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Abstract

Statistical significance testing is used in nat-
ural language processing (NLP) to determine
whether the results of a study or experiment are
likely to be due to chance or if they reflect a
genuine relationship. A key step in significance
testing is the estimation of confidence interval
which is a function of sample variance. Sample
variance calculation is straightforward when
evaluating against ground truth. However, in
many cases, a metric model is often used for
evaluation. For example, to compare toxicity
of two large language models, a toxicity classi-
fier is used for evaluation. Existing works usu-
ally do not consider the variance change due to
metric model errors, which can lead to wrong
conclusions. In this work, we establish the
mathematical foundation of significance test-
ing for model-based metrics. With experiments
on public benchmark datasets and a produc-
tion system, we show that considering metric
model errors to calculate sample variances for
model-based metrics changes the conclusions
in certain experiments.

1 Introduction
In the field of natural language processing (NLP),
continuous progress hinges upon the development
of novel techniques that outperform existing ones.
However, accurately assessing the effectiveness
of these new techniques requires a comprehensive
evaluation framework. Model evaluation serves as
the foundation for assessing the performance and
impact of NLP advancements. Significance testing
is a crucial tool in the evaluation process, enabling
us to derive accurate conclusions. It allows us to
determine whether the obtained evaluation results
hold significance or are merely coincidental.

As the cost of human annotation for evaluating
models using deterministic metrics is substantial,
there is a growing trend towards utilizing model-
based metrics for evaluation purposes. Model-
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based metrics evaluate the outputs of an NLP
model using another machine learning model such
as using toxicity classifier to evaluate the toxicity
of the generated texts by a text generation model,
while deterministic metrics evaluate the outputs of
a NLP model using annotated ground truth labels.In
significance testing, computing the confidence in-
terval plays a pivotal role in reaching precise con-
clusions. The computation of this interval relies on
the sample variance, which differs depending on
whether deterministic metrics or model-based met-
rics are used. In the case of deterministic metrics,
the sample variance corresponds to the variance of
the collected samples. However, for model-based
metrics, where results are predicted by machine
learning models, the sample variance is influenced
by the model’s prediction errors. Existing works
using model-based metrics for model evaluation do
not consider prediction errors for significance test-
ing, risking inaccurate conclusions. In this work,
we establish the mathematical foundation of signif-
icance testing for model-based metrics.

We conduct several experiments on using
model-based metrics including hate speech detec-
tion (Hartvigsen et al., 2022) and user perceived de-
fects detection. The experimental results show that
considering prediction errors in significance test-
ing changes the conclusions in certain experiments.
Thus, we propose that the research community uti-
lizes our framework for performing statistical test-
ing with model-based metrics. In the following
sections, we derive the mathematical equations for
significance testing for model-based metrics and
conduct experiments on several public benchmark
datasets and a production system. Finally, we dis-
cuss related works and draw final conclusion.

2 Model Evaluation with Model-Based
Metrics

In this section, we provide background on signifi-
cance testing and then derive how we can modify



it to incorporate model’s prediction errors when
using model-based metrics.

2.1 Background - Significance Testing
Significance testing is a statistical analysis used
to estimate the relationship between two statistical
variables. When evaluating two models, we want
to know if the performance of the two models is
significantly different. In this work, we assume
the model evaluation is a binary classification task
such as whether the classified domain is correct or
not in domain classification task, or the generated
text is toxic or non-toxic in toxicity classification
task. Given two models C and T , their outputs
are evaluated using a deterministic metric. The
evaluation results are as following,

fC,1, fC,2, ..., fC,NC
, (1)

and
fT,1, fT,2, ..., fT,NT

, (2)

where fC,., fT,. ∈ {0, 1} are the evaluation results
for outputs generated by models C and T respec-
tively; NC and NT are the number of samples used
to evaluate models C and T . Their performance is
estimated as the mean of the results,

f̄C =

∑NC
i=0 fC,i

NC
, (3)

and

f̄T =

∑NT
i=0 fT,i
NT

. (4)

The variances of the mean of evaluation results for
C and T using deterministic metric are

VarD(C) =
1

NC(NC − 1)

|C|∑
i=1

(fC,i − f̄C)
2, (5)

VarD(T ) =
1

NT (NT − 1)

|T |∑
i=1

(fT,i − f̄T )
2, (6)

respectively, where D represents deterministic met-
ric.

We want to know if their performance is signifi-
cantly different, which is formally stated as a null
hypothesis H0 and an alternate hypothesis Ha:

H0 : f̄C = f̄T ,

Ha : f̄C ̸= f̄T
(7)

According to the central limit theorem, two sample
means are statistically different if the following

symmetric confidence interval does not contain 0
(Smithson, 2003).

(f̄d − zα
2

√
VarD(d), f̄d + zα

2

√
VarD(d)), (8)

where zα
2

is the critical value and α is the confi-
dence level, f̄d = f̄T − f̄C , VarD(d) = VarD(T −
C) = VarD(C) + VarD(T ) (for the case C and
T are dependent, the formula is derived in Ap-
pendix A.3). For 95% confidence level, zα

2
= 1.96.

2.2 Significance Testing with Model-based
Metrics

For model-based metrics, the performance of mod-
els C and T are evaluated by a metric model M ,
which is usually a statistical model with prediction
errors. Thus, the sample variances calculated by
Equation 5 and 6 are the variances of the observed
evaluation values instead of the true evaluation val-
ues. In this section, we derive the sample variance
considering the prediction errors.

Note that the following equations apply to both
models C and T . Assume we have N indepen-
dent and identically distributed (IID) samples of
evaluations, let NO

+ be the random variable denot-
ing the number of observed positive samples. As
we assume a binary classification task, each obser-
vation observes Bernoulli distribution. Therefore,
the random variable NO

+ observes binomial distri-
bution with success probability pO (which can be
estimated by using Equation 3 or 4). Thus, we have

NO
+ ∼ Bin(N, pO). (9)

We aim to estimate the variance of distribution
for the real positive samples, NR

+ ∼ Bin(N, pR).
Towards this goal, we derive the probability pR =
P (R = 1) as following

pR = P (R = 1|O = 1)P (O = 1)

+ P (R = 1|O = 0)P (O = 0)

= pR|OpO + pR|O′
pO

′

(10)

where pR|O and pR|O′
are precision and false omis-

sion rate, respectively, which can be estimated
from the metric model M ’s performance on its
testing data. The variance of a binomial distribu-
tion is Np(1 − p), therefore, the variance of NR

+ ,
VarM (NR

+ ) is

N(pOpR|O + pR|O′
pO

′
)(1− pOpR|O − pR|O′

pO
′
),

(11)



where M represents model-based metric.
The variance of the model performance is

VarM
(
NR

+

N

)
=

VarM (NR
+ )

N2
=

pR ∗ (1− pR)

N
.

(12)
Since the population mean is unknown and vari-

ance is estimated with sampled mean pO, the above
estimator is a biased estimation. The corrected un-
biased estimation using Bessel’s correction (So,
2008) to account for the decreased degree of free-
dom is

VarM
(
NR

+

N

)
=

pR ∗ (1− pR)

N − 1
. (13)

Therefore, the 95% confidence interval for model-
based metrics is

(f̄d − 1.96

√
VarM (d), f̄d + 1.96

√
VarM (d)),

(14)
where f̄d = f̄T − f̄C , VarM (d) = VarM (T −C) =
VarM (C) + VarM (T ). Note that if metric model
is perfect, the variance and confidence interval
becomes the same as equations 5, 6 and 8. For
proof, see Appendix A.1. Note that the formula
can be easily extended to multi-class case (see Ap-
pendix A.2).

3 Experiments
We perform several experiments on public bench-
mark datasets and a production system to validate
the proposed framework. In this section, we first
introduce the experimental details on public bench-
mark datasets and then describe the experiments
on the production system. Finally, we report the
experimental results and analysis.

3.1 Experiments on Public Datasets
We select toxicity detection in natural language
generation as the base task. The goal of this task
is to detect if the generated text is toxic using a
toxicity classifier. We adopt a state-of-the-art toxic-
ity classifier, RoBERTa-ToxiGen (Hartvigsen et al.,
2022) to detect toxicity in the generated text. We
estimate precision and false omission rate (FOR)
of this classifier on the manually annotated test set
from ToxiGen. The estimated precision and FOR
are 0.8897 and 0.22769, respectively.

We compare two text generation models GPT2
(Radford et al., 2019) and GPT-Neo (Black et al.,
2021). To generate the text, we utilize prompts
from BOLD (Dhamala et al., 2021) and RealToxici-
tyPrompts (Gehman et al., 2020). BOLD (Dhamala

et al., 2021) is a manually curated dataset for bias
measurement in open-ended language generation,
which consists of 23,679 English text generation
prompts for bias benchmarking in five domains in-
cluding profession, gender, race, religion, and polit-
ical ideology. RealToxicityPrompts (Gehman et al.,
2020) has 100K naturally occurring, sentence-level
prompts extracted from a large corpus of English
web text.

3.1.1 Result Analysis

Table 1 shows the experimental results. In the ta-
ble, we show average toxicity score, average treat-
ment effect (ATE), variance and confidence interval.
ATE is calculated as the difference between aver-
age toxicity score of the two models, specifically, it
is the average toxicity score of GPT-Neo subtracted
by the average toxicity score of GPT2 (we consider
GPT2 as the baseline).

From the table, we can see that there is a sig-
nificant increase in variance when we consider
the metric model errors. For example, on BOLD
dataset, the variance of GPT2 changes from 1.92e-7
to 7.50e-6 (39x increase in variance). Disregard-
ing the metric model errors, the confidence interval
is (-0.00325, -0.00114), leading to the conclusion
that we can reject the null hypothesis and reach-
ing the conclusion that GPT-Neo produces output
with significant lower toxicity than GPT2. How-
ever, when we consider the metric model errors, the
confidence interval is (-0.00978, 0.00538), which
shows insignificant difference and we cannot reject
null hypothesis. In this case, considering metric
model errors changes the final conclusion. On Re-
alToxicityPrompts dataset, we also see big differ-
ence in variance change, but the conclusion is not
changed.

3.2 Experiments in Production System

Besides conducting experiments on public models
and benchmark datasets, we also perform experi-
ments on live traffic in a production system of a
lead voice agent. The task is natural language un-
derstanding such as domain classification, intent
classification, etc. We compare the performance of
two NLU models estimated by a machine learning
model based on customer utterances and system
responses (Gupta et al., 2021). The precision and
FOR of the metric model are estimated on manually
annotated datasets. The dataset used for experiment
is de-identified.



Table 1: Experiment Results on Public Benchmark Datasets.

Dataset MeanGPT2 MeanGPTNeo ATE VarD
GPT2 VarD

GPTNeo CID VarM
GPT2 VarM

GPTNeo CIM

BOLD 0.00456 0.00236 -0.00219 1.92e-7 9.97e-8 (-0.00325, -0.00114) 7.50e-6 7.46e-6 (-0.00978, 0.00538)
RealToxicityPrompts 0.09124 0.09157 0.00033 8.34e-7 8.37e-7 (-0.00220, 0.00286) 2.06247e-6 2.063405e-6 (-0.00365, 0.00431)

1 In the table, MeanGPT2 means the average toxicity score of GPT2 model. Similarly, MeanGPTNeo is the average toxicity score of GPT-Neo model.
2 VarD

GPT2 means the variance of of GPT2 model using deterministic metric. VarM
GPT2 means the variance of the GPT2 model using model-based metric.

3 CID means confidence interval using deterministic metric, and CIM means confidence interval using model-based metric.

Table 2: Experiment Results in a Production System.

Experiment VarD
C VarD

T CID VarM
C VarM

T CIM

Exp1 7.29e-5 1.01e-4 (-0.05291, -0.00116) 1.82e-4 2.04e-4 (-0.06556, 0.01148)
Exp2 1.03e-5 1.00e-5 (0.00007, 0.01777) 1.07e-5 1.05e-5 (-0.00010, 0.01794)
Exp3 4.93e-9 3.92e-9 (0.00009, 0.00047) 1.64e-8 1.63e-8 (-0.00007, 0.00063)
Exp4 2.14e-8 2.11e-8 (0.00006, 0.00086) 6.77e-8 6.64e-8 (-0.00026, 0.00118)
Exp5 8.84e-9 8.84e-9 (0.000004, 0.00053) 1.19e-8 1.19e-8 (-0.00004, 0.00006)

* The notation is similar as in Table 1.

3.2.1 Result Analysis

Table 2 shows the experimental results in a produc-
tion system. The experiments are conducted on dif-
ferent NLU domains and devices. From the results,
we can see that considering metric model errors
has a big impact on variance estimation and also
changes the final conclusion of the experiments.

4 Related Work
In their paper, Dror et al. (Dror et al., 2018) estab-
lished fundamental concepts of significance testing
in NLP research and proposed a simple practical
protocol for statistical significance test selection
in NLP setups. Berg-Kirkpatrick et al. (Berg-
Kirkpatrick et al., 2012) investigate the relation
between significance level and the magnitude of
the gain. They also studied how the standard i.i.d.
notion of significance hold up when there is domain
shift. With the increasing of evaluation datasets, it
is becoming common to evaluate NLP models on
multiple datasets. Such multiple comparison poses
challenges for significance testing in NLP. Dror et
al. (Dror et al., 2017) proposes replicability analy-
sis framework for the analysis of multiple compar-
isons between NLP algorithms. In their book, Dror
et al. (Simpson, 2021) discuss the opportunities
and challenges of using significance testing in NLP.
The book covers multiple topics including choos-
ing the appropriate significance test for a NLP task,
dealing with the uniqueness of significance testing
for non-convex deep neural networks, etc.

The current works on significance testing in NLP
do not cover the area of model-based metrics. In
this work, we propose to consider model prediction
errors for more faithful evaluation and reaching

the right conclusion when conducting significance
testing for model-based metrics.

5 Conclusion
Significance testing is an important tool for us to
draw accurate conclusions for evaluating NLP mod-
els. Existing evaluation works using model-based
metrics do not consider model variance for signifi-
cance testing, which can lead to wrong conclusions.
In this work, we lay the mathematical foundation
of significance testing for model-based metrics. We
conduct experiments on public benchmarks and a
production system. The significance testing results
on these experiments show that model based errors
need to be considered and incorporated for accurate
evaluation.

In this work, we focus primarily on comput-
ing confidence interval with model-based metrics
which use binary classification. In the future, we
plan to extend our work to more general types of
model-based metrics. Further, we assumed that the
samples are independent and identically distributed.
In practice, we often have a score associated with
the metric model which can be used to relax this
assumption. We leave this as future work.

Limitations
This work mainly focuses on significance testing
of binary categorical metrics and two sample t-
test. We do not explore other types of metrics and
statistical tests. We leave them to future work.
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A Appendix
A.1 Sample Variance When the Metric Model

is Perfect

Equation 13 is the variance when considering met-
ric model prediction errors. When the metric
model does not make errors, the precision and false
omission rate is 1 and 0, respectively. Therefore,
pR|O = 1 and pR|O′

= 0. Substituting the values
into Equation 10, we get pR = pO. Therefore,

VarM
(
NR

+

N

)
=

pO(1− pO)

N − 1
. (15)

Next, we prove that Equation 15 equals Equation
5. For Equation 5, we denote the number of 1s as
N1, the total number of samples as NC , and pO =∑NC

i=0 fC,i

NC
= N1

NC
. Equation 5 can be rewritten as

following

VarD(C)

=
1

NC(NC − 1)

NC∑
i=1

(fC,i − f̄C)
2

=

∑
fC,i=1(1− pO)2 +

∑
fC,i=0(p

O)2

NC(NC − 1)

=
N1(1− pO)2 + (NC −N1)(p

O)2

NC(NC − 1)

=
N1 − 2N1p

O +NC(p
O)2

NC(NC − 1)

=
pONC − 2NC(p

O)2 +NC(p
O)2

NC(NC − 1)

=
pO(1− pO)

NC − 1
.

(16)

Therefore, Equation 15 equals Equation 5 and 6.
So Equation 13 is a generalized version of Equation
5 and 6, when considering metric model prediction
errors.

A.2 Application to Multi-Class Use Case

To apply the proposed approach to multi-class use
case, we need to derive pR for multi-class classifi-
cation tasks, which is as following

pR = P (R = 1) =∑
oi∈{0,1,...,NO}

P (R = 1|O = oi)P (O = oi) (17)

where oi is the i-th class observation value. The
variance of C and T can be derived using pR.
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A.3 Variance When C and T are Dependent
In this section, we derive the variance of the
difference for model-based metrics when C and
T are dependent. When C and T are depen-
dent, VarM (d) = VarM (T − C) = VarM (C) +
VarM (T ) + 2CovM (C, T ), where CovM (C, T ) is
the covariance between C and T . In the following,
we derive CovM (C, T ).

CovM (C, T ) =
1

N
CovM (fC , fT )

=
1

N
(E[fR

C ∗ fR
T ]− E[fR

C ][fR
T ])

=
1

N
(

∑
x∈{0,1},y∈{0,1}

xy

P (fR
T = x, fR

C = y)− pRCp
R
T )

=
1

N
(P (fR

T = 1, fR
C = 1)−

pRCp
R
T ),

(18)

where fR
C and fR

T are the real values of a sample
from C and T , respectively.

The first term can be converted as following:

P (fR
T = 1, fR

C = 1)

= ∑
x∈{0,1},y∈{0,1}

P (fR
C = 1, fR

T = 1, fO
C = x, fO

T = y)

= ∑
x∈{0,1},y∈{0,1}

P (fR
C = 1, fR

T = 1|fO
C = x, fO

T = y)

P (fO
C = x, fO

T = y)

Assuming conditional independence of fR
C and fR

T

given fO
C = x, fO

T = y, we have the following,

=
∑

x∈{0,1},y∈{0,1}

P (fR
C = 1|fO

C = x, fO
T = y)∗

P (fR
T = 1|fO

C = x, fO
T = y) ∗ P (fO

C = x, fO
T = y)

=
∑

x∈{0,1},y∈{0,1}

P (fR
C = 1|fO

C = x)P (fR
T = 1|fO

T = y)

P (fO
C = x, fO

T = y)

(19)

where P (fR
C = 1|fO

C = x), P (fR
T = 1|fO

T = y)
are model performance metrics and can be esti-
mated on a held-out dataset (similar to eq. 10 in

Section 2.2) and P (fO
C = x, fO

T = y) can be esti-
mated empirically. Using Bessel’s correction, we
get

CovM (C, T )

=
1

N − 1

∑
x∈{0,1},y∈{0,1}

P (fR
C = 1|fO

C = x)∗

P (fR
T = 1|fO

T = y) ∗ P (fO
C = x, fO

T = y)−
1

N − 1
(pRCp

R
T )

(20)


