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Abstract001

Unstructured Knowledge Editing (UKE) is cru-002
cial for updating the relevant knowledge of003
large language models (LLMs). It focuses on004
unstructured inputs, such as long or free-form005
texts, which are common forms of real-world006
knowledge. Although previous studies have007
proposed effective methods and tested them,008
some issues exist: (1) Lack of Locality eval-009
uation for UKE, and (2) Abnormal failure of010
fine-tuning (FT) based methods for UKE. To011
address these issues, we first construct two012
datasets, UnKEBench-Loc and AKEW-Loc013
(CF), by extending two existing UKE datasets014
with locality test data from the unstructured015
and structured views. This enables a systematic016
evaluation of the Locality of post-edited mod-017
els. Furthermore, we identify four factors that018
may affect the performance of FT-based meth-019
ods. Based on these factors, we conduct exper-020
iments to determine how the well-performing021
FT-based methods should be trained for the022
UKE task, providing a training recipe for future023
research. Our experimental results indicate that024
the FT-based method with the optimal setting025
(FT-UKE) is surprisingly strong, outperforming026
the existing state-of-the-art (SOTA). In batch027
editing scenarios, FT-UKE shows strong perfor-028
mance as well, with its advantage over SOTA029
methods increasing as the batch size grows, ex-030
panding the average metric lead from +6.78%031
to +10.80%. 1032

1 Introduction033

With the rapid development of large language mod-034

els (LLMs) (Brown et al., 2020; Achiam et al.,035

2023; Touvron et al., 2023; Bai et al., 2023) across036

various domains, the ability to update model’s in-037

ternal knowledge, known as knowledge editing,038

has gained increasing attention (Meng et al., 2022;039

Yao et al., 2023; Zhang et al., 2024). The goal of040

knowledge editing is to accurately update specific041

1Our code and data will be released on Github.

subject: Wellington
relation:twin city

object:Sheffield

Structured fact

Sheffield, a city in South Yorkshire, England, 
is known for its rich industrial heritage and 
vibrant cultural scene...

Unstructured fact

Answer: Sheffield Answer: Wellington, New Zealand has a twin 
city relationship with Wellington, Ohio...

Edit Edit

Question:  What is the twin city of Wellington?    Old Answer：Sydney

Figure 1: Comparison between structured and unstruc-
tured knowledge editing. While structured editing oper-
ates on predefined factual triples, unstructured editing
involves open-text modifications, introducing greater
difficulty.

knowledge within a model while minimizing the 042

impact on other unrelated knowledge. Substantial 043

research focuses on Structured Knowledge Editing 044

(SKE) (Meng et al., 2022; Hu et al., 2024; Fang 045

et al., 2024): editing knowledge represented as 046

triples (subject, relation, object). To evaluate the ef- 047

fectiveness of these SKE methods, researchers have 048

developed dedicated datasets and conducted eval- 049

uations from three perspectives: (1) Edit Success: 050

correctly learns the new knowledge, (2) General- 051

ization: generalizes it to paraphrased or rephrased 052

queries, and (3) Locality: preserves performance 053

on unedited knowledge. 054

As the task of SKE has achieved significant suc- 055

cess, researchers are increasingly focusing on Un- 056

structured Knowledge Editing (UKE) (Wu et al., 057

2024; Deng et al., 2024; Jiang et al., 2025). This 058

task aims to modify knowledge embedded in long 059

or free-form text. As shown in Figure 1, unlike 060

structured knowledge represented as triples, un- 061

structured knowledge appears in the form of ex- 062

tended text, containing rich information and com- 063

plex contextual dependencies. 064

Although the researchers have proposed effec- 065
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tive UKE methods and validated their effective-066

ness on UKE datasets, our preliminary investiga-067

tions and experiments reveal the following issues:068

(1) Lack of Locality evaluation for UKE: Exist-069

ing UKE datasets are primarily designed to evalu-070

ate two aspects: Edit Success and Generalization.071

However, they lack datasets specifically tailored072

for assessing Locality. Instead, they rely solely on073

the general assessment dataset MMLU (Hendrycks074

et al., 2021) for this purpose. In terms of results,075

this evaluation lacks differentiation, with the gap076

between the worst method and pre-edit results not077

exceeding ±1.2% (Deng et al., 2024). (2) Abnor-078

mal failure of fine-tuning (FT) based methods079

for UKE: While FT-based methods serve as im-080

portant baselines and are competitive in the SKE081

task, they reportedly underperform in the UKE task.082

Even in terms of the Edit Success metric, where083

FT-based methods can surpass specially designed084

SKE methods, they still do not perform well in the085

UKE task. We argue that this is an abnormal phe-086

nomenon, which requires systematic experiments087

and analysis to identify the reasons or to determine088

if there is a misunderstanding.089

To address these issues, we first construct090

two new datasets, UnKEBench-Loc and AKEW-091

Loc (CF), by extending UKE datasets Un-092

KEBench (Deng et al., 2024) and AKEW093

(CounterFact) (Wu et al., 2024). This extension094

involves incorporating three types of Locality test095

data. Specifically, we sample two types of unstruc-096

tured data and one type of structured data.097

Furthermore, we identify four factors that in-098

fluence the performance of FT-based methods in099

knowledge editing from previous studies (Zhu et al.,100

2020; Zhang et al., 2024; Hu et al., 2022). These101

factors are frequently discussed in previous SKE102

research (Meng et al., 2022; Zhang et al., 2024;103

Li et al., 2024): (1) Loss Calculation Scope:104

choosing final prediction token or all target tokens105

to calculate loss; (2) Layer Selection: deciding106

whether to edit a single layer or all layers of the107

target model; (3) Component Selection: for the108

selected layer(s), determining whether to edit the109

feed-forward network or the attention projections;110

(4) Chat Template: deciding whether to adopt a111

chat template for the target model. Through exper-112

imental analysis, we identify the optimal settings113

for each factor in the UKE task, which can benefit114

future research.115

In summary, our contributions are as follows:116

• We construct two UKE datasets, UnKEBench- 117

Loc and AKEW-Loc(CF), to directly and com- 118

prehensively evaluate UKE Locality. These 119

datasets include a total of 5,925 Locality test 120

data across three types: two types of unstruc- 121

tured data and one type of structured data. To 122

our best knowledge, these expanded datasets 123

are the first UKE datasets containing multi- 124

type, well-designed test data that support Lo- 125

cality evaluation for UKE task. 126

• We outline the factors influencing the perfor- 127

mance of FT-based methods. Through de- 128

tailed experimental analysis, we provide a 129

training recipe for FT-based methods in the 130

UKE task, which offers a strong training setup 131

for future research. 132

• Based on evaluation, we find that the FT-based 133

method with the optimal setting (FT-UKE) is 134

surprisingly strong, surpassing all the SOTA 135

methods. We further explore the performance 136

of UKE methods in the batch editing scenarios. 137

Surprisingly, FT-UKE maintains its advantage 138

over SOTA methods, with a larger average 139

increase from +6.78% to +10.80%. 140

2 Related Work 141

2.1 Knowledge Editing 142

Research on Structured Knowledge Editing (SKE) 143

is well-developed and can be categorized into 144

three main approaches: locate-and-edit (Meng 145

et al., 2022, 2023; Fang et al., 2024), meta- 146

learning (Mitchell et al., 2022; Tan et al., 2024), 147

and retrieval-based methods (Zheng et al., 2023; 148

Wang et al., 2024a). For the UKE task, current 149

methods primarily follow the locate-and-edit ap- 150

proach, such us UnKE (Deng et al., 2024) and 151

AnyEdit (Jiang et al., 2025). These methods en- 152

hance their ability to handle unstructured knowl- 153

edge by updating all parameters within a single 154

transformer layer. Since most existing UKE meth- 155

ods adopt the locate-and-edit approach, we select 156

SKE baseline methods for comparison that also 157

focus on this approach. 158

Besides, knowledge editing can be categorized in 159

two scenarios by the number of data points edited 160

per test: single editing and batch editing (Meng 161

et al., 2023). Single editing involves testing after 162

editing each individual piece of knowledge. In 163

contrast, batch editing refers to editing n pieces 164

of data at once, where n is called "batch size". 165
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Both single and batch editing have been extensively166

discussed in SKE task. However, in the UKE task,167

research primarily focuses on the effectiveness of168

single editing, with only a few studies reporting169

performance in batch editing scenarios (Deng et al.,170

2024).171

2.2 Evaluation Settings for Knowledge172

Editing173

In the SKE task, researchers calculate metrics by174

assessing the consistency between the post-edit175

model’s output and the expected output. Specif-176

ically, for Edit Success and Generalization, the177

expected output is the edited knowledge; for the178

Locality test, the expected output is the pre-edit179

model’s output (Zhang et al., 2024). Due to the lim-180

ited length of structured knowledge, consistency181

is typically calculated at the token level. For the182

UKE task, token-level calculations are unsuitable183

due to text length. Deng et al. (2024) introduces a184

method based on BERT Score (Zhang et al., 2019)185

and ROUGE-L (Lin, 2004) to evaluate the semantic186

and lexical similarity for UKE Edit Success and187

UKE Generalization. We apply this method for188

UKE Locality calculation as well. Although previ-189

ous research does not specifically design Locality190

test data, Deng et al. (2024) samples data from191

MMLU (Hendrycks et al., 2021), testing a few192

multiple-choice questions after a single edit. They193

calculate the change in accuracy before and after194

editing, which reflects Locality. However, the accu-195

racy for all methods shows only minor differences196

from the pre-editing performance, reportedly not197

exceeding ±1.2% when editing Llama2-7B-Chat.198

This raises concerns about whether this dataset can199

effectively differentiate between different methods,200

especially those with similar capacities. This under-201

scores the need to construct specialized localization202

data that is better suited for UKE tasks.203

3 Datasets for Locality Test204

In this section, we introduce how we expand UKE205

datasets with Locality data from the unstructured206

and structured views. As shown in Figure 2,207

we sample two types of unstructured data from208

Wikipedia and one type of structured data from209

KnowEdit (Zhang et al., 2024), a structured knowl-210

edge editing dataset. Pre-process details are listed211

in Appendix A.212

• Relevant unstructured data (RelDoc): For213

each editing query, we retrieve a Wikipedia214

Wikipedia

KnowEdit

Sample

Editing Query

Retriever
Sample

Top K

RelDoc

RandDoc

StructTrip

Indexing

Figure 2: Data Collection Process. We sample unstruc-
tured data (RelDoc, RandDoc) from Wikipedia and
structured data (StructTrip) from structured knowledge
editing dataset KnowEdit.

document that is semantically related but 215

factually disjoint from the target knowl- 216

edge. To facilitate effective document re- 217

trieval, we train a Dense Passage Retrieval 218

(DPR) (Karpukhin et al., 2020) model using 219

a collection of question-answering datasets. 220

The training setup is detailed in Appendix A. 221

To ensure factual disjointness, we exclude doc- 222

uments containing same entity-relation pairs 223

as those appearing in the editing query 2. Us- 224

ing RelDoc, we can assess the influence of 225

editing methods on semantically related un- 226

structured knowledge. 227

• Random unstructured data (RandDoc): We 228

randomly sample a Wikipedia document, ex- 229

cluding the top 100 documents most relevant 230

to the editing query. This type of data allows 231

us to investigate global Locality by assessing 232

the post-editing impact on distant and unre- 233

lated unstructured knowledge. 234

• Structured data (StructTrip): We also 235

sample structured knowledge from the SKE 236

dataset KnowEdit, which is unrelated to the 237

edited unstructured knowledge. This enables 238

us to evaluate how the editing of unstruc- 239

tured knowledge impacts unrelated structured 240

knowledge. 241

2entity-relation pairs are extracted by OpenIE.
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UnKEBench-Loc AKEW-Loc (CF)

# Editing query 1,000 975
# Locality test data

Total 3,000 2,925
RelDoc 1,000 975
RandDoc 1,000 975
StructTrip 1,000 975

Average length of Locality test data*
RelDoc 118.56 117.43
RandDoc 116.19 116.31
StructTrip 8.34 8.18

Table 1: Statistics of UnKEBench-Loc and AKEW-Loc
(CF), including the number of editing query, and the
number and average length of Locality test data. *:
Calculated by NLTK (Bird and Loper, 2004).

Based on the above approach, we expand two242

UKE datasets UnKEBench (Deng et al., 2024) and243

AKEW(CounterFact), a subset of AKEW (Wu244

et al., 2024). We exclude the other two AKEW245

subsets (MQUAKE-CF, WikiUpdate) because they246

lack the data necessary for evaluating Generaliza-247

tion, rendering them less suitable for a comprehen-248

sive assessment. We mark the expanded datasets as249

UnKEBench-Loc and AKEW-Loc (CF) respec-250

tively, and summarize the statistics of them in Ta-251

ble 1. This augmented evaluation setup enables a252

more comprehensive and fine-grained analysis of253

UKE , filling a crucial gap in previous datasets.254

4 Revisiting Fine-tuning based method255

for UKE256

In this section, we revisit fine-tuning (FT) based ap-257

proaches for UKE, including: (1) direct weight258

fine-tuning, which directly updates the original259

model weights (e.g., FT-L (Zhu et al., 2020) and FT-260

M (Zhang et al., 2024)); and (2) additional parame-261

ter fine-tuning, which introduces additional train-262

able modules, such as adapters, while keeping the263

original model weights frozen (e.g., AdaLoRA (Hu264

et al., 2022)). Although frequently adopted in prior265

studies (Meng et al., 2022; Deng et al., 2024), these266

methods show suboptimal performance for UKE.267

We argue that this underperformance is abnormal268

and does not stem from the fundamental limitations269

of fine-tuning itself. Therefore, we conduct a sys-270

tematic analysis of FT-based methods considering271

four factors: loss calculation scope, layer selection,272

component selection, and chat template. Table 2273

lists the choices for these factors.274

Loss Calculation Scope The scope of loss calcu- 275

lation is crucial for aligning training signals with 276

the desired output. One approach, used by FT-L, 277

involves calculating the loss solely on the final pre- 278

diction token to maximize the probability of the 279

output. In contrast, another approach, employed by 280

FT-M and AdaLoRA, calculates the loss across all 281

tokens of the output. 282

Layer Selection The choice of which layer to 283

edit is a critical factor in knowledge editing. Meng 284

et al. (2022) introduced a causal tracing technique 285

to identify the most causally relevant layers for 286

intervention, subsequent work has shown that the 287

selected layer can significantly impact editing out- 288

comes. Based on these insights, we explore two 289

strategies: editing a single middle layer or updating 290

all transformer layers. These design choices are 291

informed by empirical findings from frameworks 292

such as EasyEdit (Wang et al., 2024b). 293

Component Selection Direct weight fine-tuning 294

methods directly modify the weights of specific 295

components in the original model, often targeting 296

the feed-forward network (FFN) layers, such as 297

downproj in the MLP. In contrast, additional pa- 298

rameter fine-tuning methods, such as AdaLoRA, 299

introduce low-rank adapter modules into the at- 300

tention projections (e.g., qproj , kproj , vproj , oproj), 301

allowing for efficient adaptation while keeping the 302

base model frozen. These designs are not strictly 303

exclusive. To better understand how different ed- 304

itable components affect editing performance, we 305

follow prior work (Zhang et al., 2023; Wang et al., 306

2024b) and evaluate several common configura- 307

tions under both paradigms. A summary of these 308

configurations is provided in Appendix C. 309

Chat Template Unstructured knowledge editing 310

typically involves natural language instructions as 311

inputs. For instruction-tuned language models, the 312

use of standardized chat templates helps align the 313

input format with the model’s pretraining and fine- 314

tuning distribution. In contrast, editing without 315

such templates may introduce discrepancies be- 316

tween the input and the model’s expectations, po- 317

tentially reducing editing effectiveness. In our anal- 318

ysis, we compare variants with and without stan- 319

dardized chat templates to examine their impact on 320

editing performance. 321

By reevaluating fine-tuning based methods with 322

refined configurations and instruct-compatible set- 323

tings, we aim to establish a strong setup for FT- 324
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Factor Choices

Loss Calculation Scope final prediction token
all target tokens

Layer Selection single layer
all layers

Component Selection* FFN
Attention

Chat Template w. template
w/o. template

Table 2: Factors we considered for the FT-based method
in UKE task. *: Detailed settings are provided in Ap-
pendix C.

based methods in unstructured knowledge editing325

and provide a training recipe for future research.326

5 Experiments327

In this section, we conduct experiments on datasets328

introduced in § 3: UnKEBench-Loc and AKEW-329

Loc (CF).330

5.1 Experiment Setup331

Language Models Following Jiang et al. (2025),332

we use Llama3-8B-Instruct (AI@Meta, 2024) and333

Qwen2.5-7B-Instruct (Qwen, 2024) as the lan-334

guage models to be edited.335

Baseline Methods We report two UKE meth-336

ods: UnKE (Deng et al., 2024) and AnyEdit (Jiang337

et al., 2025), as well as our adopted FT-based338

methods FT-UKE and AdaLoRA-UKE, which are339

best-performing settings across all settings we dis-340

cussed in § 4. Additionally, we report three widely341

used SKE methods for comparison: ROME (Meng342

et al., 2022), MEMIT (Meng et al., 2023), and Al-343

phaEdit (Fang et al., 2024). To demonstrate the344

difference in performance before and after editing,345

we also report the performance before editing, de-346

noted as Pre-edit. Details of baseline methods are347

listed in Appendix B.348

Evaluation Metrics We evaluate from three per-349

spectives: (1) Edit Success (Ori): Tests whether350

the model correctly answers the original edit query351

with the new target. (2) Generalization (Para):352

Uses paraphrased queries to assess whether the edit353

generalizes beyond the original phrasing. (3) Local-354

ity (Loc): Measures whether unrelated knowledge355

is preserved by checking if the model’s output on356

unaffected inputs remains unchanged. Finally, we357

report the average of Ori, Para, and Loc as a com- 358

prehensive metric, Overall score (OA). 359

Following Jiang et al. (2025); Deng et al. (2024), 360

we use two metrics to measure the similarity be- 361

tween post-edited model’s output and reference out- 362

put: BERT Score (BS) (Zhang et al., 2019) for se- 363

mantic similarity and ROUGE-L (RL) (Lin, 2004) 364

for lexical similarity. 3 365

5.2 Main Result 366

We compare FT-based methods with other strong 367

UKE and SKE methods for editing two LLMs. 368

Consistent with Deng et al. (2024), we adopt a 369

batch size of 1 and set the decoding temperature 370

to 0.001. The main results are listed in Table 3. 371

According to these results, we have the following 372

observations: 373

(1) The best FT-based method, FT-UKE, con- 374

sistently outperforms the SOTA UKE methods. 375

We surprisingly find that FT-UKE outperforms all 376

methods, including the SOTA UKE methods, ex- 377

cept in one instance (BS of OA in AKEW-Loc 378

(CF), editing Llama3). Compared to the best UKE 379

method in the previous studies, AnyEdit, it exceeds 380

by 4.44% and 9.12% in the BS and RL of OA 381

score on AKEW-Loc (CF), with an average advan- 382

tage of 6.78%. Notably, even when compared to 383

the results reported in the original paper, FT-UKE 384

still demonstrates a significant advantage. Besides, 385

AdaLoRA-UKE also demonstrated very competi- 386

tive performance. For example, in the experiments 387

on Qwen2.5-7B-Instruct, its OA consistently sur- 388

passed the SOTA UKE methods. 389

(2) The failure of FT-based methods in the 390

previous studies may be attributed to the use of 391

suboptimal settings. Comparing FT-based meth- 392

ods reported by the previous studies and FT-UKE, 393

we find that while FT-based methods can achieve 394

strong performance, they require careful selection 395

of important factors. Therefore, we encourage fu- 396

ture researchers to adopt our training recipe to build 397

a strong baseline for UKE. 398

(3) UnKE and AnyEdit are still strong meth- 399

ods that significantly outperform the SKE meth- 400

ods. Taking the results of Llama3-8B-Instruct as an 401

example, UnKE and AnyEdit demonstrate a signif- 402

icant advantage over the best SKE method, ROME, 403

across all datasets. For instance, UnKE’s BS and 404

RL of OA on UnKEBench-Loc are around 10% 405

and 30% higher than ROME’s. We observe similar 406

3Specifically, we employ all-MiniLM-L6-v2 to compute
BERT Score.

5

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


UnKEBench-Loc AKEW-Loc (CF)

Method Ori Para Loc OA Ori Para Loc OA

BS RL BS RL BS RL BS RL BS RL BS RL BS RL BS RL

Llama3-8B-Instruct
Pre-edit 63.18 23.67 62.73 23.52 100.00 100.00 75.30 49.06 64.03 15.74 40.20 5.52 100.00 100.00 68.08 40.42
ROME 81.76 45.22 80.47 42.36 78.49 47.90 80.24 45.16 83.75 49.68 57.74 26.34 79.60 45.47 73.69 40.50
MEMIT 75.93 29.83 74.44 28.53 83.24 60.38 77.87 39.58 76.40 31.36 47.81 15.89 81.98 55.73 68.73 34.33
AlphaEdit 73.84 26.84 72.58 25.91 84.74 63.13 77.05 38.63 72.44 24.57 45.68 14.20 83.44 59.25 67.19 32.68
UnKE 98.35 93.32 93.66 79.28 82.30 53.90 91.44 75.50 99.56 97.97 60.33 34.14 77.82 43.29 79.24 58.47
AnyEdit 99.79 99.48 91.87 77.62 86.24 60.24 92.63 79.11 99.99 99.99 62.72 43.33 79.24 43.33 80.65 62.22
AdaLoRA+ 87.26 92.17 81.17 76.53 - - - - - - - - - - - -
FT-L+ 11.63 7.26 10.16 6.53 - - - - - - - - - - - -
FT-L* 40.31 11.39 37.29 8.51 - - - - 42.89 13.12 31.44 5.24 - - - -
UnKE* 98.34 93.33 93.38 78.42 - - - - 98.62 96.37 59.62 32.89 - - - -
AnyEdit* 99.86 99.68 94.70 85.75 - - - - 99.95 99.98 64.24 45.31 - - - -

AdaLoRA-UKE 98.57 93.93 91.57 71.89 85.80 56.32 91.98 74.05 100.00 100.00 82.64 75.18 77.20 36.62 86.61 70.60
FT-UKE 99.95 99.97 99.05 97.07 81.11 50.04 93.37 82.36 100.00 99.99 74.89 65.51 80.38 48.52 85.09 71.34

Qwen2.5-7B-Instruct
Pre-edit 64.18 25.88 64.39 24.02 100.00 100.00 76.19 49.97 65.50 18.24 44.74 17.29 100.00 100.00 70.08 45.18
ROME 84.71 52.34 81.79 45.36 84.52 51.22 83.67 49.64 81.25 50.57 64.07 31.53 81.92 46.03 75.75 42.71
MEMIT 78.19 38.21 76.62 34.19 88.12 61.92 80.98 44.77 76.97 39.03 56.08 25.69 86.56 57.87 73.21 40.86
AlphaEdit 80.00 42.01 78.12 38.22 82.70 49.44 80.27 43.22 80.46 44.43 57.95 28.16 82.42 47.28 73.61 39.96
UnKE 96.90 90.49 83.83 51.29 82.65 51.58 87.79 64.45 97.46 90.55 59.20 29.14 80.69 45.73 79.11 55.14
AnyEdit 98.75 96.99 80.94 51.33 84.36 53.06 88.01 67.13 99.00 97.59 57.50 31.90 82.22 47.37 79.57 58.95
FT-L* 44.02 13.78 40.33 12.93 - - - - 46.66 14.63 32.34 12.31 - - - -
UnKE* 96.97 91.01 89.17 67.00 - - - - 97.34 90.44 59.29 29.27 - - - -
AnyEdit* 99.35 98.82 94.81 82.60 - - - - 99.63 98.99 60.78 32.95 - - - -

AdaLoRA-UKE 99.97 99.89 98.68 94.27 75.94 39.97 91.53 78.05 99.99 100.00 75.19 60.77 77.40 42.32 84.19 67.69
FT-UKE 99.97 99.89 99.08 97.04 79.02 41.41 92.69 79.45 100.00 99.95 77.88 71.14 76.74 38.80 84.87 69.96

Table 3: Knowledge editing performance with different methods. "BS" and "RL" are short for "Bert Score" and
"Rouge-L" respectively. The best results are highlighted in bold, and the second-best results are underlined. +:
Cited from UnKE (Deng et al., 2024), editing Llama2-7B-Chat on UnKEBench. *: Cited from AnyEdit (Jiang et al.,
2025), same experiment setup with us.

trends in other settings. This suggests that although407

UnKE and AnyEdit are not as powerful as FT-UKE,408

they remain competitive methods for the UKE task.409

5.3 Analysis of Factors for FT-based Methods410

In this section, we edit Llama3-8B-Instruct on411

AKEW-Loc (CF) using FT-based methods, apply-412

ing the factor settings discussed in § 4. As shown413

in Table 4, our analysis yields the following key414

findings:415

(1) Calculate loss on final prediction token is416

not a good choice for UKE. We find settings that417

calculate loss using only the final prediction token418

underperform those using all target tokens by over419

50% in terms of OA. This significant difference420

indicates that using the final prediction token is not421

a good choice for the loss calculation scope in the422

UKE task.423

(2) The optimal choice for component may424

differ for FT-based methods between SKE and425

UKE tasks, while the choice for layer and chat426

template remains the same. The best settings for427

additional parameter fine-tuning (AdaLoRA-UKE)428

and direct weight fine-tuning (FT-UKE) are high-429

lighted in green in the table. For the optimal choice430

for component in UKE task, AdaLoRA-UKE in-431

volves whole attention projections (qproj , kproj ,432

vproj , oproj), which differs from that in SKE (qproj , 433

vproj) (Wang et al., 2024b). As for FT-UKE, the 434

optimal choice remains the same (downproj) be- 435

tween SKE and UKE. Similarly, the optimal choice 436

of layer remains consistent, with all for AdaLoRA- 437

UKE, and one for FT-UKE. As for chat template, 438

applying it during editing significantly boosts per- 439

formance across all settings. Detailed comparisons 440

can be found in Appendix C. 441

5.4 Performance in Batch Editing Scenarios 442

To further assess the robustness of various editing 443

methods under batch editing scenarios, we edit 444

Llama3-8B-Instruct using different batch sizes (1, 445

10, 50, and 100) on the AKEW-Loc (CF) dataset. 446

We aim to investigate how FT-UKE and AdaLoRA- 447

UKE perform in batch editing scenarios. Therefore, 448

we present the results of four methods in Figure 3: 449

FT-UKE, AdaLoRA-UKE, and two UKE methods, 450

UnKE and AnyEdit. These methods perform well 451

in the single editing scenario (§ 5.2). 452

As shown in Figure 3, FT-UKE maintains its 453

advantage over SOTA UKE methods in batch 454

editing scenarios, demonstrating strong robust- 455

ness and effectiveness. All methods exhibit a gen- 456

eral decline in performance as batch size increases. 457

However, FT-UKE degrades more gradually, which 458
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Scope Layer Component Ori Para Loc OA

BS RL BS RL BS RL BS RL
AdaLoRA (additional parameter fine-tuning)

final prediction token

all qproj 100.00 100.00 53.01 23.49 84.51 54.58 79.17 59.35
all qproj , vproj 99.99 100.00 80.35 70.15 78.41 37.82 86.25 69.32
all qproj , kproj , vproj , oproj 100.00 100.00 82.64 75.18 77.20 36.62 86.61 70.60

single qproj 68.55 18.94 42.28 13.30 96.65 87.64 69.16 39.96
single qproj , vproj 74.18 26.90 44.51 15.15 90.45 67.97 69.71 36.67
single qproj , kproj , vproj , oproj 99.83 99.17 51.17 23.41 87.64 59.73 79.54 60.77

FT (direct weight fine-tuning)

final prediction token

all qproj , vproj 3.34 1.98 3.08 1.89 1.77 27.39 2.73 10.42
all qproj , vproj , downproj 3.25 1.36 3.30 1.34 1.91 31.43 2.82 11.37
all downproj 3.36 1.40 3.36 1.36 1.98 32.76 2.90 11.84

single qproj , vproj 11.75 5.29 11.21 5.22 15.55 42.42 12.84 17.64
single qproj , vproj , downproj 9.92 4.81 11.09 6.01 40.36 35.59 20.46 15.47
single downproj 29.44 12.19 27.10 10.92 56.10 41.82 37.55 21.64

all target tokens

all qproj , vproj 89.30 88.36 86.39 83.30 13.60 17.01 63.09 62.89
all qproj , vproj , downproj 100.00 99.99 75.68 65.87 78.00 45.00 84.56 70.28
all downproj 18.35 13.45 17.75 13.03 3.67 27.09 13.26 17.86

single qproj , vproj 100.00 99.98 75.66 65.96 77.86 44.74 84.51 70.23
single qproj , vproj , downproj 100.00 100.00 68.88 54.35 81.00 47.17 83.29 67.17
single downproj 100.00 99.99 74.89 65.51 80.38 48.52 85.09 71.34

Table 4: Performance of FT-based methods with different factor settings on AKEW-Loc (CF). All settings apply the
chat template. The best results for each group are highlighted in bold, and the settings used in §5.2 are highlighted
in green (FT-UKE, AdaLoRA-UKE). The comparison for the "chat template" can be found in Appendix C (Table 6).

results in a progressively larger advantage in aver-459

age OA over other methods, increasing from 6.78%460

to 10.80%. In contrast, AdaLoRA-UKE suffers461

the steepest drop, indicating greater sensitivity to462

batch interference. Specifically, AdaLoRA-UKE463

shows a more significant decline compared to other464

methods as the batch size increases to 10, partic-465

ularly in the OA of RL, where it decreases from466

70.60% to 45.16%. When the batch size reaches467

100, AdaLoRA-UKE becomes almost ineffective,468

with an OA of only 37.66/22.12 (BS/RL). As for469

UnKE and AnyEdit, although AnyEdit is the SOTA470

UKE method in single editing scenarios with a471

batch size of 1, it is surpassed by UnKE when the472

batch size increases to 50.473

For future work, we recommend incorporating474

batch editing scenarios into testing to more com-475

prehensively evaluate the effectiveness of UKE476

methods. Additionally, FT-UKE is the most suit-477

able FT-based method for comparison, rather than478

AdaLoRA-UKE, which may not perform well with479

large batch sizes.480

5.5 Comparison with Locality Evaluation481

Using General Assessment Dataset482

Previous studies rely on a general assessment483

dataset MMLU to evaluate the Locality of UKE484

(Deng et al., 2024), by observing changes in485

multiple-choice accuracy before and after editing. 486

However, we argue that such evaluations are in- 487

sufficient for Locality evaluation. To support our 488

argument, we utilize the Locality data constructed 489

by Deng et al. (2024) based on MMLU, referred 490

to as MMLU-Loc, instead of the Locality data we 491

constructed, to report the performance on datasets 492

UnKEBench-Loc and AKEW-Loc (CF) for editing 493

Llama3-8B-Instruct. 494

As shown in Table 5, most editing methods ex- 495

hibit performance similar to the pre-edit model 496

on MMLU-Loc. Even the method with the lowest 497

accuracy (ROME) shows a decline of only 1.17% 498

from the pre-edit model. Given that MMLU-Loc 499

provides only a few multiple-choice questions for 500

the Locality data of a single edit query, and con- 501

sidering that evaluations based on such a small set 502

can be random, we are concerned that this narrow 503

gap may fail to accurately reflect the differences 504

in Locality between methods, especially when the 505

capabilities of them are similar. For instance, the 506

differences between AnyEdit and UnKE are very 507

small, less than 0.1% on AKEW-Loc (CF). 508

In contrast, the Locality data we constructed 509

reveals clearer distinctions. Taking the BS score 510

of AKEW-Loc (CF) as an example: (1) The mini- 511

mum gap between methods and pre-edit is 16.56%, 512

which is much larger than that on MMLU-Loc 513
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Figure 3: OA of different methods for editing Llama3-8B-Instruct on AKEW-Loc (CF) in batch editing scenarios. FT-
UKE has advantages over SOTA UKE methods across different batch sizes, and the magnitude of these advantages
increases with larger batch sizes. Detailed results are listed in Appendix (Table 7).

Edit query source UnKEBench-Loc AKEW-Loc (CF)

Loc. data source MMLU-Loc UnKEBench-Loc MMLU-Loc AKEW-Loc (CF)

Method Acc BS RL Acc BS RL

Pre-edit 64.18 100.00 100.00 64.06 100.00 100.00
ROME 63.66 (-0.52) 78.49 (-21.51) 47.90 (-52.10) 63.26 (-0.80) 79.60 (-20.40) 45.47 (-54.53)
MEMIT 63.96 (-0.22) 83.24 (-16.76) 60.38 (-39.62) 63.98 (-0.08) 81.98 (-18.02) 55.73 (-44.27)
AlphaEdit 63.78 (-0.40) 84.74 (-15.26) 63.13 (-36.87) 63.84 (-0.23) 83.44 (-16.56) 59.25 (-40.75)
UnKE 63.28 (-0.90) 82.30 (-17.70) 53.90 (-46.10) 62.95 (-1.11) 77.82 (-22.18) 43.29 (-56.71)
AnyEdit 62.56 (-1.62) 86.24 (-13.76) 60.24 (-39.76) 62.89 (-1.17) 79.24 (-20.76) 43.33 (-56.67)
FT-UKE 63.98 (-0.20) 81.11 (-18.89) 50.04 (-49.96) 63.71 (-0.35) 80.38 (-19.62) 48.52 (-51.48)
AdaLoRA-UKE 62.92 (-1.26) 85.80 (-14.20) 56.32 (-43.68) 63.06 (-1.01) 77.20 (-22.80) 36.62 (-63.38)

Table 5: Comparison of Locality evaluation results using MMLU-Loc and AKEW-Loc, showing the results for
editing Llama3-8B-Instruct with queries from AKEW-Loc (CF). The highest values are shown in bold. The values
in (parentheses) indicate the decrease compared to Pre-edit, with the largest decrease marked in red. For result on
UnKEBench, please refer to Appendix E.

(1.17%); (2) The difference between UnKE and514

AnyEdit is 1.42%, which is significantly larger than515

that on MMLU-Loc as well. This demonstrates that516

our datasets offer a more sensitive and informative517

assessment of Locality. This is attributed to (1)518

Our data consists of three types, including both519

structured and unstructured data, and is meticu-520

lously designed for edit queries. (2) Our evaluation521

framework is similar to SKE datasets by compar-522

ing the consistency between the output of post-edit523

and pre-edit models, which is more suitable for the524

knowledge editing task (Deng et al., 2024; Jiang525

et al., 2025).526

6 Conclusion527

This paper constructs two datasets UnKEBench-528

Loc and AKEW-Loc (CF) designed for Unstruc-529

tured Knowledge Editing (UKE) from the unstruc- 530

tured and structured views. With three types of 531

Locality test data, these datasets can support di- 532

rect and comprehensive evaluation of UKE Local- 533

ity. Besides, we outline four factors influencing 534

FT-based methods in UKE and provide a recipe 535

for training FT-based methods with strong perfor- 536

mance. Our experiment results indicate that the FT- 537

based method with the optimal setting (FT-UKE) is 538

surprisingly strong, surpassing all the SOTA meth- 539

ods. In batch editing scenarios, FT-UKE performs 540

strongly as well, with its advantage over SOTA 541

methods increasing as the batch size grows, thereby 542

expanding the average metric lead from +6.78% to 543

+10.80%. We encourage researchers to adopt our 544

training recipe to build a strong baseline for the 545

UKE task in future work. 546
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Limitations547

This paper conducts analytical experiments on548

several factors of FT-based methods and derives549

a training recipe for the UKE task. We opted550

for a set of experiments that researchers have551

proven to have competitive performance in the SKE552

task, rather than enumerating all possible combina-553

tions due to limitations in computational resources.554

Specifically, the settings we skip include: (1) full-555

parameter fine-tuning, which involves training all556

parameters of all layers rather than just a part of a557

layer component, and (2) other combinations for558

the factor Component, such as editing joint con-559

figurations of qproj , kproj , vproj , oproj , downproj .560

Considering that the current FT-UKE in the set-561

tings we experimented with already surpasses the562

existing SOTA methods, we decide not to pursue563

further exploration of the aforementioned settings,564

opting to leave them for future work.565
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A Dataset Construction 710

The DPR model used in our main experiments is 711

trained under the in-batch negative setting, where 712

each question is paired with one additional negative 713

document. We employ distributed training across 6 714

NVIDIA 1080Ti GPUs, with each GPU processing 715

a batch size of 6, resulting in an effective total batch 716

size of 36. The question and document encoders 717

are jointly trained for up to 31 epochs using the 718

Adam optimizer with a learning rate of 1e-5, a 719

linear learning rate scheduler with warm-up, and a 720

dropout rate of 0.1. 721

Following (Karpukhin et al., 2020)’s settings, 722

We begin by using a pre-processing script to ex- 723

tract clean textual content from the Wikipedia 724

dump, filtering out semi-structured elements such 725

as tables, infoboxes, lists, and disambiguation 726

pages. Each article is then segmented into multiple 727

non-overlapping text blocks of approximately 100 728

words, which are treated as individual retrieval doc- 729

uments. This process results in roughly 21M docu- 730

ments in total. To construct the locality dataset, we 731

first employ the trained DPR model to retrieve high 732

similarity documents for each question. For the 733

RelDoc setting, we use the Stanford OpenIE toolkit 734

to extract triples from the unstructured facts and en- 735

sure that none of the extracted entity-relation com- 736

binations appear in the retrieved documents. Rand- 737

Doc involves randomly sampling documents from 738

the entire corpus, while explicitly excluding those 739

that appear in the top-100 retrieval results. Struct- 740

Trip is constructed by sampling questions from the 741

structured editing dataset KnowEdit (Zhang et al., 742

2024), with additional filtering to guarantee that 743

the involved entities do not reoccur in the retrieved 744

documents. For the final statistics of each Locality 745

test, we use the word_tokenize function from the 746

NLTK (Bird and Loper, 2004) library to count the 747

number of tokens. 748

B Experiment Details 749

The settings for FT-based methods and ROME, are 750

primarily based on those used in EasyEdit (Wang 751

et al., 2024b), while all other configurations fol- 752

low the original implementation of AnyEdit (Jiang 753

et al., 2025) to ensure consistency. All experiments 754

are conducted on a single NVIDIA H20 GPU with 755

96GB of memory. The following are their impor- 756

tant hyperparameter configuration contents. 757

10

https://doi.org/10.18653/v1/2024.acl-demos.9
https://doi.org/10.18653/v1/2024.acl-demos.9
https://doi.org/10.18653/v1/2024.acl-demos.9
https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.296
https://doi.org/10.18653/v1/2023.emnlp-main.296
https://doi.org/10.18653/v1/2023.emnlp-main.296


UnKE UNKE performs edits at layer 7. The758

model is trained with a learning rate of 5 × 10−1759

for 25 optimization steps, using a weight attenua-760

tion coefficient of 1×10−3. This is followed by 50761

additional optimization steps with a reduced learn-762

ing rate of 2× 10−4 to further refine the parameter763

updates.764

AnyEdit For Llama3-8B-Instruct, the standard765

AnyEdit configuration is adopted, where editing766

is performed at layer 7 with a clamp norm factor767

of 4. The fact token is defined as the last token768

in the prompt. During optimization, all parame-769

ters within both the attention and MLP layers are770

updated. A learning rate of 2 × 10−4 is used for771

50 gradient steps. For key-value representation up-772

dates, 25 optimization steps are conducted with a773

higher learning rate of 0.5. The loss is applied at774

layer 31, and a weight decay of 1 × 10−3 is em-775

ployed. To mitigate unintended knowledge drift, 20776

samples are drawn from the original model distri-777

bution to serve as constraints. For chunked editing,778

a chunk size of 40 tokens is used without over-779

lap. For Qwen2.5-7B-Instruct, the configuration780

remains the same, except that the loss is applied781

at layer 27 and the chunk size is increased to 50782

tokens.783

ROME and MEMIT The key difference be-784

tween ROME and MEMIT lies in the number of785

layers involved in the editing process. ROME786

performs updates exclusively on layer 5, whereas787

MEMIT operates on a broader range of layers: [4,788

5, 6, 7, 8]. Both methods are optimized using 25789

steps with a learning rate of 5 × 10−1, a weight790

attenuation coefficient of 1× 10−3, and a KL regu-791

larization factor of 0.0625.792

FT FT updates the model weights with a learning793

rate of 5× 10−4, performing 25 optimization steps794

for each training sample. The update is restricted795

to a single transformer layer, and we explore two796

optimization objectives: prompt-last, which su-797

pervises the representation at the last token of the798

prompt, and target-new, which directly supervises799

the representation of the injected target entity.800

AdaLoRA For the AdaLoRA experiments, we801

adopt parameter-efficient tuning by inserting low-802

rank adapter modules into all transformer layers.803

We set the LoRA rank to 8, the scaling factor804

lora_alpha to 32, and apply a dropout rate of805

0.1. The learning rate is set to 5× 10−3. The target806

Method Ori Para Loc OA

BS RL BS RL BS RL BS RL

AdaLora (additional parameter fine-tuning)
w. template 100.00 100.00 82.64 75.18 77.20 36.62 86.61 70.60
w/o. template 89.33 95.07 48.40 33.14 76.00 40.80 71.24 56.34

FT (direct weight fine-tuning)
w. template 100.00 99.99 74.89 65.51 80.38 48.52 85.09 71.34
w/o. template 80.00 42.01 78.12 38.22 82.70 49.44 80.27 43.22

Table 6: Results of editing Llama3-8B-Instruct with (w.)
and with out(w/o.) chat template on AKEW-Loc (CF).
Settings of other factors keep same with the best setting
in Table 4.

modules include the attention projections: qproj , 807

kproj , vproj , and oproj . 808

C Configuration Details 809

Component Selection Each Transformer layer 810

primarily consists of two submodules: the multi- 811

head self-attention (MHSA) module and the feed- 812

forward network (FFN) module. In the MHSA 813

module, the input hidden states are projected 814

through linear layers to produce the query (qproj), 815

key (kproj), and value (vproj) vectors. These are 816

used to compute attention scores and aggregate con- 817

textual information, followed by an output projec- 818

tion (oproj) that maps the result back to the original 819

hidden dimension. In the FFN module, the hidden 820

representations are transformed through a nonlin- 821

ear activation and projected back using the down 822

projection (downproj) layer. 823

Impact of Chat Template. We also investigate 824

the impact of chat template adaptation on editing 825

performance. Our results show a clear performance 826

gap between models with and without chat tem- 827

plate alignment. For instance, on the AdaLoRA 828

setting, using the template yields an average BS of 829

86.61% and RL of 70.60%, compared to 71.24% 830

and 56.34% without the template, a relative im- 831

provement of 14.26% in RL. Similarly, for FT, the 832

RL score improves from 43.22% (w/o template) 833

to 71.34% (w. template), a dramatic gain of over 834

28.12%. These results highlight the importance of 835

aligning with the model’s expected input format. 836

Omitting the chat template leads to suboptimal ed- 837

its, likely due to mismatches in prompt structure 838

and internal representations. Therefore, template 839

adaptation should be considered a necessary step 840

for effective knowledge editing, especially when 841

working with instruction-tuned models. 842
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Method Ori Para Loc OA

BS RL BS RL BS RL BS RL

Batch Size=1
ROME 83.75 49.68 57.74 26.34 79.60 45.47 73.69 40.50
MEMIT 76.40 31.36 47.81 15.89 81.98 55.73 68.73 34.33
UNKE 99.56 97.97 60.33 34.14 77.82 43.29 79.24 58.47
AnyEdit 99.99 99.99 62.72 43.33 79.24 43.33 80.65 62.22
AdaLoRA-UKE 100.00 100.00 82.64 75.18 77.20 36.62 86.61 70.60
FT-UKE 100.00 99.99 74.89 65.51 80.38 48.52 85.09 71.34

Batch Size=10
ROME 72.86 28.13 51.60 19.52 79.55 45.02 68.00 30.89
MEMIT 54.15 14.23 40.18 12.21 72.28 47.34 55.53 24.59
UNKE 99.61 98.31 57.27 32.69 73.43 34.76 76.77 55.25
AnyEdit 99.86 99.78 56.75 39.02 78.16 36.37 78.25 58.39
AdaLoRA-UKE 90.17 67.61 53.60 26.52 80.80 41.34 74.86 45.16
FT-UKE 99.90 99.76 75.53 63.03 76.42 37.57 83.95 66.79

Batch Size=50
ROME 71.41 23.71 49.88 17.48 80.31 48.89 67.20 30.03
MEMIT 67.89 18.51 43.44 13.33 95.39 85.04 68.91 38.96
UNKE 99.57 97.90 54.70 28.51 76.03 36.93 76.76 54.45
AnyEdit 75.44 48.76 51.10 31.84 79.45 37.17 68.66 39.26
AdaLoRA-UKE 77.74 47.43 52.05 29.10 66.91 29.94 65.56 35.49
FT-UKE 99.91 99.72 68.74 50.27 77.29 36.80 81.98 62.26

Batch Size=100
ROME 72.36 24.95 49.44 17.86 80.55 48.57 67.45 30.46
MEMIT 68.27 18.69 42.24 13.18 96.39 88.05 68.97 39.98
UNKE 92.54 75.38 53.15 25.58 77.43 40.54 74.37 47.17
AnyEdit 71.33 45.34 50.51 31.40 80.01 37.77 67.28 38.17
AdaLoRA-UKE 42.96 23.50 31.12 18.04 38.89 24.83 37.66 22.12
FT-UKE 99.96 99.73 68.24 49.16 76.41 35.92 81.54 61.60

Table 7: Detailed results of Figure 3: Editing Llama3-
8B-Instruct on AKEW-Loc (CF) with batch size of 1,
10, 50, 100.

D Performance of Batch Ediging843

As shown in Table 7, we further evaluate the perfor-844

mance of various editing methods under different845

batch sizes (1, 10, 50, 100) on the AKEW-Loc846

dataset. FT-UKE consistently demonstrates strong847

and stable performance across all batch sizes, main-848

taining high factual accuracy (Ori) while effectively849

preserving both generalization (Para) and locality850

(Loc). Notably, its advantages become increasingly851

evident as the batch size grows. While methods like852

MEMIT exhibit relatively stable behavior, most853

notably, AdaLoRA-UKE, whose accuracy drops854

rapidly with increasing batch size. In contrast, FT-855

UKE maintains a well-balanced performance, lead-856

ing to a clear overall advantage (OA) over compet-857

ing approaches.858

E Locality Results859

Table 8 provides a detailed comparison of three860

distinct types of locality, RelDoc, RandDoc, and861

StructTrip, and illustrates how different edit-862

ing methods perform under these settings on863

the UNKEBENCH-LOC and AKEW-LOC (CF)864

datasets.865
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UnKEBench-Loc AKEW-Loc (CF)

Method RelDoc RandDoc StructTrip RelDoc RandDoc StructTrip

BS RL BS RL BS RL BS RL BS RL BS RL

Llama3-8B-Instruct
ROME 76.64 47.80 79.12 50.78 79.71 45.13 80.76 49.63 79.77 48.87 79.60 45.47
MEMIT 80.61 56.90 83.23 59.70 85.88 64.54 82.41 57.36 81.70 56.54 81.81 53.30
AlphaEdit 82.43 58.96 84.49 61.72 87.30 68.69 83.79 58.19 82.86 58.78 83.66 60.79
UNKE 80.37 51.69 83.46 55.49 83.08 54.51 80.31 51.57 79.72 50.24 73.43 28.07
AnyEdit 83.41 52.71 86.24 59.43 89.06 68.58 81.31 48.38 80.94 49.95 75.47 31.67
AdaLoRA 75.67 40.48 78.86 44.01 78.44 36.36 78.88 40.98 78.93 43.08 77.42 29.39
FT-M 72.16 45.02 77.70 55.23 83.05 58.67 76.40 45.29 82.24 56.00 85.78 60.48

Qwen2.5-7B-Instruct
ROME 86.17 51.72 87.06 53.58 80.31 48.36 83.61 46.00 84.61 47.73 77.53 44.36
MEMIT 89.11 62.71 90.94 64.79 84.33 58.27 88.21 58.35 90.02 61.83 81.45 53.42
AlphaEdit 83.99 49.37 86.45 52.16 77.65 46.80 84.76 47.54 85.98 50.73 76.51 43.55
UNKE 84.47 52.74 86.05 55.10 77.43 46.90 82.75 45.30 84.44 48.21 74.86 43.67
AnyEdit 86.07 54.43 87.90 57.89 79.10 46.85 84.48 47.30 86.08 51.72 76.10 43.08
AdaLoRA 76.48 41.47 77.92 43.01 71.39 34.79 79.48 43.53 80.79 46.76 70.69 40.07
FT-M 79.02 41.60 83.57 46.04 72.52 36.59 76.17 37.11 83.18 44.69 70.87 34.58

Table 8: Locality of post-edit models across three types.
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