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Abstract

In this paper, we propose a novel data-driven framework for discovering probabilis-
tic laws underlying the Feynman—Kac formula. Specifically, we introduce the first
stochastic SINDy method formulated under the risk-neutral probability measure to
recover the backward stochastic differential equation (BSDE) from a single pair of
stock and option trajectories. Unlike existing approaches to identifying stochastic
differential equations—which typically require ergodicity—our framework lever-
ages the risk-neutral measure, thereby eliminating the ergodicity assumption and
enabling BSDE recovery from limited financial time series data. Using this al-
gorithm, we are able not only to make forward-looking predictions but also to
generate new synthetic data paths consistent with the underlying probabilistic law.

1 Introduction

Identifying the governing laws in physical systems is of high interest in various fields, including
fluid dynamics [2]], plasma dynamics [[15]], nonlinear optics [7]], mesoscale ocean closures [22], and
computational chemistry [L1]], etc. Many of these complex physical laws could be described by
PDEs with proper boundary conditions, which are deterministic dynamical systems. For each specific
scientific task, the detailed deterministic form of the PDE often remains unknown. In the era of big
data, when rich experimental data is available, it gives rise to an opportunity to automatically transform
this data into deterministic physical laws. In light of this idea, the data-driven discovery of hidden
equations (mostly deterministic equations) has been enabled by the rapid progress in statistics and
machine learning. As a toy example, we could select a set of candidate common functions containing
derivatives with different orders, and call it the library O (u) = {1, u, ug, u?, vy, u2, - ,u2,}.
The discovery of the system/PDE F can be identified as the following symbolic regression problem,

(ut(ti7xj))i7j:(l ults,z;) ug(ti,my) w?(ti,zg) u(ti,zg) - uim(tiyxj)>i7j§7 ey

where {u(t;, )} ; represents the data of the PDE, and ¢; (resp. x;) represents the time (resp.
spatial) points. Data driven model discovery for PDE by using physics-informed learning has been
studied in [6]. To bridge the deterministic law and probability law discovery in this context, we start
with a slight modification of the problem by adding a terminal condition u(T, 2) = g(«) instead of
the initial condition at ¢ = 0, and simply consider the parabolic equation with linear coefficients,
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where o, r, T' are parameters and f is a known function. Due to the famous Feymann-Kac formula
(14, (8], the solution u(t, z) (if it exists) can be represented by the following conditional expectation,

T
u(t,z) = B¢ e " TV g(X7p) +/ efr(sft)f(s,Xs)ds‘Xt = w}, 3)
t

under the probability measure Q, where X, is the solution of the following forward in time SDE,
dX; = rXdt + JXtdBP, with initial condition Xy = xg, (@]

and B; is Brownian motion under Q. The dynamic X; under the market measure P is unknown.
By martingale representation theorem, the solution u(t, x) := Y} can be further represented by the
following backward stochastic differential equation(BSDE), with the pair (Y3, Z;) being its solution,

T T
Y, :g(XT)+/ [rYs—f(s,Xs)]ds—/ Z.dB%, with Yy = g(Xr). )
t t

Feynman-Kac formula is fundamental in probability theory, connecting SDE and its corresponding
PDE. Feynman-Kac has been generalized to various fields including financial mathematics [3} |13}
16, 20], mathematical physics [} [17, [12], Quantum mechanics [18 5} 9], etc. More importantly,
Feynman-Kac is paired with the underlying SDE model. The inverse problem has not been studied
yet, which is to rediscover the Feynman-Kac formula by linking two different type of data sets
collecting from (¢, z) and X;. In a real world application, the data { X} }o<;<r could be collected
from the daily stock price, and the solution u(t, z) actually represents the European call option
price at time ¢ with terminal time payoff g(Xr) = max{Sr — K, 0}, strike price K and maturity
T. Our goal is to discover the relation (i.e. BSDE) from a pair of single trajectory (stock, option).
The significant difference comparing to deterministic law discovery it that: we are learning PDE
with terminal condition instead of initial condition. Compared to data-driven sparse identification
of deterministic nonlinear dynamical systems (SINDy) [4]], and stochastic dynamical systems [21]],
our probability law discovery is based on a pair of data. In particular, to identify the analytical form
of the generator and diffusion part of the BSDE, we generalize the SINDy algorithm to stochastic
SINDy under the risk-neutral probability measure. Once the BSDE is identified, combining with
the risk-neutral dynamic of the stock price, we can generate new sample paths for (stock, option)
pairs. This paper is organized as below. In Section 2, we present the main algorithm. In Section 3,
we present the numerical algorithms for both the Black-Scholes model and real-world financial data.

2 Algorithm

The objective is to discover the differential form of the BSDE in the following general form,

T T
Y: = g(X7) +/ f(s,Xs,Ys, Zs)ds — / Z, B2,  with Y = g(Xr). (6)
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Since the available data are discrete, the discrete-time version is considered instead:

AY;, = —f(t, Xu;, Yay, Z0,) A + Zy, ABR, ©)

where At; is the discrete timestep, AY;, =Y, —Y;, , and ABS = B& ) fBS . The dataset consists
i=N

of a single pair of discrete trajectories D,, = {(X¢,,Ys,)}/=, with terminal value X;, = Xr;
Y:v = Yr. To identify the dynamics, we formulate a sparse regression problem which minimizes:

2, 8)

The library matrix © = ©(u, X;,) consists of two partitions: ©7, containing candidate functions for
the generator f; and ©Z, containing candidate functions Z. Both partitions have sparse vectors of
coefficients £/ and &7 respectively. The discovered BSDE is then used for online prediction of Y;
and generation of new trajectories consistent with the dynamics.

|AY;, — ©fef At — 07¢? AB

Step 1 (DNN training): Numerical methods for obtaining partial derivatives are often inapplicable or
erroneous when only a single pair of trajectories is available. To address this, a Deep Neural Network



(DNN) N is used to approximate the solution (¢, z) with inputs (¢;, X;,) and parameters /3 [6].
Accurate derivatives are obtained by introducing a physics loss and applying automatic differentiation.

Optimization is performed using LBFGS, which updates both 5 and an auxiliary parameter ¢ in the
physics loss. The physics loss, computed on collocation points D, randomly sampled from the bounds
of the observed data, measures the residual u; — W¢ where the library matrix ¥ = U( Xy, u, Uy, Ugy )
is reconstructed with updated derivatives after each optimization step. The total loss function is

L(3,¢; Dy, De) = ala(B; Dy) +vLy(B, ¢ De) + 6|¢]1 )

where L is the data loss, £, is the physics loss, and ||¢||; is an L1 regularization term. Hyperparam-
eters, «, v, d, control the relative weighting of each term. The auxiliary parameter ( is discarded after
training; it serves solely to improve the derivative accuracy by enforcing consistency of N~ with the
underlying PDE (e.g.: equation[2) constraints.

Step 2.0 (Estimating diffusion coefficients): Construction of the library ©(u, X;,) requires the
discrete Brownian increments AB;@. These increments are obtained by first estimating the diffusion

coefficient o(z). A preliminary estimate is computed as onoisy = \/A(Xy,)/At;, which is often
noisy due to the discrete sampling of the trajectory. We denote A(X},) as the increment of the
quadratic variation of the stock price X;. To obtain a smoother and more accurate approximation, the
noisy estimate is modeled using SINDy by solving oyoisy (X¢,) = ®(X4,)v where (X, ) is a library
of candidate functions and v is the sparse solution vector of coefficients. The resulting diffusion
function is discovered by applying SINDy to ||6(X;,) — ®(X,)v||? similar to (§).

Step 2.1 (Extracting Q Brownian motion): Once the smoothed diffusion function &(x) is obtained,
the discrete Brownian increments ABg are calculated from the observed trajectory by rearranging

the discrete form of the SDE @): ABS = (AX;, — r X, At)/6(Xy,). The drift coefficient r is
assumed to be a fixed, and corresponds to the risk-neutral probability measure Q. These extracted
increments are subsequently used to construct the library matrix ©.

Step 3 (Stochastic SINDy for BSDE): With the library matrix © constructed, the discrete BSDE is
identified using stochastic SINDy under probability measure Q. The sparse regression problem in
(8) is solved using sparsity-promoting algorithms with regularization, in particular, Sparse Relaxed
Regularized Regression (SR3) [23]] is employed. The result is a sparse set of coefficients that identify
the driver f = ©7¢f and Z = ©Z¢%. In the current version, we do not provide terminal boundary
discovery and we hope to add it in the future.

Step 4 (Online Prediction): Online predictions for Y3, , | are performed using a memory window
(X:,, Y, )Se[i_m] of fixed size T spanning from ¢;_ to ¢;. The dynamic of Y; is backward in time,
which is solved backward in time. Different from the deep neural network algorithms [10} [19]
with BSDE model parameter given (i.e. f, o fixed), we are not solving the BSDE as the model is
unknown for the future time interval [¢, T, but rather take the random form with unknown increment

of the Brownian motion ABS. With the real data, Y; is known from the market, we simply want
to make a prediction for tomorrow’s option price. We use the formula (7)) with Z; independent of
ABS. This prediction loop is interleaved with the neural network N(¢, x; 3) retraining to regenerate
partial derivatives and with rediscovery of the dynamics, ensuring consistency with the most recent
memory window. We make mean prediction (mimicking E;(Y7,, ,)) and confidence intervals based

on the desired confidence level by generating independent increments AB;@. After each prediction,
the memory window is shifted forward by one time step (X¢,, Y. )se[i77—+1,i+1] and the dynamic
rediscovery and prediction (i.e. Step 1-4) is repeated. For data points immediately preceding time
skips caused by market opening and closing, the true value of the stock or option after the skip is
used instead of a prediction. Our algorithm does not account for market opening and closing times
(i.e., non-trading intervals), and we hope to add this feature in the future.

Step 5 (Generation): New trajectories are generated by running multiple simulations of the stock
price using learned forward dynamic @) and using the discovered BSDE (7) by sampling Brow-
nian increments to create trajectories consistent with the learned dynamics with shifted window
(Xt,, Y%, )sefi—r,i as described in Step 4. For online prediction and data generation, our generated
option paths are not option prices by solving a given BSDE model [10,|19]] backward in time, as the
models (both stock and option dynamics) are unknown. We generate the option paths by iteratively
updating our models and making future predictions.



3 Examples

Example 1: Black-Scholes discovery. We use the Black-Sholes model as a benchmark to test
our algorithm. For this example, we can compare the analytical solution and its derivatives to our
auto-differentiated partial derivatives from our Neural Network in Step 1. Following our algorithm,
once the BSDE is trained in Step 3, given the current market option price Y; (assumed to be computed
from the analytical solution), we can compute the next option price Y; 11 given we know the increment
of the Brownian motion. We then use this idea to do prediction and generating new data as in Step
4-5. To make our prediction and generation consistent with our model and analytical solution, we
need to retrain the neural network with the shifting window to update more accurate values of the
derivatives of u(t, x). Our numerical results are consistent with our desired algorithm performance.
To generate the data pair of stock and option, we simulate the underlying asset price following
the geometric Brownian motion, dS; = uS;dt + 0S;dBf, with u = 0.3, ¢ = 0.2. Applying
Girsanov theorem with a selected risk-free interest rate » = 0.1, we get (E[) under Q. Then, the
corresponding European call options Y; are computed using the closed-form formula for the Black-
Sholes PDE (i.e. (Z) with f = 0) with maturity time 7' = 1 and payoff g(St) = max{Sr — K, 0}.
We train the model on LO, 0.8] and test the model for the interval [0.8, 1], with a total number of
time steps N = 5 * 10°. By training from Step1-3, our stochastic SINDy discovers the BSDE
dY; = —[1.018(ug ) (dt) + 0.106(S;) (us) (dt) + 0.016(S2) (uss ) (dt)] 4 0.2(Sy) (us) (dB2), where
we use (u¢), (us), (uss) to represent the derivatives computed from the neural network. The numerical
results for the Black-Scholes model is presented in Figure [1-(a)(b)(c)(d)].

Example 2: Market data Apple. Data was collected from the ticker AAPL from 11/14/2024 up to
expiration 07/18/2025 with timer intervals of 1 second at a strike price at K = 170. Weset T =1
with N = 3907974 and we use 80%-20% train-test split. We present the prediction in Figure [1-(e)]
and generate stock-option pairs in Figure [1-(f)(g)].
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4 Conclusion

We propose a stochastic SINDy algorithm for BSDE discovery (i.e., Feynman—Kac representation)
under the risk-neutral probability measure, without requiring the ergodicity assumption. To the best
of our knowledge, this is the first stochastic SINDy framework developed for backward stochastic
differential equations, and the first algorithm to employ generalized stochastic SINDy to uncover
probabilistic laws directly from a pair of financial time series—illustrated here with stock and option
data. Beyond finance, this new algorithm points to a promising direction for the broader discovery of
Feynman—Kac—type probabilistic laws in engineering and physics.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have read the ethics review guidelines and ensured that our paper conforms
to it.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: We will release the assets in the final version. It is not documented here.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

13


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Algorithm
	Examples
	Conclusion

