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ABSTRACT

We present a novel framework for solving optimal transport (OT) problems based
on the Hamilton—Jacobi (HJ) equation, whose viscosity solution uniquely char-
acterizes the OT map. By leveraging the method of characteristics, we derive
closed-form, bidirectional transport maps, thereby eliminating the need for nu-
merical integration. The proposed method adopts a pure minimization frame-
work: a single neural network is trained with a loss function derived from the
method of characteristics of the HJ equation. This design guarantees convergence
to the optimal map while eliminating adversarial training stages, thereby substan-
tially reducing computational complexity. Furthermore, the framework naturally
extends to a wide class of cost functions and supports class-conditional transport.
Extensive experiments on diverse datasets demonstrate the accuracy, scalability,
and efficiency of the proposed method, establishing it as a principled and versatile
tool for OT applications with provable optimality.

1 INTRODUCTION

Optimal transport (OT) is a fundamental problem that seeks the most cost-efficient transform from
one probability distribution into another by minimizing a transportation cost function, which quan-
tifies the effort to move mass. With its strong theoretical foundation and broad practical relevance,
OT has been widely applied in diverse areas, including traffic control (Carlier et al., 2008} Danila
et al., 2006; Barthélemy & Flammini, 2006), biomedical data analysis (Schiebinger et al.l 2019;
Koshizuka & Sato, 2022; [Bunne et al.l 2023)), generative modeling (Wang et al., 2021} Onken et al.,
2021} |[Zhang & Katsoulakis|, |2023}; [Liu et al., |2019), and domain adaptation (Courty et al., 2016}
2017; [Damodaran et al.| 2018; Balaji et al., [2020). In recent years, there has been growing interest
in deep learning techniques to solve OT problems, leading to the development of methods grounded
in various mathematical formulations. Early approaches were primarily built upon the classical
Monge formulation (Lu et al.,|2020; Xie et al., 2019) and its relaxation into the Kantorovich frame-
work (Makkuva et al.|, 2020). While theoretically rigorous, these methods often suffer from high
computational complexity. The primal-dual formulation, which recasts the OT problem as a saddle-
point optimization over the generative map and the Kantorovich potential function, has inspired
scalable algorithms (Liu et al.|[2019; |Taghvaei & Jalali,2019; Korotin et al.,2021aj Liu et al., 2021}
Choi et al.| |2024). Similar approaches have also been proposed for the Monge problem with gen-
eral costs (Asadulaev et al., 2024} Fan et al.| [2023). However, these approaches typically rely on
adversarial training of two neural networks, which is challenging to manage and often introduces
instability and inefficiency into the optimization process. Alternative approaches have investigated
dynamical formulations using ordinary differential equations (ODEs) (Yang & Karniadakis, 2020;
Onken et al.| 2021} [Tong et al., |2020; [Huguet et al., |2022) and entropic-regularized models involv-
ing stochastic differential equations (SDEs) (Genevay et al.,2016; |Seguy et al., 2017;|Daniels et al.,
2021} |Gushchin et al.,|2023; |Zhou et al., 2024). Machine learning algorithms that unify Lagrangian
and Eulerian perspectives of Mean Field Control problems Ruthotto et al.| (2020); |Lin et al.| (2021));
Zhao et al.| (2025) likewise provide a computational framework for OT. Nevertheless, these methods
typically require solving systems of differential equations, resulting in substantial computational
overhead during both training and inference. Moreover, many existing methods yield bias maps that
deviate from the OT solution due to the incorporation of regularization terms into the formulation.

Contributions. We propose a novel and efficient framework, termed neural characteristic flow
(NCF), for solving OT problems via the Hamilton—Jacobi (HJ) equation, whose viscosity solution
characterizes the OT map. Despite its strong theoretical foundation for OT, the HJ formulation
poses two major challenges: non-uniqueness of solutions and the need to solve ODEs in dynamical
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Method (representative reference) Optimization # Networks OT direction Sampling Optimality of T’
Dual Formulation (Asadulaev et al.[[2024) Min-Max Two One-way Direct No
Dynamical Models (Onken et al./[2021) Min Single Bidirectional ~ Iterative No
HJ-based (Proposed) Min Single Bidirectional Direct Yes

Table 1: Comparison of key features across different OT model approaches.

formulations. We overcome both by leveraging the method of characteristics and an implicit solution
formula (Park & Osher;,2025)) to obtain closed-form, bidirectional transport maps without numerical
integration of ODEs. NCF uses a single neural network and avoids adversarial training or dual-
network architectures, reducing complexity while improving efficiency. Our framework guarantees
theoretical consistency with OT optimality conditions and supports a broad class of cost functions,
including class-conditional transport. We also provide convergence analysis for Gaussian settings
and demonstrate strong empirical performance across datasets of varying dimensions. A comparison
of key features across different OT model approaches is summarized in Table|T]

2 PRELIMINARY

2.1 MONGE’S OPTIMAL TRANSPORT PROBLEM

For a domain Q C R?, we denote Z((2) as the space of probability measures on €. Letc :  x Q —
[0, 0] be a cost function that measures the cost of transporting one unit of mass. For pu, v € & (Q),
the classical Monge problem formulates OT as finding a measurable map 7' : 2 — (Q that pushes
forward p to v, i.e., Ty = v, while minimizing the transportation cost:

W, (p,v) = inf c(x,T(x))dp(x). (D
Typ=v Jo
We call a solution 7* to (I) an OT map between x and v. In the case where the cost ¢ is expressed
as a function of the difference between the two variables, T is characterized as follows:

Theorem 2.1 (Santambrogio| (2015)). When ¢ (x,y) = £(x —y) for a lower semi-continuous
(Ls.c.), sub-differentiable, and strictly convex function { : 0 — R, the optimal map is expressed
in terms of the Kantorovich dual potential function ©* : Q0 — R as

T (x) =x+ Vh (V" (x)), 2)
where h (z) = supy cpa {zTy -/ (y)} is the Legendre transform of .

2.2 DYNAMICAL FORMULATION

Benamou & Brenier| (2000) formulate the OT in a continuous-time dynamical formulation:

inf E,, { /0 Y (v (x(t), ) dt 3)

st.x =0, x(0) ~ p, x(ty) ~ v, 4)

where the terminal time 7 > 0 is typically set to 1. Within this dynamical framework, the associated
optimality condition is governed by the Hamilton—Jacobi (HJ) equation:

{%7;+h(vu> =0 inQx(0,tf)

u=g on Q x {t =0}, ®)

coupled with the continuity equation that governs the evolution of the probability distribution. Here,
Vu denotes the gradient of u with respect to the spatial variable x, and g represents the initial
condition, whose explicit analytic form is typically intractable. The optimal velocity field is then
determined by v* = Vh (Vu), where w is the viscosity solution to HJ equation (3).

3 RELATED WORKS

Deep learning methods for OT have gained traction following the development of scalable OT
solvers (Genevay et al., 2016; Seguy et al., 2017) and WGANSs (Arjovsky et al., 2017). Many
approaches utilize GAN-based models to approximate OT plans, although they often suffer from
training instability and extensive hyperparameter tuning. Another major line of work is based on the
Kantorovich dual formulation (Kantorovich,[2006), where the OT map is recovered via optimization
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of dual potentials, typically parameterized by input convex neural networks (ICNNs) (Amos et al.,
2017). While theoretically sound, these methods involve unstable min-max optimization. To ad-
dress these issues, natural gradient methods have been proposed to improve computational efficacy
(Shen et al., [2020; |Liu et al., 2024)). Regularization techniques such as L? penalties (Genevay et al.,
2016j Sanjabi et al.,|2018)) and cycle-consistency constraints (Korotin et al.;, 2019;2021b) have been
proposed, though unconstrained alternatives have shown stronger empirical performance (Korotin
et al.| [2021a;|Fan et al.|, [2022).

To address the settings where deterministic OT maps may not exist, recent work has considered
weak OT formulations (Backhoff-Veraguas et al.,[2019)). Neural approaches for weak OT and class-
conditional transport have been proposed (Korotin et al.| 2023} |Asadulaev et al., [2024), but may
yield spurious solutions under weak quadratic costs. Kernalized costs (Korotin et al.l 2022)) have
been introduced to mitigate this.

OT has also been modeled as a dynamical system via continuous flows (Yang & Karniadakis} 2020;
Tong et al.| [2020; |Onken et al., [2021; [Huguet et al., 2022). While expressive, these methods require
solving ODEs during training and inference, making them computationally expensive. Entropic and
f-divergence regularized stochastic models (Daniels et al., [2021; |Gushchin et al., [2023) improve
smoothness but often rely on Langevin dynamics, which can be biased in high dimensions (Korotin
et al |2019). The HJ equation has been used to improve OT models, with physics-informed neural
network (PINN) (Raissi et al., 2019) approaches applying L? penalties on HJ residuals to improve
continuous normalizing flows, ODE-based formulations (Yang & Karniadakis} [2020; |(Onken et al.,
2021)), and stochastic variants (Zhang & Katsoulakis| 2023). However, due to the ill-posed nature of
the HJ equation, this approach lacks guarantees for recovering the viscosity solution.

4 HJ CHARACTERISTIC FLOWS FOR OT

In this section, we represent the OT map through the characteristics of the HJ equation, offering a
principled and efficient framework for OT. Note that solving the HJ equation directly is challenging
due to its inherent ill-posedness, non-smoothness of solutions, and gradient discontinuities, all of
which complicate both theoretical analysis and numerical approximation.

Method of Characteristics. The viscosity solution to (3 is theoretically characterized by the
following system of characteristic ordinary differential equations (CODEs):

x = Vh (p) (6a)
i = —h(p) +p' Vh(p) (6b)
p=0, (6¢)

where p denotes the shorthand for Vu. CODE for p (6c) implies that p remains constant along
each characteristic trajectory. Consequently, the characteristics are straight lines of the form x(t) =
tVh(p) + x(0), which coincide with the OT map in () at terminal time ¢ = ¢ ;. From a dynamical
perspective, the ODE (@) can be interpreted as the characteristic equations (6a)) of the HJ equation
that determine the OT map (2). In other words, the transported point 7* (x) of a sample x ~ p
corresponds to the terminal position of the characteristic line that originates from x.

Our CODE formulation not only provides a principled construction of the forward transport map but
also naturally characterizes the backward map. We denote by 7);* the forward OT map transporting
wto v, and by T#* the backward map transporting v to p.

Proposition 4.1 (Bidirectional OT Map). There exists a viscosity solution u* to the HJ equation
(@) that characterizes both the forward and backward OT maps through its forward and backward
characteristic flows:

T (y) =y —t;Vh (VU (y,tf)), y~u. ®)

Accordingly, the viscosity solution of the HJ equation enables a bidirectional characterization of
the OT map via forward and backward characteristic flows. Notably, since the characteristics are
straight lines, both the forward and inverse transport maps admit explicit closed-form expressions.
This obviates the need for numerical integration of ODEs typically required in conventional dy-
namical formulations. Consequently, the CODE-based formulation addresses a key computational
bottleneck, enabling efficient and direct computation of bidirectional transport maps.
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Implicit Solution Formula. Recently, a novel mathematical formulation for the viscosity solution
of HJ equations has been developed using the system of CODEs (Park & Osher, 2025). Within this
formulation, the viscosity solution admits the following implicit formula:

u(x,t) = —th (Vu) + tVu' Vh(Vu) + g (x — tVh (Vu)). )

Proposition 4.2. For OT problems (1) where ( satisfies the conditions in Theorem 2.1} the implicit
solution formula Q) characterizes the viscosity solution of the HJ equation () almost everywhere.

Proof. Detailed proof is provided in Appendix [A.1] O

5 METHODS

5.1 OT wiTH GENERAL COSTS

We propose a novel deep learning method, termed neural characteristic flow (NCF), for learning
bidirectional OT maps under general cost £ by solving the HJ equation (@) vis its implicit solution
formula (@). The HJ equation characterizes the OT map as the gradient of the viscosity solution, en-
suring that the resulting map minimizes the given cost functional. When coupled with the continuity
equation, it also describes the evolution of probability distributions, thus guaranteeing correct mass
transport from source to target. However, jointly solving this coupled system of PDEs is computa-
tionally expensive. To address this, the proposed NCF computes the OT map solely through the HJ
equation, avoiding the need to solve the continuity equation explicitly.

Implicit Neural Representation. We represent the solution u of the HJ equation using an implicit
neural representation (INR) ug : RY x R — R parameterized by 6. The network takes the spatial
variable x and temporal variable ¢ as input. By the universal approximation theorem (Hornik et al.,
1989; [Leshno et al., [1993)), the INR can approximate the viscosity solution to the HJ equation. We
denote by T} [uy] as the transport map that aims to map y to v defined by (7) through ug:

T}, [ug] (x) = x +tsVh (Vug (x,0)). (10)
The backward map T [ug] is analogously defined according to (8) via ug evaluated at t = .

HJ-based Training Loss. While the HJ equation does not directly encode distributional informa-
tion, it can recover the desired OT map, provided that an appropriate initial function g reflects the
relationship between the source and target distributions. However, in practice, where only finite sam-
ples from these distributions are available, deriving an analytic form for g is generally intractable.
To address this challenge, we introduce a loss term to ensure that the initial condition is appropri-
ately learned during training, thereby steering the HJ solution toward accurately solving the desired
OT problem. Specifically, this term enforces alignment between the generated samples obtained via
T [ug] and the given target data. This alignment can be effectively quantified using discrepancy mea-
sures such as the maximum mean discrepancy (MMD) (Smola et al., [2006)), whose value between
two distributions x and v are defined as follows:

MMD( ) = [ ke y) a0 = v(x) dlnly) = v(3), (an

where k(-,-) :  x Q — R is a kernel function. The population loss for the MMD is
Ly (ug) = MMD(T} [uglspt, v)?. (12)
We adopt the negative distance kernel £ (x,y) = — ||x — y||,, which has proved to handle high-

dimensional problems efficiently (Hertrich et al.| 2024). With this kernel, the MMD loss becomes
the squared energy distance (Rizzo & Székely, |[2016).

In our implementation of the implicit solution formula, we replace the initial function g with wug
evaluated at ¢ = 0, and train the model using the following p-weighted loss function

Ly (ug) = / / (uQ + th (Vug) — tVu] Vh (Vug) — ug (x — tVA (Vug), 0))2dg(x) dt,
Qx[0,tf] (13)
where o denotes a probability distribution on 2.
The overall loss combines the implicit HJ loss and the MMD loss with a weight A > 0:
Ly (ug) + ALvmp (us).- (14)
We refer to Appendix [B]for practical choices of ¢ and the Monte Carlo estimation of the loss.
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Advantages of the Proposed Approach. Our method offers several key advantages over existing
OT frameworks, as summarized in Table |1} First, it jointly learns both forward and backward OT
maps using a single neural network in one training phase. This contrasts with prior methods that
require multiple networks, either due to the lack of invertibility or the use of adversarial dual for-
mulations—leading to increased model complexity and training cost. Our method also avoids the
instability of min-max optimization common in dual approaches, resulting in more stable training.
Second, unlike dynamical OT models that require solving ODEs or SDEs, we use the method of
characteristics to obtain OT maps in closed form. This removes the need for iterative solvers and
improves sampling efficiency at both training and inference time. Third, our model directly incor-
porates the HJ equation via an implicit solution formula that reliably recovers the viscosity solution,
as supported by the numerical results in Section[6] This not only aligns with the theoretical optimal-
ity conditions of OT but also helps identify and correct deviations from the target solution during
training. Finally, our framework supports a broad class of cost functions beyond the quadratic case,
offering greater flexibility and wider applicability across OT tasks.

5.2 THEORETICAL ANALYSES

In this section, we present theoretical analyses of our method, focusing on the OT problem with
Q = R and the quadratic cost £(-) = $|| - ||2, for which the corresponding Hamiltonian is given by
h(-) = 1| - ||* as well. We prove that the minimizer of the loss exactly recovers the true OT
maps. Moreover, in the Gaussian setting, we establish stability analysis by showing that a small loss
guarantees convergence to the true solution.

Consistency Analysis With some mild convexity assumption, we establish that the minimizer of
leads precisely to the optimal transport map.

Theorem 5.1 (Consistency of loss). Suppose the probability distributions ., v have finite second
moments and ¢ € P (R?) is strictly positive. Assume u € CL_(R? x [0,t;]), and define uy () :=

loc
u(-,ty) € C3(RY) with Vuy € L2(RY, RY; v). If u minimizes the loss functional (T4), i.e.,

Lry(w) + Aymp(uw) = 0,

and the map T"[u] is bijective with its Jacobian D,T"[u](z) is positive definite for any x € RY,
then T} [u] and T, [u] are the optimal transport maps from v to p, and vice versa.

The proof is provided in Appendix [A.2] See also Remark [A 5] for further discussion on the mono-
tonicity condition for D, T [u].

Remark 5.2 (On regularity assumption of u). It is worth noting that the transport curves associated
with the Wasserstein-2 OT problem do not intersect for t € [0,ty] (cf. Chap. 8 of (Villani et al.,
2008)). Since these curves constitute the characteristics of the HJ equation associated with the
OT problem, we can expect classical solutions to the HJ equation, provided that p and v admit
sufficiently regular density functions. This observation motivates the regularity assumption on u
in Theorem [5.1] Moreover, u is parametrized with neural networks in practice, which naturally
preserve the regularity.

Stability Analysis The loss also exhibits favorable stability properties, which we illustrate in
the Gaussian setting. Let u = N(b,,%X,), v = N(b,, X,), then the OT map is

T:*(x) =A(x—b,)+b,, (15)

where 4 := Z;% (2 é DI é)% Z;%. For analytical tractability, we consider a simplified quadratic
parameterization ug(x,t) = —(3x " 02(t)x + 61(t) "x + 0o(t)), where 0 = [02(-),61(-),00(-)] :
[0,tf] — ngfnd x RY x R. Although this represents a restricted subclass of neural networks, it
permits rigorous analysis and yields insights relevant to more general architectures.

Assumption 5.3. 6(t) is bounded by K and K-Lipschitz. b, ,[[b,| ,[|Z.] s, |1E.]lp < K. A
is strictly positive definite with smallest eigenvalue A4 > 0.

Theorem 5.4 (Stability of loss). Under Assumption the errors for ug and T)] [ug] satisfy

1 1
luo — u*|| poo((=1,170) + HT:[U«?] - T:*HLOO([_Ll]d) <C <£131 + L/@MD) ) (16)

where u* and T} are the true solution and OT map. C only depends on d, K and X 4.
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The theorem implies that sufficiently small loss guarantees convergence of the approximate solution
up—and consequently the resulting transport map 7}/ [ug]—to their true counterparts. Furthermore,
the proof shows that while multiple transport maps may minimize the MMD loss, the implicit HJ
loss ensures that the OT map is uniquely recovered. The detailed description and proof for the
theorem are deferred to Appendix

5.3 CLASS-CONDITIONAL OT

We extend our HJ-based framework to class-conditional OT, transporting source to target indepen-
dently within each of the K labeled classes so as to preserve label consistency and class-specific
structure. This formulation is particularly well-suited for domain adaptation and class-conditional
generative modeling, where preserving class-specific features is crucial.

The OT map between samples of the k-th class must satisfy the HJ equation within the support of
the corresponding class-specific distribution, as dictated by the optimality condition. Consequently,
the global transport map 77" satisfies the HJ equation () across the entire domain. Although non-
differentiable regions may arise due to intersections between transport maps of different classes,
such discontinuities occur primarily in the boundaries between class supports. Since the gradient of
the HJ solution is computed only within the support of each class-specific distribution, the transport
map remains expressible in these regions. Accordingly, we retain the implicit HJ loss function (13)
and modify the MMD loss to account for class conditioning as follows:

K
v 1 14
Eotass (T [uol), 1. v) = 3 ,; E(T} [uol), puxs viv)- (17
A similar approach was proposed by |Asadulaev et al.[(2024)).

6 EXPERIMENTAL RESULTS

We evaluate the effectiveness of the proposed neural characteristic flow (NCF) across diverse OT

tasks. All experiments in this section employ the quadratic cost function ¢ = % II 3 which is the
canonical cost associated with the Wasserstein-2 distance. Computations were performed on a single
NVIDIA GV100 (TITAN V) GPU. Further implementation details are provided in Appendix

6.1 UNCONDITIONAL OT

6.1.1 2D Toy EXAMPLES

We test the proposed NCF on a 2D toy dataset. We also compare our model with the neural opti-
mal transport (NOT) framework (Korotin et al., |2023)), including both the strong (deterministic) and
weak (stochastic) variants. Since NOT directly parameterizes the transport map, it requires sepa-
rate training for each transport direction. Additionally, we include an ablation study replacing our
implicit solution formula loss (I3]) with a PINN loss on the HJ equation, referred to as HJ-PINN.

Figure [1| shows bidirectional transport results on 2D distributions. In addition to visualizing the
transported distributions, we overlay the learned transport maps as black solid lines to assess whether
each model has captured an OT plan. For weak NOT, the map is the average over noise inputs, as
in the original work. Compared to all baselines, our method captures source and target distribu-
tions more accurately and learns transport maps closely aligned with the optimal solution. Strong
NOT produces noisy, incoherent transport. Weak NOT performs better but still shows overlapping
trajectories, indicating an incomplete OT representation. HJ-PINN yields noisy, intersecting trans-
port paths, suggesting failure to learn OT dynamics. In contrast, our model learns accurate OT
maps without trajectory crossings. Moreover, unlike NOT, which requires four separate networks
for bidirectional training, our method achieves more accurate bidirectional transport with a single
network. These results highlight the superior accuracy and efficiency of our approach. For further
experimental results on the 2D example, please refer to Appendix [C.1]

6.1.2 EVALUATION ON HIGH-DIMENSIONAL GAUSSIANS

For general distributions, the ground truth OT solution is unknown, making quantitative evalua-
tion challenging. To enable precise assessment, we consider the Gaussian case: y = N (0,%,,) and
v =N (0,%,), where a closed-form solution is available via (I3]). Following|Korotin et al.|(2021al),
we vary the dimension d from 2 to 64, with X, and XJ,, generated using random eigenvectors uni-
formly sampled on the unit sphere and logarithms of eigenvalues drawn uniformly from [—2, 2].
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Figure 1: Swiss roll (1) = Double moons (v): The top row shows transport in the direction v — p,
and the bottom row shows p — v. The leftmost column displays p and v for reference.

Table 2: Quantitative evaluation on Gaussian distributions. UVP () is measured across different
OT methods as the data dimension d increases.

Method d=2 d=4 d=38 d=16 d=32 d=64
NOT 77248 125419 114.056 176.086 182.287 196.831
WGAN-QC  1.596 5.897  31.0367 59.314 113237 141.407
LS 5.806 9.781 15963 25232  41.445  55.360
MM-vl 0.161 0.172 0.173 0.210 0.374 0.415
HJ-PINN 0.080 0.069 0.163 0.458 0.576 1.683
NCF 0.010 0.021 0.086 0.146 0.436 0.858

In addition to strong NOT and HJ-PINN, we evaluate several established OT methods: MM-vl
(Taghvaei & Jalali, 2019} [Korotin et al.,[20214), which solves a min-max dual problem using input-
convex neural networks (ICNNs); LS (Seguy et al.l 2017), which addresses the dual problem via
entropic regularization; and WGAN-QC (Liu et al.;, 2019), which employs a WGAN architecture
with quadratic cost. Except for NOT—which directly parameterizes transport maps—all models
use a shared architecture for potential functions.

Performance is measured using the unexplained variance percentage (UVP) (Korotin et al.| [2019),
which quantifies the L? error of the estimated transport map, normalized by Var(v). Computa-
tional efficiency is also evaluated in terms of training and inference time, peak memory usage, and
memory required to store bidirectional OT maps. Table 2] reports UVP across models and dimen-
sions, while Figure [2| summarizes computational metrics. Our method consistently yields accurate
OT maps with favorable scaling behavior, outperforming NOT, WGAN-QC, and LS, which exhibit
greater deviation from the ground-truth transport. While MM-v1 achieves marginally lower UVP
in higher dimensions, it incurs over 20x longer training time and significantly higher memory us-
age. In contrast, our approach avoids expensive nested min-max optimization and leverages a single
network, resulting in faster and more memory-efficient training. At inference, NOT offers the low-
est latency due to its direct map parameterization, whereas other methods, including ours, require
gradient-based evaluation, introducing additional overhead. This overhead, however, decreases with
increasing dimension. Lastly, comparison with HJ-PINN underscores the superior effectiveness of
our implicit loss in approximating the viscosity solution to the underlying HJ equation.

Training Time Evaluation Time Max Memory Allocation Bidirectional OT Map Storage
— * 05 ?

s B
g 8

g

°
Memory (MB)

2

2 1 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64 2 1 8 16 32 64
Dimension Dimension Dimension Dimension

--e—- NOT --=-- WGAN-QC -+- LS 4+ MM-v1 --=-- HJ-PINN —— NCF

Figure 2: Computational comparison. Training time (s/epoch), evaluation time (s/epoch), peak
memory (MB) during training, and memory (MB) for storing bidirectional OT maps are reported.
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Table 3: Quantitative evaluation of color transfer. Earth mover distance (EMD) and histogram
intersection (HI) between color distributions of target and transported images are reported.

Winter-Summer  Monet-Photograph ~ Gogh-Photograph
EMD () HI() EMD({) HI() EMD{) HI®

HisMatching  0.0012  0.7296  0.0013  0.7532  0.0010  0.7668

Method

Reinhard 0.0013  0.6255  0.0012  0.7255  0.0009  0.7406
NOT 0.0008  0.8002  0.0008  0.8210  0.0008  0.8247
MM-v1 0.0014  0.7295  0.0011  0.7722  0.0007  0.8265
NCF 0.0005 0.8914  0.0004 09174 0.0003  0.9117

6.1.3 APPLICATION TO COLOR TRANSFER

We employ the dataset provided by CycleGAN (Zhu et al., 2017) for image color transfer experi-
ments. From each of the three available groups of image pairs, we selected 10 representative pairs.
For each pair, we perform both forward and backward color transfer. To evaluate the effectiveness of
our model, we include comparisons with two widely used classical color transfer methods: a stan-
dard per-channel histogram matching technique and the approach of Reinhard et al.| (2001}, which
aligns the mean and standard deviation of color channels. These baselines represent statistical meth-
ods that do not rely on OT, providing a complementary perspective on performance. We include
NOT and MM-v1 as deep learning OT baselines.

To quantitatively evaluate color fidelity and distributional consistency, we employ two widely used
histogram-based metrics: Earth Mover’s distance (EMD) and histogram intersection (HI), summa-
rized in Table[3] Across all three domains, our method consistently achieves superior performance
compared to all baselines in both metrics. In particular, our proposed method exhibits superior
robustness in handling more complex and multimodal color distributions compared to MM-v1, es-
pecially in contrast to the simpler Gaussian settings examined in the previous section. Qualitative
results are provided in Appendix [C.2]

6.2 CLASS-CONDITIONAL OT

6.2.1 2D Toy EXAMPLES

We present experimental results on a 2D synthetic dataset consisting of class-labeled samples, de-
signed to evaluate class-conditional OT. To assess the ability of the proposed class-conditional NCF
variant to model class-guided transport, we compare it against an unconditional NCF, which does
not utilize label information. Furthermore, to benchmark our method against existing approaches,
we include NOT with general cost functionals (GNOT) (Asadulaev et al.l 2024), a recent model
designed to perform class-conditional OT.

Figure [3| presents results on a 2D Gaussian mixture dataset, where each data point is associated with
a class label. The unconditional NCF, lacking access to label information, learns a global transport
map that ignores class structure, aligning source and target points purely based on W? distance.
In contrast, both GNOT and the proposed class-conditional NCF learn separate transport maps per
class. However, GNOT exhibits intersecting transport paths between classes, suggesting suboptimal-
ity with respect to the transport cost. The class-conditional NCF effectively disentangles transport
across classes and yields maps that closely approximate the optimal solutions. These results high-
light the accuracy and effectiveness of our approach, grounded in a CODE-based formulation of the
HIJ equation, for learning class-conditional transport in structured settings.

6.2.2 MNIST & FASHION MNIST

We apply our model to the MNIST (LeCunl |1998) and Fashion MNIST (Xiao et al., |2017) datasets,
each comprising 10 classes. Given their substantially lower intrinsic dimensionality relative to the
ambient space (Pope et al.,|2021)), we solve class-conditional OT problems in latent spaces obtained
via 8-VAEs (Higgins et al.,[2017); see Appendix for details.

We consider transport from each Fashion MNIST class to its corresponding MNIST class; additional
class-conditional OT tasks on MNIST are provided in Appendix [C.3] We compare against baselines
from|Asadulaev et al.[(2024)), including NOT and GNOT, as well as a domain adaptation OT method
(Courty et al., 2016} [Flamary et al.,|2021) that uses discrete OT with label-supervised regularization.
Additionally, we evaluate unsupervised image translation methods AugCycleGAN (Almahairi et al.,
2018)) and MUNIT (Huang et al., 2018).
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Figure 3: 2D class-conditional OT. The leftmost column displays p (red) and v (blue), with class la-
bels indicated by distinct markers. In the remaining columns, blue dots denote transported samples,

while solid black and dotted gray lines represent the learned transport maps for each class.
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Figure 4: Class-conditional OT between MNIST and Fashion MNIST. Left: Forward OT. Right:
Backward OT. The first row shows the source data, while the second row presents the data generated
by learned OT map.

Forward OT: Fashion MNIST to MNIST
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Table 4: Comparison of the accuracy and FID scores for the forward class-conditioned maps (Fash-
ion MNIST — MNIST) learned using different methods. The accuracy and FID scores for the
baseline methods are adopted from (Asadulaev et al.,2024).

NOT GNOT Discrete OT
Metri AugCycleGAN | MUNIT | NCF [O
etrie L? cost | Stochastic map | SinkhornLpL1 ugtyele [Qurs]
Accuracy(%) 1 | 10.96 83.22 10.67 12.03 8.93 83.42
FID | 7.51 5.26 >100 26.35 791 18.27

Figure [] shows bidirectional transported samples by NCF; uncurated results are in Appendix [C.3]
These results qualitatively demonstrate NCF’s ability to perform bidirectional, class-conditional OT
on real images. For quantitative evaluation, we report Fréchet Inception Distance (FID) (Heusel
et al} [2017) and class-wise accuracy, which measures how well the class identity is preserved dur-
ing transport, in Table[d] Our method achieves the highest accuracy, indicating its strong class-aware
transport performance. Although the FID score is relatively high, this is largely due to the discrep-
ancy introduced by the VAE decoder. To isolate this effect, we compute the FID between the NCF
outputs and the VAE-decoded images. The resulting low score 2.73 indicates that the transport map
in the latent space faithfully reproduces the target distribution. This is further supported by the KDE
plots in Figure [T4] showing close alignment between the transported and target latent distributions
along principal components.

7 CONCLUSION

We introduced a theoretically grounded OT framework that recovers forward and backward maps
in closed form via HJ characteristics. The resulting single-network, integration-free algorithm gives
accurate, bidirectional maps, supports a broad class of costs, and extends to class-conditional trans-
port with pairwise MMD alignment. We establish consistency and stability. Several tasks including
synthetic, color-transfer, and MNIST demonstrate accuracy and efficiency of our algorithm.

Future directions include improving high-dimensional performance beyond latent-space implemen-
tations by developing more efficient gradient evaluations and scalable network designs. Extending
the stability analysis to general neural architectures would provide a deeper theoretical understand-
ing of our method and its convergence behavior.
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