labels indicating clinical trial toxicity
prediction and FDA approval status. Among these drugs, 1367 have displayed no evidence of toxicity
in clinical trials, while 112 have been identified as toxic.

G.2 Computation Time

The clock time performance for extracting Vietoris-Rips persistent homology features can be opti-
mized by distributing the process across multiple CPU cores. We utilize parallelization techniques
and allocate computational resources to 8 cores of a single Intel Core i7 CPU to improve extraction
speed. Efficient algorithms, optimized data structures, and specialized libraries can further enhance
the performance of extracting Vietoris-Rips persistent homology features.

Table 3: The clock time performance of extracting multiparameter Vietoris-Rips persistent homology features.
Dataset Atomic Mass Partial Charge Bond Type Chirality All Parameters

Lipophilicity 55 sec 42 sec 17 sec 13 sec 127 sec
FreeSolv 7 sec 7 sec 2 sec 2 sec 18 sec
ESOL 11 sec 11 sec 4 sec 3 sec 29 sec
BACE 20 sec 15 sec 6 sec 5 sec 46 sec
BBBP 27 sec 21 sec 8 sec 6 sec 62 sec
ClinTox 19 sec 15 sec 6 sec 5 sec 45 sec

G.3 Further Evaluations on Imbalanced Datasets

PRC-AUC is the area under the curve of Precision(q) vs Recall(q) for q ∈ [0, 1], where Precision(q)
and Recall(q) are defined as follows:

Precision(q) =
TP(q)

TP(q) + FP(q)
and Recall(q) =

TP(q)
TP(q) + FN(q)

where TP(q), FP(q), FN(q) are the weights of the true positive, false positive, and false negative
samples, respectively.

Let’s denote pi as the predicted probability that the ith instance belongs to the positive class. The
actual class of this instance is represented by ci. The weight of each instance, potentially used for
differential weighting during PRC-AUC computation, is represented by wi. In the simplest scenario
we employ, all weights are set equal to 1, which signifies that each instance contributes equally to
the computation. For a binary classification model, the PRC-AUC calculation can be expressed as
TP (q) =

∑
i wi[pi > q]ci. For a multi-classification model, we define positive samples as those

belonging to class 0, with all others being negative. The true positive rate in this scenario is expressed
as TP (q) =

∑
i wi[pi0 > q][ci = 0].

The F1 score is the harmonic mean of precision and recall,

F1 = 2× Precision × Recall
Precision + Recall

The F1 score balances the trade-off between precision and recall, especially in cases where the data
suffer from class imbalance. This is highly relevant in our datasets: BACE, BBBP, and ClinTox.

3https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/delaney-processed.csv
4https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/bace.csv
5https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/BBBP.csv
6https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/clintox.csv.gz
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Figure 7: Classification Performance on Imbalanced Datasets.
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Figure 8: Model Predictions and Uncertainty Visualization. This figure displays the model’s prediction
results (represented by red circle markers), total uncertainty (encompassing both epistemic and aleatoric
uncertainty, illustrated by vertical bars), and the actual labels (denoted by blue ’X’ marks).

Figure 7 presents the PR curves, PRC-AUC scores, and F1 scores for three imbalanced datasets:
BACE, BBBP, and ClinTox. The PR curves provide a visual representation of the trade-off between
precision and recall for each model at various threshold settings. The PRC-AUC scores offer a single-
value summary of the models’ performances across all thresholds, with a higher score indicating a
better model. The F1 scores are the harmonic mean of precision and recall, providing a balanced
measure of model performance, especially critical for these imbalanced datasets. The results illustrate
our models’ ability to handle imbalance effectively, thus facilitating reliable predictions in real-world
scenarios where data imbalance is prevalent.

G.4 Further Evaluations on Uncertainty Quantification

Figure 8 illustrates the uncertainty ranges associated with misclassified samples and their patterns
within highly imbalanced datasets, specifically BBBP and ClinTox. In the case of misclassified
samples, the uncertainty bars are consistently broad, highlighting the model’s awareness of its
incorrect predictions. Furthermore, a pronounced disparity is observed in the extent of uncertainty
between the samples of the minority and majority classes. In particular, samples from the minority
class exhibit substantially larger uncertainty compared to those from the majority class. This pattern
is predominantly driven by epistemic (data) uncertainty, a consequence of data sparsity inherent in
minority class samples. The dominance of epistemic uncertainty in these scenarios is a clear testament
to the efficacy of the SGLB model in providing reliable uncertainty quantification, especially in the
challenging setting of imbalanced datasets.

H Societal Impact and Limitations

H.1 Social Impact

The ability to predict molecular properties through computational methods has vast societal im-
plications in drug discovery. Accurate molecular property prediction can expedite the process of
finding effective and safe drugs, consequently saving lives and reducing healthcare costs. It enables
researchers to anticipate how a potential drug will interact with its target, forecast its possible side
effects, and predict its pharmacokinetic (often summarized by the ADME properties of a drug: Ab-
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sorption, Distribution, Metabolism, and Excretion) and pharmacodynamic (the relationship between
drug concentrations/dose and pharmacologic or toxicologic responses) properties. In this context, the
relevance of molecular property prediction for in silico experiments and high throughput screening is
significant. In silico experiments allow researchers to perform virtual simulations to predict how a
drug might perform in a biological system, substantially reducing the time and cost associated with
physical experiments. They also facilitate high throughput screening, where thousands of potential
drugs can be tested simultaneously for a specific property, substantially increasing the efficiency of
drug discovery. Moreover, uncertainty quantification in these predictions is crucial. It provides a
measure of confidence in the predictions, informing researchers about the reliability of their models
and assisting in risk assessment. This level of transparency is vital in making informed decisions
about further investigations and resources allocation.

H.2 Limitations

Our model’s computational characteristics, detailed in Section E, showcase its adaptability and
potential scalability for large libraries. However, a primary limitation arises with the computation
time of multiparameter persistent homology fingerprints, particularly when tackling ultra-large scale
compound libraries (comprising millions to billions of compounds). This issue emphasizes the
necessity of optimizing the allocation of computational resources for such expansive datasets.

To mitigate this limitation, additional CPU cores on a High-Performance Computing (HPC) platform
can be used to parallelize the most computationally intensive operations, such as VR-filtration.
Moreover, optimization of array operations (e.g., numpy) is achievable via the joblib library, further
enhancing the model’s computational efficiency.

When contrasted with alternatives, our model’s performance is especially commendable for smaller
scale compound libraries. It significantly outperforms variants of MPNNs in terms of accuracy
as demonstrated in Table 1. Additionally, multiparameter persistent homology generally requires
fewer computational resources during training than current graph-based models, which encode a
compound by mining common molecular fragments or motifs, as discussed in [33]. For instance,
training a motif-based Graph Neural Network (GNN) on the GuacaMol dataset, containing roughly
1.5M drug-like molecules, necessitates about 130 GPU hours [44]. We show the execution time of
our computation pipeline in Table 3, when feature extraction tasks are distributed across 8 cores of a
single Intel Core i7 CPU.

In conclusion, despite computational challenges when dealing with larger scale libraries, our model
provides robust, efficient solutions, particularly for smaller scale compound libraries, reinforcing its
value in computational chemistry and drug discovery.
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