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ABSTRACT

We present a novel framework for solving optimal transport (OT) problems based
on the Hamilton–Jacobi (HJ) equation, whose viscosity solution uniquely char-
acterizes the OT map. By leveraging the method of characteristics, we derive
closed-form, bidirectional transport maps, thereby eliminating the need for nu-
merical integration. The proposed method adopts a pure minimization frame-
work: a single neural network is trained with a loss function derived from the
method of characteristics of the HJ equation. This design guarantees convergence
to the optimal map while eliminating adversarial training stages, thereby substan-
tially reducing computational complexity. Furthermore, the framework naturally
extends to a wide class of cost functions and supports class-conditional transport.
Extensive experiments on diverse datasets demonstrate the accuracy, scalability,
and efficiency of the proposed method, establishing it as a principled and versatile
tool for OT applications with provable optimality.

1 INTRODUCTION

Optimal transport (OT) is a fundamental problem that seeks the most cost-efficient transform from
one probability distribution into another by minimizing a transportation cost function, which quan-
tifies the effort to move mass. With its strong theoretical foundation and broad practical relevance,
OT has been widely applied in diverse areas, including traffic control (Carlier et al., 2008; Danila
et al., 2006; Barthélemy & Flammini, 2006), biomedical data analysis (Schiebinger et al., 2019;
Koshizuka & Sato, 2022; Bunne et al., 2023), generative modeling (Wang et al., 2021; Onken et al.,
2021; Zhang & Katsoulakis, 2023; Liu et al., 2019), and domain adaptation (Courty et al., 2016;
2017; Damodaran et al., 2018; Balaji et al., 2020). In recent years, there has been growing interest
in deep learning techniques to solve OT problems, leading to the development of methods grounded
in various mathematical formulations. Early approaches were primarily built upon the classical
Monge formulation (Lu et al., 2020; Xie et al., 2019) and its relaxation into the Kantorovich frame-
work (Makkuva et al., 2020). While theoretically rigorous, these methods often suffer from high
computational complexity. The primal–dual formulation, which recasts the OT problem as a saddle-
point optimization over the generative map and the Kantorovich potential function, has inspired
scalable algorithms (Liu et al., 2019; Taghvaei & Jalali, 2019; Korotin et al., 2021a; Liu et al., 2021;
Choi et al., 2024). Similar approaches have also been proposed for the Monge problem with gen-
eral costs (Asadulaev et al., 2024; Fan et al., 2023). However, these approaches typically rely on
adversarial training of two neural networks, which is challenging to manage and often introduces
instability and inefficiency into the optimization process. Alternative approaches have investigated
dynamical formulations using ordinary differential equations (ODEs) (Yang & Karniadakis, 2020;
Onken et al., 2021; Tong et al., 2020; Huguet et al., 2022) and entropic-regularized models involv-
ing stochastic differential equations (SDEs) (Genevay et al., 2016; Seguy et al., 2017; Daniels et al.,
2021; Gushchin et al., 2023; Zhou et al., 2024). Machine learning algorithms that unify Lagrangian
and Eulerian perspectives of Mean Field Control problems Ruthotto et al. (2020); Lin et al. (2021);
Zhao et al. (2025) likewise provide a computational framework for OT. Nevertheless, these methods
typically require solving systems of differential equations, resulting in substantial computational
overhead during both training and inference. Moreover, many existing methods yield bias maps that
deviate from the OT solution due to the incorporation of regularization terms into the formulation.

Contributions. We propose a novel and efficient framework, termed neural characteristic flow
(NCF), for solving OT problems via the Hamilton–Jacobi (HJ) equation, whose viscosity solution
characterizes the OT map. Despite its strong theoretical foundation for OT, the HJ formulation
poses two major challenges: non-uniqueness of solutions and the need to solve ODEs in dynamical
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Method (representative reference) Optimization # Networks OT direction Sampling Optimality of T
Dual Formulation (Asadulaev et al., 2024) Min-Max Two One-way Direct No
Dynamical Models (Onken et al., 2021) Min Single Bidirectional Iterative No
HJ-based (Proposed) Min Single Bidirectional Direct Yes

Table 1: Comparison of key features across different OT model approaches. Optimality indicates
whether an approach is guaranteed, in principle, to recover the true OT map under sufficient network
capacity.

formulations. We overcome both by leveraging the method of characteristics and an implicit solution
formula (Park & Osher, 2025) to obtain closed-form, bidirectional transport maps without numerical
integration of ODEs. NCF uses a single neural network and avoids adversarial training or dual-
network architectures, reducing complexity while improving efficiency. Our framework guarantees
theoretical consistency with OT optimality conditions and supports a broad class of cost functions,
including class-conditional transport. We also provide convergence analysis for Gaussian settings
and demonstrate strong empirical performance across datasets of varying dimensions. A comparison
of key features across different OT model approaches is summarized in Table 1.

2 PRELIMINARY

2.1 MONGE’S OPTIMAL TRANSPORT PROBLEM

For a domain Ω ⊂ Rd, we denote P(Ω) as the space of probability measures on Ω. Let c : Ω×Ω →
[0,∞] be a cost function that measures the cost of transporting one unit of mass. For µ, ν ∈ P (Ω),
the classical Monge problem formulates OT as finding a measurable map T : Ω → Ω that pushes
forward µ to ν, i.e., T♯µ = ν, while minimizing the transportation cost:

Wc (µ, ν) := inf
T♯µ=ν

∫
Ω

c (x, T (x)) dµ (x) . (1)

We call a solution T ∗ to (1) an OT map between µ and ν. In the case where the cost c is expressed
as a function of the difference between the two variables, T ∗ is characterized as follows:
Theorem 2.1 (Santambrogio (2015)). When c (x,y) = ℓ (x− y) for a lower semi-continuous
(l.s.c.), sub-differentiable, and strictly convex function ℓ : Ω → R, the optimal map is expressed
in terms of the Kantorovich dual potential function φ∗ : Ω → R as

T ∗ (x) = x+∇h (∇φ∗ (x)) , (2)

where h (z) = supy∈Rd

{
z⊤y − ℓ (y)

}
is the Legendre transform of ℓ.

2.2 DYNAMICAL FORMULATION

Benamou & Brenier (2000) formulate the OT (1) in a continuous-time dynamical formulation:

inf
v

Eµ

[∫ tf

0

ℓ (v (x(t), t)) dt

]
(3)

s.t. ẋ = v, x(0) ∼ µ, x(tf ) ∼ ν, (4)

where the terminal time tf > 0 is typically set to 1. Within this dynamical framework, the associated
optimality condition is governed by the Hamilton–Jacobi (HJ) equation (Evans, 2022, chapter 10):{

∂u
∂t + h (∇u) = 0 in Ω× (0, tf )

u = g on Ω× {t = 0}, (5)

coupled with the continuity equation ∂tρ + ∇ · (ρ∇h (∇u)) = 0 that governs the evolution of
the probability distribution. Here, ∇u denotes the gradient of u with respect to the spatial variable
x, and g represents the initial condition, whose explicit analytic form is typically intractable. The
optimal velocity field is then determined by v∗ = ∇h (∇u), where u is the viscosity solution to HJ
equation (5).

3 RELATED WORKS

Deep learning methods for OT have gained traction following the development of scalable OT
solvers (Genevay et al., 2016; Seguy et al., 2017) and WGANs (Arjovsky et al., 2017). Many
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approaches utilize GAN-based models to approximate OT plans, although they often suffer from
training instability and extensive hyperparameter tuning. Another major line of work is based on the
Kantorovich dual formulation (Kantorovich, 2006), where the OT map is recovered via optimization
of dual potentials, typically parameterized by input convex neural networks (ICNNs) (Amos et al.,
2017). While theoretically sound, these methods involve unstable min-max optimization. To ad-
dress these issues, natural gradient methods have been proposed to improve computational efficacy
(Shen et al., 2020; Liu et al., 2024). Regularization techniques such as L2 penalties (Genevay et al.,
2016; Sanjabi et al., 2018) and cycle-consistency constraints (Korotin et al., 2019; 2021b) have been
proposed, though unconstrained alternatives have shown stronger empirical performance (Korotin
et al., 2021a; Fan et al., 2022).

To address the settings where deterministic OT maps may not exist, recent work has considered
weak OT formulations (Backhoff-Veraguas et al., 2019). Neural approaches for weak OT and class-
conditional transport have been proposed (Korotin et al., 2023; Asadulaev et al., 2024), but may
yield spurious solutions under weak quadratic costs. Kernalized costs (Korotin et al., 2022) have
been introduced to mitigate this.

OT has also been modeled as a dynamical system via continuous flows (Yang & Karniadakis, 2020;
Tong et al., 2020; Onken et al., 2021; Huguet et al., 2022). While expressive, these methods require
solving ODEs during training and inference, making them computationally expensive. Entropic and
f -divergence regularized stochastic models (Daniels et al., 2021; Gushchin et al., 2023) improve
smoothness but often rely on Langevin dynamics, which can be biased in high dimensions (Korotin
et al., 2019). The HJ equation has been used to improve OT models, with physics-informed neural
network (PINN) (Raissi et al., 2019) approaches applying L2 penalties on HJ residuals to improve
continuous normalizing flows, ODE-based formulations (Yang & Karniadakis, 2020; Onken et al.,
2021), and stochastic variants (Zhang & Katsoulakis, 2023). However, due to the ill-posed nature of
the HJ equation, this approach lacks guarantees for recovering the viscosity solution.

4 HJ CHARACTERISTIC FLOWS FOR OT

In this section, we represent the OT map through the characteristics of the HJ equation, offering a
principled and efficient framework for OT. Note that solving the HJ equation directly is challenging
due to its inherent ill-posedness, non-smoothness of solutions, and gradient discontinuities, all of
which complicate both theoretical analysis and numerical approximation.

Method of Characteristics. The viscosity solution to (5) is theoretically characterized by the
following system of characteristic ordinary differential equations (CODEs) Evans (2022); Park &
Osher (2025): 

ẋ = ∇h (p) (6a)

u̇ = −h(p) + p⊤∇h(p) (6b)
ṗ = 0, (6c)

where p denotes the shorthand for ∇u. CODE for p (6c) implies that p remains constant along
each characteristic trajectory. Consequently, the characteristics are straight lines of the form x(t) =
t∇h(p) + x(0), which coincide with the OT map in (2) at terminal time t = tf . From a dynamical
perspective, the ODE (4) can be interpreted as the characteristic equations (6a) of the HJ equation
that determine the OT map (2). In other words, the transported point T ∗ (x) of a sample x ∼ µ
corresponds to the terminal position of the characteristic line that originates from x.

Our CODE formulation not only provides a principled construction of the forward transport map but
also naturally characterizes the backward map. We denote by T ν∗

µ the forward OT map transporting
µ to ν, and by Tµ∗

ν the backward map transporting ν to µ.
Proposition 4.1 (Bidirectional OT Map). There exists a viscosity solution u∗ to the HJ equation
(5) that characterizes both the forward and backward OT maps through its forward and backward
characteristic flows:

T ν∗
µ (x) = x+ tf∇h (∇u∗ (x, 0)) , x ∼ µ, (7)

Tµ∗
ν (y) = y − tf∇h (∇u∗ (y, tf )) , y ∼ ν. (8)

Accordingly, the viscosity solution of the HJ equation enables a bidirectional characterization of
the OT map via forward and backward characteristic flows. Notably, since the characteristics are
straight lines, both the forward and inverse transport maps admit explicit closed-form expressions.
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This obviates the need for numerical integration of ODEs typically required in conventional dy-
namical formulations. Consequently, the CODE-based formulation addresses a key computational
bottleneck, enabling efficient and direct computation of bidirectional transport maps.

Implicit Solution Formula. Recently, a novel mathematical formulation for the viscosity solution
of HJ equations has been developed using the system of CODEs (Park & Osher, 2025). Within this
formulation, the viscosity solution admits the following implicit formula:

u (x, t) = −th (∇u) + t∇u⊤∇h (∇u) + g (x− t∇h (∇u)) . (9)
Proposition 4.2. For OT problems (1) where ℓ satisfies the conditions in Theorem 2.1, the implicit
solution formula (9) characterizes the viscosity solution of the HJ equation (5) almost everywhere.

Proof. Detailed proof is provided in Appendix A.1.

5 METHODS

5.1 OT WITH GENERAL COSTS

We propose a novel deep learning method, termed neural characteristic flow (NCF), for learning
bidirectional OT maps under general cost ℓ by solving the HJ equation (5) vis its implicit solution
formula (9). The HJ equation characterizes the OT map as the gradient of the viscosity solution, en-
suring that the resulting map minimizes the given cost functional. When coupled with the continuity
equation, it also describes the evolution of probability distributions, thus guaranteeing correct mass
transport from source to target. However, jointly solving this coupled system of PDEs is computa-
tionally expensive. To address this, the proposed NCF computes the OT map solely through the HJ
equation, avoiding the need to solve the continuity equation explicitly.

Implicit Neural Representation. We represent the solution u of the HJ equation using an implicit
neural representation (INR) uθ : Rd × R → R parameterized by θ. The network takes the spatial
variable x and temporal variable t as input. By the universal approximation theorem (Hornik et al.,
1989; Leshno et al., 1993), the INR can approximate the viscosity solution to the HJ equation. We
denote by T ν

µ [uθ] as the transport map that aims to map µ to ν defined by (7) through uθ:

T ν
µ [uθ] (x) = x+ tf∇h (∇uθ (x, 0)) . (10)

The backward map Tµ
ν [uθ] is analogously defined according to (8) via uθ evaluated at t = tf .

HJ-based Training Loss. While the HJ equation does not directly encode distributional informa-
tion, it can recover the desired OT map, provided that an appropriate initial function g reflects the
relationship between the source and target distributions. However, in practice, where only finite sam-
ples from these distributions are available, deriving an analytic form for g is generally intractable.
To address this challenge, we introduce a loss term to ensure that the initial condition is appropri-
ately learned during training, thereby steering the HJ solution toward accurately solving the desired
OT problem. Specifically, this term enforces alignment between the generated samples obtained via
T [uθ] and the given target data. This alignment can be effectively quantified using discrepancy mea-
sures such as the maximum mean discrepancy (MMD) (Smola et al., 2006), whose value between
two distributions µ and ν are defined as follows:

MMD(µ, ν)2 =

∫∫
Ω×Ω

k(x,y) d(µ(x)− ν(x)) d(µ(y)− ν(y)), (11)

where k(·, ·) : Ω× Ω → R is a kernel function. The population loss for the MMD is

LMMD(uθ) = MMD(T ν
µ [uθ]♯µ, ν)

2. (12)

We adopt the negative distance kernel k (x,y) = −∥x− y∥2, which has proved to handle high-
dimensional problems efficiently (Hertrich et al., 2024). With this kernel, the MMD loss becomes
the squared energy distance (Rizzo & Székely, 2016).

In our implementation of the implicit solution formula, we replace the initial function g with uθ
evaluated at t = 0, and train the model using the following ϱ-weighted loss function

LHJ (uθ)=

∫∫
Ω×[0,tf ]

(
uθ + th (∇uθ)− t∇u⊤θ ∇h (∇uθ)− uθ (x− t∇h (∇uθ) , 0)

)2
dϱ(x) dt,

(13)
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where ϱ is a probability measure o Ω used to weight the residual so that the implicit solution formula
(9) is enforced across the entire spatial domain while allowing LHJ to be efficiently approximated
via Monte Carlo sampling. When Ω is bounded, a natural choice is the uniform distribution on Ω.
In practice, ϱ may also be chosen as a uniform distribution supported on the region covered by the
available samples, concentrating computational effort on the portions of the domain most relevant
to the transport dynamics.

The overall loss combines the implicit HJ loss and the MMD loss with a weight λ > 0:
LHJ (uθ) + λLMMD(uθ). (14)

We refer to Appendix B for practical choices of ϱ and the Monte Carlo estimation of the loss.

Advantages of the Proposed Approach. Our method offers several key advantages over existing
OT frameworks, as summarized in Table 1. First, it jointly learns both forward and backward OT
maps using a single neural network in one training phase. This contrasts with prior methods that
require multiple networks, either due to the lack of invertibility or the use of adversarial dual for-
mulations—leading to increased model complexity and training cost. Our method also avoids the
instability of min-max optimization common in dual approaches, resulting in more stable training.
Second, unlike dynamical OT models that require solving ODEs or SDEs, we use the method of
characteristics to obtain OT maps in closed form. This removes the need for iterative solvers and
improves sampling efficiency at both training and inference time. Third, our model directly incor-
porates the HJ equation via an implicit solution formula that reliably recovers the viscosity solution,
as supported by the numerical results in Section 6. This not only aligns with the theoretical optimal-
ity conditions of OT but also helps identify and correct deviations from the target solution during
training. Finally, our framework supports a broad class of cost functions beyond the quadratic case,
offering greater flexibility and wider applicability across OT tasks.

5.2 THEORETICAL ANALYSES

In this section, we present theoretical analyses of our method, focusing on the OT problem with
Ω = Rd and the quadratic cost ℓ(·) = 1

2∥ · ∥
2, for which the corresponding Hamiltonian is given by

h(·) = 1
2∥ · ∥2 as well. We prove that the minimizer of the loss (14) exactly recovers the true OT

maps. Moreover, in the Gaussian setting, we establish stability analysis by showing that a small loss
guarantees convergence to the true solution.

Consistency Analysis With some mild convexity assumption, we establish that the minimizer of
(14) leads precisely to the optimal transport map.
Theorem 5.1 (Consistency of loss). Suppose the probability distributions µ, ν have finite second
moments and ϱ ∈ P(Rd) is strictly positive. Assume u ∈ C1

loc(Rd × [0, tf ]), and define u1(·) :=
u(·, tf ) ∈ C2

loc(Rd) with ∇u1 ∈ L2(Rd,Rd; ν). If u minimizes the loss functional (14), i.e.,
LHJ(u) + λLMMD(u) = 0,

and the map Tµ
ν [u] is bijective with its Jacobian DxT

µ
ν [u](x) is positive definite for any x ∈ Rd,

then Tµ
ν [u] and T ν

µ [u] are the optimal transport maps from ν to µ, and vice versa.

The proof is provided in Appendix A.2. See also Remark A.5 for further discussion on the mono-
tonicity condition for DxT

µ
ν [u].

Remark 5.2 (On regularity assumption of u). It is worth noting that the transport curves associated
with the Wasserstein-2 OT problem do not intersect for t ∈ [0, tf ] (cf. Chap. 8 of (Villani et al.,
2008)). Since these curves constitute the characteristics of the HJ equation associated with the
OT problem, we can expect classical solutions to the HJ equation, provided that µ and ν admit
sufficiently regular density functions. This observation motivates the regularity assumption on u
in Theorem 5.1. Moreover, u is parametrized with neural networks in practice, which naturally
preserve the regularity.

Stability Analysis The loss (14) also exhibits favorable stability properties, which we illustrate in
the Gaussian setting. Let µ = N(bµ,Σµ), ν = N(bν ,Σν), then the OT map is

T ν∗
µ (x) = A(x− bµ) + bν , (15)

where A := Σ
− 1

2
µ (Σ

1
2
µΣνΣ

1
2
µ )

1
2Σ
− 1

2
µ . For analytical tractability, we consider a simplified quadratic

parameterization uθ(x, t) = −( 12x
⊤θ2(t)x + θ1(t)

⊤x + θ0(t)), where θ = [θ2(·), θ1(·), θ0(·)] :
[0, tf ] → Rd×d

sym × Rd × R. Although this represents a restricted subclass of neural networks, it
permits rigorous analysis and yields insights relevant to more general architectures.
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Assumption 5.3. θ(t) is bounded by K and K-Lipschitz. ∥bµ∥ , ∥bν∥ , ∥Σµ∥F , ∥Σν∥F ≤ K. A
is strictly positive definite with smallest eigenvalue λA > 0.
Theorem 5.4 (Stability of loss). Under Assumption 5.3, the errors for uθ and T ν

µ [uθ] satisfy

∥uθ − u∗∥L∞([−1,1]d) +
∥∥T ν

µ [uθ]− T ν∗
µ

∥∥
L∞([−1,1]d) ≤ C

(
L

1
3
HJ + L

1
4
MMD

)
, (16)

where u∗ and T ν∗
µ are the true solution and OT map. C only depends on d, K and λA.

The theorem implies that sufficiently small loss guarantees convergence of the approximate solution
uθ—and consequently the resulting transport map T ν

µ [uθ]—to their true counterparts. Furthermore,
the proof shows that while multiple transport maps may minimize the MMD loss, the implicit HJ
loss ensures that the OT map is uniquely recovered. The detailed description and proof for the
theorem are deferred to Appendix A.3.

5.3 CLASS-CONDITIONAL OT

We extend our HJ-based framework to class-conditional OT, transporting source to target indepen-
dently within each of the K labeled classes so as to preserve label consistency and class-specific
structure. This formulation is particularly well-suited for domain adaptation and class-conditional
generative modeling, where preserving class-specific features is crucial.

The OT map between samples of the k-th class must satisfy the HJ equation within the support of
the corresponding class-specific distribution, as dictated by the optimality condition. Consequently,
the global transport map T ν∗

µ satisfies the HJ equation (5) across the entire domain. Although non-
differentiable regions may arise due to intersections between transport maps of different classes,
such discontinuities occur primarily in the boundaries between class supports. Since the gradient of
the HJ solution is computed only within the support of each class-specific distribution, the transport
map remains expressible in these regions. Accordingly, we retain the implicit HJ loss function (13)
and modify the MMD loss to account for class conditioning as follows:

Eclass(
(
T ν
µ [uθ]

)
♯
µ, ν) =

1

K

K∑
k=1

E(
(
T ν
µ [uθ]

)
♯
µk, νk). (17)

A similar approach was proposed by Asadulaev et al. (2024).

6 EXPERIMENTAL RESULTS

We evaluate the effectiveness of the proposed neural characteristic flow (NCF) across diverse OT
tasks. All experiments in this section employ the quadratic cost function ℓ = 1

2 ∥·∥
2
2, which is the

canonical cost associated with the Wasserstein-2 distance. Computations were performed on a single
NVIDIA GV100 (TITAN V) GPU. Further implementation details are provided in Appendix B.

6.1 UNCONDITIONAL OT

6.1.1 2D TOY EXAMPLES

We test the proposed NCF on a 2D toy dataset. We also compare our model with the neural opti-
mal transport (NOT) framework (Korotin et al., 2023), including both the strong (deterministic) and
weak (stochastic) variants. Since NOT directly parameterizes the transport map, it requires sepa-
rate training for each transport direction. Additionally, we include an ablation study replacing our
implicit solution formula loss (13) with a PINN loss on the HJ equation, referred to as HJ-PINN.

Figure 1 shows bidirectional transport results on 2D distributions. In addition to visualizing the
transported distributions, we overlay the learned transport maps as black solid lines to assess whether
each model has captured an OT plan. For weak NOT, the map is the average over noise inputs, as
in the original work. Compared to all baselines, our method captures source and target distribu-
tions more accurately and learns transport maps closely aligned with the optimal solution. Strong
NOT produces noisy, incoherent transport. Weak NOT performs better but still shows overlapping
trajectories, indicating an incomplete OT representation. HJ-PINN yields noisy, intersecting trans-
port paths, suggesting failure to learn OT dynamics. In contrast, our model learns accurate OT
maps without trajectory crossings. Moreover, unlike NOT, which requires four separate networks
for bidirectional training, our method achieves more accurate bidirectional transport with a single
network. These results highlight the superior accuracy and efficiency of our approach. For further
experimental results on the 2D example, please refer to Appendix C.1.

6
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ν
→

µ
µ
→

ν

(a) Source µ (b) Strong NOT (c) Weak NOT (d) HJ-PINN (e) NCF

(f) Target ν (g) Strong NOT (h) Weak NOT (i) HJ-PINN (j) NCF

Figure 1: Swiss roll (µ) ⇄ Double moons (ν): The top row shows transport in the direction ν → µ,
and the bottom row shows µ→ ν. The leftmost column displays µ and ν for reference.

6.1.2 EVALUATION ON HIGH-DIMENSIONAL GAUSSIANS

For general distributions, the ground truth OT solution is unknown, making quantitative evalua-
tion challenging. To enable precise assessment, we consider the Gaussian case: µ = N (0,Σµ)
and ν = N (0,Σν), where a closed-form solution is available via (15). Following Korotin et al.
(2021a), we vary the dimension d from 2 to 64, with Σµ and Σν generated using random eigen-
vectors uniformly sampled on the unit sphere and logarithms of eigenvalues drawn uniformly from
[−2, 2]. In addition to strong NOT and HJ-PINN, we evaluate several established OT methods:
MM-v1 (Taghvaei & Jalali, 2019; Korotin et al., 2021a), which solves a min-max dual problem
using input-convex neural networks (ICNNs), alternating between optimizing the potential and its
convex conjugate; MM:R (Korotin et al., 2021a) also employs a min-max framework but does not
enforce convexity, instead learning separate networks for forward and backward maps via a negative
Wasserstein loss combined with a conjugacy loss; LS (Seguy et al., 2017), which addresses the dual
problem via entropic regularization; and WGAN-QC (Liu et al., 2019), which employs a WGAN ar-
chitecture with quadratic cost. Except for NOT—which directly parameterizes transport maps—all
models use a shared architecture for potential functions.

Performance is measured using the unexplained variance percentage (UVP) (Korotin et al., 2019),
which quantifies the L2 error of the estimated transport map, normalized by Var(ν). Computational
efficiency is also evaluated in terms of training and inference time, peak memory usage, and memory
required to store bidirectional OT maps. Table 2 reports UVP across models and dimensions, while
Figure 2 summarizes computational metrics.

Our method consistently yields accurate OT maps with favorable scaling behavior, outperforming
NOT, WGAN-QC, and LS, which exhibit greater deviation from the ground-truth transport. In
higher dimensions, the performance of NCF is slightly reduced, which we attribute to the fact that,
unlike baseline methods that parameterize separate networks for forward and backward maps, our
approach represents both directions using a single network. Specifically, NCF approximates both
maps using exactly half the network capacity required by methods such as MM-v1. This parameter
reduction is advantageous in low dimensions; however, in higher dimensions (e.g., d = 32, 64),
the limited capacity constrains the simultaneous learning of both directional maps. To address this,
we conducted experiments with a slightly enlarged network for high-dimensional cases—without
modifying any training hyperparameters—denoted as NCF-Adaptive in the results. With this ad-
justment, our method recovers performance in high dimensions while still using fewer parameters
than MM-v1 or MM:R.

Moreover, baseline methods such as MM-v1 and MM:R incur substantially longer training times
and significantly higher memory usage. In addition, MM:R, which relies on min–max optimization,
exhibits noticeable training instability (see Appendix C.2.) In contrast, our approach avoids expen-
sive nested min–max optimization and leverages a single network, resulting in faster, stable, and
more memory-efficient training. At inference, NOT achieves the lowest latency due to its direct map
parameterization, whereas other methods, including ours, require gradient-based evaluation, intro-
ducing additional overhead. This overhead, however, decreases with increasing dimension. Finally,
comparison with HJ-PINN highlights the superior effectiveness of our implicit loss in approximating
the viscosity solution to the underlying HJ equation.
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Table 2: Quantitative evaluation on Gaussian distributions. UVP (↓) is measured across different
OT methods as the data dimension d increases.

Method d = 2 d = 4 d = 8 d = 16 d = 32 d = 64

NOT 77.248 125.419 114.056 176.086 182.287 196.831
WGAN-QC 1.596 5.897 31.0367 59.314 113.237 141.407
LS 5.806 9.781 15.963 25.232 41.445 55.360
MM-v1 0.161 0.172 0.173 0.210 0.374 0.415
MM:R 0.012 0.048 0.117 0.202 0.354 0.604
HJ-PINN 0.080 0.069 0.163 0.458 0.576 1.683
NCF 0.010 0.021 0.086 0.146 0.436 0.858
NCF-Adaptive 0.010 0.022 0.090 0.155 0.307 0.407
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Figure 2: Computational comparison. Training time (s/epoch), evaluation time (s/epoch), peak
memory (MB) during training, and memory (MB) for storing bidirectional OT maps are reported.

6.1.3 APPLICATION TO COLOR TRANSFER

We employ the dataset provided by CycleGAN (Zhu et al., 2017) for image color transfer experi-
ments. From each of the three available groups of image pairs, we selected 10 representative pairs.
For each pair, we perform both forward and backward color transfer. To evaluate the effectiveness of
our model, we include comparisons with two widely used classical color transfer methods: a stan-
dard per-channel histogram matching technique and the approach of Reinhard et al. (2001), which
aligns the mean and standard deviation of color channels. These baselines represent statistical meth-
ods that do not rely on OT, providing a complementary perspective on performance. We include
NOT and MM-v1 as deep learning OT baselines.

To quantitatively evaluate color fidelity and distributional consistency, we employ two widely used
histogram-based metrics: Earth Mover’s distance (EMD) and histogram intersection (HI), summa-
rized in Table 3. Across all three domains, our method consistently achieves superior performance
compared to all baselines in both metrics. In particular, our proposed method exhibits superior
robustness in handling more complex and multimodal color distributions compared to MM-v1, es-
pecially in contrast to the simpler Gaussian settings examined in the previous section. Qualitative
results are provided in Appendix C.3.

6.2 CLASS-CONDITIONAL OT

6.2.1 2D TOY EXAMPLES

We present experimental results on a 2D synthetic dataset consisting of class-labeled samples, de-
signed to evaluate class-conditional OT. To assess the ability of the proposed class-conditional NCF
variant to model class-guided transport, we compare it against an unconditional NCF, which does
not utilize label information. Furthermore, to benchmark our method against existing approaches,
we include NOT with general cost functionals (GNOT) (Asadulaev et al., 2024), a recent model
designed to perform class-conditional OT.

Figure 3 presents results on a 2D Gaussian mixture dataset, where each data point is associated with
a class label. The unconditional NCF, lacking access to label information, learns a global transport
map that ignores class structure, aligning source and target points purely based on W 2 distance.
In contrast, both GNOT and the proposed class-conditional NCF learn separate transport maps per
class. However, GNOT exhibits intersecting transport paths between classes, suggesting suboptimal-
ity with respect to the transport cost. The class-conditional NCF effectively disentangles transport
across classes and yields maps that closely approximate the optimal solutions. These results high-
light the accuracy and effectiveness of our approach, grounded in a CODE-based formulation of the
HJ equation, for learning class-conditional transport in structured settings.
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Table 3: Quantitative evaluation of color transfer. Earth mover distance (EMD) and histogram
intersection (HI) between color distributions of target and transported images are reported.

Method Winter-Summer Monet-Photograph Gogh-Photograph
EMD (↓) HI (↑) EMD (↓) HI (↑) EMD (↓) HI (↑)

HisMatching 0.0012 0.7296 0.0013 0.7532 0.0010 0.7668
Reinhard 0.0013 0.6255 0.0012 0.7255 0.0009 0.7406
NOT 0.0008 0.8002 0.0008 0.8210 0.0008 0.8247
MM-v1 0.0014 0.7295 0.0011 0.7722 0.0007 0.8265
MM:R 0.0015 0.6404 0.0013 0.6810 0.0018 0.6260
NCF 0.0005 0.8914 0.0004 0.9174 0.0003 0.9117
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Figure 3: 2D class-conditional OT. The leftmost column displays µ (red) and ν (blue), with class la-
bels indicated by distinct markers. In the remaining columns, blue dots denote transported samples,
while solid black and dotted gray lines represent the learned transport maps for each class.

6.2.2 MNIST & FASHION MNIST

We apply our model to the MNIST (LeCun, 1998) and Fashion MNIST (Xiao et al., 2017) datasets,
each comprising 10 classes. Given their substantially lower intrinsic dimensionality relative to the
ambient space (Pope et al., 2021), we solve class-conditional OT problems in latent spaces obtained
via β-VAEs (Higgins et al., 2017); see Appendix B.4 for details.

We consider transport from each Fashion MNIST class to its corresponding MNIST class; additional
class-conditional OT tasks on MNIST are provided in Appendix C.4. We compare against baselines
from Asadulaev et al. (2024), including NOT and GNOT, as well as a domain adaptation OT method
(Courty et al., 2016; Flamary et al., 2021) that uses discrete OT with label-supervised regularization.
Additionally, we evaluate unsupervised image translation methods AugCycleGAN (Almahairi et al.,
2018) and MUNIT (Huang et al., 2018).

Figure 4 shows bidirectional transported samples by NCF; uncurated results are in Appendix C.4.
These results qualitatively demonstrate NCF’s ability to perform bidirectional, class-conditional OT
on real images. For quantitative evaluation, we report Fréchet Inception Distance (FID) (Heusel
et al., 2017) and class-wise accuracy, which measures how well the class identity is preserved dur-
ing transport, in Table 4. Our method achieves the highest accuracy, indicating its strong class-aware
transport performance. Although the FID score is relatively high, this is largely due to the discrep-
ancy introduced by the VAE decoder. To isolate this effect, we compute the FID between the NCF
outputs and the VAE-decoded images. The resulting low score 2.73 indicates that the transport map
in the latent space faithfully reproduces the target distribution. This is further supported by the KDE
plots in Figure 15, showing close alignment between the transported and target latent distributions
along principal components.

7 CONCLUSION

We introduced a theoretically grounded OT framework that recovers forward and backward maps
in closed form via HJ characteristics. The resulting single-network, integration-free algorithm gives
accurate, bidirectional maps, supports a broad class of costs, and extends to class-conditional trans-
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Figure 4: Class-conditional OT between MNIST and Fashion MNIST. Left: Transport Fashion
MNIST data x forward T ν

µ [uθ](x) then backward Tµ
ν [uθ](T

ν
µ [uθ](x)). Right: Transport MNIST

data x backward Tµ
ν [uθ](x) then forward T ν

µ [uθ](T
µ
ν [uθ](x)). The first row shows the source data,

the second & third rows present the data being transported back and forth using the learned map.

Table 4: Comparison of the accuracy and FID scores for the forward class-conditioned maps (Fash-
ion MNIST → MNIST) learned using different methods. The accuracy and FID scores for the
baseline methods are adopted from (Asadulaev et al., 2024).

Metric NOT GNOT Discrete OT AugCycleGAN MUNIT NCF [Ours]
L2 cost Stochastic map SinkhornLpL1

Accuracy(%) ↑ 10.96 83.22 10.67 12.03 8.93 83.42
FID ↓ 7.51 5.26 >100 26.35 7.91 18.27

port with pairwise MMD alignment. We establish consistency and stability. Several tasks including
synthetic, color-transfer, and MNIST demonstrate accuracy and efficiency of our algorithm.

Future directions include improving high-dimensional performance beyond latent-space implemen-
tations by developing more efficient gradient evaluations and scalable network designs. Extending
the stability analysis to general neural architectures would provide a deeper theoretical understand-
ing of our method and its convergence behavior. Moreover, as demonstrated by our numerical
experiments, the proposed NCF framework offers an accurate and computationally efficient ap-
proach for estimating class-conditioned transport maps. Exploring real-world applications in this
direction—such as domain adaptation Nguyen et al. (2024), cross-domain retrieval Chuang et al.
(2023), and biomedical conditional modeling Manupriya et al. (2024)—with a particular emphasis
on pursuing improved semantic correctness, represents an important avenue for future research.
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A PROOF

A.1 PROOF OF PROPOSITION 4.2

Since ℓ is l.s.c., sub-differentiable, and strictly convex, its Legendre transform h is also l.s.c., sub-
differentiable, and strictly convex. For such a Hamiltonian h, it has been proven in (Park & Osher,
2025) that the viscosity solution satisfies the implicit solution formula (9) almost everywhere. Con-
sequently, the optimal solution to these OT problem is characterized by the implicit solution formula.

A.2 PROOF OF THEOREM 5.1

Lemma A.1. Suppose that µ, ν are probability distributions on Rd. Suppose µ has finite second
order moment, i.e.,

∫
Rd ∥x∥2dµ(x) < ∞. Assume that ψ : Rd → R

⋃
{+∞} is convex and differ-

entiable µ-a.e. Set T = ∇ψ and suppose
∫
Rd ∥T (x)∥2dµ(x) < +∞. Then T is optimal for the

transport cost 1
2∥x− y∥2 between µ and ν.

This lemma is proved in Theorem 1.48 in Santambrogio (2015).

Lemma A.2. Suppose T : Rd → Rd is a bijective map on Rd. Assume that T is strictly monotone,
that is, ⟨T (x) − T (y), x − y⟩ > 0 for arbitrary x, y ∈ Rd, x ̸= y. Here, we denote ⟨·, ·⟩ as the
ℓ2 inner product on Rd. Suppose S : Rd → Rd satisfies S ◦ T = Id, then S is also bijective, and
strictly monotone.

Proof. It is straightforward to verify that S is surjective and injective, and it is thus bijective. Now,
for arbitrary x, y ∈ Rd, x ̸= y, there exists unique x′, y′ ∈ Rd, x′ ̸= y′, such that x = T (x′), y =
T (y′). Thus, we have S(x) = S(T (x′)) = x′, S(y) = S(T (y′)) = y′, and ⟨S(x)− S(y), x− y⟩ =
⟨x′ − y′, T (x′)− T (y′)⟩ > 0.

For brevity, in the following discussion, we denote Ck
loc(Rd) by Ck(Rd) for any k ∈ N. We denote

Od as the d× d zero matrix. For symmetric matrices A,B ∈ Rd×d, we denote A ≻ B if A− B is
positive definite.

Theorem A.3. Given the probability distributions µ, ν ∈ P(Rd) with
∫
Rd ∥x∥2 dµ,

∫
Rd ∥x∥2 dν <

+∞, suppose u0 ∈ C1
loc(Rd), u1 ∈ C2

loc(Rd),∇u1 ∈ L2(Rd,Rd; ν) satisfy

u0(x− tf∇u1(x)) = u1(x)−
tf
2
∥∇u1(x)∥2, ∀ x ∈ Rd. (18)

Assume further that (Id + tf∇u0(·))♯µ = ν. If the mapping Id− tf∇u1(·) : Rd → Rd is bijective
and Id − tf∇2u1(x) ≻ Od, then Id + tf∇u0(·) is the optimal transport from µ to ν, and Id −
tf∇u1(·) is the optimal transport map from ν to µ.

Proof. We split the proof into several steps:

Step 1. We first prove the fact that ∇u0(x − tf∇u1(x, t)) = ∇u1(x) for arbitrary x ∈ Rd. This
can be shown by taking gradient with respect to x on both sides of (18):

(Id − tf∇2u1(x))∇u0(x− tf∇u1(x)) = ∇u1(x)− tf∇2u1(x)∇u1(x).

Re-arrange this equation yields

(Id − tf∇2u1(x))(∇u0(x− tf∇u1(x))−∇u1(x)) = 0.

As Id − tf∇2u1(x) ≻ Od, we deduce that ∇u0(x− tf∇u1(x)) = ∇u1(x) for arbitrary x ∈ Rd.

Step 2. For the sake of brevity, we denote T0(·) := Id + tf∇u0(·), and T1(·) := Id − tf∇u1(·).
We prove that T0 ◦ T1 = Id. This can be derived by straightforward calculation:

T0(T1(x)) = T1(x) + tf∇u0(T1(x)) = x− tf∇u1(x) + tf∇u0(x− tf∇u1(x))
= x+ tf (∇u0(x− tf∇u1(x))−∇u1(x)) = x,

for any x ∈ Rd.
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Step 3. Before we prove the assertion, we show that
∫
Rd ∥T0(x)∥2 dµ < +∞,

∫
Rd ∥T1(x)∥2 dν <

+∞. The latter inequality can be shown using∫
Rd

∥T1(x)∥2 dν ≤ 2

(∫
Rd

∥T1(x)− x∥2 dν +
∫
Rd

∥x∥2 dν
)

= 2(t2f∥∇u1∥2L2(ν) +

∫
Rd

∥x∥2 dν) < +∞.

For the former inequality, we have∫
Rd

∥T0(x)∥2 dµ ≤ 2t2f

∫
Rd

∥∇u0(x)∥2 dµ+ 2

∫
Rd

∥x∥2 dµ.

Using the fact that T1♯ν = µ, The first term above equals
∫
Rd ∥∇u0(T1(x))∥2 dν =∫

Rd ∥∇u1(x)∥2 dν = ∥∇u1∥L2(ν) < +∞, where we use the fact that ∇u0(T1(x)) = ∇u1(x)
established in step 1. This accomplishes the proof for

∫
Rd ∥T0(x)∥2 dµ < +∞.

Step 4. We now prove the conclusion. Firstly, recall that DT1(x) = Id − tf∇2u1(x) ≻ Od, this
leads to the fact that T1(·) is strictly monotone. We now apply Lemma A.2 to show that T0 is also
bijective, and strictly monotone.

T0 is bijective suggests that T1(·) is the inverse mapping of T0(·), this leads to T1♯ν = µ. As
T1(·) = ∇φ(·) with φ(·) = ∥·∥2

2 − tfu1(·) being convex, combinging the fact established in step 3,
Lemma A.1 proves that T1 is the optimal transport map from ν to µ.

Furthermore, T0 is strictly monotone yields that DT0(x) = Id + tf∇2u0(x) ≻ Od, this indicates

that T0(·) = ∇
(
∥·∥2
2 + tfu0(·)

)
is the gradient of a convex function. Combining with the fact that

T0♯µ = ν and finite L2(µ) cost for T0, we deduce that T0 is the optimal transport map form µ to
ν.

Recall ϱ ∈ P(Rd), and the implicit HJ loss LHJ(u) defined in (13). The following Theorem is a
natural corollary of Theorem A.3.
Theorem A.4 (Consistency result). Suppose the probability distributions µ, ν possess finite second-
order moments. Assume u ∈ C1

loc(Rd × [0, tf ]), and define u1(·) := u(·, tf ) ∈ C2(Rd) with ∇u1 ∈
L2(Rd,Rd; ν). Denote hyperparameter λ > 0. Assume that ϱ is a strictly positive probability
measure on Rd. Suppose that u minimizes the loss functional, i.e.,

LHJ(u) + λLMMD(u) = 0.

Assume further that the map Tµ
ν [u] : Rd → Rd is bijective and its Jacobian DxT

µ
ν [u](x) ≻ Od for

any x ∈ Rd. Then the maps Tµ
ν [u] and T ν

µ [u] are the optimal transport maps from ν to µ and from
µ to ν, respectively.

Proof. Denote E(x, t) = (u(x − tf∇u(x, tf ), 0) − u(x, tf ) +
tf
2 ∥∇u(x, tf )∥

2)2, we have E ∈
C(Rd × [0, tf ]), and E(x, t) ≥ 0 on Rd × [0, tf ]. Denote m as the Lebesgue measure on [0, tf ].
Then we have

LHJ(u) =

∫∫
Rd×[0,tf ]

E(x, t) dϱdm = 0.

Tonelli’s Theorem Fremlin (2000) leads to∫
Rd

(∫ tf

0

E(x, t) dt

)
dϱ(x) = 0.

Now, Lemma A.6 indicates that ϕ(x) :=
∫ tf
0
E(x, t) dt is continuous on Rd. And we have∫

Rd ϕ(x) dϱ(x) = 0. Lemma A.7 suggests that ϕ(x) = 0, which is
∫ tf
0
E(x, t) dt = 0,∀x ∈ Rd.

Using a similar argument as presented in the proof of Lemma A.7 shows E(x, t) = 0 for all
x ∈ Rd, t ∈ [0, tf ].

Now applying Theorem A.3 with u0 = u(·, 0) and u1 = u(·, tf ) proves the assertion.

Remark A.5 (On the Monotonicity Condition). The monotonicity condition DxT
µ
ν [u] ≻ Od is

closely related to the c-concavity of u1, which provides a sufficient condition in OT theory (Villani

16



912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968

Under review as a conference paper at ICLR 2026

et al., 2008; Santambrogio, 2015). In practice, our proposed method successfully computes the OT
map for the benchmark problems even without explicitly enforcing this condition. Nonetheless, it
remains an interesting direction for future research to investigate efficient strategies for enforcing
monotonicity and to assess the potential benefits of doing so.
Lemma A.6. Suppose E ⊂ R is compact. Assume that f ∈ C(Rd×E), then y(x) :=

∫
E
f(x, t) dt

is continuous with respect to variable x.

Proof. Fix arbitrary x ∈ Rd, pick an r > 0, we denote Br
x = {y | ∥y − x∥ ≤ r}. Since f is

continuous on the compact set Br
x × E, we know that |f | is bounded from above. We can then

apply the dominated convergence theorem to show that limz→x y(z) = limz→x

∫
E
f(z, t) dt =∫

E
f(x, t) dt = y(x). Thus, y is continuous on Rd.

Recall that a Borel measure σ on Rd is strictly positive if σ(B) > 0 for any open set B ⊂ Rd.
Lemma A.7. Suppose σ ∈ P(Rd) is strictly positive, assume g : Rd → [0,+∞) is continuous
function. If

∫
Rd g(x) dσ(x) = 0, one has g(x) = 0 for any x ∈ Rd.

Proof. Suppose not true, we have a specific x0 ∈ Rd such that g(x0) > 0. Since g is continuous, one
can find δ > 0, such that |g(x)− g(x0)| < 1

2g(x0) for arbitrary x ∈ Bδ
x0

:= {x | ∥x− x0∥ < δ0}.

Consider the indicator function χBδ
x0
(x) =

{
1 x ∈ Bδ

x0
;

0 otherwise,
one has g(·) ≥ g(x0)

2 χBδ
x0
(·) on

Rd. This yields
∫
Rd g(x) dσ(x) ≥

∫
Rd

g(x0)
2 χBδ

x0
(x) dσ(x) =

g(x0)σ(B
δ
x0

)

2 > 0, where the last
inequality is due to σ is strictly positive and the ball Bδ

x0
is an open set. This is a contradiction.

A.3 PROOF OF THEOREM 5.4

Without loss of generality, we we prove the theorem with tf = 1. The proof can be generalized to
arbitrary time horizon with no difficulty. We first state and prove two auxiliary lemmas.
Lemma A.8. Let f(t) be a bounded and Lipschitz function on [0, 1]. Then

∥f∥L∞ ≤ C ∥f∥2/3L2 .

This C only depends on the bound and Lipschitz constant of f .

Proof. Let K = ∥f∥L∞ , and L be the Lipschitz constant of f . We split into two cases.

Case 1. If K ≥ L, then by the Lipschitz condition of f , we have∫ 1

0

f(t)2 dt ≥
∫ 1

0

(K − Lt)2 dt = K2 − LK +
1

3
L2 ≥ 1

3
K2.

Case 2. If K < L, since f is L-Lipschitz, f(t) is non-zero for an interval of length at least K/L,
and ∫ 1

0

f(t)2 dt ≥
∫ K/L

0

(K − Lt)2 dt =
K3

3L
.

In both cases, we can conclude that

∥f∥L∞ ≤ C ∥f∥2/3L2 .

Next, we present a lemma that shows the stability of the MMD with respect to the mean and covari-
ance of Gaussian distributions. The MMD with kernel k(x,y) = −∥x− y∥ is known as the energy
distance, which is extensively studied in Székely & Rizzo (2013); Rizzo & Székely (2016).
Lemma A.9 (Stability of MMD on Gaussian). Let µ ∼ N(bµ,Σµ) and ν ∼ N(bν ,Σν) be two
Gaussian distributions in Rd, with ∥bµ∥ , ∥bν∥ , ∥Σµ∥2 , ∥Σν∥2 ≤ K. Then, there exists a constant
C that only depends on d and K s.t.

∥bµ − bν∥2 + ∥Σµ − Σν∥22 ≤ CMMD(µ, ν)2. (19)
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Remark A.10. The boundedness assumption is necessary. As a counterexample, let µ ∼ N(0, σ2)
and ν ∼ N(1, σ2). Let σ2 → ∞, |bµ − bν | = |0 − 1| = 1 remains unchanged, while MMD(µ, ν)
converges to 0 (see (20)).

Proof. Throughout the proof, we will use the notations c and C to denote positive constants that
only depends on d and K. These constants may change from line to line. We start by recalling an
important result. Let ϕµ(t), ϕν(t) : Rd → R be the characteristic functions of µ, ν

ϕj(t) = exp

(
ib⊤j t−

1

2
t⊤Σjt

)
(j = µ, ν).

Then (Székely & Rizzo, 2013, Proposition 1) establishes that

MMD(µ, ν)2 = Γ

(
d+ 1

2

)
π−

d+1
2

∫
Rd

|ϕµ(t)− ϕν(t)|2

∥t∥d+1
dt. (20)

Next, we split into two steps and give bounds for the mean and covariance separately.

Step 1. We give bounds for the mean. For any given t ∈ Rd, the four complex numbers
exp

(
ib⊤j t− 1

2tΣkt
)

(j, k = µ, ν) forms a isosceles trapezoid in the complex domain. In an isosce-
les trapezoid, the length of each diagonal is greater than or equal to the arithmetic mean of the
lengths of the two parallel sides. Therefore,

|ϕµ(t)− ϕν(t)| =
∣∣∣∣exp(ib⊤µ t− 1

2
t⊤Σµt

)
− exp

(
ib⊤ν t−

1

2
t⊤Σνt

)∣∣∣∣
≥ 1

2

[
exp

(
−1

2
t⊤Σµt

)
+ exp

(
−1

2
t⊤Σνt

)] ∣∣1− exp
(
i(bµ − bν)

⊤t
)∣∣

≥ exp(−C ∥t∥2)
∣∣1− cos((bµ − bν)

⊤t)− i sin((bµ − bν)
⊤t)
∣∣ .

Substitute this estimation into (20), we obtain

MMD(µ, ν)2 ≥ c

∫
Rd

exp(−C ∥t∥2)
∥t∥d+1

∣∣1− cos((bµ − bν)
⊤t)− i sin((bµ − bν)

⊤t)
∣∣2 dt

= 4c

∫
Rd

exp(−C ∥t∥2)
∥t∥d+1

sin2
(
1

2
(bµ − bν)

⊤t

)
dt.

Since ∥bµ − bν∥ ≤ 2K is bounded, we can find r > 0 that only depends on K such that sin(x) ≥
1
2x for all x ∈ [0, 12 ∥bµ − bν∥ r]. Denote Br the ball in Rd centered at the origin with radius r. we
have

MMD(µ, ν)2 ≥ c

∫
Br

exp(−C ∥t∥2)
∥t∥d+1

sin2
(
1

2
(bµ − bν)

⊤t

)
dt

≥ c

∫
Br

exp(−Cr2)
∥t∥d+1

(
1

4
(bµ − bν)

⊤t

)2

dt

≥ c

∫
Br

1

∥t∥d+1

∣∣(bµ − bν)
⊤t
∣∣2 dt.

If we further restrict the 3D angle of t in the set B̃r = {t ∈ Br : |(bµ − bν)
⊤t| ≥

1
2 ∥bµ − bν∥ ∥t∥}, i.e., the angle between t and bµ − bν is close to 0 or π. Then,

MMD(µ, ν)2 ≥ c

∫
B̃r

1

∥t∥d+1

∣∣(bµ − bν)
⊤t
∣∣2 dt

≥ 1

4
c

∫
B̃r

1

∥t∥d−1
∥bµ − bν∥2 dt = c ∥bµ − bν∥2 .

Step 2. We give bounds for the covariance. This time, we use the fact that the length of each
diagonal in a isosceles trapezoid is greater than or equal to the length of either of the non-parallel
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(equal) sides. This gives

|ϕµ(t)− ϕν(t)| =
∣∣∣∣exp(ib⊤µ t− 1

2
t⊤Σµt

)
− exp

(
ib⊤ν t−

1

2
t⊤Σνt

)∣∣∣∣
≥
∣∣∣∣exp(−1

2
t⊤Σµt

)
− exp

(
−1

2
t⊤Σνt

)∣∣∣∣
= exp

(
−1

2
t⊤Σµt

) ∣∣∣∣1− exp

(
−1

2
t⊤(Σν − Σµ)t

)∣∣∣∣
≥ exp(−C ∥t∥2)

∣∣∣∣−1

2
t⊤(Σν − Σµ)t

∣∣∣∣ ,
where we used |1 − ex| ≥ |x| in the last inequality. Next, we diagonalize the symmetric matrix
Σν − Σµ as Q(Σν − Σµ)Q

⊤ = Λ = diag(λj)
d
j=1. Without loss of generality, we assume that

|λ1| = ∥Σν − Σµ∥2. We denote Sd−1 ⊂ Rd the unit sphere in Rd. Substituting the estimation
above into (20), we get

MMD(µ, ν)2

≥ c

∫
Rd

exp(−C ∥t∥2)
∥t∥d+1

(
t⊤(Σν − Σµ)t

)2
dt

≥ c

∫
B1

1

∥t∥d+1

(
t⊤(Σν − Σµ)t

)2
dt

= c

∫ 1

0

∫
Sd−1

R−d−1R4
(
s⊤(Σν − Σµ)s

)2
Rd−1 ds dR

= c

∫
Sd−1

(
s⊤(Σν − Σµ)s

)2
ds = c

∫
Sd−1

(
s⊤Λs

)2
ds.

We further pick a subset S̃d−1 = {s ∈ Sd−1 : |s1|2 ≥ 2
3} (i.e., points on the unit sphere with the

first coordinate ≥ 2
3 ). For all s ∈ S̃d−1

∣∣s⊤Λs∣∣ =
∣∣∣∣∣∣

d∑
j=1

λjs
2
j

∣∣∣∣∣∣ ≥ |λ1|s21 −
d∑

j=2

|λj | s2j ≥ 1

3
|λ1|.

Therefore,

MMD(µ, ν)2 ≥ c

∫
S̃d−1

(
s⊤Λs

)2
ds ≥ 1

9
c

∫
S̃d−1

λ21 ds = c ∥Σµ − Σν∥22 .

Finally, combining Step 1 and Step 2, we reach the conclusion that

∥bµ − bν∥2 + ∥Σµ − Σν∥22 ≤ CMMD(µ, ν)2.

Before proving Theorem 5.4, we clarify the result we need to show. The HJ equation is

∂tu(x, t) +
1

2
|∇xu(x, t)|2 = 0.

The optimal push forward map is T ∗(x) = x+∇xu(x, 0), which implies ∇xu(x, 0) = T ∗(x)−x.
The optimal trajectory for OT has constant velocity, given by

xt = x+ t∇xu(x, 0) = x− t(x− T ∗(x)).

Therefore, the optimal push forward map is
f(x, t) = (1− t)x+ tT ∗(x) = ((1− t)I +At)x+ (bν −Abµ)t.

Taking derivative in t, we get the optimal velocity in Lagrange coordinate

∂tf(x, t) = −x+ T ∗(x) =
1

t
(f(x, t)− x)

=
1

t

[
f(x, t)− ((1− t)I +At)

−1
(f(x, t)− (bν −Abµ)t)

]
= (I + t(A− I))

−1
((A− I)f(x, t) + bν −Abµ) .
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Therefore, the optimal velocity field in Eulerian coordinate is

∇xu(x, t) = v(x, t) = (I + t(A− I))
−1

((A− I)x+ bν −Abµ) . (21)

The most important challenge for convergence analysis is the term uθ(x − t∇xuθ(x, t), 0) in the
HJ loss, which contains the composition of the u. In order to address this issue, we consider the
quadratic parametrization

uθ(x, t) = −
(
1

2
x⊤θ2(t)x+ θ1(t)

⊤x+ θ0(t)

)
(22)

where θ = [θ2(·), θ1(·), θ0(·)] : [0, tf ] → Rd×d
sym × Rd × R is bounded and Lipschitz. According

to (21), the optimal θ∗2(t) and θ∗1(t) are uniquely determined, and the optimal θ∗0(t) is uniquely
determine up to an additive constant.

θ∗2(t) = ((1− t)I +At)
−1

(I −A)

θ∗1(t) = ((1− t)I +At)
−1

(Abµ − bν)

θ∗0(t) = θ∗0(0) +
t

2
(bν −Abµ)

⊤ ((1− t)I +At)
−1

(bν −Abµ)

. (23)

Now we are ready to prove Theorem 5.4. We denote D = [−1, 1]d. Throughout the proof, we will
set ϱ = 2−d1D and the time domain is [0, tf ] = [0, 1], which coincide with our numerical imple-
mentation. The proof can be extended to general domain without essential difficulty. Throughout
the proof, when we say a function is bounded and Lipschitz continuous, we mean the bound and
Lipschitz constant only depends on d, λA, and K. We will use C to denote an absolute constant that
only depends on d, λA, and K. The value of C may change from line to line.

Proof for theorem 5.4. We only need to show (16) when LHJ and LMMD are sufficiently small. The
proof consists of four steps.

Step 1. We analyze the MMD loss in this step. Recall the MMD loss is

LMMD =

∫
Ω

k(x,y) d((Id +∇xuθ(·, 0))#µ− ν)(x) d((Id +∇xuθ(·, 0))#µ− ν)(y).

Under with the parametrization (22), the MMD loss is between

(Id +∇xu(·, 0))#µ = N ((I − θ2(0))bµ − θ1(0), (I − θ2(0))Σµ(I − θ2(0))) =: N(b′µ,Σ
′
µ)

and ν = N(bν ,Σν). By Lemma A.9, we have∥∥b′µ − bν

∥∥2 + ∥∥Σ′µ − Σν

∥∥2
2
≤ CLMMD (24)

Multiplying Σ
1
2
µ on both sides for the covariance, we get∥∥∥∥(Σ 1

2
µ (I − θ2(0))Σ

1
2
µ

)2
− Σ

1
2
µΣνΣ

1
2
µ

∥∥∥∥
2

≤ CL
1
2

MMD.

By the 1
2 -Hölder continuity of matrix square root in operator norm (Bhatia, 2013, Theorem X.1.1)

(
∥∥∥A 1

2 −B
1
2

∥∥∥
2
≤ ∥A−B∥

1
2
2 for any symmetric positive definite matrix A,B), we have∥∥∥∥∥

[(
Σ

1
2
µ (I − θ2(0))Σ

1
2
µ

)2] 1
2

−
(
Σ

1
2
µΣνΣ

1
2
µ

) 1
2

∥∥∥∥∥
2

≤ CL
1
4

MMD. (25)

Next, we diagonalize θ2(t). Since θ2(t) ∈ Rd×d is symmetric, we can find unitary matrix Q(t) and
diagonal matrix Λ(t) = diag({λi(t)}di=1) s.t.

θ2(t) = Q(t)Λ(t)Q(t)⊤,

and λ1(0) ≥ . . . ≥ λd(0). The column vectors of Q(t) are the orthonormal eigenvectors of θ2(t).
Since θ2(t) is bounded and Lipschitz continuous in t, its eigenvalues and eigenvectors are also

20



1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

Under review as a conference paper at ICLR 2026

bounded and Lipschitz continuous in t by Weyl’s inequality. Q(t) is uniquely defined up to a sign
shift for each column. Then I − θ2(0) = Q(0)(I − Λ(0))Q(0)⊤.

Next, we define a notation of “absolute value” for symmetric matrices. Given a symmetric matrix,
we diagonalize it through unitary transform, take absolute value of the diagonal element, and then
apply the inverse unitary transform back. As a result, |I − Λ(t)| = diag({|1 − λi(t)|}di=1) and
|I − θ2(0)| = Q(0) |I − Λ(t)|Q(0)⊤, then we have[(

Σ
1
2
µ (I − θ2(0))Σ

1
2
µ

)2] 1
2

= Σ
1
2
µ |I − θ2(0)|Σ

1
2
µ .

Here, we remark that whileQ(t) is not uniquely defined, the “absolute value” |I − θ2(0)| is uniquely
defined given θ2(0). Plugging this expression into (25), we get∥∥∥∥Σ 1

2
µ |I − θ2(0)|Σ

1
2
µ −

(
Σ

1
2
µΣνΣ

1
2
µ

) 1
2

∥∥∥∥
2

≤ CL
1
4

MMD.

Multiplying Σ
− 1

2
µ on both sides, we get

∥|I − θ2(0)| −A∥2 ≤ CL
1
4

MMD, (26)

which implies ∥∥|I − Λ(0)| −Q(0)AQ(0)⊤
∥∥
2
≤ CL

1
4

MMD. (27)

Therefore, the off diagonal elements of (Q(0)AQ(0)⊤)ij (i ̸= j) and diagonal elements
(Q(0)AQ(0)⊤)ii satisfy∣∣(Q(0)AQ(0)⊤)ij

∣∣ , ∣∣(Q(0)AQ(0)⊤)ii − |1− λi(0)|
∣∣ ≤ C1L

1
4

MMD.

Here, we add a subscript 1 in the constant C1 in order to keep track of this constant. Later, whenever
we use C1, it means this fixed constant that does not change from line to line.

We remark that there are 2d choices of θ2(0) such that (I − θ2(0))Σµ(I − θ2(0)) = Σν through
letting 1 − λi(0) = ±λAi (i = 1, . . . , d), where λAi is the i-th eigenvalue of A. All these choices
gives a push forward map that transport µ to ν (if we set θ1(0) = (I − θ2(0))bµ − bν). However,
only θ2(0) = I − A gives the OT map. The MMD loss LMMD cannot distinguish these choices, so
the HJ loss LHJ is necessary.

Step 2. We analyze the implicit HJ loss in this step. Under the parametrization (22), the HJ loss is

LHJ =

∫ 1

0

∫
Ω

[1
2
x⊤θ2(t)x+ x⊤θ1(t) + θ0(t) +

t

2
(θ2(t)x+ θ1(t))

⊤
(θ2(t)x+ θ1(t))

− 1

2
(x+ t(θ2(t)x+ θ1(t)))

⊤
θ2(0) (x+ t(θ2(t)x+ θ1(t)))

− θ1(0)
⊤ (x+ t(θ2(t)x+ θ1(t)))− θ0(0)

]2
ϱ(x) dx dt.

Reorganizing the terms, we have

LHJ =

∫ 1

0

∫
Ω

[
1

2
x⊤
(
θ2(t) + tθ2(t)

2 − (I + tθ2(t))θ2(0)(I + tθ2(t))
)
x

+ x⊤ (I + tθ2(t)) (θ1(t)− tθ2(0)θ1(t)− θ1(0))

+

(
θ0(t) +

t

2
θ1(t)

⊤θ1(t)−
t2

2
θ1(t)

⊤θ2(0)θ1(t)− tθ1(t)
⊤θ1(0)− θ0(0)

)]2
ϱ(x) dx dt.

=:

∫ 1

0

∫
Ω

[
1

2
x⊤Γ2(t)x+ x⊤Γ1(t) + Γ0(t)

]2
ϱ(x) dx dt.

We observe that Γ2(t) is symmetric. The integration in x for the loss can be computed directly. The
zero-th to third order integration in x can be easily obtained by symmetry (recall ϱ(x) = 2−d1D(x)
and D = [−1, 1]d) ∫

D

(1, xi, xixj , xixjxk) dx =

(
2d, 0,

2dδij
3

, 0

)
.
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In order to compute the fourth order integration in x, we temporally denote Γ2(t) by Γ for notational
simplicity and compute the integration

∫
D
(x⊤Γx)2 dx. Expanding everything, the integration is∫

D

(x⊤Γx)2 dx =

d∑
i,j,k,l=1

ΓijΓkl

∫
D

xixjxkxl dx.

All the non-zero terms in the form ΓijΓkl

∫
D
xixjxkxl dx can be categorized into 4 cases.

1. i = j = k = l. The integration is Γ2
ii

∫
D
x4i dx = 2d

5 Γ2
ii.

2. i = j ̸= k = l. The integration is ΓiiΓkk

∫
D
x2ix

2
k dx = 2d

9 ΓiiΓkk.

3. i = k ̸= j = l. The integration is Γ2
ij

∫
D
x2ix

2
j dx = 2d

9 Γ2
ij .

4. i = l ̸= j = k. The integration is ΓijΓji

∫
D
x2ix

2
j dx = 2d

9 ΓijΓji =
2d

9 Γ2
ij .

Summing them together, we have∫
D

(x⊤Γx)2 dx = 2d

 d∑
i=1

1

5
Γ2
ii +

∑
i ̸=j

(
1

9
ΓiiΓjj +

2

9
Γ2
ij

) .
Therefore, after integration in x, the implicit HJ loss becomes

LHJ =

∫ 1

0

[
1

4

d∑
i=1

1

5
Γ2(t)

2
ii +

1

4

∑
i ̸=j

(
1

9
Γ2(t)iiΓ2(t)jj +

2

9
Γ2(t)

2
ij

)

+
1

3
Tr(Γ2(t))Γ0(t) +

1

3
∥Γ1(t)∥2 + Γ0(t)

2

]
dt

=

∫ 1

0

 1

45

d∑
i=1

Γ2(t)
2
ii +

1

18

∑
i ̸=j

Γ2(t)
2
ji +

1

3
∥Γ1(t)∥2 +

(
1

6
Tr(Γ2(t)) + Γ0(t)

)2
 dt

≥
∫ 1

0

[
1

45
∥Γ2(t)∥2F +

1

3
∥Γ1(t)∥2 +

(
1

6
Tr(Γ2(t)) + Γ0(t)

)2
]
dt

Therefore, ∫ 1

0

(
∥Γ2(t)∥2F + ∥Γ1(t)∥2 + Γ0(t)

2
)
dt ≤ CLHJ.

Therefore, by Lemma A.8, we have

max
t

∥Γ2(t)∥F +max
t

∥Γ1(t)∥ +max
t

|Γ0(t)| ≤ C2L
1
3

HJ. (28)

Here, C2 also does not change from line to line.

Step 3. In this step, we show that θ2(0) must be close to θ∗2(0) = I − A, provided that ∥Γ2(t)∥F is

sufficiently small. Since A has minimum eigenvalue λA > 0, (Q(0)AQ(0)⊤)ii ≥ λA ≥ C1L
1
4

MMD,
where the last inequality is because LMMD is sufficiently small. We recall that in Step 1, we showed
for any i = 1, . . . , d ∣∣(Q(0)AQ(0)⊤)ii − |1− λi(0)|

∣∣ ≤ C1L
1
4

MMD.

We want to show that, ∣∣(Q(0)AQ(0)⊤)ii − (1− λi(0))
∣∣ ≤ C1L

1
4

MMD (29)

for all i. I.e., we want to show 1− λi(0) ≥ 0 and

λi(0) ∈
[
1− (Q(0)AQ(0)⊤)ii − C1L

1
4

MMD, 1− (Q(0)AQ(0)⊤)ii + C1L
1
4

MMD

]
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for all i. In order to show this, we assume to the contrary that λ1(0) > 1 (recall λ1(0) ≥ . . . ≥
λd(0)) and

λ1(0) ∈
[
1 + (Q(0)AQ(0)⊤)11 − C1L

1
4

MMD, 1 + (Q(0)AQ(0)⊤)11 + C1L
1
4

MMD

]
(30)

We will derive a contradiction. We denote ũ2(t) := Q(t)⊤θ2(0)Q(t). Since unitary transform does
not change Frobenius norm,

Q(t)⊤Γ2(t)Q(t) = Λ(t) + tΛ(t)2 − (I + tΛ(t))(Q(t)⊤θ2(0)Q(t))(I + tΛ(t))

= Λ(t) + tΛ(t)2 − (I + tΛ(t))ũ2(t)(I + tΛ(t))
(31)

shares the same estimation as (28). Let {τi(t)}di=1 be the diagonal element of ũ2(t) =
Q(t)⊤θ2(0)Q(t). SinceQ(t) is bounded and Lipschitz continuous, ũ2(t) and τi(t) are also bounded
and Lipschitz continuous. We will also use K to denote their bound and Lipschitz constant. Since
λ1(0) > 1 is an eigenvalue of θ2(0) and hence also an eigenvalue of ũ2(t), we have

max
i
τi(t) > 1 ∀t ∈ [0, 1].

Next, we focus on the diagonal elements of Q(t)⊤Γ2(t)Q(t). Since∥∥Q(t)⊤Γ2(t)Q(t)
∥∥
F
≤ C2L

1
3

HJ, (32)

its i-th diagonal element (recall (31))

λi(t) + tλi(t)
2 − (1 + tλi(t))

2τi(t)

= (1 + tλi(t)) [λi(t)− (1 + tλi(t))τi(t)]

= (1 + tλi(t)) [(1− tτi(t))λi(t)− τi(t)]

also satisfies
|(1 + tλi(t)) [(1− tτi(t))λi(t)− τi(t)]| ≤ C2L

1
3

HJ (33)

for all t ∈ [0, 1], where recall that λi(t) is the i-th diagonal element for Λ(t) = Q(t)⊤θ2(t)Q(t),
and τi(t) is the i-th diagonal element for ũ2(t) = Q(t)⊤θ2(0)Q(t).

The rest of the proof for deriving a contradiction to (30) is technical, so we explain the main idea
first. In order that |(1 + tλi(t)) [(1− tτi(t))λi(t)− τi(t)]| is small for all t ∈ [0, 1], either of the
following must hold

1. 1 + tλi(t) ≈ 0, which implies λi(t) ≈ − 1
t

2. (1− tτi(t))λi(t)− τi(t) ≈ 0, which implies λi(t) ≈
τi(t)

1− tτi(t)
=

1

t

1

1− tτi(t)
− 1

t
. (At

t = 0 the function is τi(t).)

When t→ 0+, − 1
t blows up and we cannot have 1 + tλi(t) ≈ 0.

Since max
i
τi(t) > 1, we know from intermediate value theorem that there exists at least one index

i and ti ∈ (0, 1) s.t. 1− tiτi(ti) = 0. This implies that the function
τi(t)

1− tτi(t)
blows up as t → ti.

As a result, in order that |(1 + tλi(t)) [(1− tτi(t))λi(t)− τi(t)]| is small for all t ∈ [0, 1], there has
to be some “shift” between two functions: λi(t) is sometimes close to − 1

t and sometimes close to
τi(t)

1− tτi(t)
=

1

t

1

1− tτi(t)
− 1

t
. However, note that the difference between the two functions − 1

t

and
1

t

1

1− tτi(t)
− 1

t
has a positive lower bound∣∣∣∣1t 1

1− tτi(t)

∣∣∣∣ ≥ ∣∣∣∣ 1

1− tτi(t)

∣∣∣∣ ≥ ∣∣∣∣ 1

tτi(t)

∣∣∣∣ ≥ ∣∣∣∣ 1

τi(t)

∣∣∣∣ ≥ 1

∥A+ I∥2 + C1L
1
4

MMD

. (34)

Therefore, for some t in the middle, both
∣∣λi(t) + 1

t

∣∣ and
∣∣∣λi(t)− τi(t)

1−tτi(t)

∣∣∣ are larger than
1

2(∥A+I∥+C1L
1
4
MMD)

This gives a contradiction to (33).
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Next, we give a rigorous proof for this contradiction. Let

t∗ = inf {t ∈ [0, 1] : 1− tτi(t) = 0 for some i} .

Note that the set above is non-empty because max
i
τi(t) > 1 for all t ∈ [0, 1]. If we do not have the

assumption λ1(0) > 1, then τi(t) < 1 may not be well-defined. By definition of t∗, we can find an
index j such that 1 − t∗τj(t

∗) = 0. Therefore, τj(t∗) ≥ 1. Let t0 = 1
3K , then for t ∈ [0, t0], we

have
|1 + tλj(t)| ≥ 1− t0K =

2

3
. (35)

Let t1 = t∗ −∆t, where ∆t = 1
2K(1+2K) then for all t ∈ [t1, t

∗], we have

|(1− tτj(t))λj(t)− τj(t)| ≥ |τj(t)| − |1− tτj(t)| |λj(t)|
≥ |τj(t∗)| −K|t− t∗| − |1− tτj(t)|K
≥ 1−K∆t−K (|1 + t∗τj(t

∗)|+ |t∗τj(t∗)− tτj(t)|)

≥ 1−K∆t−K (0 + 2K|t− t∗|) ≥ 1−∆tK(2K + 1) =
1

2
.

(36)

If t0 ≥ t1, we pick t ∈ [t1, t0] and then multiply (35) and (36), we reach a contradiction with (33).
If t0 < t1, then we consider the behavior of

(1 + tλj(t)) [(1− tτj(t))λj(t)− τj(t)] .

When t ∈ [0, t0], λj(t) is close to
τj(t)

1− tτj(t)
because (35) and (33) implies

|(1− tτj(t))λj(t)− τj(t)| ≤
3

2
C2L

1
3

HJ,

which gives ∣∣∣∣λj(t)− τj(t)

1− tτj(t)

∣∣∣∣ ≤ 3C2L
1
3

HJ,

2(1− t|τj(t)|)
≤ 9C2L

1
3

HJ,

4
. (37)

When t ∈ [t1, t
∗], λj(t) is close to − 1

t because (36) and (33) implies

|1 + tλj(t)| ≤ 2C2L
1
3

HJ.

This implies ∣∣∣∣λj(t) + 1

t

∣∣∣∣ ≤ 2C2L
1
3

HJ

t
≤ 2C2L

1
3

HJ

t1
≤ 6KC2L

1
3

HJ, (38)

where the last inequality is because t1 > t0 = 1
3K . Therefore, as explained before, there has to be a

shift between the two approximations (37) and (38) in the middle when t ∈ [t0, t1] because λj(t) is
Lipschitz continuous. However, the difference between the two functions has a positive lower bound
(34) ∣∣∣∣−1

t
− τj(t)

1− tτj(t)

∣∣∣∣ = ∣∣∣∣ 1

t(1− tτj(t))

∣∣∣∣ ≥ 1

∥A+ I∥2 + C1L
1
4

MMD

.

Therefore, there exists t2 ∈ [t0, t1] s.t.∣∣∣∣λj(t2)− τj(t2)

1− t2τj(t2)

∣∣∣∣ ≥ 1

2
(
∥A+ I∥2 + C1L

1
4

MMD

) (39)

and ∣∣∣∣λj(t2) + 1

t2

∣∣∣∣ ≥ 1

2
(
∥A+ I∥2 + C1L

1
4

MMD

) . (40)

Finally, we split into two cases.

Case 1. If |1− t2τj(t2)| ≤ 1
3K , then

τj(t2) ≥
1

t2

(
1− 1

3K

)
≥ 1− 1

3K
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and

|(1− t2τj(t2))λj(t2)− τj(t2)|
≥ τj(t2)− |(1− t2τj(t2))| |λj(t2)|

≥ 1− 1

3K
− 1

3K
K ≥ 1

3
.

This implies

|(1 + t2λj(t2)) [(1− t2τj(t2))λj(t2)− τj(t2)]|

≥ 1

3
|1 + t2λj(t2)| =

1

3
|t2|
∣∣∣∣ 1t2 + λj(t2)

∣∣∣∣
≥ 1

3

1

3K

1

2
(
∥A+ I∥2 + C1L

1
4

MMD

) = O(1),

which contradicts to (33).

Case 2. If |1− t2τj(t2)| > 1
3K , then

|(1 + t2λj(t2)) [(1− t2τj(t2))λj(t2)− τj(t2)]|

= |t2|
∣∣∣∣ 1t2 + λj(t2)

∣∣∣∣ |1− t2τj(t2)|
∣∣∣∣λj(t2)− τj(t2)

1− t2τj(t2)

∣∣∣∣
≥ 1

3K

1

2
(
∥A+ I∥2 + C1L

1
4

MMD

) 1

3K

1

2
(
∥A+ I∥2 + C1L

1
4

MMD

) = O(1),

which also contradicts to (33).

Combining Case 1 and Case 2, we conclude that the assumption λ1(0) > 1 cannot hold. Therefore,
(29) hold. This further implies |I − Λ(0)| = I − Λ(0). Plugging back into (27) and (26), we get∥∥I − Λ(0)−Q(0)AQ(0)⊤

∥∥
2
≤ CL

1
4

MMD

and
∥θ2(0)− (I −A)∥2 ≤ CL

1
4

MMD.

Therefore, we obtain
∥θ2(0)− (I −A)∥F ≤ CL

1
4

MMD. (41)

Step 4. We show that θ2(t), θ1(t), and θ0(t) satisfies the error estimations (16).

Step 4.1. We estimate θ2(t) first.

We first show that 1− tτi(t) has a positive lower bound. Recall that τi(t) is the diagonal element of
ũ2(t) = Q(t)⊤θ2(0)Q(t). We first observe that any diagonal element for

Q(t)⊤(I − t(I −A))Q(t) = Q(t)⊤((1− t)I + tA)Q(t)

must be larger than or equal to min{1, λA}. By (41), 1− tτi(t), as a diagonal element of

I − tQ(t)⊤θ2(0)Q(t) = Q(t)⊤ [(1− t)I + tA+ t (I −A− θ2(0))]Q(t)

must satisfies

1− tτi(t) ≥ 1− t+ tλA − tCL
1
4

MMD ≥ min{1, λA} − CL
1
4

MMD ≥ 1

2
min{1, λA}.

Therefore, 1− tτi(t) has a positive lower bound.

Next, we claim that, for any (fixed) i, 1 + tλi(t) has a positive lower bound. Similar to step 3, (33)
can be rewritten as

|1 + tλi(t)| |1− tτi(t)|
∣∣∣∣λi(t)− τi(t)

1− tτi(t)

∣∣∣∣ ≤ CL
1
3

HJ.

Therefore, the lower bound for 1− tτi(t) implies

|1 + tλi(t)|
∣∣∣∣λi(t)− τi(t)

1− tτi(t)

∣∣∣∣ ≤ CL
1
3

HJ (42)
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for all t ∈ [0, 1] and i. If we further restrict ourself to t ∈ [ 1
3K , 1], we have∣∣∣∣λi(t)− (−1

t
)

∣∣∣∣ ∣∣∣∣λi(t)− τi(t)

1− tτi(t)

∣∣∣∣ ≤ CL
1
3

HJ for t ∈ [
1

3K
, 1], (43)

implying that λi(t) must be close to either − 1
t or

τi(t)

1− tτi(t)
.

Next, we show the lower bound for 1 + tλi(t). For t ∈ [0, 1
3K ],

1 + tτi(t) ≥ 1− tK ≥ 2

3
.

Therefore, we must have ∀ t ∈ [0, 1
3K ]∣∣∣∣λi(t)− τi(t)

1− tτi(t)

∣∣∣∣ ≤ CL
1
3

HJ. (44)

For t ∈ [ 1
3K , 1], similar to the argument in step 3, by (43), λi(t) must be close to either − 1

t or
τi(t)

1−tτi(t) , but cannot be close to both because the difference between the two functions has a positive
lower bound of O(1):∣∣∣∣−1

t
− τi(t)

1− tτi(t)

∣∣∣∣ = ∣∣∣∣1t 1

1− tτi(t)

∣∣∣∣ ≥ ∣∣∣∣ 1

1− tτi(t)

∣∣∣∣ ≥ 1

max{1, |τi(t)|}

≥ 1

max{1, ∥I −A∥2 + CL
1
4

MMD}
≥ 1

2max{1, ∥I −A∥2}
=: cdiff,

(45)

where the second last inequality is because of (41). (43) and (45) imply that λi(t) cannot “shift”

between −1

t
and

1

t

1

1− tτi(t)
− 1

t
during t ∈ [ 1

3K , 1]. Since we already have (44) at t = 1
3K , (43)

implies that λi(t) is close to τi(t)
1−tτi(t) for all t ∈ [ 1

3K , 1] and hence∣∣∣∣λi(t)− (−1

t
)

∣∣∣∣ ≥ cdiff − CL
1
3

HJ ≥
1

2
cdiff = O(1).

Therefore, for all t ∈ [ 1
3K , 1]

|1 + tλi(t)| ≥
cdiff

6K
= O(1).

Combining the lower bound for t ∈ [0, 1
3K ], we finish proving the claim that 1+tλi(t) has a positive

lower bound of O(1) that is independent of i. This positive lower bound also implies that I + tθ2(t)
is invertible and has a positive lower bound (recall λi(t) are eigenvalues of θ2(t)). Therefore, by
definition of Γ2(t) and (28),

∥(I − tθ2(0))θ2(t)− θ2(0)∥F =
∥∥(I + tθ2(t))

−1Γ2(t)
∥∥
F
≤ CL

1
3

HJ. (46)

Next, we give a positive lower bound for I − tθ2(0). Note that
I − tθ2(0) = (1− t)I + tA+ t(I −A− θ2(0)).

By (41), we know that the smallest eigenvalue of I − tθ2(0) is larger than or equal to

(1− t) + tλA − tCL
1
4

MMD ≥ 1

2
min {1, λA} = O(1),

which gives a lower bound for I − tθ2(0). Applying this bound to (46), we obtain∥∥θ2(t)− (I − tθ2(0))
−1θ2(0)

∥∥
F
≤ CL

1
3

HJ. (47)
We further notice that by (41)∥∥∥(I − t(I −A))

−1
(I −A)− (I − tθ2(0))

−1
θ2(0)

∥∥∥
F

≤
∥∥∥(I − t(I −A))

−1
(I −A− θ2(0))

∥∥∥
F

+
∥∥∥(I − t(I −A))

−1
t (I −A− θ2(0)) (I − tθ2(0))

−1
θ2(0)

∥∥∥
F

≤ min {1, λA}−1 · CL
1
4

MMD +min {1, λA}−1 · CL
1
4

MMD · 2min {1, λA}−1 ·K

= CL
1
4

MMD.
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Therefore, for any t ∈ [0, 1],

∥θ2(t)− θ∗2(t)∥F =
∥∥∥θ2(t)− (I − t(I −A))

−1
(I −A)

∥∥∥
F

≤
∥∥∥θ2(t)− (I − tθ2(0))

−1
θ2(0)

∥∥∥
F
+
∥∥∥(I − tθ2(0))

−1
θ2(0)− (I − t(I −A))

−1
(I −A)

∥∥∥
F

≤ C
(
L

1
3

HJ + L
1
4

MMD

)
.

(48)

Step 4.2. We verify that θ1(t) has small error. We first give an error estimation for θ1(0). Recall the
true value is

θ∗1(0) = Abµ − bν = (I − θ∗2(0))bµ − bν .

Therefore
∥θ1(0)− θ∗1(0)∥

≤ ∥θ1(0)− ((I − θ2(0))bµ − bν)∥ + ∥(I −A− θ2(0))bµ∥

≤ CL
1
2

MMD + CL
1
4

MMD ≤ CL
1
4

MMD

(49)

where we used (24) and (41) in the second inequality. Next, we give error estimate of θ1(t) for
t ∈ [0, 1]. Recall that

Γ1(t) = (I + tθ2(t)) (θ1(t)− tθ2(0)θ1(t)− θ1(0))

satisfies the estimation (28). Since I + tθ2(t) has a positive lower bound (shown in step 4.1), we
have

∥θ1(t)− tθ2(0)θ1(t)− θ1(0)∥ =
∥∥(I + tθ2(t))

−1Γ1(t)
∥∥ ≤ CL

1
3

HJ. (50)

Therefore, for any t ∈ [0, 1],

∥θ1(t)− θ∗1(t)∥ =
∥∥∥θ1(t)− ((1− t)I +At)

−1
(Abµ − bν)

∥∥∥
=
∥∥∥θ1(t)− (I − tθ∗2(0))

−1
θ∗1(0)

∥∥∥ ≤ C ∥(I − tθ∗2(0)) θ1(t)− θ∗1(0)∥

≤ C (∥(I − tθ2(0)) θ1(t)− θ1(0)∥ + ∥t(θ2(0)− θ∗2(0))θ1(t)∥ + ∥θ1(0)− θ∗1(0)∥)

≤ C
(
L

1
3

HJ + L
1
4

MMD + L
1
4

MMD

)
≤ C

(
L

1
3

HJ + L
1
4

MMD

)
.

(51)

In the third inequality, we used (50), (41), and (49).

Step 4.3. Finally, we verify that θ0(t) has small error. Recall that θ∗0(t) is uniquely defined up to an
additive constant and

θ∗0(t)− θ∗0(0) =
t

2
(bν −Abµ)

⊤ ((1− t)I +At)
−1

(bν −Abµ)

=
t

2
θ∗1(0)

⊤ (I − tθ∗2(0))
−1
θ∗1(0) =

t

2
θ∗1(t)

⊤θ∗1(0).

Also recall that

Γ0(t) = θ0(t)− θ0(0) +
t

2
θ1(t)

⊤θ1(t)−
t2

2
θ1(t)

⊤θ2(0)θ1(t)− tθ1(t)
⊤θ1(0)

= θ0(t)− θ0(0) +
t

2
θ1(t)

⊤ [(I − tθ2(0))θ1(t)− θ1(0)]−
t

2
θ1(t)

⊤θ1(0).

Therefore,

|(θ0(t)− θ0(0))− (θ∗0(t)− θ∗0(0))|

=

∣∣∣∣Γ0(t)−
t

2
θ1(t)

⊤ [(I − tθ2(0))θ1(t)− θ1(0)] +
t

2
θ1(t)

⊤θ1(0)−
t

2
θ∗1(t)

⊤θ∗1(0)

∣∣∣∣
≤ C

[
L

1
3

HJ +
t

2
KL

1
3

HJ +
t

2
(|θ1(t)− θ∗1(t)| |θ1(0)|+ |θ∗1(t)| |θ1(0)− θ∗1(0)|)

]
≤ C

(
L

1
3

HJ + L
1
4

MMD

)
,

(52)

where (28) and (50) are used in the first inequality. (51) and (49) are used in the second inequality.
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Finally, combining (48), (51), and (52), we conclude

max
t∈[0,1]

(∥θ2(t)− θ∗2(t)∥F + ∥θ1(t)− θ∗1(t)∥ + |θ0(t)− θ∗0(t)|) ≤ C
(
L

1
3

HJ + L
1
4

MMD

)
,

which implies (16).

Finally we make two remarks to this stability analysis. First, we omit the discretization error and
generalization error in this analysis in order to obtain a clear environment for studying the loss
function. Second, while we prove the stability result in Gaussian setting, we believe the stability
result hold for general distributions, as long as they belongs to some class with sufficient regularity
condition.

B IMPLEMENTATION DETAILS

Empirical Loss via Monte Carlo Approximation. In practice, the training loss function is ap-
proximated via Monte Carlo estimation. For LHJ (13), we set ϱ as the uniform distribution on a com-
pact computation domainD ⊂ Ω.We uniformly sample a batch of collocation points {(x(i), ti)}Ni=1
from the space-time computational domain D × [0, tf ] to obtain the empirical loss

EHJ =
1

N

N∑
i=1

(
u
(i)
θ + tih

(
∇u(i)θ

)
− ti∇u(i)⊤θ ∇h

(
∇u(i)θ

)
− u

(i)
θ

(
x(i) − ti∇h

(
∇u(i)θ

)
, 0
))2

,

where u(i)θ = u(x(i), ti). Similarly, the MMD term (12) is estimated empirically through samples
{(x(i),y(i))}Ni=1 from the initial and target distributions

EMMD =
1

N2

N∑
i,j=1

(
k(x̃(i), x̃(j)) + k(y(i),y(j))− 2k(x̃(i),y(j))

)
,

where x̃(i) = x(i) + tf∇uθ(x(i), 0). To better learn bidirectional OT, we employ the MMD loss in
both forward and backward directions. The total loss is

min
θ

EHJ (uθ) + λEMMD(
(
T ν
µ [uθ]

)
♯
µ, ν) + λEMMD(µ, (T

µ
ν [uθ])♯ ν). (53)

B.1 IMPLEMENTATION DETAILS FOR 2D EXPERIMENTS

Training. For the experiments for 2D toy distributions in Sections 6.1.1 and 6.2.1, we use a sim-
ple 5-layer MLP with hidden dimension 64 and Softplus activation (with β = 100). The model is
trained using the Adam optimizer with a learning rate of 10−3. We sampled 50,000 points from
each distribution to create the corresponding sample datasets. At each training epoch, we uniformly
sample 1,000 collocation points from the computational domain D = [−1, 1]2 to compute the im-
plicit solution formula loss (13). For the MMD loss, we randomly select 750 samples from the given
dataset at each epoch.

Baselines. For the NOT baseline, we follow the official implementation provided in the public
repository1 without any modification. The HJ-PINN ablation model was trained under the exact
same experimental settings as our proposed NCF across all experiments. For GNOT in the class-
conditional setting, we use the official code released by the authors2 without modification.

B.2 IMPLEMENTATION DETAILS FOR GAUSSIAN EXPERIMENTS

Training. For the high-dimensional Gaussian experiments in Section 6.1.2, we employ the Den-
seICNN architecture, which is a fully connected neural network with additional input-quadratic skip
connections, to ensure a fair comparison with the baseline models provided in (Korotin et al., 2021a).
Since our method does not require input convexity, we omit the commonly imposed constraints that
enforce positivity of certain neural network weights, which are typically used to guarantee convex-
ity. Following Korotin et al. (2021a), we adopt the network architecture DenseICNN[1; max(2d,64),

1https://github.com/iamalexkorotin/NeuralOptimalTransport
2https://github.com/machinestein/GNOT
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max(2d,64), max(d,32)] for a d-dimensional problem. The model is optimized using Adam with a
fixed learning rate of 10−4, regardless of the input dimension. To construct dataset, we randomly
sample 105 points from each of the source and target distributions. We set D as the bounding box
(i.e., axis-aligned minimum and maximum values) of these samples and define it as the compu-
tational domain for solving the HJ equation. At each training epoch, we uniformly sample 1,000
collocation points from D to compute the implicit solution formula loss (13). For the MMD loss,
we randomly select 2,000 points from the given source and target datasets at every epoch.

Baselines. The baselines LS, WGAN-QC, MM-v1 and MM:R are all used via the official imple-
mentations from the public repository of Korotin et al. (2021a)3. The implementations of NOT and
HJ-PINNs follow the same settings described in Appendix B.1.

Evaluation Metric.

• Unexplained Variance Percentage (UVP): Given the predicted transport map T̂ from µ

to ν, UVP is defined by L2 − UVP
(
T̂
)

:= 100
∥∥∥T̂ − T ∗

∥∥∥
L2(µ)

/Var (ν) (%). A UVP

value approaching 0% indicates that T̂ provides a close approximation to the OT map T ∗,
whereas values substantially exceeding 100% imply that the estimated map fails to capture
the underlying structure of the OT. We use 105 random samples drawn from µ to compute
UVP.

• Memory and Time Metrics: Memory consumption is reported as the peak memory usage
during training. Training time is measured as the average runtime per epoch over 100
epochs. Inference time refers to the time required to transport 105 test samples using the
learned map. Additionally, we measure the memory required to store the trained networks
for the bidirectional OT maps. For our method, this corresponds to the storage size of a
single spatio-temporal solution function for the HJ equation. For dual-based baselines, this
reflects the memory needed to store both the primal and dual potential functions. For the
NOT baseline, which learns the forward and backward OT maps separately, we report the
total memory required to store both learned transport maps.

B.3 IMPLEMENTATION DETAILS FOR COLOR TRANSFER

Training. The color transfer experiments in Section 6.1.3 are trained using exactly the same ex-
perimental setup as in the high-dimensional Gaussian case described in Appendix B.2, to ensure a
fair comparison with the baseline models.

Baselines. For the classical methods, we implemented Reinhard color transfer using OpenCV’s
Bradski & Kaehler (2008) color space conversion and channel-wise mean-std matching. Histogram
matching was implemented by computing per-channel histograms and CDFs, then applying the
resulting pixel value mapping directly. Since these methods only support one-way transfer, we con-
ducted forward and backward transfers separately. Both methods serve as standard, straightforward
baselines.

Evaluation Metrics.

• Earth-Mover Distance (EMD): For both the target and transported images, we compute
normalized color histograms separately for each BGR channel. The EMD quantifies the
minimal cost required to transform one histogram into another, offering a perceptually
meaningful measure of distributional difference. We compute the EMD independently for
each channel and report the average across all three. Lower EMD values indicate greater
similarity.

• Histogram Intersection (HI): HI measures the overlap between the normalized color his-
tograms of the target and transported images. For each BGR channel, we compute the
intersection as the sum of the minimum values across corresponding bins. The final score
is obtained by averaging over all three channels. Higher values (closer to 1) indicate greater
similarity.

3https://github.com/iamalexkorotin/Wasserstein2Benchmark
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B.4 IMPLEMENTATION DETAILS FOR SECTION 6.2.2

This series of experiments focuses on the MNIST dataset (LeCun, 1998), which comprises 10 classes
of 28 × 28 grayscale images of handwritten digits ranging from 0 to 9; And the Fashion MNIST
dataset consisting of 10 classes of 28× 28 grayscale images of clothing items, labeled from 0 to 9.

For both MNIST & Fashion MNIST datasets, the value of each pixel of the grayscale images takes
integer value from 1 to 255. We always normalized the pixel values of each data point to [0, 1] by
dividing by 255 before calculation.

VAE Pretraining. In our study, we employ pretrained β-VAE models (Kingma et al., 2013; Hig-
gins et al., 2017), which offer satisfactory generative quality and faithful manifold representations
for image encoding. Advanced auto-encoder architectures (Berthelot et al., 2018; Feng & Strohmer,
2024) that better preserve the interpolation quality of decoded images will be considered in future
work. Although the ambient dimension of the data is 784, prior work has shown that the dataset
exhibits a moderately low intrinsic dimension (Pope et al., 2021). Thus, in our implementation, we
set the latent dimension to dl = 10 for in-domain transport tasks on MNIST data set, and to dl = 35
for cross-domain transport between Fashion MNIST and MNIST data sets.

To train the VAE, we consider the encoder Eϕ(·) : Rd → Rdl , and encoding variance Sϕ(·) : Rd →
Rdl , which share the same parameter ϕ, together with the decoder Dω(·) : Rdl → Rd, with ϕ, ω
being the tunable parameters. For arbitrary xi from the dataset and the latent variable z ∈ Rdl ,
the ELBO-type loss Lβ(ϕ, ω; xi) := Ez∼qϕ(z|xi) log pω(xi|z)−βDKL(qϕ(·|xi)∥pz(·)) is considered,
where we set the conditional probability pω(·|z) = N (Dω(z), σ2

∗Id), the prior pz(·) = N (0, Idl
),

and the posterior qϕ(·|xi) = N (Eϕ(xi),Σϕ(xi)). Here σ2
∗ is predetermined variance, and Σϕ(xi) =

exp(diag(Sϕ(xi))). We optimize the following to obtain Eϕ, Dω:

max
ϕ,ω

1

M

M∑
i=1

Lβ(ϕ, ω; xi)=− 1

2M

(
M∑
i=1

1

σ2
∗
Eϵ∼N (0,I)∥xi−Dω(Eϕ(xi)+

√
Σϕ(xi)⊙ϵ)∥2

+β(−Sϕ(xi)⊤1 + ∥Eϕ(xi)∥2 + exp(Sϕ(xi))
⊤1)

)
.

Here we denote 1 = (1, . . . , 1) ∈ Rdl . In our experiment, we pick σ2
∗ = 1

100 , and set β = 0.1 to
ensure reconstruction fidelity over regularization.

We train the VAE pairs (E1
ϕ(·), D1

ω(·)) and (E2
ϕ(·), D2

ω(·)) on MNIST dataset {x(1)i } and Fashion

MNIST dataset {x(2)i } respectively. We set batch size as 32, and apply the Adam algorithm (Kinga
et al., 2014) with learning rate 10−4 for 150 epochs. In practice, the trained VAE reproduces MNIST
images with an accuracy 98.2%, and reproduces Fashion MNIST images with an accuracy 87.0%.

Encoding & Normalization. Denote y(k)
i = Ek

ϕ(x
(k)
i ), k = 1, 2, we normalize the latent samples

{y(k)
i }1≤i≤N by ỹ(k)i = (σ(k))−1(y(k)i − ȳ(k)) for 1 ≤ i ≤ N, k = 1, 2. Here we denote ȳ(k) =

1
N

∑N
i=1 x(k)

i as the mean of the dataset, and σ(k) = diag(Σ(k)) as the entrywise variance, where
diag(Σ(k)) denotes a diagonal matrix with its diagonal entries taken from the empirical covariance
matrix Σ(k) = 1

N

∑N
i=1(x

(k)
i − x̄(k))(x(k)

i − x̄(k))⊤.

Loss function & Training. We denote µ, ν as the distribution of the normalized latent samples
ỹ(k)i , where k = 1 or 2. To compute the OT map between µ, ν, we set tf = 1, and introduce neural
network uθ : Rdl × [0, tf ] → R. In practice, we incorporate the loss functional for backward OT
into the original loss (14), that is, we consider

min
θ

{
L−→HJ(uθ) + L←−HJ(uθ) + λ(Eclass(

(
T ν
µ [uθ]

)
♯
µ, ν) + Eclass(µ, (T

µ
ν [uθ])♯ ν))

}
,

where we denote L−→HJ(uθ) := LHJ(uθ) as defined in (13), and define the corresponding backward
implicit loss as

L←−HJ (uθ) =

∫∫
Ω×[0,tf ]

(
uθ − th (∇uθ) + t∇u⊤θ ∇h (∇uθ)− uθ (x+ t∇h (∇uθ) , tf )

)2
dϱ(x) dt.
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Since the latent samples are normalized as described above, we set ϱ = N (0, Idl
) and independently

draw xi ∼ ϱ and ti uniformly from [0, tf ] to form the collocation points {(xi, ti)} for approximating
L−→HJ and L←−HJ. In implementation, we set λ = 500 in order to balance the scales of the implicit HJ
loss and the MMD loss. We denote NHJ, NMMD as the batch size for evaluating the implicit loss
and MMD between distributions of certain classes. In our experiments, we choose NHJ = 4000 and
NMMD = 400. We apply the Adam method with learning rate 10−4 for optimizing θ. The algorithm
is conducted for 1000000 iterations.

Neural Net Architectures. The architectures for the β−VAE encoder and decoder are summa-
rized in Table 5 and Table 6. Regarding the OT map, we parameterize uθ : Rdl+1 → R using a
ResNet architecture He et al. (2016) with depth L and width (hidden dimension) d̃ = 128. Specifi-
cally, we define

uθ(x, t) = fL ◦ fL−1 ◦ · · · ◦ f2 ◦ f1(x, t),
where each layer fk is given by

fk(y) =


Aky + bk, k = 1, A1 ∈ Rd̃×(dl+1), b1 ∈ Rd̃,

y + κAkσ(y) + bk, 2 ≤ k ≤ L− 1, Ak ∈ Rd̃×d̃, bk ∈ Rd̃,

Aky + bk, k = L, AL ∈ R1×d̃, bL ∈ R.

We use the hyperbolic tangent activation σ(·) = tanh(·) and set the residual scaling parameter
κ = 1. We set L = 5 for in-domain transports on MNIST, and use L = 6 for cross-domain trasport
task between Fashion MNIST and MNIST.
Table 5: Encoder architecture for β−VAE for image size (H,W,C) = (28, 28, 1), latent dimension
dl = 10.

Layer Parameters Output Shape
Input (x) − (H,W )

Conv2D 128 filters, 5× 5, stride 1, ReLU (H,W, 128)

Conv2D 128 filters, 3× 3, stride 1, ReLU (H,W, 128)

Conv2D 64 filters, 3× 3, stride 2, ReLU (H/2,W/2, 64)

Conv2D 64 filters, 3× 3, stride 1, ReLU (H/2,W/2, 64)

Conv2D 64 filters, 3× 3, stride 1, ReLU (H/2,W/2, 64)

Conv2D 64 filters, 3× 3, stride 1, ReLU (H/2,W/2, 64)

Conv2D 64 filters, 3× 3, stride 1, ReLU (H/2,W/2, 64)

Flatten − (H/2 ·W/2 · 64)
Dense (16 ·H ·W, 64), ReLU (16 ·H ·W )

Dense (mean Eϕ(x)) (64, dl) (dl)

Dense (log variance Sϕ(x)) (64, dl) (dl)

Output (reparam.) y = Eϕ(x) + exp( 12diag(Sϕ(x)))⊙ ϵ (dl)

Table 6: Decoder architecture for β−VAE for image size (H,W,C) = (28, 28, 1), latent dimension
dl = 10.

Layer Parameters Output Shape
Input (y) − (dl)

Dense (dl, 16 ·H ·W ), ReLU (16 ·H ·W )

Reshape − (H/2,W/2, 64)

Conv2DTranspose 64 filters, 3× 3, stride 1, ReLU (H/2,W/2, 64)

Conv2DTranspose 64 filters, 3× 3, stride 1, ReLU (H/2,W/2, 64)

Conv2DTranspose 64 filters, 3× 3, stride 1, ReLU (H/2,W/2, 64)

Conv2DTranspose 64 filters, 3× 3, stride 1, ReLU (H/2,W/2, 64)

Conv2DTranspose 64 filters, 3× 3, stride 2, ReLU (H,W, 64)

Conv2DTranspose 128 filters, 3× 3, stride 1, ReLU (H,W, 128)

Conv2DTranspose 128 filters, 5× 5, stride 1, ReLU (H,W, 128)

Conv2DTranspose 1 filter, 5× 5, stride 1, ReLU (H,W, 1)

Output x = Dω(y) (H,W )

Evaluation Metrics. All methods are evaluated on the testing portions of the MNIST datasets.

• Classification Accuracy: We evaluate the class-wise accuracy of the generated data. Fol-
lowing (Asadulaev et al., 2024), we train ResNet-18 classifiers achieving 98.85% accuracy
on the MNIST test set.
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ν
→

µ
µ
→

ν
(a) Source µ (b) Strong NOT (c) Weak NOT (d) HJ-PINN (e) NCF

(f) Target ν (g) Strong NOT (h) Weak NOT (i) HJ-PINN (j) NCF

Figure 5: Checkerboard (µ) ⇄ Eight Gaussians (ν): The top row shows transport in the direction
ν → µ, and the bottom row shows µ→ ν, with µ and ν at the leftmost column.

• FID score: The FID score is evaluated on the entire test set, which consists of approxi-
mately 1,000 samples per class.

C FURTHER RESULTS

C.1 ADDITIONAL RESULTS FOR 2D TOY EXAMPLES

”Results on 2D distributions with multiple modes are presented in Figure 5. As in Section 6.1.1,
the proposed NCF successfully learns bidirectional OT even in multi-modal settings with a single
network. Compared to baselines, it not only transports the distributions more accurately but also
produces transport maps with less overlap, indicating that it learns more optimal transport paths.

Ablation Study on the Regularization Parameter We further present an ablation study to inves-
tigate the effect of the regularization parameters λf and λb in the proposed loss function (14). These
parameters control the balance between the implicit HJ loss and the MMD loss. Specifically, the
implicit HJ loss promotes the optimality of the transport map by encouraging alignment with the
HJ equation, while the MMD loss measures how well the transported distribution matches the target
distribution. Since all experiments in the paper are conducted under the setting λf = λb, we vary
λf to examine how this trade-off influences the learned transport map. We conduct experiments on
the two-dimensional examples introduced in Section 6.1.1 and above. The results are summarized
in Figure 6. The case λf = ∞ corresponds to training without the implicit HJ loss, using only the
MMD loss.

As shown in the figure, when λf is small (i.e., the MMD loss dominates), the transported distribution
aligns well with the target, but the resulting transport map becomes highly entangled. This indicates
that the model learns a map far from the optimal one, due to the lack of guidance from the HJ
constraint. In contrast, increasing λf enforces stronger adherence to the HJ equation, resulting in a
smoother, more structured transport map that closely resembles the optimal solution. However, when
λf becomes too small, the influence of the MMD term diminishes, leading to inaccurate matching
of the distributions. These results highlight the complementary roles of the implicit HJ loss and
the MMD loss, as also supported by Theorem 5.4, and underscore the importance of appropriately
tuning λf . Additionally, the relatively small difference in performance between λf = 0.1 and
λf = 0.05 suggests that the model is not overly sensitive to the choice of this parameter.

C.2 FURTHER RESULTS ON TRAINING STABILITY

Figure 7 illustrates the training stability of our method compared to the representative baseline
MM:R in high-dimensional Gaussian experiments in Section 6.1.2. MM:R optimizes a min-max
problem, which exhibits severe training instability: although the UVP error initially decreases in
the early epochs, it tends to grow substantially as training continues. Following the original paper
(Korotin et al., 2021a), the smallest UVP errors observed during training are reported in Table 2.
However, in practical OT scenarios the true optimal transport map is unknown, making it unclear
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(a) λf = ∞ (b) λf = 1 (c) λf = 0.1 (d) λf = 0.05 (e) λf = 0.01

Figure 6: Effect of the regularization parameter λf in the loss function. Each figure visualizes the
transport from the source distribution µ (blue) to the target distribution ν (red) for varying values
ofλf . Results are shown for two examples introduced in Section 6.1.1 and Appendix C.1.
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Figure 7: Training stability of our method compared to MM:R on high-dimensional Gaussian ex-
periments.

when training should be stopped or which solution is preferable. Therefore, the ability to maintain
stable training over many epochs, as demonstrated by our method, is a crucial advantage.

In the original MM:R implementation (Korotin et al., 2021a), the model relies on a special identity-
potential pretraining to stabilize training. Without this initialization, training becomes highly unsta-
ble and can completely fail to approximate the OT map. In contrast, our method does not require
any special pretraining and maintains stable UVP reduction throughout training, highlighting a key
practical strength.

In contrast, our method demonstrates robust and stable learning, as shown in Figure 7. Our method
does not require any special pretraining and maintains stable UVP reduction throughout training,
steadily decreasing over epochs. This stability represents a significant practical advantage, ensuring
reliable convergence even over long training schedules.

C.3 ADDITIONAL QUALITATIVE RESULTS FOR COLOR TRANSFER

Figures 8, 9, and 10 present qualitative results for bidirectional color transfer across three distinct
categories of image pairs. In each figure, the leftmost columns display the source and target images,
while the remaining columns show the results of various methods applied in both the forward (source
→ target) and backward (target → source) directions.

C.4 ADDITIONAL RESULTS FOR CLASS-CONDITIONAL OT FOR MNIST & FASHION
MNIST DATASETS

In this section, we provide additional results from all the tasks conducted in our experiments. All
methods are evaluated on the testing portions of the MNIST and Fashion MNIST datasets. Following
(Asadulaev et al., 2024), we train ResNet-18 classifiers achieving 98.85% accuracy for evaluation.
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Source HisMatching (Fwd) Reinhard (Fwd) NOT (Fwd) MM-v1 (Fwd) MM:R (Fwd) NCF (Fwd)

Target HisMatching (Bwd) Reinhard (Bwd) NOT (Bwd) MM-v1 (Bwd) MM:R (Bwd) NCF (Bwd)

Source HisMatching (Fwd) Reinhard (Fwd) NOT (Fwd) MM-v1 (Fwd) MM:R (Fwd) NCF (Fwd)

Target HisMatching (Bwd) Reinhard (Bwd) NOT (Bwd) MM-v1 (Bwd) MM:R (Bwd) NCF (Bwd)

Source HisMatching (Fwd) Reinhard (Fwd) NOT (Fwd) MM-v1 (Fwd) MM:R (Fwd) NCF (Fwd)

Target HisMatching (Bwd) Reinhard (Bwd) NOT (Bwd) MM-v1 (Bwd) MM:R (Bwd) NCF (Bwd)

Source HisMatching (Fwd) Reinhard (Fwd) NOT (Fwd) MM-v1 (Fwd) MM:R (Fwd) NCF (Fwd)

Target HisMatching (Bwd) Reinhard (Bwd) NOT (Bwd) MM-v1 (Bwd) MM:R (Bwd) NCF (Bwd)

Source HisMatching (Fwd) Reinhard (Fwd) NOT (Fwd) MM-v1 (Fwd) MM:R (Fwd) NCF (Fwd)

Target HisMatching (Bwd) Reinhard (Bwd) NOT (Bwd) MM-v1 (Bwd) MM:R (Bwd) NCF (Bwd)

Figure 8: Winter ↔ Summer: Qualitative results for bidirectional color transfer between seasonal
image pairs.
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Source HisMatching (Fwd) Reinhard (Fwd) NOT (Fwd) MM-v1 (Fwd) MM:R (Fwd) NCF (Fwd)

Target HisMatching (Bwd) Reinhard (Bwd) NOT (Bwd) MM-v1 (Bwd) MM:R (Bwd) NCF (Bwd)

Source HisMatching (Fwd) Reinhard (Fwd) NOT (Fwd) MM-v1 (Fwd) MM:R (Fwd) NCF (Fwd)

Target HisMatching (Bwd) Reinhard (Bwd) NOT (Bwd) MM-v1 (Bwd) MM:R (Bwd) NCF (Bwd)

Source HisMatching (Fwd) Reinhard (Fwd) NOT (Fwd) MM-v1 (Fwd) MM:R (Fwd) NCF (Fwd)

Target HisMatching (Bwd) Reinhard (Bwd) NOT (Bwd) MM-v1 (Bwd) MM:R (Bwd) NCF (Bwd)

Source HisMatching (Fwd) Reinhard (Fwd) NOT (Fwd) MM-v1 (Fwd) MM:R (Fwd) NCF (Fwd)

Target HisMatching (Bwd) Reinhard (Bwd) NOT (Bwd) MM-v1 (Bwd) MM:R (Bwd) NCF (Bwd)

Source HisMatching (Fwd) Reinhard (Fwd) NOT (Fwd) MM-v1 (Fwd) MM:R (Fwd) NCF (Fwd)

Target HisMatching (Bwd) Reinhard (Bwd) NOT (Bwd) MM-v1 (Bwd) MM:R (Bwd) NCF (Bwd)

Figure 9: Gogh painting ↔ Photograph: Qualitative results for bidirectional color transfer between
Gogh paintings and real-world photographs.
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Source HisMatching (Fwd) Reinhard (Fwd) NOT (Fwd) MM-v1 (Fwd) MM:R (Fwd) NCF (Fwd)

Target HisMatching (Bwd) Reinhard (Bwd) NOT (Bwd) MM-v1 (Bwd) MM:R (Bwd) NCF (Bwd)

Source HisMatching (Fwd) Reinhard (Fwd) NOT (Fwd) MM-v1 (Fwd) MM:R (Fwd) NCF (Fwd)

Target HisMatching (Bwd) Reinhard (Bwd) NOT (Bwd) MM-v1 (Bwd) MM:R (Bwd) NCF (Bwd)

Source HisMatching (Fwd) Reinhard (Fwd) NOT (Fwd) MM-v1 (Fwd) MM:R (Fwd) NCF (Fwd)

Target HisMatching (Bwd) Reinhard (Bwd) NOT (Bwd) MM-v1 (Bwd) MM:R (Bwd) NCF (Bwd)

Source HisMatching (Fwd) Reinhard (Fwd) NOT (Fwd) MM-v1 (Fwd) MM:R (Fwd) NCF (Fwd)

Target HisMatching (Bwd) Reinhard (Bwd) NOT (Bwd) MM-v1 (Bwd) MM:R (Bwd) NCF (Bwd)

Source HisMatching (Fwd) Reinhard (Fwd) NOT (Fwd) MM-v1 (Fwd) MM:R (Fwd) NCF (Fwd)

Target HisMatching (Bwd) Reinhard (Bwd) NOT (Bwd) MM-v1 (Bwd) MM:R (Bwd) NCF (Bwd)

Figure 10: Monet painting ↔ Photograph: Qualitative results for bidirectional color transfer be-
tween Monet paintings and real-world photographs.
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A generated sample is deemed accurate if the trained classifier assigns it to the corresponding target
class. Table 7 reports the accuracy and Fréchet Inception Distance (FID) of the generated images
across the first two experimental tasks.

Table 7: Performance metrics of NCF across all tasks. For the FID row, each bracketed value repre-
sents the distance between the OT-generated distribution (Dω ◦ T ν

µ [uθ])♯µ (resp. (Dω ◦ Tµ
ν [uθ])♯ν)

and the decoded distribution Dω♯ν (resp. Dω♯µ), where Dω denotes the appropriate VAE decoder
corresponding to µ or ν.

Metric Task 1 Task 2
Forward Backward Forward Backward

Accuracy(%) ↑ 95.58 95.08 92.51 92.73
FID ↓ 19.93 (2.65) 18.91 (2.45) 18.98 (2.25) 19.01 (2.26)

Task 1 (In-class transfer: Map each MNIST class i to the class i + 5, for i = 0, . . . , 4.) We
present in Figure 11 the uncurated MNIST images generated using the forward (resp. backward)
mapping, D1

ω ◦ T ν
µ [uθ](ỹ

(1)
), ỹ(1)∼µ (resp. D1

ω ◦ Tµ
ν [uθ](ỹ

(2)
), ỹ(2)∼ν).

(a) Images generated @ tf . (b) Images generated @ 0.

Figure 11: Task 1: Uncurated images generated using the computed forward (Left) & backward
(Right) OT maps.

Task 2 (In-class shift: Map each MNIST class i to the class (i + 1) mod 10, for i = 0, . . . , 9.)
Similar to Task 1, Figure 12 shows the uncurated MNIST images generated by the computed map-
pings. In this experiment, the forward (resp. backward) maps are also trained without incorporating
the implicit HJ loss LHJ, and are therefore not guaranteed to be optimal. By contrast, the mappings
produced by our proposed method—explicitly designed to account for optimality—exhibit superior
preservation of MNIST digit styles (e.g., thickness, orientation, etc.), as further illustrated in Figure
13.

Task 3 (Inter-class transport: Map each class in Fashion MNIST to its corresponding class in
MNIST.) The uncurated MNIST and Fashion MNIST images generated by the computed maps are
shown in Figure 14. While our method effectively recovers the overall profiles of Fashion MNIST
images, the encoder–decoder scheme faces difficulties in capturing fine texture details. As a future
research direction, we aim to enhance our approach by incorporating U-net architectures and directly
performing OT in the pixel space. Furthermore, in Figure 15, we present the KDE plots of the
pushforward distributions T ν

µ [uθ]♯µ (resp. Tµ
ν [uθ]♯ν) together with their targets ν (resp. µ), which

demonstrate the satisfactory generative quality of the computed OT map T ν
µ [uθ]; Figure 16 presents

the classification accuracy (%) of the generated images on the test dataset over training iterations. We
display only the first 70000 iterations, since the accuracy no longer improves as training progresses.
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(a) Images generated @ tf . (b) Images generated @ 0.

Figure 12: Task 2: Uncurated images generated using the computed forward (Left) & backward
(Right) OT maps.

(a) Manifold of digit 3 (b) Generated by OT

map

(c) Generated by non-

optimal map

(d) Manifold of digit 8 (e) Generated by OT

map

(f) Generated by non-

optimal map

Figure 13: The style of each MNIST digit is better preserved by the computed optimal transport
map. The triangular table is produced using linear interpolation in VAE latent space.

(a) MNIST images generated @ tf . (b) Fashion MNIST images generated @ 0.

Figure 14: Task 3: Uncurated images generated using the computed forward (Left) & backward
(Right) OT maps.
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Figure 15: KDE contours of the MNIST latent samples generated using the computed OT map
(blue) and the target samples (orange), conditioned on each MNIST class (0–9, arranged left to right
and top to bottom). The samples are projected onto the first two PCA dimensions. The heat maps
illustrate the discrepancies between the two distributions.
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Figure 16: Accuracy(%) of trained forward class-conditional transport map versus training itera-
tions. Results are displayed for the first 70000 iterations, beyond which the accuracy exhibits no
significant improvement.
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