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Abstract

Vision-language models (VLMs) have excelled in multimodal tasks, but adapting
them to embodied decision-making in open-world environments presents chal-
lenges. A key issue is the difficulty in smoothly connecting individual entities
in low-level observations with abstract concepts required for planning. We pro-
pose visual-temporal context prompting, a novel communication protocol between
VLMs and policy models. This protocol leverages object segmentation from both
past and present observations to guide policy-environment interactions. Using this
approach, we train ROCKET-1, a low-level policy that predicts actions based on
concatenated visual observations and segmentation masks, with real-time object
tracking provided by SAM-2. Our method unlocks the full potential of VLMs’
visual-language reasoning abilities, enabling them to solve complex creative tasks,
especially those heavily reliant on spatial understanding. Experiments in Minecraft
demonstrate that our approach allows agents to accomplish previously unattainable
tasks, highlighting the effectiveness of visual-temporal context prompting in em-
bodied decision-making. Codes and demos will be available on the project page:
https://craftjarvis.github.io/ROCKET-1.

1 Introduction

Figure 1: Different pipelines in solving embodied decision-making tasks. (a) End-to-end pipeline modeling
token sequences of language, observations, and actions. (b) Language prompting: VLMs decompose instructions
for language-conditioned policy execution. (c) Latent prompting: maps discrete behavior tokens to low-level
actions. (d) Future-image prompting: fine-tunes VLMs and diffusion models for image-conditioned control. (e)
Visual-temporal prompting: VLMs generate segmentations and interaction cues to guide ROCKET-1.
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Pre-trained foundation vision-language models (VLMs) [17, 1] have shown impressive performance
in reasoning, visual question answering, and task planning [4, 8, 19, 5], primarily due to training
on internet-scale multimodal data. Recently, there has been growing interest in transferring these
capabilities to embodied decision-making in open-world environments. Existing approaches can
be broadly categorized into (i) end-to-end and (ii) hierarchical approaches. End-to-end approaches,
such as RT-2 [4], Octo [14], LEO [10], and OpenVLA [16], aim to enable VLMs to interact
with environments by collecting robot manipulation trajectory data annotated with text. However,
collecting such annotated trajectory data is resource-intensive and difficult to scale. Hierarchical agent
architectures typically consist of a high-level reasoner and a low-level policy, which can be trained
independently. In this architecture, the “communication protocol” between components defines
the capability limits of the agent. Alternative approaches [19, 18, 8] leverage VLMs’ reasoning
abilities to zero-shot decompose tasks into language-based sub-tasks, with a separate language-
conditioned policy executing them in the environment, refer to Figure 1(b). However, language
instructions often fail to effectively convey spatial information, limiting the tasks agents can solve.
To address this issue, approaches like STEVE-1 [11] and MineDreamer [21] (Figure 1 d) propose
using a purely vision-based interface to convey task information to the low-level policy. Although
replacing language with imagined images as the intention interface simplifies data collection and
policy learning, predicting future observations requires building a world model, which still faces
challenges such as hallucinations, temporal inconsistencies, and limited temporal scope.

We propose a novel communication protocol called visual-temporal context prompting, as shown in
Figure 1(e). This allows users/reasoners to apply object segmentation to highlight regions of interest
in past observations and convey interaction-type cues via skill primitives. Based on this, we learn
ROCKET-1, a low-level policy that uses visual observations and reasoner-provided segmentations as
prompts to predict actions. Specifically, a transformer [6] models dependencies between observations,
essential for representing tasks in partially observable environments. As a bonus feature, ROCKET-1
can enhance its object-tracking capabilities during inference by integrating the state-of-the-art video
segmentation model, SAM-2 [15], in a plug-and-play fashion. Additionally, we propose a backward
trajectory relabeling method, which efficiently generates segmentation annotations in reverse
temporal order using SAM-2, facilitating the creation of training datasets for ROCKET-1. Finally,
we develop a hierarchical agent architecture leveraging visual-temporal context prompting, which
perfectly inherits the vision-language reasoning capabilities of foundational VLMs. Experiments in
Minecraft demonstrate that our pipeline enables agents to complete tasks previously unattainable by
other methods, while the hierarchical architecture effectively solves long-horizon tasks.

2 Methods

Our work focuses on addressing complex interactive tasks in open-world environments like Minecraft.
In this section, we outline ROCKET-1 ’s architecture and training methods, the dataset collection
process, and a pipeline integrating ROCKET-1 with state-of-the-art VLMs.
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Figure 2: ROCKET-1 architecture. ROCKET-1 processes interaction types (c), observations (o), and object
segmentations (m) to predict actions (a) using a causal transformer. Observations and segmentations are
concatenated and passed through a visual backbone for deep fusion. Interaction types and segmentations are
randomly dropped with a set probability during training.

ROCKET-1 Architecture. To train ROCKET-1, we prepare interaction trajectory data in the format:
τ = (o1,m1, c1, a1, · · · , oT ,mT , cT , aT ), where ot ∈ R3×H×W is the visual observation at time
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Figure 3: A hierarchical agent structure based on our proposed visual-temporal context prompting. A
GPT-4o model decomposes complex tasks into steps based on the current observation, while the Molmo model
identifies interactive objects by outputting points. SAM-2 segments these objects based on the point prompts,
and ROCKET-1 uses the object masks and interaction types to make decisions. GPT-4o and Molmo run at low
frequencies, while SAM-2 and ROCKET-1 operate at the same frequency as the environment.

t, mt ∈ {0, 1}1×H×W is a binary mask highlighting the object in ot for future interaction, ct ∈ N
denotes the interaction type, and at is the action. If both mt and ct are zeros, no region is highlighted
at ot. As shown in Figure 2, ROCKET-1 is formalized as a conditioned policy, π(at|o1:t,m1:t, c1:t),
which takes a sequence of observations and object-segmented interaction regions to causally predict
actions. To effectively encode spatial information, inspired by [20], we concatenate the observation
and object segmentation pixel-wise into a 4-channel image, which is processed by a visual backbone
for deep fusion, followed by an attention pooling layer. We extend the input channels of the first
convolution layer in the pre-trained visual backbone from 3 to 4, initializing the new parameters
to zero to minimize impact during early training. A TransformerXL [6, 3] module is then used to
model temporal dependencies between observations and incorporate interaction type information
to predict the next action ât. We delay the integration of interaction type information ct until after
fusing mt and ot, enabling the backbone to share knowledge across interaction types and mitigating
data imbalance. Behavior cloning loss is used for optimization. However, this approach risks making
at overly dependent on mt and ct, reducing the model’s temporal reasoning capability. To address
this, we propose randomly dropping segmentations with a certain probability, forcing the model to
infer user intent from past inputs (visual-temporal context). The final optimization objective is:

L = −
∑

log π(at|o1:t,m1:t ⊙ w1:t, c1:t ⊙ w1:t), (1)

where wt ∼ Bernoulli(1− p) represents a mask, with p denoting the dropping probability, ⊙ denotes
the product operation over time dimension.

Backward Trajectory Relabeling. We seek to build a dataset for training ROCKET-1. The collected
trajectory data τ typically contains only observations and actions. To generate object segmentations
and interaction types for each frame, we propose a hindsight relabeling technique [2] combined with
an object tracking model [15] for efficient data labeling. We first define a set of interactions C and
identify frames where interaction events occur, detected using a pre-trained vision-language model,
such as [1]. Then, we traverse the trajectory in reverse order, segmenting interacting objects in frame
t via an open-vocabulary grounding model [13]. Finally, SAM-2 [15] is used to track and generate
segmentations for frames t− 1, t− 2, . . . , t− k, where k is the window length. For Minecraft, we
use contractor data [3] from OpenAI, consisting of 1.6 billion frames of human gameplay. This
dataset includes meta information for each frame, recording interaction events such as kill entity,
mine block, use item, interact, craft, and switch, eliminating the need for vision-language models to
detect events. We observed that interacting objects are often centered in the previous frame, allowing
the use of a fixed-position bounding box and point with the SAM model for segmentation, replacing
open-vocabulary grounding models. We also introduced an additional interaction type, navigate,
where significant player displacement over a trajectory identifies the most prominent object in the
final frame as the target. The entire labeling process can be automated using SAM-2.

Integration with High-level Reasoner. Completing complex long-horizon tasks in open-world
environments requires agents to have strong commonsense knowledge and visual-language reasoning,
both of which are strengths of modern VLMs. As shown in Figure 3, we design a hierarchical agent
architecture comprising GPT-4o [1], Molmo [7], SAM-2 [15], and ROCKET-1. GPT-4o decomposes
tasks into object interactions based on an observation ot−k, leveraging its extensive knowledge
and reasoning abilities. Since GPT-4o cannot directly output the object masks, Molmo generates
(x, y) coordinates for the described objects. SAM-2 then produces the object mask mt−k from these
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Figure 4: A benchmark for evaluating open-world interaction capabilities of agents. The benchmark
contains six interaction types in Minecraft, totaling 12 tasks. Unlike previous benchmarks, these tasks emphasize
interacting with objects at specific spatial locations.

coordinates and efficiently tracks objects mt−k+1:t in subsequent observations. ROCKET-1 uses the
generated masks mt−k:t and interaction types ct−k:t from GPT-4o to engage with the environment.
Due to the high computational cost, GPT-4o and Molmo run at lower frequencies, while SAM-2 and
ROCKET-1 operate at the environment’s frequency.

3 Results and Analysis

Table 1: Results on the Minecraft Interaction benchmark. Each task is tested 32 times, and the average
success rate (in %) is reported as the final result. “Human” indicates instructions provided by a human.

Method Prompt Hunt Mine Interact Navigate Tool Place Overall

VPT-bc N/A 13 16 0 13 3 31 0 9 0 0 0 0 7
STEVE-1 Human 0 6 0 69 0 3 0 31 91 6 16 0 19
GROOT-1 Human 9 22 0 6 3 6 0 3 47 13 3 0 9
ROCKET-1 Molmo 91 84 78 75 81 50 78 97 94 91 72 91 82
ROCKET-1 Human 94 91 91 94 94 91 97 97 97 97 94 97 95

Environment and Benchmark. We use the unmodified Minecraft 1.16.5 [9, 12] as our testing
environment, which accepts mouse and keyboard inputs as the action space and outputs a 640× 360
RGB image as the observation. To comprehensively evaluate the agent’s interaction capabilities, as
shown in Figure 4, we introduce the Minecraft Interaction Benchmark, consisting of six categories
and a total of 12 tasks, including Hunt, Mine, Interact, Navigate, Tool, and Place. This benchmark
emphasizes object interaction and spatial localization skills. For example, in the “hunt the sheep in
the right fence” task, success requires the agent to kill sheep within the right fence, while doing so in
the left fence results in failure. In the “place the oak door on the diamond block” task, success is
achieved only if the oak door is adjacent to the diamond block on at least one side.

Performance on Short-Horizon Tasks. To quantitatively assess ROCKET-1 ’s performance on
short-horizon tasks, we evaluated it on the Minecraft Interaction Benchmark, with results as illustrated
in Table 1. Since ROCKET-1 operates as a low-level policy, it requires a high-level reasoner to
provide prompts within a visual-temporal context, driving ROCKET-1 ’s interactions with the
environment. We tested two reasoners: (1) A skilled Minecraft human player, who can provide
prompts to ROCKET-1 at any interaction moment, serving as an oracle reasoner that demonstrates
the upper bound of ROCKET-1 ’s capabilities. (2) A Molmo 72B model [7], where a predefined
Molmo prompt is set for each task to periodically select points in the observation as prompts,
which are then processed into object segmentations by the SAM-2 model [15]. Between Molmo’s
invocations, SAM-2’s tracking capabilities offer object segmentations to guide ROCKET-1. For all
baselines, humans provide prompts. We found that ROCKET-1 + Molmo consistently outperformed
all baselines across all tasks, notably achieving a 91% success rate in the “place oak door on the
diamond block” task, no baseline could complete.
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