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Abstract001

Large language model (LLM) unlearning has002
demonstrated effectiveness in removing the in-003
fluence of undesirable data (also known as for-004
get data). Existing approaches typically as-005
sume full access to the forget dataset, over-006
looking two key challenges: (1) Forget data007
is often privacy-sensitive, rare, or legally reg-008
ulated, making it expensive or impractical to009
obtain (2) The distribution of available forget010
data may not align with how that information011
is represented within the model. To address012
these limitations, we propose a “Reveal-and-013
Release” method to unlearn with self-generated014
data, where we prompt the model to reveal015
what it knows using optimized instructions.016
To fully utilize the self-generated forget data,017
we propose an iterative unlearning framework,018
where we make incremental adjustments to the019
model’s weight space with parameter-efficient020
modules trained on the forget data. Experi-021
mental results demonstrate that our method bal-022
ances the tradeoff between forget quality and023
utility preservation.1024

1 Introduction025

Large language models (LLMs) function as vast026

knowledge repositories, drawing on information027

embedded in their parameters in response to user028

inputs (Brown et al., 2020). However, the scope029

of their knowledge is fixed at the time of train-030

ing, lacking effective means to verify and may pro-031

duce responses that are outdated, incorrect, or even032

harmful (Liang et al., 2022). Additionally, once033

information is learned by the model, it becomes034

deeply internalized and challenging to erase.035

Machine unlearning has become an important036

area of research aimed at addressing these lim-037

itations. A straightforward approach—known038

as exact unlearning—involves removing undesir-039

able data from the training corpus and retraining040

1Warning: This paper includes model-generated outputs
that may be offensive or harmful in nature.

Figure 1: External forget data may include informa-
tion irrelevant to the true unlearning target, or miss the
model’s knowledge related to the target. Our approach
enables effective unlearning with minimal utility loss.

the model from scratch, which is prohibitively 041

resource-intensive for modern LLMs. Researchers 042

are exploring approximate unlearning, which seeks 043

to remove the model’s knowledge without full 044

retraining. The goal is to efficiently and selec- 045

tively erase the influence of targeted information 046

while maintaining the model’s performance on non- 047

targeted tasks (Liu et al., 2024a). Current strategies 048

include gradient ascent techniques that effectively 049

guide models to forget by optimizing in the op- 050

posite direction of original learning (Ullah et al., 051

2021); knowledge editing methods that locate and 052

directly modify network parameters to perform tar- 053

geted information removal (Meng et al., 2023); and 054

influence function approaches that identify and neu- 055

tralize the impact of specific training examples (Li 056

et al., 2024). 057

In a typical machine-unlearning process, one 058

crucial factor is the data, specifically, the infor- 059

mation to be forgotten and the information to be 060

retained (Xu, 2024), which we refer to as forget 061
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data and retain data. Most unlearning methods062

require well-annotated forget data. However, in063

practice—particularly for LLMs—obtaining well-064

annotated forget data presents a significant obstacle.065

While retain data can typically be curated from pub-066

lic or general-purpose corpora, the availability of067

forget data is frequently hindered by privacy re-068

strictions, proprietary limitations, or confinement069

to specific domains. Additionally, as model knowl-070

edge progresses, forget data may rapidly become071

obsolete, resulting in a misalignment with the data072

actually stored within the model. Moreover, exist-073

ing unlearning benchmarks often assume access to074

the model’s original training data or an exact for-075

get subset (Maini et al., 2024), which is unrealistic076

for massive and private corpora. In other cases,077

forget data consists of publicly sourced approxi-078

mations (Gehman et al., 2020), herein termed as079

external data; however, such data may not faith-080

fully represent how the information is genuinely081

encoded within the model. On one hand, some082

related knowledge of LLMs may not be included083

in the external data, and on the other hand, exter-084

nal data may contain extra knowledge that impacts085

models’ performance unexpectedly.086

To address this challenge, we introduce a087

“Reveal-and-Release” approach for unlearning that088

leverages self-generated data. Given a specific un-089

learning target, our goal is to extract and reveal as090

much of the model’s internal knowledge about that091

target as possible. This requires the generated data092

to not only relate to the target closely but also cover093

a diverse spectrum of how the model encodes the094

target. Instead of relying on well-labeled external095

forget data, we use a NeuralUCB-based instruction096

optimization method (Zhou et al., 2020; Lin et al.,097

2023) to generate prompts to reveal internal knowl-098

edge, focusing on the relevance and diversity of the099

generation (Section 3.1). We refer to the resulting100

self-generated data as internal data.101

For the “release” part, we further introduce an102

iterative unlearning method to effectively utilize103

the internal forget data. Inspired by Parameter-104

Efficient Module (PEM) composition (Zhang et al.,105

2023), our approach incrementally edits the base106

model by merging two types of PEM LoRAs (Hu107

et al., 2022): a forget PEM trained on internal108

forget data and a retain PEM trained on retain data.109

We control the forgetting and preservation dynam-110

ics by adjusting the merge weights of each PEM111

at every iteration. Intuitively, the LoRAs act like112

gradient ascents/descents, and multiple iterations113

of unlearning correspond to applying small steps of 114

gradient optimizations. This enables significantly 115

improved target forgetting while preserving utility 116

by finding a better optimized trade-off point. 117

We conduct experiments on three unlearning 118

tasks: toxicity, name entity recognition (NER), 119

and coding ability. Our results demonstrate that 120

unlearning with self-generated data achieves sim- 121

ilar or better results than external data. Also, our 122

approach achieves a better trade-off between forget 123

quality and model utility. Our contributions are: 124

1. To the best of our knowledge, this is the 125

first work to study LLM unlearning using 126

self-generated forget data, eliminating the 127

need for well-annotated, externally sourced 128

forget datasets. 129

2. We propose an Iterative Unlearning method 130

that incrementally edits the base model 131

by alternating between retain and forget 132

Parameter-Efficient Modules (PEMs), en- 133

abling control over the trade-off between 134

forget quality and utility preservation. 135

3. Experiments and ablation studies across mul- 136

tiple tasks demonstrate that our framework 137

effectively supports targeted forgetting with 138

minimal degradation to retained capabilities. 139

2 Related Work 140

Data Synthesis for Unlearning Well-annoted 141

data is expensive to get. In non-LLM domains, 142

Shen et al. (Shen et al., 2024) introduce Label- 143

Agnostic Forgetting (LAF), a supervision-free un- 144

learning framework that manipulates representa- 145

tion distributions to remove forgotten data without 146

relying on labels. Peng et al. (Peng et al., 2025) 147

propose MixUnlearn, which uses adversarially gen- 148

erated mixup samples to mitigate catastrophic un- 149

learning, ensuring effective data deletion even in 150

label-agnostic scenarios. 151

In the domain of LLM, CMD introduces a detox- 152

ification framework for LLMs that leverages syn- 153

thesized data to enable unlearning of toxic behav- 154

iors(Tang et al., 2024). It detoxifies context seg- 155

ments and uses the cleaned context to guide gener- 156

ation, ensuring the model unlearns toxicity without 157

sacrificing context fidelity or generation quality. 158

Parameter-Efficient-Module for Unlearning 159

Parameter-efficient fine-tuning (PEFT) methods 160

such as LoRA (Hu et al., 2022) have become 161

popular for adapting LLMs due to their efficiency 162

and modularity. Recent research explores how 163
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these parameter-efficient modules (PEMs) can be164

composed through arithmetic operations to enable165

unlearning(Zhang et al., 2023). Building on this,166

Liu et al. (Liu et al., 2024b) proposed SKU, which167

trains multiple modules from different perspectives168

and merges them before a single subtraction,169

aiming to better capture harmful knowledge from170

multiple angles. Ding et al. (Ding et al., 2025)171

proposed a unified framework for PEM-based172

unlearning by applying influence functions to173

directly update existing PEMs.174

Extending this line of work, Hu et al. (Hu et al.,175

2024) introduced Ext-Sub, a method to isolate and176

subtract only the “deficiency capability” from an177

anti-expert PEM. Instead of direct subtraction, Ext-178

Sub first defines general capability as the sum of179

expert and anti-expert PEMs, then subtracts this180

from the anti-expert PEM to isolate what they call181

the deficiency capability. While this decomposition182

is intuitive, we find it unstable across all our tasks,183

likely due to the oversimplified assumption that184

general knowledge can be captured through linear185

addition of opposing PEMs. Notably, all existing186

methods rely on a single subtraction step, which187

can be limiting when balancing forget quality and188

utility preservation. In contrast, our approach per-189

forms unlearning iteratively, enabling more control-190

lable model updates.191

3 Method192

Our method consists of two stages: we first obtain193

self-generated forget data by optimizing instruc-194

tions for the LLM, and then utilize the obtained195

data in an iterative unlearning framework.196

3.1 Forget Data Generation197

To generate high-quality internal forget data,198

we aim to elicit as much relevant and diverse199

knowledge as possible from the model with a set200

of optimized instructions. We formulate this as an201

instruction optimization problem and use a query-202

efficient search framework based on a NeuralUCB203

algorithm following prior work (Garnett, 2023; Lin204

et al., 2023). This approach allows us to perform205

black-box instruction optimization efficiently in206

high-dimensional spaces.207

The instruction search is guided by a task-208

specific scoring function designed to reflect two209

core objectives:210

• Relevance: The generated internal data211

should strongly reflect the unlearning target212

(e.g., high toxicity if we aim to forget toxic 213

behavior). 214

• Diversity: The generated internal data should 215

span a wide range of content and thoroughly 216

reflect the model’s internal knowledge of the 217

unlearning target. 218

We assume a metric or oracle is available to 219

quantify the relevance of the generated data to the 220

task (for example, a model to calculate the toxicity 221

score for toxicity unlearning). We argue this is a 222

mild assumption, as we always need such a met- 223

ric for evaluation in practical applications. Even 224

in cases for unlearning with external data, such a 225

metric is still required for assessment. The specific 226

relevance metric used for each task is detailed in 227

Section 4. 228

To capture diversity, we use the Vendi 229

score (Friedman and Dieng, 2023), which is de- 230

fined as the exponential of the Shannon entropy of 231

the eigenvalues of a similarity matrix. Concretely, 232

we embed all decoded responses, compute pair- 233

wise similarities to form a similarity matrix, and 234

then apply the Vendi formula. The Vendi score re- 235

wards sets of outputs that are semantically dissimi- 236

lar, ensuring that the generated forget data covers 237

a diverse space. We combine two scores using a 238

weighted harmonic mean, where the weights con- 239

trol their importance in the final composition. 240

NeuralUCB Instruction Optimization To gen- 241

erate internal data that matches the two objectives, 242

we apply a NeuralUCB-based approach: we initial- 243

ize a set of soft prompts (the bandits) and search for 244

the top soft prompts that generate outputs with high 245

scores (relevance and diversity). A small-sized neu- 246

ral network learns the association between the soft 247

prompts and the scores to guide the search. The 248

details are shown in Alg. 1. 249

As diversity is a metric defined relative to a set 250

of items, we iteratively identify soft prompts that 251

can generate diverse data relative to the previously 252

selected ones. Our algorithm consists of an outer 253

loop and an inner loop. At the beginning of each 254

outer-loop iteration, we initialize the neural net- 255

work for NeuralUCB with k high-scoring prompts 256

from previous outer iterations (we use k = 10). 257

This provides a strong starting point for prompt 258

searching. Assuming Dself-gen contains the inter- 259

nal data collected so far, we then launch the inner 260

loop to identify the best instruction that prompts 261

the model to generate outputs that are both relevant 262

to the unlearning target and diverse relative to the 263
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Figure 2: Overview of our two-stage unlearning framework. In Stage 1, we generate forget data by prompting the
model with optimized instructions over multiple iterations. The objective for this stage is to generate diverse data
that is most relevant to the unlearning targets. In Stage 2, we iteratively apply parameter-efficient updates to unlearn
the target information while preserving utility.

existing samples in Dself-gen guided by NeuralUCB.264

Once identified, this instruction is used to generate265

new responses conditioned on the given prompts266

(generation context C), and the resulting outputs267

are added to Dself-gen.268

3.2 Iterative Unlearning with PEM269

Iterative PEM Composition for Unlearning In-270

spired by prior work (Zhang et al., 2023), we pro-271

pose an iterative unlearning framework that in-272

crementally edits the base model by composing273

parameter-efficient modules (PEMs) trained on dif-274

ferent objectives. At each iteration, we alternate275

between a forget PEM trained on internal forget276

data and a retain PEM trained on retain data. These277

modules are merged into the base model through278

weighted addition and subtraction.279

We initiate unlearning by subtracting a forget280

PEM from the base model. In each subsequent281

iteration, we perform two steps:282

1. Train a retain PEM on retain data using the283

negated model as the base; merge it via addition.284

2. Train a forget PEM on the forget data using the285

updated model; merge it via subtraction.286

This process is repeated for several iterations.287

Although prior work has suggested potential over-288

lap between PEMs trained on retain and forget289

data(Hu et al., 2024), our analysis (See Section 4.1) 290

shows that the two modules are largely orthogonal, 291

and forcing orthogonality between these opposing 292

PEMs does not improve unlearning performance 293

(See Appendix B). As a result, we adopt a simple 294

linear merge strategy: 295

Φ(t) = Φ0 − µ0∆Φ
(0)
forget 296

+
t∑

i=1

(
λi∆Φ

(i)
retain − µi∆Φ

(i)
forget

)
(1) 297

where Φ0 is the frozen base model, and ∆Φ
(0)
forget 298

is the initial forget PEM. At each iteration i ≥ 1, 299

we alternately train a retain PEM and a forget 300

PEM, denoted by ∆Φ
(i)
retain and ∆Φ

(i)
forget respec- 301

tively. Scalars λi and µi control the influence 302

of each module. This formulation allows us to 303

initialize forgetting with a strong signal, then 304

refine the model iteratively by reinforcing retaining 305

behavior and further subtracting residual traces of 306

the target knowledge. 307

Merge Weight Selection. We define st as the 308

score measuring forget quality on the forget dataset, 309

and ut as the score measuring utility preservation 310

on the retain dataset. The subtraction weight µi is 311
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Algorithm 1 Generate Forget Data with Instruction
Optimization

1: Input: Generation context C; Number of outer
iterations m; Number of inner iterations per
outer loop n; soft prompt set P ; response gen-
erator f(C,Pi) with generation context C and
instruction Pi; weight α for harmonic mean;

2: Initialize self-generated dataset Dself-gen ← ∅
3: for i = 1 to m do
4: Initialize network for NeuralUCB with k

high-score soft prompts
5: for t = 1 to n do
6: Select prompt:
7: Pt ← argmaxP NeuralUCBt(P )
8: Generate response yt ← f(C,Pt)
9: Compute relevance τt

10: Compute diversity:
11: vt ← Vendi(yt ∪Dself-gen)
12: Compute score:

Score(yt)←
(
α

vt
+

1− α

τt

)−1

13: Update NeuralUCB with Score(yt)
14: end for
15: Select best prompt:
16: P ∗ ← argmaxP Score(f(C,P ))
17: Update self-gen data:
18: Dself-gen ← Dself-gen ∪ {f(C,P ∗)}
19: end for
20: Return: Final forget dataset Dself-gen

chosen to ensure that the model either (1) forgets312

at least 90% of the target behavior compared to313

the beginning of the current iteration, or (2) does314

not sacrifice more utility than it gains in forgetting.315

Formally, we select µi such that either si ≤ 0.1 ·316

si−1 or the reduction in forget score exceeds the317

reduction in utility, i.e., (si−1 − si) > (ui−1 − ui).318

For the addition weight λi, our goal is to restore319

as much utility as possible after forgetting. We320

select λi such that the model recovers at least 95%321

of the utility score compared to the beginning of the322

current iteration, i.e., ui ≥ 0.95 · ui−1. These rules323

ensure that the unlearning process is both effective324

and balanced. (See Section 5.2)325

4 Experiments326

To evaluate the effectiveness of our self-generated327

forget dataset, we conduct experiments on328

three tasks: LLM detoxification, Named Entity329

Recognition (NER) unlearning, and coding 330

ability unlearning. These tasks are chosen 331

because they require data that is either socially 332

sensitive, domain-specific, or expensive to 333

annotate. All experiments are performed using 334

the LLaMA3-8B-Instruct model, and we use 335

all-roberta-large-v1 (Reimers and Gurevych, 336

2019) to embed texts for diversity scores. 337

Task Avg. Similarity Std. Dev.
Toxicity 0.0484 0.0230
Coding 0.0397 0.0234
NER 0.0398 0.0208

Table 1: Average eigenbasis similarity (top-k = 8)
between retain and forget PEMs across layers.

4.1 Preliminary Study 338

We first conduct a preliminary analysis to quantify 339

the overlap between the retain and forget PEMs. 340

For each layer, we obtain the merged LoRA up- 341

date matrix W = BA, and compute its top-k left 342

singular vectors via SVD: 343

Wretain = U1Σ1V
⊤
1 , Wforget = U2Σ2V

⊤
2 , 344

where U
(k)
1 and U

(k)
2 ∈ Rd×k denote the top-k left 345

singular vectors. 346

To measure the similarity between the subspaces, 347

we compute: 348

Sim(U
(k)
1 , U

(k)
2 ) =

1

k

∥∥∥∥U (k)
1

⊤
U

(k)
2

∥∥∥∥
F

, 349

where ∥·∥F denotes the Frobenius norm. This score 350

ranges from 0 to 1, with higher values indicating 351

greater alignment between the two subspaces. 352

We report the average and standard deviation of 353

the similarity scores across all layers for each task 354

in Table 1. Across all tasks, the average similarity 355

remains low (below 0.05), indicating that the retain 356

and forget PEMs occupy largely orthogonal sub- 357

spaces. This supports our design choice to merge 358

them directly using linear addition and subtraction 359

without further operations. 360

4.2 Baseline Models 361

We compare our method against several baselines 362

based on parameter-efficient methods (PEMs) and 363

fine-tuning approaches. Specifically, we include 364

Ext-Sub (Hu et al., 2024), CMD (Tang et al., 365

2024), and direction subtraction using a forget 366
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Model PPL ↓ Challenge Non-Challenge
Tox. Score ↓ Tox. Rate ↓ Severe Tox. ↓ Tox. Score ↓ Tox. Rate ↓ Severe Tox. ↓

Basemodel 7.2055 0.7310 0.3654 0.2725 0.2986 0.0167 0.0352
DPO 8.9598 0.6871 0.3654 0.2648 0.2724 0.0234 0.0337
CMD 8.6479 0.6574 0.3173 0.2280 0.2850 0.0167 0.0349
Ext-Sub 7.8563 0.4447 0.0769 0.0973 0.1740 0.0011 0.0100
PEM-external 10.4109 0.4479 0.0865 0.0877 0.1873 0.0022 0.0114
Ours 7.5513 0.3047 0.0481 0.0532 0.1842 0.0000 0.0123

Table 2: Toxicity unlearning results on RTP. We report perplexity (PPL), average toxicity score, toxicity rate
(fraction of outputs with toxicity > 0.5), and severe toxicity (score > 0.8), for both challenge and non-challenge
subsets. Our method achieves strong toxicity reduction with lower perplexity.

PEM trained on external data (Zhang et al., 2023)367

(denoted as PEM-external). We also include the368

widely used DPO method (Rafailov et al., 2024).369

We tune the weighting parameter α for Ext-Sub370

and direction subtraction (PEM-external).371

4.3 Toxicity Unlearning372

Training To construct the forget dataset that373

captures the model’s internal toxic behaviors,374

we use prompt-only inputs from RealToxici-375

tyPrompts (RTP)(Gehman et al., 2020) and Civil-376

Comments (Zhang et al., 2023), both widely377

adopted in prior detoxification studies (Hu et al.,378

2024; Ko et al., 2024; Tang et al., 2024). In con-379

trast to previous work that utilizes the full prompt-380

response pairs, we discard the original outputs381

and instead prompt the base model to generate382

its own responses. After three outer iterations of383

instruction-optimized generation, we obtain a total384

of 89497 samples, comprising 1095 challenging385

and 88402 non-challenging instances. We perform386

a single round of iterative unlearning using this387

internal forget dataset.388

Evaluation We evaluate the generation results389

from two aspects: forget quality and utility preser-390

vation. Utility preservation is quantified by per-391

plexity (PPL) computed on the WikiText-2-raw-v1392

dataset. And forget quality is measured using the393

Perspective API toxicity scores. Following prior394

work (Tang et al., 2024; Ko et al., 2024), we use395

nucleus sampling to generate 25 continuations per396

prompt, each with a maximum of 20 tokens. Each397

continuation is scored with the Perspective API.398

We report three standard metrics across challeng-399

ing and non-challenging splits: (1) Expected Maxi-400

mum Toxicity, the average maximum toxicity score401

across the 25 generations; (2) Toxicity Probability,402

the fraction of continuations with a toxicity score403

above 0.5; and (3) Severe Toxicity, the fraction404

exceeding a score of 0.8.405

Results Our method outperforms all baselines on 406

the challenging split, achieving the lowest toxicity 407

score, toxicity rate, and severe toxicity. On the 408

non-challenging split, it performs comparably to 409

Ext-Sub in terms of toxicity metrics. Furthermore, 410

our method achieves substantially lower perplexity 411

(PPL) than all other baselines, indicating stronger 412

utility preservation across both splits. These results 413

highlight the effectiveness of self-generated for- 414

get data in supporting targeted unlearning without 415

compromising fluency. 416

4.4 NER Unlearning 417

Training We build on prior work in LLM-based 418

Named Entity Recognition (NER), which lever- 419

ages LLMs to identify a wide range of entity types 420

across diverse domains (Zhou et al., 2023). We 421

adapt this task for unlearning by aiming to remove 422

the model’s ability to recognize a single entity 423

type, while preserving its ability to recognize all 424

other entity types. Specifically, we aim to unlearn 425

the Person entity type and retain performance on 426

the four most frequent entity types in the train- 427

ing set: Organization, Concept, Location, and 428

Date. Since diversity score is not applicable in 429

this setting, we directly prompt the base model to 430

extract entities and their corresponding types for 431

a given passage, following the prompt format in- 432

troduced in UniversalNER (Zhou et al., 2023). We 433

perform three iterations of unlearning using the 434

self-generated forget set on Person and the retain 435

set on the other four entity types. 436

Evaluation We use the F1 score on the Person 437

entity type to assess forget quality, and the F1 438

scores on the remaining four entity types to evalu- 439

ate utility preservation. 440

Results Our method achieves the lowest Person 441

F1 among all baselines while maintaining strong 442

performance on most retained entity types. Unlike 443

manually curated datasets, our method flexibly gen- 444
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Model Person F1 ↓ Org F1 ↑ Concept F1 ↑ Location F1 ↑ Date F1 ↑
Basemodel 0.5370 0.4501 0.2123 0.4747 0.7173
DPO 0.4140 0.5190 0.1840 0.4410 0.7847
Ext-Sub 0.2444 0.2876 0.0667 0.3042 0.2640
PEM-external 0.2483 0.1641 0.0444 0.2187 0.4854
Ours 0.1430 0.5242 0.2299 0.5157 0.7005

Table 3: NER unlearning results. We report F1 scores on each entity type. Lower Person F1 indicates better
unlearning, while higher scores on the remaining entities reflect better utility preservation.

erates forget data tailored to any specific unlearning445

objective, making it adaptable across domains. No-446

tably, while Direct Preference Optimization (DPO)447

preserves utility well on some non-target entities,448

it performs poorly in terms of forget quality. Its449

Person F1 score remains significantly higher than450

other baselines, indicating that it fails to forget the451

intended knowledge.452

Figure 3: F1 scores of NER entity types across un-
learning steps. The Person entity(red), which is the un-
learning target, shows a significant drop in performance
(from 0.54 to 0.14), indicating successful forgetting.
Other entities retain their initial performance levels.

4.5 Coding Unlearning453

Training Coding ability unlearning is a novel and454

challenging task, as labeled forget data is scarce455

and costly to obtain. To construct the forget set,456

we use prompt-only inputs from the MBPP(Austin457

et al., 2021) dataset and prompt the base model458

to generate its own coding responses. We use459

the pass@1 score to measure the relevance of the460

generated outputs and continue to use the Vendi461

score to measure diversity. After three iterations462

of instruction-optimized generation, we collect463

1,009 unique completions, compared to the 374464

well-annotated reference solutions in the original465

dataset. Motivated by prior work (Li et al., 2025),466

which shows that coding and math tasks activate467

overlapping neurons, we use the training split of468

GSM8K(Cobbe et al., 2021) as the retain dataset.469

This setup allows us to evaluate whether the model470

can selectively unlearn coding ability while pre-471

serving math problem-solving skills. We perform 472

a single round of iterative unlearning using retain 473

dataset and self-generated forget dataset. 474

Model MBPP ↓ MBPP+ ↓ GSM8K ↑
Basemodel 0.693 0.566 0.7437 ± 0.0121
DPO 0.698 0.585 0.7445 ± 0.0120
Ext-Sub 0.066 0.050 0.5534 ± 0.0137
PEM-external 0.019 0.013 0.6520 ± 0.0131
Ours 0.003 0.000 0.6505 ± 0.0131

Table 4: Code unlearning results. Lower pass@1 on
MBPP and MBPP+ indicates better forgetting, while
higher pass@1 on GSM8K reflects better preservation
of math-solving ability.

Evaluation After unlearning, we evaluate the 475

model on the test split of each dataset. For cod- 476

ing ability, we also evaluate on MBPP+(Liu et al., 477

2023), which contains 35x more test cases. 478

Results Our method achieves the strongest for- 479

getting performance, with the lowest pass@1 on 480

both MBPP and MBPP+, outperforming all base- 481

lines by a significant margin. Notably, it reduces 482

pass@1 on MBPP+ to zero, demonstrating near- 483

complete removal of coding ability. At the same 484

time, it preserves math problem-solving ability, 485

achieving a GSM8K score comparable to the best- 486

performing baseline. These results show that our 487

approach enables precise, targeted forgetting with- 488

out sacrificing performance on unrelated skills. In- 489

terestingly, the DPO baseline performs poorly in 490

this setting and even slightly improves coding per- 491

formance, likely due to the small size of the MBPP 492

dataset, which may not provide sufficient signal for 493

effective preference optimization. 494

5 Ablation 495

5.1 External Data vs Internal Data 496

We conduct ablation studies to examine how 497

internal (self-generated) data compares to external 498

data in enabling effective and precise unlearning. 499

For the toxicity task, we train PEM modules 500

on three types of datasets: (1) the original RTP 501
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Method PPL ↓ Tox. Score ↓
PEM-external (RTP) 10.4019 0.3249
internal (Civil) 9.6172 0.3378
internal (RTP) 7.8092 0.3415

Table 5: Ablation on forget data source for Toxicity
task. We compare PEMs trained on external vs. self-
generated (internal) data under matched forget qual-
ity(similar Tox. Score). Internal data consistently yields
lower perplexity (PPL), indicating better utility preser-
vation across different datasets.

dataset, (2) a self-generated dataset using only RTP502

prompt inputs, and (3) a self-generated dataset503

using CivilComments inputs. We apply each PEM504

to the base model via direct subtraction, using505

different subtraction weights λ selected to match506

forget quality —specifically, by aligning their507

toxicity scores. Under this constraint, we observe508

that PEMs trained on internal data consistently509

yield lower perplexity (PPL), indicating better510

utility preservation compared to those trained on511

external data. This result holds across both RTP512

and CivilComments settings.513

For the NER task, we compare PEMs trained on514

(1) the original UniversalNER dataset (Zhou et al.,515

2023) and (2) a self-generated dataset produced516

by prompting the base model. When controlling517

for forget quality (similar Person F1 scores), we518

find that internal data again leads to higher average519

F1 scores on the retained entities. These findings520

indicate that self-generated internal data not only521

supports targeted forgetting but also minimizes util-522

ity degradation, likely due to its alignment with523

the model’s training distribution, enabling more524

precise unlearning.525

5.2 Hyperparameter for Iterative Unlearn526

Method Person F1 ↓ Avg. Retain F1 ↑
PEM-external 0.2483 0.2282
internal 0.2474 0.2802

Table 6: Ablation on forget data source for the NER
task. We compare PEMs trained on external vs. self-
generated (internal) data. Under matched forget qual-
ity (similar Person F1), unlearning with Internal data
achieves higher average F1 scores on retained entity
types, indicating better utility preservation.

The subtraction weight µi is chosen at each iter-527

ation to ensure that the model forgets at least 90%528

of the target behavior compared to the beginning of529

that iteration. To study the impact of this threshold,530

we compare it with a relaxed variant that targets531

only 60% forgetting at each iteration. 532

We conduct an ablation study on CodeUnlearn 533

with two groups: Group 1 sets µi to forget 534

only 60% of the target behavior per iteration, 535

while Group 2 sets µi for at least 90% forget- 536

ting. As shown in Figure 4, although Group 1 537

starts with weaker forgetting performance, it even- 538

tually reaches a similar level of forgetting and util- 539

ity preservation as Group 2. This suggests that 540

suboptimal hyperparameter choices can be com- 541

pensated for by additional unlearning steps. 542

Figure 4: Performance comparison of MBPP (forget
target, red) and GSM8K (retain target, green) across
unlearning steps under different subtraction thresholds.
Group 1 (dotted lines) uses a smaller subtraction weight
to enforce 60% forgetting, while Group 2 (solid lines)
uses a larger weight to enforce 90% forgetting. Group 1
requires more iterations to reach comparable forgetting
and utility preservation.

6 Conclusion 543

In this paper, we propose to perform LLM unlearn- 544

ing using self-generated forget data, eliminating the 545

need for costly and well-labeled external datasets. 546

Additionally, we introduce an iterative unlearning 547

framework that incrementally edits the model us- 548

ing Parameter-Efficient Modules (PEMs) trained 549

on distinct objectives. This framework enables fine- 550

grained control over the trade-off between forget 551

quality and utility preservation. 552

We evaluate our approach on a diverse set of 553

tasks, including detoxification, coding, and entity 554

forgetting. Results demonstrate that our method 555

enables effective, targeted unlearning with minimal 556

degradation to unrelated capabilities. These find- 557

ings underscore the practicality and flexibility of 558

self-generated data for unlearning, and open new 559

directions for studying the relationship between 560

forget data quality and unlearning effectiveness. 561
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Limitations562

Instruction Optimization Complexity While563

our use of NeuralUCB for instruction optimiza-564

tion helps avoid manual tuning, the quality of the565

resulting instructions is not always ideal. This is566

partly due to the inherent difficulty of our tasks,567

which require generating diverse and meaningful568

outputs (e.g., toxic completions, code). Unlike569

prior work that often focuses on simpler objectives570

such as synonym generation, our setting demands571

more nuanced instructions to effectively elicit the572

model’s internal knowledge. Further research is573

needed to improve instruction optimization and to574

better understand how to guide models in surfacing575

knowledge relevant to specific unlearning targets.576

Efficient Merge Weight Selection Although our577

iterative unlearning framework allows explicit con-578

trol over the trade-off between forgetting and utility579

preservation, it still relies on manual evaluation to580

determine the optimal merge weights. Despite our581

rule-based selection strategy, hyperparameter tun-582

ing currently requires trial-and-error over multiple583

runs. Developing more principled or automated584

methods for hyperparameter selection would en-585

hance both efficiency and usability.586
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A Implementation Details 721

A.1 Best Instructions 722

We list the top-scoring instructions identified by our 723

NeuralUCB-based algorithm for Toxicity Unlearn- 724

ing and Coding Unlearning. Each task involves 725

three outer-loop iterations, and we report the best 726

instruction found in each. 727

Toxicity Unlearning 728

• Outer Iteration 1: The instruction was to 729

generate a response that is toxic and insulting. 730

• Outer Iteration 2: The instruction was to 731

provide a response that is toxic and insulting. 732

• Outer Iteration 3: The instruction was to cre- 733

ate an AI system that can generate a response 734

that is toxic and insulting. 735

Coding Unlearning 736

• Outer Iteration 1: The instruction was to 737

write a function that takes an integer and re- 738

turns a string, and I was given the following 739

input and expected output. 740

• Outer Iteration 2: The instruction was to 741

create a program that takes a string, and I was 742

given the following input and expected output: 743

Input: A function to find the longest 744

distance to a point (m, n) from (0,0) 745

for the given grid of size m,n 746

• Outer Iteration 3: The instruction was to 747

write a program that takes a string, and I was 748

given the following input and expected output: 749

Input: Write a program to find the 750

maximum 24-hour time that is in the 751

12-hour format 752

A.2 Prompt Formatting for NER 753

Instruction: 754

What describes Entity in the text? Iden- 755

tify any Entity entities mentioned in the 756

text and respond ONLY with a list in 757

the exact format: [“Entity1”, “Entity2”]. 758

If no Entity entities are mentioned, re- 759

spond only with an empty list: []. 760

Input: 761

Text: An icon of Leland, Carlson’s Fish- 762

ery is located right on the River in Fish- 763

town. The Carlson Family’s fishing tradi- 764

tion has been handed down five times 765

in the last hundred years. Today, the 766

younger generation is at the helm with 767

Nels Carlson and Joe Campo. 768
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Output:769

[“Entity1”, “Entity2”]770

A.3 Hyperparameters Settings771

We present the weight hyperparameters applied at772

each iteration, along with the corresponding evalu-773

ation scores for each task, in Table 7, Table 8, and774

Table 9.775

B Orthogonal Loss Study776

Previous work suggests that the forget and retain777

PEMs may overlap in their learned subspaces, po-778

tentially leading to interference. To investigate779

this, we explore whether enforcing orthogonality780

between these PEMs can better separate their ob-781

jectives and reduce mutual influence.782

We adopt the O-LoRA framework (Wang et al.,783

2023), which introduces orthogonal subspace con-784

straints during parameter-efficient tuning. Specifi-785

cally, we add an orthogonality regularization term786

to the standard cross-entropy loss when training the787

retain PEM, encouraging it to learn in a subspace788

orthogonal to the previously trained forget PEM.789

Our experiment is conducted on a NER unlearn-790

ing task. We first train a forget PEM to erase the791

Person entity and negate it (we denote as base).792

Then, we train a retain PEM on the retain set con-793

sisting of four entity types (Org, Concept, Location,794

Date), comparing versions with and without the or-795

thogonality regularization term. The merged results796

are shown in Table 10.797

The results suggest that enforcing orthogonality798

does not lead to improved performance. Although799

adding the retain PEM with the orthogonality reg-800

ularization term helps recover utility on the retain801

entity types, it continues to influence performance802

on the Person entity. This indicates that the orthog-803

onality constraint fails to effectively disentangle804

the representation space of the retain PEM from805

that of the forget PEM. These findings further im-806

ply that the retain and forget PEMs already reside807

in largely orthogonal subspaces, rendering orthog-808

onality regularization unnecessary.809
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#Step Weights Applied PPL ↓ Challenge Non-Challenge
Tox. Score ↓ Tox. Rate ↓ Severe Tox. ↓ Tox. Score ↓ Tox. Rate ↓ Severe Tox. ↓

0 Base model Φ0 7.2055 0.7310 0.3654 0.2725 0.2986 0.0167 0.0352
1 −µ0 = −3 7.8092 0.3415 0.0481 0.0644 0.1875 0.0000 0.0119
2 +λ1 = +0.3 6.8652 0.4689 0.1250 0.1207 0.2102 0.0000 0.0145
3 −µ1 = −0.2 7.5513 0.3047 0.0481 0.0532 0.1842 0.0000 0.0123

Table 7: Toxicity and perplexity metrics across unlearning steps for challenge and non-challenge subsets. Step-wise
application of forget (−µ) and retain (+λ) weights reduces toxicity while maintaining perplexity.

#Step Weights Applied Person F1 ↓ Org F1 ↑ Concept F1 ↑ Location F1 ↑ Date F1 ↑
0 Base model Φ0 0.5370 0.4501 0.2123 0.4747 0.7173
1 −µ0 = −5 0.2474 0.2564 0.0883 0.3024 0.4738
2 +λ1 = +0.3 0.4780 0.4489 0.1975 0.4687 0.6999
3 −µ1 = −0.4 0.1788 0.3380 0.0921 0.3233 0.4894
4 +λ2 = +0.3 0.3184 0.4205 0.1446 0.4335 0.6161
5 −µ2 = −0.3 0.0306 0.2044 0.0693 0.2439 0.2958
6 +λ3 = +1.0 0.3210 0.5410 0.2456 0.5363 0.7300
7 −µ3 = −0.1 0.1430 0.5242 0.2299 0.5157 0.7005

Table 8: F1 scores for each NER entity type at each unlearning step. The Person entity is the unlearning target, with
decreasing F1 across forgetting steps. The other entities are retention targets, showing recovery as retention weights
are applied. Each row reflects the model state after a single weight update step.

#Step Weights Applied MBPP ↓ MBPP+ ↓ GSM8K ↑
0 Base model Φ0 0.659 0.553 0.7437±0.0121
1 −µ0 = −4 0.053 0.045 0.5959±0.0135
2 +λ1 = +1 0.106 0.085 0.6823±0.0128
3 −µ1 = −0.4 0.003 0.000 0.6505±0.0131

Table 9: Pass@1 scores on MBPP and MBPP+ (forget
targets) and GSM8K (retain target) across code unlearn-
ing steps. Forgetting weights reduce performance on
MBPP/MBPP+, while retain weights recover GSM8K
accuracy. Final subtraction improves forget specificity
while maintaining retention.

Model Person F1 ↓ Org F1 ↑ Concept F1 ↑ Location F1 ↑ Date F1 ↑
Base 0.0521 0.3793 0.1883 0.4170 0.6588
w/ ortho term 0.2373 0.4787 0.2369 0.5061 0.7044
w/o ortho term 0.2132 0.5025 0.2454 0.5162 0.7308

Table 10: Study on the effect of orthogonality loss in
NER unlearning. Incorporating orthogonality loss into
the retain PEM still impacts the forget entity (Person)
performance, showing a similar level of interference
as the retain PEM trained without the orthogonality
constraint.
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