

000 001 002 003 004 005 NEURAL HAMILTON–JACOBI CHARACTERISTIC 006 FLOWS FOR OPTIMAL TRANSPORT 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022

023 Paper under double-blind review
024
025
026

027 ABSTRACT 028

029 We present a novel framework for solving optimal transport (OT) problems based
030 on the Hamilton–Jacobi (HJ) equation, whose viscosity solution uniquely char-
031 acterizes the OT map. By leveraging the method of characteristics, we derive
032 closed-form, bidirectional transport maps, thereby eliminating the need for nu-
033 matical integration. The proposed method adopts a pure minimization frame-
034 work: a single neural network is trained with a loss function derived from the
035 method of characteristics of the HJ equation. This design guarantees convergence
036 to the optimal map while eliminating adversarial training stages, thereby substan-
037 tially reducing computational complexity. Furthermore, the framework naturally
038 extends to a wide class of cost functions and supports class-conditional transport.
039 Extensive experiments on diverse datasets demonstrate the accuracy, scalability,
040 and efficiency of the proposed method, establishing it as a principled and versatile
041 tool for OT applications with provable optimality.
042

043 1 INTRODUCTION 044

045 Optimal transport (OT) is a fundamental problem that seeks the most cost-efficient transform from
046 one probability distribution into another by minimizing a transportation cost function, which quan-
047 tifies the effort to move mass. With its strong theoretical foundation and broad practical relevance,
048 OT has been widely applied in diverse areas, including traffic control (Carlier et al., 2008; Danila
049 et al., 2006; Barthélemy & Flammini, 2006), biomedical data analysis (Schiebinger et al., 2019;
050 Koshizuka & Sato, 2022; Bunne et al., 2023), generative modeling (Wang et al., 2021; Onken et al.,
051 2021; Zhang & Katsoulakis, 2023; Liu et al., 2019), and domain adaptation (Courty et al., 2016;
052 2017; Damodaran et al., 2018; Balaji et al., 2020). In recent years, there has been growing interest
053 in deep learning techniques to solve OT problems, leading to the development of methods grounded
054 in various mathematical formulations. Early approaches were primarily built upon the classical
055 Monge formulation (Lu et al., 2020; Xie et al., 2019) and its relaxation into the Kantorovich frame-
056 work (Makkuva et al., 2020). While theoretically rigorous, these methods often suffer from high
057 computational complexity. The primal–dual formulation, which recasts the OT problem as a saddle-
058 point optimization over the generative map and the Kantorovich potential function, has inspired
059 scalable algorithms (Liu et al., 2019; Taghvaei & Jalali, 2019; Korotin et al., 2021a; Liu et al., 2021;
060 Choi et al., 2024). Similar approaches have also been proposed for the Monge problem with gen-
061 eral costs (Asadulaev et al., 2024; Fan et al., 2023). However, these approaches typically rely on
062 adversarial training of two neural networks, which is challenging to manage and often introduces
063 instability and inefficiency into the optimization process. Alternative approaches have investigated
064 dynamical formulations using ordinary differential equations (ODEs) (Yang & Karniadakis, 2020;
065 Onken et al., 2021; Tong et al., 2020; Huguet et al., 2022) and entropic-regularized models involv-
066 ing stochastic differential equations (SDEs) (Genevay et al., 2016; Seguy et al., 2017; Daniels et al.,
067 2021; Gushchin et al., 2023; Zhou et al., 2024). Machine learning algorithms that unify Lagrangian
068 and Eulerian perspectives of Mean Field Control problems Ruthotto et al. (2020); Lin et al. (2021);
069 Zhao et al. (2025) likewise provide a computational framework for OT. Nevertheless, these methods
070 typically require solving systems of differential equations, resulting in substantial computational
071 overhead during both training and inference. Moreover, many existing methods yield bias maps that
072 deviate from the OT solution due to the incorporation of regularization terms into the formulation.
073

074 **Contributions.** We propose a novel and efficient framework, termed *neural characteristic flow*
075 (*NCF*), for solving OT problems via the Hamilton–Jacobi (HJ) equation, whose viscosity solution
076 characterizes the OT map. Despite its strong theoretical foundation for OT, the HJ formulation
077 poses two major challenges: non-uniqueness of solutions and the need to solve ODEs in dynamical

Method (representative reference)	Optimization	# Networks	OT direction	Sampling	Optimality of T
Dual Formulation (Asadulaev et al., 2024)	Min-Max	Two	One-way	Direct	No
Dynamical Models (Onken et al., 2021)	Min	Single	Bidirectional	Iterative	No
HJ-based (Proposed)	Min	Single	Bidirectional	Direct	Yes

Table 1: Comparison of key features across different OT model approaches. Optimality indicates whether an approach is guaranteed, in principle, to recover the true OT map under sufficient network capacity.

formulations. We overcome both by leveraging the method of characteristics and an implicit solution formula (Park & Osher, 2025) to obtain closed-form, bidirectional transport maps without numerical integration of ODEs. NCF uses a single neural network and avoids adversarial training or dual-network architectures, reducing complexity while improving efficiency. Our framework guarantees theoretical consistency with OT optimality conditions and supports a broad class of cost functions, including class-conditional transport. We also provide convergence analysis for Gaussian settings and demonstrate strong empirical performance across datasets of varying dimensions. A comparison of key features across different OT model approaches is summarized in Table 1.

2 PRELIMINARY

2.1 MONGE’S OPTIMAL TRANSPORT PROBLEM

For a domain $\Omega \subset \mathbb{R}^d$, we denote $\mathcal{P}(\Omega)$ as the space of probability measures on Ω . Let $c : \Omega \times \Omega \rightarrow [0, \infty]$ be a cost function that measures the cost of transporting one unit of mass. For $\mu, \nu \in \mathcal{P}(\Omega)$, the classical Monge problem formulates OT as finding a measurable map $T : \Omega \rightarrow \Omega$ that pushes forward μ to ν , i.e., $T_\# \mu = \nu$, while minimizing the transportation cost:

$$W_c(\mu, \nu) := \inf_{T_\# \mu = \nu} \int_{\Omega} c(\mathbf{x}, T(\mathbf{x})) d\mu(\mathbf{x}). \quad (1)$$

We call a solution T^* to (1) an OT map between μ and ν . In the case where the cost c is expressed as a function of the difference between the two variables, T^* is characterized as follows:

Theorem 2.1 (Santambrogio (2015)). *When $c(\mathbf{x}, \mathbf{y}) = \ell(\mathbf{x} - \mathbf{y})$ for a lower semi-continuous (l.s.c.), sub-differentiable, and strictly convex function $\ell : \Omega \rightarrow \mathbb{R}$, the optimal map is expressed in terms of the Kantorovich dual potential function $\varphi^* : \Omega \rightarrow \mathbb{R}$ as*

$$T^*(\mathbf{x}) = \mathbf{x} + \nabla h(\nabla \varphi^*(\mathbf{x})), \quad (2)$$

where $h(\mathbf{z}) = \sup_{\mathbf{y} \in \mathbb{R}^d} \{ \mathbf{z}^\top \mathbf{y} - \ell(\mathbf{y}) \}$ is the Legendre transform of ℓ .

2.2 DYNAMICAL FORMULATION

Benamou & Brenier (2000) formulate the OT (1) in a continuous-time dynamical formulation:

$$\inf_v \mathbb{E}_{\mu} \left[\int_0^{t_f} \ell(v(\mathbf{x}(t), t)) dt \right] \quad (3)$$

$$\text{s.t. } \dot{\mathbf{x}} = v, \mathbf{x}(0) \sim \mu, \mathbf{x}(t_f) \sim \nu, \quad (4)$$

where the terminal time $t_f > 0$ is typically set to 1. Within this dynamical framework, the associated optimality condition is governed by the *Hamilton–Jacobi (HJ) equation* (Evans, 2022, chapter 10):

$$\begin{cases} \frac{\partial u}{\partial t} + h(\nabla u) = 0 & \text{in } \Omega \times (0, t_f) \\ u = g & \text{on } \Omega \times \{t = 0\}, \end{cases} \quad (5)$$

coupled with the continuity equation $\partial_t \rho + \nabla \cdot (\rho \nabla h(\nabla u)) = 0$ that governs the evolution of the probability distribution. Here, ∇u denotes the gradient of u with respect to the spatial variable \mathbf{x} , and g represents the initial condition, whose explicit analytic form is typically intractable. The optimal velocity field is then determined by $v^* = \nabla h(\nabla u)$, where u is the *viscosity solution* to HJ equation (5).

3 RELATED WORKS

Deep learning methods for OT have gained traction following the development of scalable OT solvers (Genevay et al., 2016; Seguy et al., 2017) and WGANs (Arjovsky et al., 2017). Many

approaches utilize GAN-based models to approximate OT plans, although they often suffer from training instability and extensive hyperparameter tuning. Another major line of work is based on the Kantorovich dual formulation (Kantorovich, 2006), where the OT map is recovered via optimization of dual potentials, typically parameterized by input convex neural networks (ICNNs) (Amos et al., 2017). While theoretically sound, these methods involve unstable min-max optimization. To address these issues, natural gradient methods have been proposed to improve computational efficacy (Shen et al., 2020; Liu et al., 2024). Regularization techniques such as L^2 penalties (Genevay et al., 2016; Sanjabi et al., 2018) and cycle-consistency constraints (Korotin et al., 2019; 2021b) have been proposed, though unconstrained alternatives have shown stronger empirical performance (Korotin et al., 2021a; Fan et al., 2022).

To address the settings where deterministic OT maps may not exist, recent work has considered weak OT formulations (Backhoff-Veraguas et al., 2019). Neural approaches for weak OT and class-conditional transport have been proposed (Korotin et al., 2023; Asadulaev et al., 2024), but may yield spurious solutions under weak quadratic costs. Kernalized costs (Korotin et al., 2022) have been introduced to mitigate this.

OT has also been modeled as a dynamical system via continuous flows (Yang & Karniadakis, 2020; Tong et al., 2020; Onken et al., 2021; Huguet et al., 2022). While expressive, these methods require solving ODEs during training and inference, making them computationally expensive. Entropic and f -divergence regularized stochastic models (Daniels et al., 2021; Gushchin et al., 2023) improve smoothness but often rely on Langevin dynamics, which can be biased in high dimensions (Korotin et al., 2019). The HJ equation has been used to improve OT models, with physics-informed neural network (PINN) (Raissi et al., 2019) approaches applying L^2 penalties on HJ residuals to improve continuous normalizing flows, ODE-based formulations (Yang & Karniadakis, 2020; Onken et al., 2021), and stochastic variants (Zhang & Katsoulakis, 2023). However, due to the ill-posed nature of the HJ equation, this approach lacks guarantees for recovering the viscosity solution.

4 HJ CHARACTERISTIC FLOWS FOR OT

In this section, we represent the OT map through the characteristics of the HJ equation, offering a principled and efficient framework for OT. Note that solving the HJ equation directly is challenging due to its inherent ill-posedness, non-smoothness of solutions, and gradient discontinuities, all of which complicate both theoretical analysis and numerical approximation.

Method of Characteristics. The viscosity solution to (5) is theoretically characterized by the following system of *characteristic ordinary differential equations (CODEs)* Evans (2022); Park & Osher (2025):

$$\dot{\mathbf{x}} = \nabla h(\mathbf{p}) \quad (6a)$$

$$\begin{cases} \dot{u} = -h(\mathbf{p}) + \mathbf{p}^\top \nabla h(\mathbf{p}) \\ \dot{\mathbf{p}} = 0, \end{cases} \quad (6b)$$

$$(6c)$$

where \mathbf{p} denotes the shorthand for ∇u . CODE for \mathbf{p} (6c) implies that \mathbf{p} remains constant along each characteristic trajectory. Consequently, the characteristics are straight lines of the form $\mathbf{x}(t) = t\nabla h(\mathbf{p}) + \mathbf{x}(0)$, which coincide with the OT map in (2) at terminal time $t = t_f$. From a dynamical perspective, the ODE (4) can be interpreted as the characteristic equations (6a) of the HJ equation that determine the OT map (2). In other words, the transported point $T^*(\mathbf{x})$ of a sample $\mathbf{x} \sim \mu$ corresponds to the terminal position of the characteristic line that originates from \mathbf{x} .

Our CODE formulation not only provides a principled construction of the forward transport map but also naturally characterizes the backward map. We denote by $T_\mu^{\nu*}$ the forward OT map transporting μ to ν , and by $T_\nu^{\mu*}$ the backward map transporting ν to μ .

Proposition 4.1 (Bidirectional OT Map). *There exists a viscosity solution u^* to the HJ equation (5) that characterizes both the forward and backward OT maps through its forward and backward characteristic flows:*

$$T_\mu^{\nu*}(\mathbf{x}) = \mathbf{x} + t_f \nabla h(\nabla u^*(\mathbf{x}, 0)), \quad \mathbf{x} \sim \mu, \quad (7)$$

$$T_\nu^{\mu*}(\mathbf{y}) = \mathbf{y} - t_f \nabla h(\nabla u^*(\mathbf{y}, t_f)), \quad \mathbf{y} \sim \nu. \quad (8)$$

Accordingly, the viscosity solution of the HJ equation enables a bidirectional characterization of the OT map via forward and backward characteristic flows. Notably, since the characteristics are straight lines, both the forward and inverse transport maps admit explicit closed-form expressions.

171 This obviates the need for numerical integration of ODEs typically required in conventional dynamical
 172 formulations. Consequently, the CODE-based formulation addresses a key computational
 173 bottleneck, enabling efficient and direct computation of bidirectional transport maps.
 174

175 **Implicit Solution Formula.** Recently, a novel mathematical formulation for the viscosity solution
 176 of HJ equations has been developed using the system of CODEs (Park & Osher, 2025). Within this
 177 formulation, the viscosity solution admits the following implicit formula:
 178

$$u(\mathbf{x}, t) = -th(\nabla u) + t\nabla u^\top \nabla h(\nabla u) + g(\mathbf{x} - t\nabla h(\nabla u)). \quad (9)$$

179 **Proposition 4.2.** *For OT problems (1) where ℓ satisfies the conditions in Theorem 2.1, the implicit
 180 solution formula (9) characterizes the viscosity solution of the HJ equation (5) almost everywhere.*
 181

182 *Proof.* Detailed proof is provided in Appendix A.1. \square
 183

184 5 METHODS

185 5.1 OT WITH GENERAL COSTS

186 We propose a novel deep learning method, termed *neural characteristic flow (NCF)*, for learning
 187 bidirectional OT maps under general cost ℓ by solving the HJ equation (5) via its implicit solution
 188 formula (9). The HJ equation characterizes the OT map as the gradient of the viscosity solution, en-
 189 suring that the resulting map minimizes the given cost functional. When coupled with the continuity
 190 equation, it also describes the evolution of probability distributions, thus guaranteeing correct mass
 191 transport from source to target. However, jointly solving this coupled system of PDEs is computa-
 192 tionally expensive. To address this, the proposed NCF computes the OT map solely through the HJ
 193 equation, avoiding the need to solve the continuity equation explicitly.
 194

195 **Implicit Neural Representation.** We represent the solution u of the HJ equation using an implicit
 196 neural representation (INR) $u_\theta : \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R}$ parameterized by θ . The network takes the spatial
 197 variable \mathbf{x} and temporal variable t as input. By the universal approximation theorem (Hornik et al.,
 198 1989; Leshno et al., 1993), the INR can approximate the viscosity solution to the HJ equation. We
 199 denote by $T_\mu^\nu [u_\theta]$ as the transport map that aims to map μ to ν defined by (7) through u_θ :
 200

$$T_\mu^\nu [u_\theta](\mathbf{x}) = \mathbf{x} + t_f \nabla h(\nabla u_\theta(\mathbf{x}, 0)). \quad (10)$$

201 The backward map $T_\nu^\mu [u_\theta]$ is analogously defined according to (8) via u_θ evaluated at $t = t_f$.
 202

203 **HJ-based Training Loss.** While the HJ equation does not directly encode distributional information,
 204 it can recover the desired OT map, provided that an appropriate initial function g reflects the
 205 relationship between the source and target distributions. However, in practice, where only finite
 206 samples from these distributions are available, deriving an analytic form for g is generally intractable.
 207 To address this challenge, we introduce a loss term to ensure that the initial condition is appropri-
 208 ately learned during training, thereby steering the HJ solution toward accurately solving the desired
 209 OT problem. Specifically, this term enforces alignment between the generated samples obtained via
 210 $T[u_\theta]$ and the given target data. This alignment can be effectively quantified using discrepancy mea-
 211 sures such as the maximum mean discrepancy (MMD) (Smola et al., 2006), whose value between
 212 two distributions μ and ν are defined as follows:
 213

$$\text{MMD}(\mu, \nu)^2 = \iint_{\Omega \times \Omega} k(\mathbf{x}, \mathbf{y}) d(\mu(\mathbf{x}) - \nu(\mathbf{x})) d(\mu(\mathbf{y}) - \nu(\mathbf{y})), \quad (11)$$

214 where $k(\cdot, \cdot) : \Omega \times \Omega \rightarrow \mathbb{R}$ is a kernel function. The population loss for the MMD is
 215

$$\mathcal{L}_{\text{MMD}}(u_\theta) = \text{MMD}(T_\mu^\nu [u_\theta] \sharp \mu, \nu)^2. \quad (12)$$

216 We adopt the negative distance kernel $k(\mathbf{x}, \mathbf{y}) = -\|\mathbf{x} - \mathbf{y}\|_2$, which has proved to handle high-
 217 dimensional problems efficiently (Hertrich et al., 2024). With this kernel, the MMD loss becomes
 218 the squared energy distance (Rizzo & Székely, 2016).
 219

220 In our implementation of the implicit solution formula, we replace the initial function g with u_θ
 221 evaluated at $t = 0$, and train the model using the following ϱ -weighted loss function
 222

$$\mathcal{L}_{\text{HJ}}(u_\theta) = \iint_{\Omega \times [0, t_f]} \left(u_\theta + th(\nabla u_\theta) - t\nabla u_\theta^\top \nabla h(\nabla u_\theta) - u_\theta(\mathbf{x} - t\nabla h(\nabla u_\theta), 0) \right)^2 d\varrho(\mathbf{x}) dt, \quad (13)$$

228 where ϱ is a probability measure on Ω used to weight the residual so that the implicit solution formula
 229 (9) is enforced across the entire spatial domain while allowing \mathcal{L}_{HJ} to be efficiently approximated
 230 via Monte Carlo sampling. When Ω is bounded, a natural choice is the uniform distribution on Ω .
 231 In practice, ϱ may also be chosen as a uniform distribution supported on the region covered by the
 232 available samples, concentrating computational effort on the portions of the domain most relevant
 233 to the transport dynamics.

234 The overall loss combines the implicit HJ loss and the MMD loss with a weight $\lambda > 0$:

$$\mathcal{L}_{\text{HJ}}(u_\theta) + \lambda \mathcal{L}_{\text{MMD}}(u_\theta). \quad (14)$$

235 We refer to Appendix B for practical choices of ϱ and the Monte Carlo estimation of the loss.
 236

237 **Advantages of the Proposed Approach.** Our method offers several key advantages over existing
 238 OT frameworks, as summarized in Table 1. First, it jointly learns both forward and backward OT
 239 maps using a single neural network in one training phase. This contrasts with prior methods that
 240 require multiple networks, either due to the lack of invertibility or the use of adversarial dual for-
 241 mulations—leading to increased model complexity and training cost. Our method also avoids the
 242 instability of min-max optimization common in dual approaches, resulting in more stable training.
 243 Second, unlike dynamical OT models that require solving ODEs or SDEs, we use the method of
 244 characteristics to obtain OT maps in closed form. This removes the need for iterative solvers and
 245 improves sampling efficiency at both training and inference time. Third, our model directly incor-
 246 porates the HJ equation via an implicit solution formula that reliably recovers the viscosity solution,
 247 as supported by the numerical results in Section 6. This not only aligns with the theoretical optimal-
 248 ity conditions of OT but also helps identify and correct deviations from the target solution during
 249 training. Finally, our framework supports a broad class of cost functions beyond the quadratic case,
 250 offering greater flexibility and wider applicability across OT tasks.
 251

252 5.2 THEORETICAL ANALYSES

253 In this section, we present theoretical analyses of our method, focusing on the OT problem with
 254 $\Omega = \mathbb{R}^d$ and the quadratic cost $\ell(\cdot) = \frac{1}{2}\|\cdot\|^2$, for which the corresponding Hamiltonian is given by
 255 $h(\cdot) = \frac{1}{2}\|\cdot\|^2$ as well. We prove that the minimizer of the loss (14) exactly recovers the true OT
 256 maps. Moreover, in the Gaussian setting, we establish stability analysis by showing that a small loss
 257 guarantees convergence to the true solution.
 258

259 **Consistency Analysis** With some mild convexity assumption, we establish that the minimizer of
 260 (14) leads precisely to the optimal transport map.

261 **Theorem 5.1** (Consistency of loss). *Suppose the probability distributions μ, ν have finite second
 262 moments and $\varrho \in \mathcal{P}(\mathbb{R}^d)$ is strictly positive. Assume $u \in C_{\text{loc}}^1(\mathbb{R}^d \times [0, t_f])$, and define $u_1(\cdot) :=$
 263 $u(\cdot, t_f) \in C_{\text{loc}}^2(\mathbb{R}^d)$ with $\nabla u_1 \in L^2(\mathbb{R}^d, \mathbb{R}^d; \nu)$. If u minimizes the loss functional (14), i.e.,*

$$\mathcal{L}_{\text{HJ}}(u) + \lambda \mathcal{L}_{\text{MMD}}(u) = 0,$$

264 *and the map $T_\nu^\mu[u]$ is bijective with its Jacobian $D_x T_\nu^\mu[u](x)$ is positive definite for any $x \in \mathbb{R}^d$,
 265 then $T_\nu^\mu[u]$ and $T_\mu^\nu[u]$ are the optimal transport maps from ν to μ , and vice versa.*
 266

267 The proof is provided in Appendix A.2. See also Remark A.5 for further discussion on the mono-
 268 tonicity condition for $D_x T_\nu^\mu[u]$.

269 *Remark 5.2* (On regularity assumption of u). It is worth noting that the transport curves associated
 270 with the Wasserstein-2 OT problem do not intersect for $t \in [0, t_f]$ (cf. Chap. 8 of (Villani et al.,
 271 2008)). Since these curves constitute the characteristics of the HJ equation associated with the
 272 OT problem, we can expect classical solutions to the HJ equation, provided that μ and ν admit
 273 sufficiently regular density functions. This observation motivates the regularity assumption on u
 274 in Theorem 5.1. Moreover, u is parametrized with neural networks in practice, which naturally
 275 preserve the regularity.
 276

277 **Stability Analysis** The loss (14) also exhibits favorable stability properties, which we illustrate in
 278 the Gaussian setting. Let $\mu = N(\mathbf{b}_\mu, \Sigma_\mu)$, $\nu = N(\mathbf{b}_\nu, \Sigma_\nu)$, then the OT map is

$$T_\mu^{\nu*}(\mathbf{x}) = A(\mathbf{x} - \mathbf{b}_\mu) + \mathbf{b}_\nu, \quad (15)$$

279 where $A := \Sigma_\mu^{-\frac{1}{2}} (\Sigma_\mu^{\frac{1}{2}} \Sigma_\nu \Sigma_\mu^{\frac{1}{2}})^{\frac{1}{2}} \Sigma_\mu^{-\frac{1}{2}}$. For analytical tractability, we consider a simplified quadratic
 280 parameterization $u_\theta(\mathbf{x}, t) = -\left(\frac{1}{2}\mathbf{x}^\top \theta_2(t)\mathbf{x} + \theta_1(t)^\top \mathbf{x} + \theta_0(t)\right)$, where $\theta = [\theta_2(\cdot), \theta_1(\cdot), \theta_0(\cdot)] : [0, t_f] \rightarrow \mathbb{R}_{\text{sym}}^{d \times d} \times \mathbb{R}^d \times \mathbb{R}$. Although this represents a restricted subclass of neural networks, it
 281 permits rigorous analysis and yields insights relevant to more general architectures.
 282

285 **Assumption 5.3.** $\theta(t)$ is bounded by K and K -Lipschitz. $\|\mathbf{b}_\mu\|, \|\mathbf{b}_\nu\|, \|\Sigma_\mu\|_F, \|\Sigma_\nu\|_F \leq K$. A
 286 is strictly positive definite with smallest eigenvalue $\lambda_A > 0$.

287 **Theorem 5.4** (Stability of loss). *Under Assumption 5.3, the errors for u_θ and $T_\mu^\nu[u_\theta]$ satisfy*

$$289 \quad \|u_\theta - u^*\|_{L^\infty([-1,1]^d)} + \|T_\mu^\nu[u_\theta] - T_\mu^{\nu*}\|_{L^\infty([-1,1]^d)} \leq C \left(\mathcal{L}_{HJ}^{\frac{1}{3}} + \mathcal{L}_{MMD}^{\frac{1}{4}} \right), \quad (16)$$

291 where u^* and $T_\mu^{\nu*}$ are the true solution and OT map. C only depends on d, K and λ_A .

293 The theorem implies that sufficiently small loss guarantees convergence of the approximate solution
 294 u_θ —and consequently the resulting transport map $T_\mu^\nu[u_\theta]$ —to their true counterparts. Furthermore,
 295 the proof shows that while multiple transport maps may minimize the MMD loss, the implicit HJ
 296 loss ensures that the OT map is uniquely recovered. The detailed description and proof for the
 297 theorem are deferred to Appendix A.3.

298 5.3 CLASS-CONDITIONAL OT

300 We extend our HJ-based framework to class-conditional OT, transporting source to target indepen-
 301 dently within each of the K labeled classes so as to preserve label consistency and class-specific
 302 structure. This formulation is particularly well-suited for domain adaptation and class-conditional
 303 generative modeling, where preserving class-specific features is crucial.

304 The OT map between samples of the k -th class must satisfy the HJ equation within the support of
 305 the corresponding class-specific distribution, as dictated by the optimality condition. Consequently,
 306 the global transport map $T_\mu^{\nu*}$ satisfies the HJ equation (5) across the entire domain. Although non-
 307 differentiable regions may arise due to intersections between transport maps of different classes,
 308 such discontinuities occur primarily in the boundaries between class supports. Since the gradient of
 309 the HJ solution is computed only within the support of each class-specific distribution, the transport
 310 map remains expressible in these regions. Accordingly, we retain the implicit HJ loss function (13)
 311 and modify the MMD loss to account for class conditioning as follows:

$$312 \quad \mathcal{E}_{\text{class}}((T_\mu^\nu[u_\theta])_\sharp \mu, \nu) = \frac{1}{K} \sum_{k=1}^K \mathcal{E}((T_\mu^\nu[u_\theta])_\sharp \mu_k, \nu_k). \quad (17)$$

314 A similar approach was proposed by Asadulaev et al. (2024).

316 6 EXPERIMENTAL RESULTS

318 We evaluate the effectiveness of the proposed *neural characteristic flow (NCF)* across diverse OT
 319 tasks. All experiments in this section employ the quadratic cost function $\ell = \frac{1}{2} \|\cdot\|_2^2$, which is the
 320 canonical cost associated with the Wasserstein-2 distance. Computations were performed on a single
 321 NVIDIA GV100 (TITAN V) GPU. Further implementation details are provided in Appendix B.

323 6.1 UNCONDITIONAL OT

325 6.1.1 2D TOY EXAMPLES

326 We test the proposed NCF on a 2D toy dataset. We also compare our model with the neural opti-
 327 mal transport (NOT) framework (Korotin et al., 2023), including both the strong (deterministic) and
 328 weak (stochastic) variants. Since NOT directly parameterizes the transport map, it requires sepa-
 329 rate training for each transport direction. Additionally, we include an ablation study replacing our
 330 implicit solution formula loss (13) with a PINN loss on the HJ equation, referred to as HJ-PINN.

331 Figure 1 shows bidirectional transport results on 2D distributions. In addition to visualizing the
 332 transported distributions, we overlay the learned transport maps as black solid lines to assess whether
 333 each model has captured an OT plan. For weak NOT, the map is the average over noise inputs, as
 334 in the original work. Compared to all baselines, our method captures source and target distribu-
 335 tions more accurately and learns transport maps closely aligned with the optimal solution. Strong
 336 NOT produces noisy, incoherent transport. Weak NOT performs better but still shows overlapping
 337 trajectories, indicating an incomplete OT representation. HJ-PINN yields noisy, intersecting trans-
 338 port paths, suggesting failure to learn OT dynamics. In contrast, our model learns accurate OT
 339 maps without trajectory crossings. Moreover, unlike NOT, which requires four separate networks
 340 for bidirectional training, our method achieves more accurate bidirectional transport with a single
 341 network. These results highlight the superior accuracy and efficiency of our approach. For further
 342 experimental results on the 2D example, please refer to Appendix C.1.

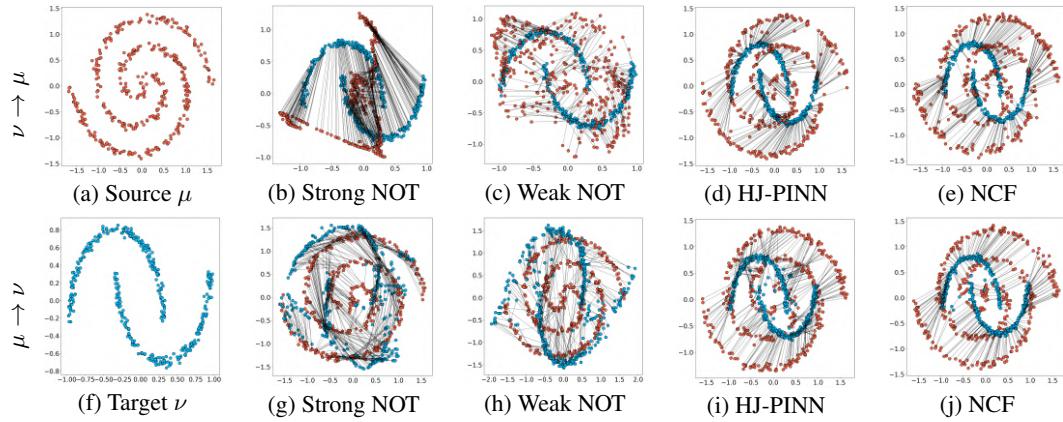


Figure 1: *Swiss roll* (μ) \rightleftarrows *Double moons* (ν): The top row shows transport in the direction $\nu \rightarrow \mu$, and the bottom row shows $\mu \rightarrow \nu$. The leftmost column displays μ and ν for reference.

6.1.2 EVALUATION ON HIGH-DIMENSIONAL GAUSSIANS

For general distributions, the ground truth OT solution is unknown, making quantitative evaluation challenging. To enable precise assessment, we consider the Gaussian case: $\mu = \mathcal{N}(\mathbf{0}, \Sigma_\mu)$ and $\nu = \mathcal{N}(\mathbf{0}, \Sigma_\nu)$, where a closed-form solution is available via (15). Following Korotin et al. (2021a), we vary the dimension d from 2 to 64, with Σ_μ and Σ_ν generated using random eigenvectors uniformly sampled on the unit sphere and logarithms of eigenvalues drawn uniformly from $[-2, 2]$. In addition to strong NOT and HJ-PINN, we evaluate several established OT methods: MM-v1 (Taghvaei & Jalali, 2019; Korotin et al., 2021a), which solves a min-max dual problem using input-convex neural networks (ICNNs), alternating between optimizing the potential and its convex conjugate; **MM:R** (Korotin et al., 2021a) also employs a min-max framework but does not enforce convexity, instead learning separate networks for forward and backward maps via a negative Wasserstein loss combined with a conjugacy loss; LS (Seguy et al., 2017), which addresses the dual problem via entropic regularization; and WGAN-QC (Liu et al., 2019), which employs a WGAN architecture with quadratic cost. Except for NOT—which directly parameterizes transport maps—all models use a shared architecture for potential functions.

Performance is measured using the unexplained variance percentage (UVP) (Korotin et al., 2019), which quantifies the L^2 error of the estimated transport map, normalized by $\text{Var}(\nu)$. Computational efficiency is also evaluated in terms of training and inference time, peak memory usage, and memory required to store bidirectional OT maps. Table 2 reports UVP across models and dimensions, while Figure 2 summarizes computational metrics.

Our method consistently yields accurate OT maps with favorable scaling behavior, outperforming NOT, WGAN-QC, and LS, which exhibit greater deviation from the ground-truth transport. In higher dimensions, the performance of NCF is slightly reduced, which we attribute to the fact that, unlike baseline methods that parameterize separate networks for forward and backward maps, our approach represents both directions using a single network. Specifically, NCF approximates both maps using exactly half the network capacity required by methods such as MM-v1. This parameter reduction is advantageous in low dimensions; however, in higher dimensions (e.g., $d = 32, 64$), the limited capacity constrains the simultaneous learning of both directional maps. To address this, we conducted experiments with a slightly enlarged network for high-dimensional cases—without modifying any training hyperparameters—denoted as NCF-Adaptive in the results. With this adjustment, our method recovers performance in high dimensions while still using fewer parameters than MM-v1 or MM:R.

Moreover, baseline methods such as MM-v1 and MM:R incur substantially longer training times and significantly higher memory usage. In addition, MM:R, which relies on min–max optimization, exhibits noticeable training instability (see Appendix C.2.) In contrast, our approach avoids expensive nested min–max optimization and leverages a single network, resulting in faster, stable, and more memory-efficient training. At inference, NOT achieves the lowest latency due to its direct map parameterization, whereas other methods, including ours, require gradient-based evaluation, introducing additional overhead. This overhead, however, decreases with increasing dimension. Finally, comparison with HJ-PINN highlights the superior effectiveness of our implicit loss in approximating the viscosity solution to the underlying HJ equation.

Table 2: Quantitative evaluation on Gaussian distributions. UVP (\downarrow) is measured across different OT methods as the data dimension d increases.

Method	$d = 2$	$d = 4$	$d = 8$	$d = 16$	$d = 32$	$d = 64$
NOT	77.248	125.419	114.056	176.086	182.287	196.831
WGAN-QC	1.596	5.897	31.0367	59.314	113.237	141.407
LS	5.806	9.781	15.963	25.232	41.445	55.360
MM-v1	0.161	0.172	0.173	0.210	0.374	0.415
MM:R	0.012	0.048	0.117	0.202	0.354	0.604
HJ-PINN	0.080	0.069	0.163	0.458	0.576	1.683
NCF	0.010	0.021	0.086	0.146	0.436	0.858
NCF-Adaptive	0.010	0.022	0.090	0.155	0.307	0.407

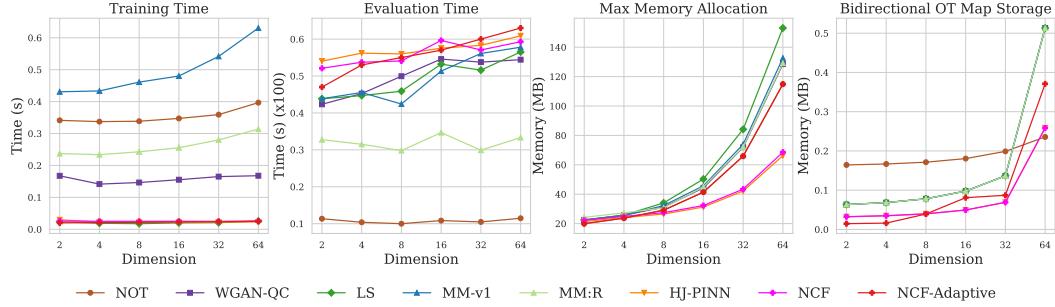


Figure 2: Computational comparison. Training time (s/epoch), evaluation time (s/epoch), peak memory (MB) during training, and memory (MB) for storing bidirectional OT maps are reported.

6.1.3 APPLICATION TO COLOR TRANSFER

We employ the dataset provided by CycleGAN (Zhu et al., 2017) for image color transfer experiments. From each of the three available groups of image pairs, we selected 10 representative pairs. For each pair, we perform both forward and backward color transfer. To evaluate the effectiveness of our model, we include comparisons with two widely used classical color transfer methods: a standard per-channel histogram matching technique and the approach of Reinhard et al. (2001), which aligns the mean and standard deviation of color channels. These baselines represent statistical methods that do not rely on OT, providing a complementary perspective on performance. We include NOT and MM-v1 as deep learning OT baselines.

To quantitatively evaluate color fidelity and distributional consistency, we employ two widely used histogram-based metrics: Earth Mover’s distance (EMD) and histogram intersection (HI), summarized in Table 3. Across all three domains, our method consistently achieves superior performance compared to all baselines in both metrics. In particular, our proposed method exhibits superior robustness in handling more complex and multimodal color distributions compared to MM-v1, especially in contrast to the simpler Gaussian settings examined in the previous section. Qualitative results are provided in Appendix C.3.

6.2 CLASS-CONDITIONAL OT

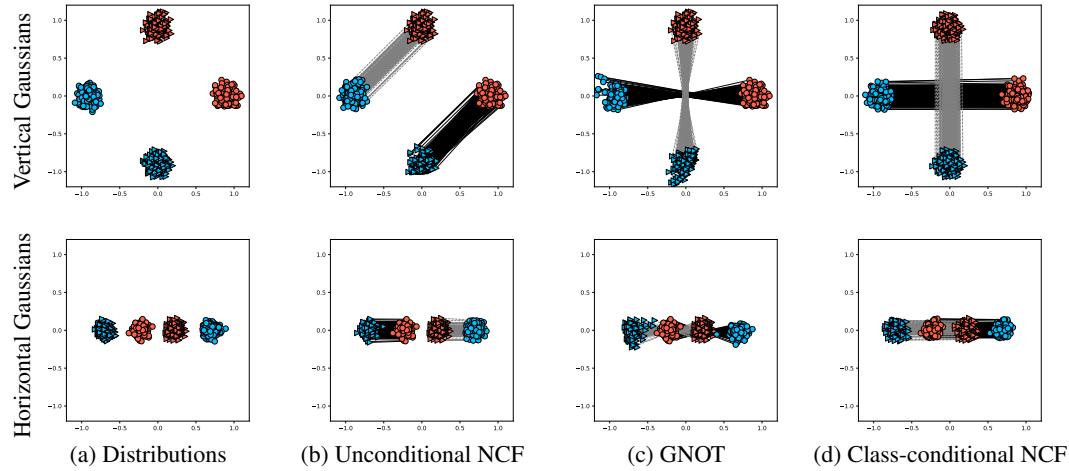
6.2.1 2D TOY EXAMPLES

We present experimental results on a 2D synthetic dataset consisting of class-labeled samples, designed to evaluate class-conditional OT. To assess the ability of the proposed class-conditional NCF variant to model class-guided transport, we compare it against an unconditional NCF, which does not utilize label information. Furthermore, to benchmark our method against existing approaches, we include NOT with general cost functionals (GNOT) (Asadulaev et al., 2024), a recent model designed to perform class-conditional OT.

Figure 3 presents results on a 2D Gaussian mixture dataset, where each data point is associated with a class label. The unconditional NCF, lacking access to label information, learns a global transport map that ignores class structure, aligning source and target points purely based on W^2 distance. In contrast, both GNOT and the proposed class-conditional NCF learn separate transport maps per class. However, GNOT exhibits intersecting transport paths between classes, suggesting suboptimality with respect to the transport cost. The class-conditional NCF effectively disentangles transport across classes and yields maps that closely approximate the optimal solutions. These results highlight the accuracy and effectiveness of our approach, grounded in a CODE-based formulation of the HJ equation, for learning class-conditional transport in structured settings.

456
457 Table 3: *Quantitative evaluation of color transfer*. Earth mover distance (EMD)
458 and histogram intersection (HI) between color distributions of target and transported images are reported.
459

Method	Winter-Summer EMD (↓)	HI (↑)	Monet-Photograph EMD (↓)	HI (↑)	Gogh-Photograph EMD (↓)	HI (↑)
HisMatching	0.0012	0.7296	0.0013	0.7532	0.0010	0.7668
Reinhard	0.0013	0.6255	0.0012	0.7255	0.0009	0.7406
NOT	0.0008	0.8002	0.0008	0.8210	0.0008	0.8247
MM-v1	0.0014	0.7295	0.0011	0.7722	0.0007	0.8265
MM:R	0.0015	0.6404	0.0013	0.6810	0.0018	0.6260
NCF	0.0005	0.8914	0.0004	0.9174	0.0003	0.9117



466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482 Figure 3: *2D class-conditional OT*. The leftmost column displays μ (red) and ν (blue), with class
483 labels indicated by distinct markers. In the remaining columns, blue dots denote transported samples,
484 while solid black and dotted gray lines represent the learned transport maps for each class.
485

6.2.2 MNIST & FASHION MNIST

486 We apply our model to the MNIST (LeCun, 1998) and Fashion MNIST (Xiao et al., 2017) datasets,
487 each comprising 10 classes. Given their substantially lower intrinsic dimensionality relative to the
488 ambient space (Pope et al., 2021), we solve class-conditional OT problems in latent spaces obtained
489 via β -VAEs (Higgins et al., 2017); see Appendix B.4 for details.

490 We consider transport from each Fashion MNIST class to its corresponding MNIST class; additional
491 class-conditional OT tasks on MNIST are provided in Appendix C.4. We compare against baselines
492 from Asadulaev et al. (2024), including NOT and GNOT, as well as a domain adaptation OT method
493 (Courty et al., 2016; Flamary et al., 2021) that uses discrete OT with label-supervised regularization.
494 Additionally, we evaluate unsupervised image translation methods AugCycleGAN (Almahairi et al.,
495 2018) and MUNIT (Huang et al., 2018).

496 Figure 4 shows bidirectional transported samples by NCF; uncurated results are in Appendix C.4.
497 These results qualitatively demonstrate NCF’s ability to perform bidirectional, class-conditional OT
498 on real images. For quantitative evaluation, we report Fréchet Inception Distance (FID) (Heusel
499 et al., 2017) and class-wise accuracy, which measures how well the class identity is preserved during
500 transport, in Table 4. Our method achieves the highest accuracy, indicating its strong class-aware
501 transport performance. Although the FID score is relatively high, this is largely due to the discrepancy
502 introduced by the VAE decoder. To isolate this effect, we compute the FID between the NCF
503 outputs and the VAE-decoded images. The resulting low score 2.73 indicates that the transport map
504 in the latent space faithfully reproduces the target distribution. This is further supported by the KDE
505 plots in Figure 15, showing close alignment between the transported and target latent distributions
506 along principal components.
507

508 7 CONCLUSION

509 We introduced a theoretically grounded OT framework that recovers forward and backward maps
510 in closed form via HJ characteristics. The resulting single-network, integration-free algorithm gives
511 accurate, bidirectional maps, supports a broad class of costs, and extends to class-conditional trans-

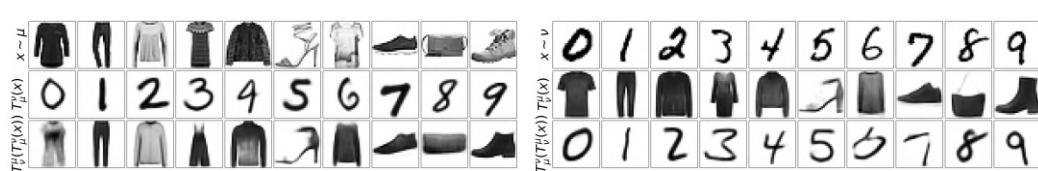


Figure 4: *Class-conditional OT between MNIST and Fashion MNIST.* **Left:** Transport Fashion MNIST data x forward $T^{\nu}_{\mu}[u_{\theta}](x)$ then backward $T^{\mu}_{\nu}[u_{\theta}](T^{\nu}_{\mu}[u_{\theta}](x))$. **Right:** Transport MNIST data x backward $T^{\mu}_{\nu}[u_{\theta}](x)$ then forward $T^{\nu}_{\mu}[u_{\theta}](T^{\mu}_{\nu}[u_{\theta}](x))$. The first row shows the source data, the second & third rows present the data being transported back and forth using the learned map.

Table 4: Comparison of the accuracy and FID scores for the forward class-conditioned maps (Fashion MNIST \rightarrow MNIST) learned using different methods. The accuracy and FID scores for the baseline methods are adopted from (Asadulaev et al., 2024).

Metric	NOT L^2 cost	GNOT Stochastic map	Discrete OT SinkhornLpL1	AugCycleGAN	MUNIT	NCF [Ours]
Accuracy(%) \uparrow	10.96	83.22	10.67	12.03	8.93	83.42
FID \downarrow	7.51	5.26	>100	26.35	7.91	18.27

port with pairwise MMD alignment. We establish consistency and stability. Several tasks including synthetic, color-transfer, and MNIST demonstrate accuracy and efficiency of our algorithm.

Future directions include improving high-dimensional performance beyond latent-space implementations by developing more efficient gradient evaluations and scalable network designs. Extending the stability analysis to general neural architectures would provide a deeper theoretical understanding of our method and its convergence behavior. Moreover, as demonstrated by our numerical experiments, the proposed NCF framework offers an accurate and computationally efficient approach for estimating class-conditioned transport maps. Exploring real-world applications in this direction—such as domain adaptation Nguyen et al. (2024), cross-domain retrieval Chuang et al. (2023), and biomedical conditional modeling Manupriya et al. (2024)—with a particular emphasis on pursuing improved semantic correctness, represents an important avenue for future research.

REFERENCES

Amjad Almahairi, Sai Rajeshwar, Alessandro Sordoni, Philip Bachman, and Aaron Courville. Augmented cyclegan: Learning many-to-many mappings from unpaired data. In *International conference on machine learning*, pp. 195–204. PMLR, 2018.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In *International conference on machine learning*, pp. 146–155. PMLR, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In *International conference on machine learning*, pp. 214–223. PMLR, 2017.

Arip Asadulaev, Alexander Korotin, Vage Egiazarian, Petr Mokrov, and Evgeny Burnaev. Neural optimal transport with general cost functionals. *International conference on learning representations*, 2024.

Julio Backhoff-Veraguas, Mathias Beiglböck, and Gudmun Pammer. Existence, duality, and cyclical monotonicity for weak transport costs. *Calculus of Variations and Partial Differential Equations*, 58(6):203, 2019.

Yogesh Balaji, Rama Chellappa, and Soheil Feizi. Robust optimal transport with applications in generative modeling and domain adaptation. *Advances in Neural Information Processing Systems*, 33:12934–12944, 2020.

Marc Barthélémy and Alessandro Flammini. Optimal traffic networks. *Journal of Statistical Mechanics: Theory and Experiment*, 2006(07):L07002, 2006.

Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the monge-kantorovich mass transfer problem. *Numerische Mathematik*, 84(3):375–393, 2000.

570 David Berthelot, Colin Raffel, Aurko Roy, and Ian Goodfellow. Understanding and improving
 571 interpolation in autoencoders via an adversarial regularizer. *arXiv preprint arXiv:1807.07543*,
 572 2018.

573 Rajendra Bhatia. *Matrix analysis*, volume 169. Springer Science & Business Media, 2013.

575 Gary Bradski and Adrian Kaehler. *Learning OpenCV: Computer vision with the OpenCV library.* ”
 576 O'Reilly Media, Inc.”, 2008.

577 Charlotte Bunne, Stefan G Stark, Gabriele Gut, Jacobo Sarabia Del Castillo, Mitch Levesque,
 578 Kjong-Van Lehmann, Lucas Pelkmans, Andreas Krause, and Gunnar Rätsch. Learning single-
 579 cell perturbation responses using neural optimal transport. *Nature methods*, 20(11):1759–1768,
 580 2023.

582 Guillaume Carlier, Cristian Jimenez, and Filippo Santambrogio. Optimal transportation with traffic
 583 congestion and wardrop equilibria. *SIAM Journal on Control and Optimization*, 47(3):1330–1350,
 584 2008.

585 Jaemoo Choi, Yongxin Chen, and Jaewoong Choi. Improving neural optimal transport via displace-
 586 ment interpolation. *arXiv preprint arXiv:2410.03783*, 2024.

587 Ching-Yao Chuang, Stefanie Jegelka, and David Alvarez-Melis. Infoot: Information maximizing
 588 optimal transport. In *International Conference on Machine Learning*, pp. 6228–6242. PMLR,
 589 2023.

591 Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for do-
 592 main adaptation. *IEEE transactions on pattern analysis and machine intelligence*, 39(9):1853–
 593 1865, 2016.

595 Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distribution
 596 optimal transportation for domain adaptation. *Advances in neural information processing systems*,
 597 30, 2017.

598 Bharath Bhushan Damodaran, Benjamin Kellenberger, Rémi Flamary, Devis Tuia, and Nicolas
 599 Courty. Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation.
 600 In *Proceedings of the European conference on computer vision (ECCV)*, pp. 447–463, 2018.

602 Max Daniels, Tyler Maunu, and Paul Hand. Score-based generative neural networks for large-scale
 603 optimal transport. *Advances in neural information processing systems*, 34:12955–12965, 2021.

604 Bogdan Danila, Yong Yu, John A Marsh, and Kevin E Bassler. Optimal transport on complex
 605 networks. *Physical Review E—Statistical, Nonlinear, and Soft Matter Physics*, 74(4):046106,
 606 2006.

607 Lawrence C Evans. *Partial differential equations*, volume 19. American Mathematical Society,
 608 2022.

610 Jiaojiao Fan, Qinsheng Zhang, Amirhossein Taghvaei, and Yongxin Chen. Variational wasserstein
 611 gradient flow. *International Conference on Machine Learning*, 2022.

612 Jiaojiao Fan, Shu Liu, Shaojun Ma, Hao-Min Zhou, and Yongxin Chen. Neural monge map estima-
 613 tion and its applications. *Transactions on Machine Learning Research*, 2023.

615 Xue Feng and Thomas Strohmer. Improving autoencoder image interpolation via dynamic optimal
 616 transport. *arXiv preprint arXiv:2404.08900*, 2024.

617 Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanis-
 618 las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
 619 Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
 620 Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and
 621 Titouan Vayer. Pot: Python optimal transport. *Journal of Machine Learning Research*, 22(78):
 622 1–8, 2021. URL <http://jmlr.org/papers/v22/20-451.html>.

623 Torres Fremlin. *Measure theory*, volume 4. Torres Fremlin, 2000.

625 Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for large-
 626 scale optimal transport. *Advances in neural information processing systems*, 29, 2016.

627 Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry P Vetrov, and Evgeny Burnaev.
 628 Entropic neural optimal transport via diffusion processes. *Advances in Neural Information Pro-*
 629 *cessing Systems*, 36:75517–75544, 2023.

630 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 631 nition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*
 632 (*CVPR*), June 2016.

633 Johannes Hertrich, Christian Wald, Fabian Altekrüger, and Paul Hagemann. Generative sliced mmd
 634 flows with riesz kernels. *International conference on learning representations*, 2024.

635 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 636 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
 637 *neural information processing systems*, 30, 2017.

638 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
 639 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
 640 constrained variational framework. In *International conference on learning representations*, 2017.

641 Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
 642 versal approximators. *Neural networks*, 2(5):359–366, 1989.

643 Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-
 644 image translation. In *Proceedings of the European conference on computer vision (ECCV)*, pp.
 645 172–189, 2018.

646 Guillaume Huguet, Daniel Sumner Magruder, Alexander Tong, Oluwadamilola Fasina, Manik
 647 Kuchroo, Guy Wolf, and Smita Krishnaswamy. Manifold interpolating optimal-transport flows
 648 for trajectory inference. *Advances in neural information processing systems*, 35:29705–29718,
 649 2022.

650 Leonid V Kantorovich. On the translocation of masses. *Journal of mathematical sciences*, 133(4),
 651 2006.

652 Diederik Kinga, Jimmy Ba Adam, et al. A method for stochastic optimization. *arXiv preprint*
 653 *arXiv:1412.6980*, 1412(6), 2014.

654 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

655 Alexander Korotin, Vage Egiazarian, Arip Asadulaev, Alexander Safin, and Evgeny Burnaev.
 656 Wasserstein-2 generative networks. *arXiv preprint arXiv:1909.13082*, 2019.

657 Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M Solomon, Alexander Filippov, and Evgeny
 658 Burnaev. Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark.
 659 *Advances in neural information processing systems*, 34:14593–14605, 2021a.

660 Alexander Korotin, Lingxiao Li, Justin Solomon, and Evgeny Burnaev. Continuous wasserstein-2
 661 barycenter estimation without minimax optimization. *arXiv preprint arXiv:2102.01752*, 2021b.

662 Alexander Korotin, Daniil Selikhanovich, and Evgeny Burnaev. Kernel neural optimal transport.
 663 *arXiv preprint arXiv:2205.15269*, 2022.

664 Alexander Korotin, Daniil Selikhanovich, and Evgeny Burnaev. Neural optimal transport. *Inter-
 665 national conference on learning representations*, 2023.

666 Takeshi Koshizuka and Issei Sato. Neural lagrangian schrödinger bridge: Diffusion modeling for
 667 population dynamics. *arXiv preprint arXiv:2204.04853*, 2022.

668 Yann LeCun. The mnist database of handwritten digits. <http://yann.lecun.com/exdb/mnist/>, 1998.

669 Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward net-
 670 works with a nonpolynomial activation function can approximate any function. *Neural networks*,
 671 6(6):861–867, 1993.

672 Alex Tong Lin, Samy Wu Fung, Wuchen Li, Levon Nurbekyan, and Stanley J Osher. Alternating the
 673 population and control neural networks to solve high-dimensional stochastic mean-field games.
 674 *Proceedings of the National Academy of Sciences*, 118(31):e2024713118, 2021.

684 Huidong Liu, Xianfeng Gu, and Dimitris Samaras. Wasserstein gan with quadratic transport cost.
 685 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4832–4841,
 686 2019.

687 Shu Liu, Shaojun Ma, Yongxin Chen, Hongyuan Zha, and Haomin Zhou. Learning high dimensional
 688 wasserstein geodesics. *arXiv preprint arXiv:2102.02992*, 2021.

689 Shu Liu, Stanley Osher, and Wuchen Li. A natural primal-dual hybrid gradient method for
 690 adversarial neural network training on solving partial differential equations. *arXiv preprint*
 691 *arXiv:2411.06278*, 2024.

692 Guansong Lu, Zhiming Zhou, Jian Shen, Cheng Chen, Weinan Zhang, and Yong Yu. Large-scale op-
 693 timal transport via adversarial training with cycle-consistency. *arXiv preprint arXiv:2003.06635*,
 694 2020.

695 Ashok Makkluva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee. Optimal transport mapping
 696 via input convex neural networks. In *International Conference on Machine Learning*, pp. 6672–
 697 6681. PMLR, 2020.

698 Piyushi Manupriya, Rachit K Das, Sayantan Biswas, and SakethaNath N Jagarlapudi. Consistent
 699 optimal transport with empirical conditional measures. In *International Conference on Artificial*
 700 *Intelligence and Statistics*, pp. 3646–3654. PMLR, 2024.

701 Tuan Nguyen, Van Nguyen, Trung Le, He Zhao, Quan Hung Tran, and Dinh Phung. A class-
 702 aware optimal transport approach with higher-order moment matching for unsupervised domain
 703 adaptation. *arXiv preprint arXiv:2401.15952*, 2024.

704 Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast and accurate continu-
 705 ous normalizing flows via optimal transport. In *Proceedings of the AAAI Conference on Artificial*
 706 *Intelligence*, volume 35, pp. 9223–9232, 2021.

707 Yesom Park and Stanley Osher. Neural implicit solution formula for efficiently solving hamilton-
 708 jacobi equations. 2025. URL <https://arxiv.org/abs/2501.19351>.

709 Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
 710 dimension of images and its impact on learning. *arXiv preprint arXiv:2104.08894*, 2021.

711 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 712 deep learning framework for solving forward and inverse problems involving nonlinear partial
 713 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

714 Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter Shirley. Color transfer between images.
 715 *IEEE Computer graphics and applications*, 21(5):34–41, 2001.

716 Maria L Rizzo and Gábor J Székely. Energy distance. *wiley interdisciplinary reviews: Computa-*
 717 *tional statistics*, 8(1):27–38, 2016.

718 Lars Ruthotto, Stanley J Osher, Wuchen Li, Levon Nurbekyan, and Samy Wu Fung. A machine
 719 learning framework for solving high-dimensional mean field game and mean field control prob-
 720 lems. *Proceedings of the National Academy of Sciences*, 117(17):9183–9193, 2020.

721 Maziar Sanjabi, Jimmy Ba, Meisam Razaviyayn, and Jason D Lee. On the convergence and ro-
 722 bustness of training gans with regularized optimal transport. *Advances in Neural Information*
 723 *Processing Systems*, 31, 2018.

724 Filippo Santambrogio. Optimal transport for applied mathematicians. *Birkhäuser, NY*, 55(58-63):94,
 725 2015.

726 Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh Solomon,
 727 Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, et al. Optimal-transport analysis of single-cell
 728 gene expression identifies developmental trajectories in reprogramming. *Cell*, 176(4):928–943,
 729 2019.

730 Vivien Seguy, Bharath Bhushan Damodaran, Rémi Flamary, Nicolas Courty, Antoine Rolet, and
 731 Mathieu Blondel. Large-scale optimal transport and mapping estimation. *arXiv preprint*
 732 *arXiv:1711.02283*, 2017.

741 Zebang Shen, Zhenfu Wang, Alejandro Ribeiro, and Hamed Hassani. Sinkhorn natural gradient for
742 generative models. *Advances in Neural Information Processing Systems*, 33:1646–1656, 2020.
743

744 Alexander J Smola, A Gretton, and K Borgwardt. Maximum mean discrepancy. In *13th international*
745 *conference, ICONIP*, volume 6, 2006.

746 Gábor J Székely and Maria L Rizzo. Energy statistics: A class of statistics based on distances.
747 *Journal of statistical planning and inference*, 143(8):1249–1272, 2013.
748

749 Amirhossein Taghvaei and Amin Jalali. 2-wasserstein approximation via restricted convex potentials
750 with application to improved training for gans. *arXiv preprint arXiv:1902.07197*, 2019.

751 Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. Trajectorynet:
752 A dynamic optimal transport network for modeling cellular dynamics. In *International conference*
753 *on machine learning*, pp. 9526–9536. PMLR, 2020.

754 Cédric Villani et al. *Optimal transport: old and new*, volume 338. Springer, 2008.
755

756 Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. Deep generative learning via
757 schrödinger bridge. In *International conference on machine learning*, pp. 10794–10804. PMLR,
758 2021.

759 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
760 ing machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.
761

762 Yujia Xie, Minshuo Chen, Haoming Jiang, Tuo Zhao, and Hongyuan Zha. On scalable and efficient
763 computation of large scale optimal transport. In *International Conference on Machine Learning*,
764 pp. 6882–6892. PMLR, 2019.

765 Liu Yang and George Em Karniadakis. Potential flow generator with l2 optimal transport regularity
766 for generative models. *IEEE Transactions on Neural Networks and Learning Systems*, 33(2):
767 528–538, 2020.

769 Benjamin J Zhang and Markos A Katsoulakis. A mean-field games laboratory for generative mod-
770 eling. *arXiv preprint arXiv:2304.13534*, 2023.

771 Jiaxi Zhao, Mo Zhou, Xinzhe Zuo, and Wuchen Li. Variational conditional normalizing flows for
772 computing second-order mean field control problems. *arXiv preprint arXiv:2503.19580*, 2025.
773

774 Mo Zhou, Stanley Osher, and Wuchen Li. Score-based neural ordinary differential equations for
775 computing mean field control problems. *arXiv preprint arXiv:2409.16471*, 2024.

776 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
777 using cycle-consistent adversarial networks. In *Proceedings of the IEEE international conference*
778 *on computer vision*, pp. 2223–2232, 2017.

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798 A PROOF
799800 A.1 PROOF OF PROPOSITION 4.2
801

802 Since ℓ is l.s.c., sub-differentiable, and strictly convex, its Legendre transform h is also l.s.c., sub-
803 differentiable, and strictly convex. For such a Hamiltonian h , it has been proven in (Park & Osher,
804 2025) that the viscosity solution satisfies the implicit solution formula (9) almost everywhere. Con-
805sequently, the optimal solution to these OT problem is characterized by the implicit solution formula.
806

807 A.2 PROOF OF THEOREM 5.1
808

809 **Lemma A.1.** *Suppose that μ, ν are probability distributions on \mathbb{R}^d . Suppose μ has finite second
810 order moment, i.e., $\int_{\mathbb{R}^d} \|x\|^2 d\mu(x) < \infty$. Assume that $\psi : \mathbb{R}^d \rightarrow \mathbb{R} \cup \{+\infty\}$ is convex and differ-
811 entiable μ -a.e. Set $T = \nabla\psi$ and suppose $\int_{\mathbb{R}^d} \|T(x)\|^2 d\mu(x) < +\infty$. Then T is optimal for the
812 transport cost $\frac{1}{2}\|x - y\|^2$ between μ and ν .*

813 This lemma is proved in Theorem 1.48 in Santambrogio (2015).
814

815 **Lemma A.2.** *Suppose $T : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is a bijective map on \mathbb{R}^d . Assume that T is strictly monotone,
816 that is, $\langle T(x) - T(y), x - y \rangle > 0$ for arbitrary $x, y \in \mathbb{R}^d$, $x \neq y$. Here, we denote $\langle \cdot, \cdot \rangle$ as the
817 ℓ^2 inner product on \mathbb{R}^d . Suppose $S : \mathbb{R}^d \rightarrow \mathbb{R}^d$ satisfies $S \circ T = \text{Id}$, then S is also bijective, and
818 strictly monotone.*

819
820 *Proof.* It is straightforward to verify that S is surjective and injective, and it is thus bijective. Now,
821 for arbitrary $x, y \in \mathbb{R}^d$, $x \neq y$, there exists unique $x', y' \in \mathbb{R}^d$, $x' \neq y'$, such that $x = T(x')$, $y =$
822 $T(y')$. Thus, we have $S(x) = S(T(x')) = x'$, $S(y) = S(T(y')) = y'$, and $\langle S(x) - S(y), x - y \rangle =$
823 $\langle x' - y', T(x') - T(y') \rangle > 0$. \square
824

825 For brevity, in the following discussion, we denote $C_{\text{loc}}^k(\mathbb{R}^d)$ by $C^k(\mathbb{R}^d)$ for any $k \in \mathbb{N}$. We denote
826 \mathbf{O}_d as the $d \times d$ zero matrix. For symmetric matrices $A, B \in \mathbb{R}^{d \times d}$, we denote $A \succ B$ if $A - B$ is
827 positive definite.
828

829 **Theorem A.3.** *Given the probability distributions $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ with $\int_{\mathbb{R}^d} \|x\|^2 d\mu, \int_{\mathbb{R}^d} \|x\|^2 d\nu <$
830 $+\infty$, suppose $u_0 \in C_{\text{loc}}^1(\mathbb{R}^d)$, $u_1 \in C_{\text{loc}}^2(\mathbb{R}^d)$, $\nabla u_1 \in L^2(\mathbb{R}^d, \mathbb{R}^d; \nu)$ satisfy*

$$831 \quad u_0(x - t_f \nabla u_1(x)) = u_1(x) - \frac{t_f}{2} \|\nabla u_1(x)\|^2, \quad \forall x \in \mathbb{R}^d. \quad (18)$$

832 Assume further that $(\text{Id} + t_f \nabla u_0(\cdot)) \sharp \mu = \nu$. If the mapping $\text{Id} - t_f \nabla u_1(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is bijective
833 and $\mathbf{I}_d - t_f \nabla^2 u_1(x) \succ \mathbf{O}_d$, then $\text{Id} + t_f \nabla u_0(\cdot)$ is the optimal transport from μ to ν , and $\text{Id} -$
834 $t_f \nabla u_1(\cdot)$ is the optimal transport map from ν to μ .
835

836 *Proof.* We split the proof into several steps:
837

838 **Step 1.** We first prove the fact that $\nabla u_0(x - t_f \nabla u_1(x, t)) = \nabla u_1(x)$ for arbitrary $x \in \mathbb{R}^d$. This
839 can be shown by taking gradient with respect to x on both sides of (18):
840

$$841 \quad (\mathbf{I}_d - t_f \nabla^2 u_1(x)) \nabla u_0(x - t_f \nabla u_1(x)) = \nabla u_1(x) - t_f \nabla^2 u_1(x) \nabla u_1(x).$$

842 Re-arrange this equation yields
843

$$844 \quad (\mathbf{I}_d - t_f \nabla^2 u_1(x)) (\nabla u_0(x - t_f \nabla u_1(x)) - \nabla u_1(x)) = 0.$$

845 As $\mathbf{I}_d - t_f \nabla^2 u_1(x) \succ \mathbf{O}_d$, we deduce that $\nabla u_0(x - t_f \nabla u_1(x)) = \nabla u_1(x)$ for arbitrary $x \in \mathbb{R}^d$.
846

847 **Step 2.** For the sake of brevity, we denote $T_0(\cdot) := \text{Id} + t_f \nabla u_0(\cdot)$, and $T_1(\cdot) := \text{Id} - t_f \nabla u_1(\cdot)$.
848 We prove that $T_0 \circ T_1 = \text{Id}$. This can be derived by straightforward calculation:
849

$$850 \quad T_0(T_1(x)) = T_1(x) + t_f \nabla u_0(T_1(x)) = x - t_f \nabla u_1(x) + t_f \nabla u_0(x - t_f \nabla u_1(x))$$

$$851 \quad = x + t_f (\nabla u_0(x - t_f \nabla u_1(x)) - \nabla u_1(x)) = x,$$

852 for any $x \in \mathbb{R}^d$.
853

855 **Step 3.** Before we prove the assertion, we show that $\int_{\mathbb{R}^d} \|T_0(x)\|^2 d\mu < +\infty$, $\int_{\mathbb{R}^d} \|T_1(x)\|^2 d\nu < +\infty$. The latter inequality can be shown using

$$\begin{aligned} 858 \quad \int_{\mathbb{R}^d} \|T_1(x)\|^2 d\nu &\leq 2 \left(\int_{\mathbb{R}^d} \|T_1(x) - x\|^2 d\nu + \int_{\mathbb{R}^d} \|x\|^2 d\nu \right) \\ 859 \quad &= 2(t_f^2 \|\nabla u_1\|_{L^2(\nu)}^2 + \int_{\mathbb{R}^d} \|x\|^2 d\nu) < +\infty. \end{aligned}$$

862 For the former inequality, we have

$$864 \quad \int_{\mathbb{R}^d} \|T_0(x)\|^2 d\mu \leq 2t_f^2 \int_{\mathbb{R}^d} \|\nabla u_0(x)\|^2 d\mu + 2 \int_{\mathbb{R}^d} \|x\|^2 d\mu.$$

867 Using the fact that $T_1\sharp\nu = \mu$, The first term above equals $\int_{\mathbb{R}^d} \|\nabla u_0(T_1(x))\|^2 d\nu =$
868 $\int_{\mathbb{R}^d} \|\nabla u_1(x)\|^2 d\nu = \|\nabla u_1\|_{L^2(\nu)}^2 < +\infty$, where we use the fact that $\nabla u_0(T_1(x)) = \nabla u_1(x)$
869 established in step 1. This accomplishes the proof for $\int_{\mathbb{R}^d} \|T_0(x)\|^2 d\mu < +\infty$.

870 **Step 4.** We now prove the conclusion. Firstly, recall that $DT_1(x) = \mathbf{I}_d - t_f \nabla^2 u_1(x) \succ \mathbf{O}_d$, this
871 leads to the fact that $T_1(\cdot)$ is strictly monotone. We now apply Lemma A.2 to show that T_0 is also
872 bijective, and strictly monotone.

873 T_0 is bijective suggests that $T_1(\cdot)$ is the inverse mapping of $T_0(\cdot)$, this leads to $T_1\sharp\nu = \mu$. As
874 $T_1(\cdot) = \nabla\varphi(\cdot)$ with $\varphi(\cdot) = \frac{\|\cdot\|^2}{2} - t_f u_1(\cdot)$ being convex, combining the fact established in step 3,
875 Lemma A.1 proves that T_1 is the optimal transport map from ν to μ .

877 Furthermore, T_0 is strictly monotone yields that $DT_0(x) = \mathbf{I}_d + t_f \nabla^2 u_0(x) \succ \mathbf{O}_d$, this indicates
878 that $T_0(\cdot) = \nabla\left(\frac{\|\cdot\|^2}{2} + t_f u_0(\cdot)\right)$ is the gradient of a convex function. Combining with the fact that
879 $T_0\sharp\mu = \nu$ and finite $L^2(\mu)$ cost for T_0 , we deduce that T_0 is the optimal transport map from μ to
880 ν . \square

882 Recall $\varrho \in \mathcal{P}(\mathbb{R}^d)$, and the implicit HJ loss $\mathcal{L}_{\text{HJ}}(u)$ defined in (13). The following Theorem is a
883 natural corollary of Theorem A.3.

885 **Theorem A.4** (Consistency result). *Suppose the probability distributions μ, ν possess finite second-order moments. Assume $u \in C_{\text{loc}}^1(\mathbb{R}^d \times [0, t_f])$, and define $u_1(\cdot) := u(\cdot, t_f) \in C^2(\mathbb{R}^d)$ with $\nabla u_1 \in L^2(\mathbb{R}^d, \mathbb{R}^d; \nu)$. Denote hyperparameter $\lambda > 0$. Assume that ϱ is a strictly positive probability measure on \mathbb{R}^d . Suppose that u minimizes the loss functional, i.e.,*

$$889 \quad \mathcal{L}_{\text{HJ}}(u) + \lambda \mathcal{L}_{\text{MMD}}(u) = 0.$$

891 Assume further that the map $T_\nu^\mu[u] : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is bijective and its Jacobian $D_x T_\nu^\mu[u](x) \succ \mathbf{O}_d$ for
892 any $x \in \mathbb{R}^d$. Then the maps $T_\nu^\mu[u]$ and $T_\mu^\nu[u]$ are the optimal transport maps from ν to μ and from
893 μ to ν , respectively.

894 *Proof.* Denote $E(x, t) = (u(x - t_f \nabla u(x, t_f), 0) - u(x, t_f) + \frac{t_f}{2} \|\nabla u(x, t_f)\|^2)^2$, we have $E \in$
895 $C(\mathbb{R}^d \times [0, t_f])$, and $E(x, t) \geq 0$ on $\mathbb{R}^d \times [0, t_f]$. Denote m as the Lebesgue measure on $[0, t_f]$.
896 Then we have

$$898 \quad \mathcal{L}_{\text{HJ}}(u) = \iint_{\mathbb{R}^d \times [0, t_f]} E(x, t) d\varrho dm = 0.$$

900 Tonelli's Theorem Fremlin (2000) leads to

$$901 \quad \int_{\mathbb{R}^d} \left(\int_0^{t_f} E(x, t) dt \right) d\varrho(x) = 0.$$

904 Now, Lemma A.6 indicates that $\phi(x) := \int_0^{t_f} E(x, t) dt$ is continuous on \mathbb{R}^d . And we have
905 $\int_{\mathbb{R}^d} \phi(x) d\varrho(x) = 0$. Lemma A.7 suggests that $\phi(x) = 0$, which is $\int_0^{t_f} E(x, t) dt = 0, \forall x \in \mathbb{R}^d$.
906 Using a similar argument as presented in the proof of Lemma A.7 shows $E(x, t) = 0$ for all
907 $x \in \mathbb{R}^d, t \in [0, t_f]$.

908 Now applying Theorem A.3 with $u_0 = u(\cdot, 0)$ and $u_1 = u(\cdot, t_f)$ proves the assertion. \square

910 **Remark A.5** (On the Monotonicity Condition). The monotonicity condition $D_x T_\nu^\mu[u] \succ \mathbf{O}_d$ is
911 closely related to the c -concavity of u_1 , which provides a sufficient condition in OT theory (Villani

et al., 2008; Santambrogio, 2015). In practice, our proposed method successfully computes the OT map for the benchmark problems even without explicitly enforcing this condition. Nonetheless, it remains an interesting direction for future research to investigate efficient strategies for enforcing monotonicity and to assess the potential benefits of doing so.

Lemma A.6. *Suppose $E \subset \mathbb{R}$ is compact. Assume that $f \in C(\mathbb{R}^d \times E)$, then $y(x) := \int_E f(x, t) dt$ is continuous with respect to variable x .*

Proof. Fix arbitrary $x \in \mathbb{R}^d$, pick an $r > 0$, we denote $B_x^r = \{y \mid \|y - x\| \leq r\}$. Since f is continuous on the compact set $B_x^r \times E$, we know that $|f|$ is bounded from above. We can then apply the dominated convergence theorem to show that $\lim_{z \rightarrow x} y(z) = \lim_{z \rightarrow x} \int_E f(z, t) dt = \int_E f(x, t) dt = y(x)$. Thus, y is continuous on \mathbb{R}^d . \square

Recall that a Borel measure σ on \mathbb{R}^d is strictly positive if $\sigma(B) > 0$ for any open set $B \subset \mathbb{R}^d$.

Lemma A.7. *Suppose $\sigma \in \mathcal{P}(\mathbb{R}^d)$ is strictly positive, assume $g : \mathbb{R}^d \rightarrow [0, +\infty)$ is continuous function. If $\int_{\mathbb{R}^d} g(x) d\sigma(x) = 0$, one has $g(x) = 0$ for any $x \in \mathbb{R}^d$.*

Proof. Suppose not true, we have a specific $x_0 \in \mathbb{R}^d$ such that $g(x_0) > 0$. Since g is continuous, one can find $\delta > 0$, such that $|g(x) - g(x_0)| < \frac{1}{2}g(x_0)$ for arbitrary $x \in B_{x_0}^\delta := \{x \mid \|x - x_0\| < \delta\}$.

Consider the indicator function $\chi_{B_{x_0}^\delta}(x) = \begin{cases} 1 & x \in B_{x_0}^\delta; \\ 0 & \text{otherwise,} \end{cases}$ one has $g(\cdot) \geq \frac{g(x_0)}{2}\chi_{B_{x_0}^\delta}(\cdot)$ on \mathbb{R}^d . This yields $\int_{\mathbb{R}^d} g(x) d\sigma(x) \geq \int_{\mathbb{R}^d} \frac{g(x_0)}{2}\chi_{B_{x_0}^\delta}(x) d\sigma(x) = \frac{g(x_0)\sigma(B_{x_0}^\delta)}{2} > 0$, where the last inequality is due to σ is strictly positive and the ball $B_{x_0}^\delta$ is an open set. This is a contradiction. \square

A.3 PROOF OF THEOREM 5.4

Without loss of generality, we we prove the theorem with $t_f = 1$. The proof can be generalized to arbitrary time horizon with no difficulty. We first state and prove two auxiliary lemmas.

Lemma A.8. *Let $f(t)$ be a bounded and Lipschitz function on $[0, 1]$. Then*

$$\|f\|_{L^\infty} \leq C \|f\|_{L^2}^{2/3}.$$

This C only depends on the bound and Lipschitz constant of f .

Proof. Let $K = \|f\|_{L^\infty}$, and L be the Lipschitz constant of f . We split into two cases.

Case 1. If $K \geq L$, then by the Lipschitz condition of f , we have

$$\int_0^1 f(t)^2 dt \geq \int_0^1 (K - Lt)^2 dt = K^2 - LK + \frac{1}{3}L^2 \geq \frac{1}{3}K^2.$$

Case 2. If $K < L$, since f is L -Lipschitz, $f(t)$ is non-zero for an interval of length at least K/L , and

$$\int_0^1 f(t)^2 dt \geq \int_0^{K/L} (K - Lt)^2 dt = \frac{K^3}{3L}.$$

In both cases, we can conclude that

$$\|f\|_{L^\infty} \leq C \|f\|_{L^2}^{2/3}.$$

\square

Next, we present a lemma that shows the stability of the MMD with respect to the mean and covariance of Gaussian distributions. The MMD with kernel $k(\mathbf{x}, \mathbf{y}) = -\|\mathbf{x} - \mathbf{y}\|$ is known as the energy distance, which is extensively studied in Székely & Rizzo (2013); Rizzo & Székely (2016).

Lemma A.9 (Stability of MMD on Gaussian). *Let $\mu \sim N(\mathbf{b}_\mu, \Sigma_\mu)$ and $\nu \sim N(\mathbf{b}_\nu, \Sigma_\nu)$ be two Gaussian distributions in \mathbb{R}^d , with $\|\mathbf{b}_\mu\|, \|\mathbf{b}_\nu\|, \|\Sigma_\mu\|_2, \|\Sigma_\nu\|_2 \leq K$. Then, there exists a constant C that only depends on d and K s.t.*

$$\|\mathbf{b}_\mu - \mathbf{b}_\nu\|^2 + \|\Sigma_\mu - \Sigma_\nu\|_2^2 \leq C \text{MMD}(\mu, \nu)^2. \quad (19)$$

969
970 **Remark A.10.** The boundedness assumption is necessary. As a counterexample, let $\mu \sim N(0, \sigma^2)$
971 and $\nu \sim N(1, \sigma^2)$. Let $\sigma^2 \rightarrow \infty$, $|b_\mu - b_\nu| = |0 - 1| = 1$ remains unchanged, while $\text{MMD}(\mu, \nu)$
972 converges to 0 (see (20)).

973 *Proof.* Throughout the proof, we will use the notations c and C to denote positive constants that
974 only depends on d and K . These constants may change from line to line. We start by recalling an
975 important result. Let $\phi_\mu(\mathbf{t}), \phi_\nu(\mathbf{t}) : \mathbb{R}^d \rightarrow \mathbb{R}$ be the characteristic functions of μ, ν

$$977 \quad \phi_j(\mathbf{t}) = \exp \left(i \mathbf{b}_j^\top \mathbf{t} - \frac{1}{2} \mathbf{t}^\top \Sigma_j \mathbf{t} \right) \quad (j = \mu, \nu).$$

979 Then (Székely & Rizzo, 2013, Proposition 1) establishes that

$$981 \quad \text{MMD}(\mu, \nu)^2 = \Gamma \left(\frac{d+1}{2} \right) \pi^{-\frac{d+1}{2}} \int_{\mathbb{R}^d} \frac{|\phi_\mu(\mathbf{t}) - \phi_\nu(\mathbf{t})|^2}{\|\mathbf{t}\|^{d+1}} d\mathbf{t}. \quad (20)$$

984 Next, we split into two steps and give bounds for the mean and covariance separately.

985 **Step 1.** We give bounds for the mean. For any given $\mathbf{t} \in \mathbb{R}^d$, the four complex numbers
986 $\exp(i \mathbf{b}_j^\top \mathbf{t} - \frac{1}{2} \mathbf{t}^\top \Sigma_k \mathbf{t})$ ($j, k = \mu, \nu$) forms a isosceles trapezoid in the complex domain. In an isosceles trapezoid,
987 the length of each diagonal is greater than or equal to the arithmetic mean of the
988 lengths of the two parallel sides. Therefore,

$$990 \quad |\phi_\mu(\mathbf{t}) - \phi_\nu(\mathbf{t})| = \left| \exp \left(i \mathbf{b}_\mu^\top \mathbf{t} - \frac{1}{2} \mathbf{t}^\top \Sigma_\mu \mathbf{t} \right) - \exp \left(i \mathbf{b}_\nu^\top \mathbf{t} - \frac{1}{2} \mathbf{t}^\top \Sigma_\nu \mathbf{t} \right) \right|$$

$$993 \quad \geq \frac{1}{2} \left[\exp \left(-\frac{1}{2} \mathbf{t}^\top \Sigma_\mu \mathbf{t} \right) + \exp \left(-\frac{1}{2} \mathbf{t}^\top \Sigma_\nu \mathbf{t} \right) \right] |1 - \exp(i(\mathbf{b}_\mu - \mathbf{b}_\nu)^\top \mathbf{t})|$$

$$995 \quad \geq \exp(-C \|\mathbf{t}\|^2) |1 - \cos((\mathbf{b}_\mu - \mathbf{b}_\nu)^\top \mathbf{t}) - i \sin((\mathbf{b}_\mu - \mathbf{b}_\nu)^\top \mathbf{t})|.$$

996 Substitute this estimation into (20), we obtain

$$998 \quad \text{MMD}(\mu, \nu)^2 \geq c \int_{\mathbb{R}^d} \frac{\exp(-C \|\mathbf{t}\|^2)}{\|\mathbf{t}\|^{d+1}} |1 - \cos((\mathbf{b}_\mu - \mathbf{b}_\nu)^\top \mathbf{t}) - i \sin((\mathbf{b}_\mu - \mathbf{b}_\nu)^\top \mathbf{t})|^2 d\mathbf{t}$$

$$1001 \quad = 4c \int_{\mathbb{R}^d} \frac{\exp(-C \|\mathbf{t}\|^2)}{\|\mathbf{t}\|^{d+1}} \sin^2 \left(\frac{1}{2} (\mathbf{b}_\mu - \mathbf{b}_\nu)^\top \mathbf{t} \right) d\mathbf{t}.$$

1003 Since $\|\mathbf{b}_\mu - \mathbf{b}_\nu\| \leq 2K$ is bounded, we can find $r > 0$ that only depends on K such that $\sin(x) \geq$
1004 $\frac{1}{2}x$ for all $x \in [0, \frac{1}{2} \|\mathbf{b}_\mu - \mathbf{b}_\nu\| r]$. Denote B_r the ball in \mathbb{R}^d centered at the origin with radius r . we
1005 have

$$1007 \quad \text{MMD}(\mu, \nu)^2 \geq c \int_{B_r} \frac{\exp(-C \|\mathbf{t}\|^2)}{\|\mathbf{t}\|^{d+1}} \sin^2 \left(\frac{1}{2} (\mathbf{b}_\mu - \mathbf{b}_\nu)^\top \mathbf{t} \right) d\mathbf{t}$$

$$1010 \quad \geq c \int_{B_r} \frac{\exp(-Cr^2)}{\|\mathbf{t}\|^{d+1}} \left(\frac{1}{2} (\mathbf{b}_\mu - \mathbf{b}_\nu)^\top \mathbf{t} \right)^2 d\mathbf{t}$$

$$1013 \quad \geq c \int_{B_r} \frac{1}{\|\mathbf{t}\|^{d+1}} |(\mathbf{b}_\mu - \mathbf{b}_\nu)^\top \mathbf{t}|^2 d\mathbf{t}.$$

1015 If we further restrict the 3D angle of \mathbf{t} in the set $\tilde{B}_r = \{\mathbf{t} \in B_r : |(\mathbf{b}_\mu - \mathbf{b}_\nu)^\top \mathbf{t}| \geq$
1016 $\frac{1}{2} \|\mathbf{b}_\mu - \mathbf{b}_\nu\| \|\mathbf{t}\|\}$, i.e., the angle between \mathbf{t} and $\mathbf{b}_\mu - \mathbf{b}_\nu$ is close to 0 or π . Then,

$$1018 \quad \text{MMD}(\mu, \nu)^2 \geq c \int_{\tilde{B}_r} \frac{1}{\|\mathbf{t}\|^{d+1}} |(\mathbf{b}_\mu - \mathbf{b}_\nu)^\top \mathbf{t}|^2 d\mathbf{t}$$

$$1021 \quad \geq \frac{1}{4} c \int_{\tilde{B}_r} \frac{1}{\|\mathbf{t}\|^{d-1}} \|\mathbf{b}_\mu - \mathbf{b}_\nu\|^2 d\mathbf{t} = c \|\mathbf{b}_\mu - \mathbf{b}_\nu\|^2.$$

1024 **Step 2.** We give bounds for the covariance. This time, we use the fact that the length of each
1025 diagonal in a isosceles trapezoid is greater than or equal to the length of either of the non-parallel

(equal) sides. This gives

$$\begin{aligned}
|\phi_\mu(\mathbf{t}) - \phi_\nu(\mathbf{t})| &= \left| \exp\left(i\mathbf{b}_\mu^\top \mathbf{t} - \frac{1}{2}\mathbf{t}^\top \Sigma_\mu \mathbf{t}\right) - \exp\left(i\mathbf{b}_\nu^\top \mathbf{t} - \frac{1}{2}\mathbf{t}^\top \Sigma_\nu \mathbf{t}\right) \right| \\
&\geq \left| \exp\left(-\frac{1}{2}\mathbf{t}^\top \Sigma_\mu \mathbf{t}\right) - \exp\left(-\frac{1}{2}\mathbf{t}^\top \Sigma_\nu \mathbf{t}\right) \right| \\
&= \exp\left(-\frac{1}{2}\mathbf{t}^\top \Sigma_\mu \mathbf{t}\right) \left| 1 - \exp\left(-\frac{1}{2}\mathbf{t}^\top (\Sigma_\nu - \Sigma_\mu) \mathbf{t}\right) \right| \\
&\geq \exp(-C\|\mathbf{t}\|^2) \left| -\frac{1}{2}\mathbf{t}^\top (\Sigma_\nu - \Sigma_\mu) \mathbf{t} \right|,
\end{aligned}$$

where we used $|1 - e^x| \geq |x|$ in the last inequality. Next, we diagonalize the symmetric matrix $\Sigma_\nu - \Sigma_\mu$ as $Q(\Sigma_\nu - \Sigma_\mu)Q^\top = \Lambda = \text{diag}(\lambda_j)_{j=1}^d$. Without loss of generality, we assume that $|\lambda_1| = \|\Sigma_\nu - \Sigma_\mu\|_2$. We denote $\mathbb{S}^{d-1} \subset \mathbb{R}^d$ the unit sphere in \mathbb{R}^d . Substituting the estimation above into (20), we get

$$\begin{aligned}
&\text{MMD}(\mu, \nu)^2 \\
&\geq c \int_{\mathbb{R}^d} \frac{\exp(-C\|\mathbf{t}\|^2)}{\|\mathbf{t}\|^{d+1}} (\mathbf{t}^\top (\Sigma_\nu - \Sigma_\mu) \mathbf{t})^2 d\mathbf{t} \\
&\geq c \int_{B_1} \frac{1}{\|\mathbf{t}\|^{d+1}} (\mathbf{t}^\top (\Sigma_\nu - \Sigma_\mu) \mathbf{t})^2 d\mathbf{t} \\
&= c \int_0^1 \int_{\mathbb{S}^{d-1}} R^{-d-1} R^4 (\mathbf{s}^\top (\Sigma_\nu - \Sigma_\mu) \mathbf{s})^2 R^{d-1} d\mathbf{s} dR \\
&= c \int_{\mathbb{S}^{d-1}} (\mathbf{s}^\top (\Sigma_\nu - \Sigma_\mu) \mathbf{s})^2 d\mathbf{s} = c \int_{\mathbb{S}^{d-1}} (\mathbf{s}^\top \Lambda \mathbf{s})^2 d\mathbf{s}.
\end{aligned}$$

We further pick a subset $\tilde{\mathbb{S}}^{d-1} = \{\mathbf{s} \in \mathbb{S}^{d-1} : |\mathbf{s}_1|^2 \geq \frac{2}{3}\}$ (i.e., points on the unit sphere with the first coordinate $\geq \frac{2}{3}$). For all $\mathbf{s} \in \tilde{\mathbb{S}}^{d-1}$

$$|\mathbf{s}^\top \Lambda \mathbf{s}| = \left| \sum_{j=1}^d \lambda_j \mathbf{s}_j^2 \right| \geq |\lambda_1| \mathbf{s}_1^2 - \sum_{j=2}^d |\lambda_j| \mathbf{s}_j^2 \geq \frac{1}{3} |\lambda_1|.$$

Therefore,

$$\text{MMD}(\mu, \nu)^2 \geq c \int_{\tilde{\mathbb{S}}^{d-1}} (\mathbf{s}^\top \Lambda \mathbf{s})^2 d\mathbf{s} \geq \frac{1}{9} c \int_{\tilde{\mathbb{S}}^{d-1}} \lambda_1^2 d\mathbf{s} = c \|\Sigma_\mu - \Sigma_\nu\|_2^2.$$

Finally, combining **Step 1** and **Step 2**, we reach the conclusion that

$$\|\mathbf{b}_\mu - \mathbf{b}_\nu\|^2 + \|\Sigma_\mu - \Sigma_\nu\|_2^2 \leq C \text{MMD}(\mu, \nu)^2.$$

□

Before proving Theorem 5.4, we clarify the result we need to show. The HJ equation is

$$\partial_t u(\mathbf{x}, t) + \frac{1}{2} |\nabla_x u(\mathbf{x}, t)|^2 = 0.$$

The optimal push forward map is $T^*(\mathbf{x}) = \mathbf{x} + \nabla_x u(\mathbf{x}, 0)$, which implies $\nabla_x u(\mathbf{x}, 0) = T^*(\mathbf{x}) - \mathbf{x}$. The optimal trajectory for OT has constant velocity, given by

$$\mathbf{x}_t = \mathbf{x} + t \nabla_x u(\mathbf{x}, 0) = \mathbf{x} - t(\mathbf{x} - T^*(\mathbf{x})).$$

Therefore, the optimal push forward map is

$$f(\mathbf{x}, t) = (1-t)\mathbf{x} + tT^*(\mathbf{x}) = ((1-t)I + At)\mathbf{x} + (\mathbf{b}_\nu - A\mathbf{b}_\mu)t.$$

Taking derivative in t , we get the optimal velocity in Lagrange coordinate

$$\begin{aligned}
\partial_t f(\mathbf{x}, t) &= -\mathbf{x} + T^*(\mathbf{x}) = \frac{1}{t}(f(\mathbf{x}, t) - \mathbf{x}) \\
&= \frac{1}{t} \left[f(\mathbf{x}, t) - ((1-t)I + At)^{-1} (f(\mathbf{x}, t) - (\mathbf{b}_\nu - A\mathbf{b}_\mu)t) \right] \\
&= (I + t(A - I))^{-1} ((A - I)f(\mathbf{x}, t) + \mathbf{b}_\nu - A\mathbf{b}_\mu).
\end{aligned}$$

1083 Therefore, the optimal velocity field in Eulerian coordinate is
 1084

$$1085 \nabla_x u(\mathbf{x}, t) = v(\mathbf{x}, t) = (I + t(A - I))^{-1} ((A - I)\mathbf{x} + \mathbf{b}_\nu - A\mathbf{b}_\mu). \quad (21)$$

1087 The most important challenge for convergence analysis is the term $u_\theta(\mathbf{x} - t\nabla_x u_\theta(\mathbf{x}, t), 0)$ in the
 1088 HJ loss, which contains the composition of the u . In order to address this issue, we consider the
 1089 quadratic parametrization

$$1090 \quad 1091 u_\theta(\mathbf{x}, t) = - \left(\frac{1}{2} \mathbf{x}^\top \theta_2(t) \mathbf{x} + \theta_1(t)^\top \mathbf{x} + \theta_0(t) \right) \quad (22)$$

1093 where $\theta = [\theta_2(\cdot), \theta_1(\cdot), \theta_0(\cdot)] : [0, t_f] \rightarrow \mathbb{R}_{\text{sym}}^{d \times d} \times \mathbb{R}^d \times \mathbb{R}$ is bounded and Lipschitz. According
 1094 to (21), the optimal $\theta_2^*(t)$ and $\theta_1^*(t)$ are uniquely determined, and the optimal $\theta_0^*(t)$ is uniquely
 1095 determine up to an additive constant.

$$1096 \quad 1097 \theta_2^*(t) = ((1-t)I + At)^{-1} (I - A) \\ 1098 \quad 1099 \theta_1^*(t) = ((1-t)I + At)^{-1} (A\mathbf{b}_\mu - \mathbf{b}_\nu) \\ 1100 \quad 1101 \theta_0^*(t) = \theta_0^*(0) + \frac{t}{2} (\mathbf{b}_\nu - A\mathbf{b}_\mu)^\top ((1-t)I + At)^{-1} (\mathbf{b}_\nu - A\mathbf{b}_\mu) \quad (23)$$

1102 Now we are ready to prove Theorem 5.4. We denote $D = [-1, 1]^d$. Throughout the proof, we will
 1103 set $\varrho = 2^{-d} \mathbb{1}_D$ and the time domain is $[0, t_f] = [0, 1]$, which coincide with our numerical imple-
 1104 mentation. The proof can be extended to general domain without essential difficulty. Throughout
 1105 the proof, when we say a function is bounded and Lipschitz continuous, we mean the bound and
 1106 Lipschitz constant only depends on d , λ_A , and K . We will use C to denote an absolute constant that
 1107 only depends on d , λ_A , and K . The value of C may change from line to line.

1108 *Proof for theorem 5.4.* We only need to show (16) when \mathcal{L}_{HJ} and \mathcal{L}_{MMD} are sufficiently small. The
 1109 proof consists of four steps.

1111 **Step 1.** We analyze the MMD loss in this step. Recall the MMD loss is

$$1114 \quad 1115 \mathcal{L}_{\text{MMD}} = \int_{\Omega} k(\mathbf{x}, \mathbf{y}) d((\text{Id} + \nabla_x u_\theta(\cdot, 0))_\# \mu - \nu)(\mathbf{x}) d((\text{Id} + \nabla_x u_\theta(\cdot, 0))_\# \mu - \nu)(\mathbf{y}).$$

1116 Under with the parametrization (22), the MMD loss is between

$$1117 \quad 1118 (\text{Id} + \nabla_x u(\cdot, 0))_\# \mu = N((I - \theta_2(0))\mathbf{b}_\mu - \theta_1(0), (I - \theta_2(0))\Sigma_\mu(I - \theta_2(0))) =: N(\mathbf{b}'_\mu, \Sigma'_\mu)$$

1119 and $\nu = N(\mathbf{b}_\nu, \Sigma_\nu)$. By Lemma A.9, we have

$$1120 \quad 1121 \|\mathbf{b}'_\mu - \mathbf{b}_\nu\|^2 + \|\Sigma'_\mu - \Sigma_\nu\|_2^2 \leq C \mathcal{L}_{\text{MMD}} \quad (24)$$

1122 Multiplying $\Sigma_\mu^{\frac{1}{2}}$ on both sides for the covariance, we get

$$1124 \quad 1125 \left\| \left(\Sigma_\mu^{\frac{1}{2}} (I - \theta_2(0)) \Sigma_\mu^{\frac{1}{2}} \right)^2 - \Sigma_\mu^{\frac{1}{2}} \Sigma_\nu \Sigma_\mu^{\frac{1}{2}} \right\|_2 \leq C \mathcal{L}_{\text{MMD}}^{\frac{1}{2}}.$$

1127 By the $\frac{1}{2}$ -Hölder continuity of matrix square root in operator norm (Bhatia, 2013, Theorem X.1.1)
 1128 $(\|A^{\frac{1}{2}} - B^{\frac{1}{2}}\|_2 \leq \|A - B\|_2^{\frac{1}{2}}$ for any symmetric positive definite matrix A, B), we have
 1129

$$1130 \quad 1131 \left\| \left[\left(\Sigma_\mu^{\frac{1}{2}} (I - \theta_2(0)) \Sigma_\mu^{\frac{1}{2}} \right)^2 \right]^{\frac{1}{2}} - \left(\Sigma_\mu^{\frac{1}{2}} \Sigma_\nu \Sigma_\mu^{\frac{1}{2}} \right)^{\frac{1}{2}} \right\|_2 \leq C \mathcal{L}_{\text{MMD}}^{\frac{1}{4}}. \quad (25)$$

1134 Next, we diagonalize $\theta_2(t)$. Since $\theta_2(t) \in \mathbb{R}^{d \times d}$ is symmetric, we can find unitary matrix $Q(t)$ and
 1135 diagonal matrix $\Lambda(t) = \text{diag}(\{\lambda_i(t)\}_{i=1}^d)$ s.t.

$$1136 \quad 1137 \theta_2(t) = Q(t) \Lambda(t) Q(t)^\top,$$

1138 and $\lambda_1(0) \geq \dots \geq \lambda_d(0)$. The column vectors of $Q(t)$ are the orthonormal eigenvectors of $\theta_2(t)$.
 1139 Since $\theta_2(t)$ is bounded and Lipschitz continuous in t , its eigenvalues and eigenvectors are also

1140 bounded and Lipschitz continuous in t by Weyl's inequality. $Q(t)$ is uniquely defined up to a sign
 1141 shift for each column. Then $I - \theta_2(0) = Q(0)(I - \Lambda(0))Q(0)^\top$.

1142 Next, we define a notation of “absolute value” for symmetric matrices. Given a symmetric matrix,
 1143 we diagonalize it through unitary transform, take absolute value of the diagonal element, and then
 1144 apply the inverse unitary transform back. As a result, $|I - \Lambda(t)| = \text{diag}(\{|1 - \lambda_i(t)|\}_{i=1}^d)$ and
 1145 $|I - \theta_2(0)| = Q(0)|I - \Lambda(t)|Q(0)^\top$, then we have

$$1147 \left[\left(\Sigma_\mu^{\frac{1}{2}}(I - \theta_2(0))\Sigma_\mu^{\frac{1}{2}} \right)^2 \right]^{\frac{1}{2}} = \Sigma_\mu^{\frac{1}{2}}|I - \theta_2(0)|\Sigma_\mu^{\frac{1}{2}}.$$

1150 Here, we remark that while $Q(t)$ is not uniquely defined, the “absolute value” $|I - \theta_2(0)|$ is uniquely
 1151 defined given $\theta_2(0)$. Plugging this expression into (25), we get

$$1152 \left\| \Sigma_\mu^{\frac{1}{2}}|I - \theta_2(0)|\Sigma_\mu^{\frac{1}{2}} - \left(\Sigma_\mu^{\frac{1}{2}}\Sigma_\nu\Sigma_\mu^{\frac{1}{2}} \right)^{\frac{1}{2}} \right\|_2 \leq C\mathcal{L}_{\text{MMD}}^{\frac{1}{4}}.$$

1155 Multiplying $\Sigma_\mu^{-\frac{1}{2}}$ on both sides, we get

$$1157 \left\| |I - \theta_2(0)| - A \right\|_2 \leq C\mathcal{L}_{\text{MMD}}^{\frac{1}{4}}, \quad (26)$$

1159 which implies

$$1160 \left\| |I - \Lambda(0)| - Q(0)AQ(0)^\top \right\|_2 \leq C\mathcal{L}_{\text{MMD}}^{\frac{1}{4}}. \quad (27)$$

1161 Therefore, the off diagonal elements of $(Q(0)AQ(0)^\top)_{ij}$ ($i \neq j$) and diagonal elements
 1162 $(Q(0)AQ(0)^\top)_{ii}$ satisfy

$$1164 |(Q(0)AQ(0)^\top)_{ij}|, |(Q(0)AQ(0)^\top)_{ii} - |1 - \lambda_i(0)|| \leq C_1\mathcal{L}_{\text{MMD}}^{\frac{1}{4}}.$$

1165 Here, we add a subscript 1 in the constant C_1 in order to keep track of this constant. Later, whenever
 1166 we use C_1 , it means this fixed constant that does not change from line to line.

1168 We remark that there are 2^d choices of $\theta_2(0)$ such that $(I - \theta_2(0))\Sigma_\mu(I - \theta_2(0)) = \Sigma_\nu$ through
 1169 letting $1 - \lambda_i(0) = \pm\lambda_i^A$ ($i = 1, \dots, d$), where λ_i^A is the i -th eigenvalue of A . All these choices
 1170 gives a push forward map that transport μ to ν (if we set $\theta_1(0) = (I - \theta_2(0))\mathbf{b}_\mu - \mathbf{b}_\nu$). However,
 1171 only $\theta_2(0) = I - A$ gives the OT map. The MMD loss \mathcal{L}_{MMD} cannot distinguish these choices, so
 1172 the HJ loss \mathcal{L}_{HJ} is necessary.

1173 **Step 2.** We analyze the implicit HJ loss in this step. Under the parametrization (22), the HJ loss is
 1174

$$1175 \mathcal{L}_{\text{HJ}} = \int_0^1 \int_\Omega \left[\frac{1}{2} \mathbf{x}^\top \theta_2(t) \mathbf{x} + \mathbf{x}^\top \theta_1(t) + \theta_0(t) + \frac{t}{2} (\theta_2(t) \mathbf{x} + \theta_1(t))^\top (\theta_2(t) \mathbf{x} + \theta_1(t)) \right. \\ 1176 \left. - \frac{1}{2} (\mathbf{x} + t(\theta_2(t) \mathbf{x} + \theta_1(t)))^\top \theta_2(0) (\mathbf{x} + t(\theta_2(t) \mathbf{x} + \theta_1(t))) \right. \\ 1177 \left. - \theta_1(0)^\top (\mathbf{x} + t(\theta_2(t) \mathbf{x} + \theta_1(t))) - \theta_0(0) \right]^2 \varrho(\mathbf{x}) \, d\mathbf{x} \, dt.$$

1182 Reorganizing the terms, we have

$$1183 \mathcal{L}_{\text{HJ}} = \int_0^1 \int_\Omega \left[\frac{1}{2} \mathbf{x}^\top (\theta_2(t) + t\theta_2(t)^2 - (I + t\theta_2(t))\theta_2(0)(I + t\theta_2(t))) \mathbf{x} \right. \\ 1184 \left. + \mathbf{x}^\top (I + t\theta_2(t)) (\theta_1(t) - t\theta_2(0)\theta_1(t) - \theta_1(0)) \right. \\ 1185 \left. + \left(\theta_0(t) + \frac{t}{2} \theta_1(t)^\top \theta_1(t) - \frac{t^2}{2} \theta_1(t)^\top \theta_2(0)\theta_1(t) - t\theta_1(t)^\top \theta_1(0) - \theta_0(0) \right) \right]^2 \varrho(\mathbf{x}) \, d\mathbf{x} \, dt. \\ 1186 \\ 1187 \\ 1188 \\ 1189 \\ 1190 \\ 1191$$

1192 We observe that $\Gamma_2(t)$ is symmetric. The integration in \mathbf{x} for the loss can be computed directly. The
 1193 zero-th to third order integration in \mathbf{x} can be easily obtained by symmetry (recall $\varrho(\mathbf{x}) = 2^{-d}\mathbb{1}_D(\mathbf{x})$
 1194 and $D = [-1, 1]^d$)

$$1195 \int_D (1, x_i, x_i x_j, x_i x_j x_k) \, d\mathbf{x} = \left(2^d, 0, \frac{2^d \delta_{ij}}{3}, 0 \right).$$

1197 In order to compute the fourth order integration in \mathbf{x} , we temporally denote $\Gamma_2(t)$ by Γ for notational
 1198 simplicity and compute the integration $\int_D (\mathbf{x}^\top \Gamma \mathbf{x})^2 d\mathbf{x}$. Expanding everything, the integration is
 1199

$$1200 \int_D (\mathbf{x}^\top \Gamma \mathbf{x})^2 d\mathbf{x} = \sum_{i,j,k,l=1}^d \Gamma_{ij} \Gamma_{kl} \int_D x_i x_j x_k x_l d\mathbf{x}.$$

$$1201$$

$$1202$$

1203 All the non-zero terms in the form $\Gamma_{ij} \Gamma_{kl} \int_D x_i x_j x_k x_l d\mathbf{x}$ can be categorized into 4 cases.
 1204

- 1205 1. $i = j = k = l$. The integration is $\Gamma_{ii}^2 \int_D x_i^4 d\mathbf{x} = \frac{2^d}{5} \Gamma_{ii}^2$.
- 1206 2. $i = j \neq k = l$. The integration is $\Gamma_{ii} \Gamma_{kk} \int_D x_i^2 x_k^2 d\mathbf{x} = \frac{2^d}{9} \Gamma_{ii} \Gamma_{kk}$.
- 1207 3. $i = k \neq j = l$. The integration is $\Gamma_{ij}^2 \int_D x_i^2 x_j^2 d\mathbf{x} = \frac{2^d}{9} \Gamma_{ij}^2$.
- 1208 4. $i = l \neq j = k$. The integration is $\Gamma_{ij} \Gamma_{ji} \int_D x_i^2 x_j^2 d\mathbf{x} = \frac{2^d}{9} \Gamma_{ij} \Gamma_{ji} = \frac{2^d}{9} \Gamma_{ij}^2$.

$$1209$$

$$1210$$

$$1211$$

$$1212$$

$$1213$$

1214 Summing them together, we have

$$1215 \int_D (\mathbf{x}^\top \Gamma \mathbf{x})^2 d\mathbf{x} = 2^d \left[\sum_{i=1}^d \frac{1}{5} \Gamma_{ii}^2 + \sum_{i \neq j} \left(\frac{1}{9} \Gamma_{ii} \Gamma_{jj} + \frac{2}{9} \Gamma_{ij}^2 \right) \right].$$

$$1216$$

$$1217$$

$$1218$$

1219 Therefore, after integration in \mathbf{x} , the implicit HJ loss becomes
 1220

$$1221 \mathcal{L}_{\text{HJ}} = \int_0^1 \left[\frac{1}{4} \sum_{i=1}^d \frac{1}{5} \Gamma_2(t)_{ii}^2 + \frac{1}{4} \sum_{i \neq j} \left(\frac{1}{9} \Gamma_2(t)_{ii} \Gamma_2(t)_{jj} + \frac{2}{9} \Gamma_2(t)_{ij}^2 \right) \right. \\ 1222 \quad \left. + \frac{1}{3} \text{Tr}(\Gamma_2(t)) \Gamma_0(t) + \frac{1}{3} \|\Gamma_1(t)\|^2 + \Gamma_0(t)^2 \right] dt \\ 1223 \\ 1224 = \int_0^1 \left[\frac{1}{45} \sum_{i=1}^d \Gamma_2(t)_{ii}^2 + \frac{1}{18} \sum_{i \neq j} \Gamma_2(t)_{ji}^2 + \frac{1}{3} \|\Gamma_1(t)\|^2 + \left(\frac{1}{6} \text{Tr}(\Gamma_2(t)) + \Gamma_0(t) \right)^2 \right] dt \\ 1225 \\ 1226 \geq \int_0^1 \left[\frac{1}{45} \|\Gamma_2(t)\|_F^2 + \frac{1}{3} \|\Gamma_1(t)\|^2 + \left(\frac{1}{6} \text{Tr}(\Gamma_2(t)) + \Gamma_0(t) \right)^2 \right] dt$$

$$1227$$

$$1228$$

$$1229$$

$$1230$$

$$1231$$

1232 Therefore,
 1233

$$1234 \int_0^1 \left(\|\Gamma_2(t)\|_F^2 + \|\Gamma_1(t)\|^2 + \Gamma_0(t)^2 \right) dt \leq C \mathcal{L}_{\text{HJ}}.$$

$$1235$$

1236 Therefore, by Lemma A.8, we have
 1237

$$1238 \max_t \|\Gamma_2(t)\|_F + \max_t \|\Gamma_1(t)\| + \max_t |\Gamma_0(t)| \leq C_2 \mathcal{L}_{\text{HJ}}^{\frac{1}{3}}. \quad (28)$$

$$1239$$

1240 Here, C_2 also does not change from line to line.
 1241

1242 **Step 3.** In this step, we show that $\theta_2(0)$ must be close to $\theta_2^*(0) = I - A$, provided that $\|\Gamma_2(t)\|_F$ is
 1243 sufficiently small. Since A has minimum eigenvalue $\lambda_A > 0$, $(Q(0)AQ(0)^\top)_{ii} \geq \lambda_A \geq C_1 \mathcal{L}_{\text{MMD}}^{\frac{1}{4}}$,
 1244 where the last inequality is because \mathcal{L}_{MMD} is sufficiently small. We recall that in **Step 1**, we showed
 1245 for any $i = 1, \dots, d$

$$1246 \left| (Q(0)AQ(0)^\top)_{ii} - |1 - \lambda_i(0)| \right| \leq C_1 \mathcal{L}_{\text{MMD}}^{\frac{1}{4}}.$$

$$1247$$

1248 We want to show that,

$$1249 \left| (Q(0)AQ(0)^\top)_{ii} - (1 - \lambda_i(0)) \right| \leq C_1 \mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \quad (29)$$

$$1250$$

1251 for all i . I.e., we want to show $1 - \lambda_i(0) \geq 0$ and
 1252

$$1253 \lambda_i(0) \in \left[1 - (Q(0)AQ(0)^\top)_{ii} - C_1 \mathcal{L}_{\text{MMD}}^{\frac{1}{4}}, 1 - (Q(0)AQ(0)^\top)_{ii} + C_1 \mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \right]$$

$$1254$$

for all i . In order to show this, we assume to the contrary that $\lambda_1(0) > 1$ (recall $\lambda_1(0) \geq \dots \geq \lambda_d(0)$) and

$$\lambda_1(0) \in \left[1 + (Q(0)AQ(0)^\top)_{11} - C_1 \mathcal{L}_{\text{MMD}}^{\frac{1}{4}}, 1 + (Q(0)AQ(0)^\top)_{11} + C_1 \mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \right] \quad (30)$$

We will derive a contradiction. We denote $\tilde{u}_2(t) := Q(t)^\top \theta_2(0)Q(t)$. Since unitary transform does not change Frobenius norm,

$$\begin{aligned} Q(t)^\top \Gamma_2(t)Q(t) &= \Lambda(t) + t\Lambda(t)^2 - (I + t\Lambda(t))(Q(t)^\top \theta_2(0)Q(t))(I + t\Lambda(t)) \\ &= \Lambda(t) + t\Lambda(t)^2 - (I + t\Lambda(t))\tilde{u}_2(t)(I + t\Lambda(t)) \end{aligned} \quad (31)$$

shares the same estimation as (28). Let $\{\tau_i(t)\}_{i=1}^d$ be the diagonal element of $\tilde{u}_2(t) = Q(t)^\top \theta_2(0)Q(t)$. Since $Q(t)$ is bounded and Lipschitz continuous, $\tilde{u}_2(t)$ and $\tau_i(t)$ are also bounded and Lipschitz continuous. We will also use K to denote their bound and Lipschitz constant. Since $\lambda_1(0) > 1$ is an eigenvalue of $\theta_2(0)$ and hence also an eigenvalue of $\tilde{u}_2(t)$, we have

$$\max_i \tau_i(t) > 1 \quad \forall t \in [0, 1].$$

Next, we focus on the diagonal elements of $Q(t)^\top \Gamma_2(t)Q(t)$. Since

$$\|Q(t)^\top \Gamma_2(t)Q(t)\|_F \leq C_2 \mathcal{L}_{\text{HJ}}^{\frac{1}{3}}, \quad (32)$$

its i -th diagonal element (recall (31))

$$\begin{aligned} &\lambda_i(t) + t\lambda_i(t)^2 - (1 + t\lambda_i(t))^2 \tau_i(t) \\ &= (1 + t\lambda_i(t)) [\lambda_i(t) - (1 + t\lambda_i(t)) \tau_i(t)] \\ &= (1 + t\lambda_i(t)) [(1 - t\tau_i(t)) \lambda_i(t) - \tau_i(t)] \end{aligned}$$

also satisfies

$$|(1 + t\lambda_i(t)) [(1 - t\tau_i(t)) \lambda_i(t) - \tau_i(t)]| \leq C_2 \mathcal{L}_{\text{HJ}}^{\frac{1}{3}} \quad (33)$$

for all $t \in [0, 1]$, where recall that $\lambda_i(t)$ is the i -th diagonal element for $\Lambda(t) = Q(t)^\top \theta_2(t)Q(t)$, and $\tau_i(t)$ is the i -th diagonal element for $\tilde{u}_2(t) = Q(t)^\top \theta_2(0)Q(t)$.

The rest of the proof for deriving a contradiction to (30) is technical, so we explain the main idea first. In order that $|(1 + t\lambda_i(t)) [(1 - t\tau_i(t)) \lambda_i(t) - \tau_i(t)]|$ is small for all $t \in [0, 1]$, either of the following must hold

1. $1 + t\lambda_i(t) \approx 0$, which implies $\lambda_i(t) \approx -\frac{1}{t}$
2. $(1 - t\tau_i(t)) \lambda_i(t) - \tau_i(t) \approx 0$, which implies $\lambda_i(t) \approx \frac{\tau_i(t)}{1 - t\tau_i(t)} = \frac{1}{t} \frac{1}{1 - t\tau_i(t)} - \frac{1}{t}$. (At $t = 0$ the function is $\tau_i(t)$.)

When $t \rightarrow 0^+$, $-\frac{1}{t}$ blows up and we cannot have $1 + t\lambda_i(t) \approx 0$.

Since $\max_i \tau_i(t) > 1$, we know from intermediate value theorem that there exists at least one index

i and $t_i \in (0, 1)$ s.t. $1 - t_i \tau_i(t_i) = 0$. This implies that the function $\frac{\tau_i(t)}{1 - t\tau_i(t)}$ blows up as $t \rightarrow t_i$.

As a result, in order that $|(1 + t\lambda_i(t)) [(1 - t\tau_i(t)) \lambda_i(t) - \tau_i(t)]|$ is small for all $t \in [0, 1]$, there has to be some ‘‘shift’’ between two functions: $\lambda_i(t)$ is sometimes close to $-\frac{1}{t}$ and sometimes close to

$\frac{\tau_i(t)}{1 - t\tau_i(t)} = \frac{1}{t} \frac{1}{1 - t\tau_i(t)} - \frac{1}{t}$. However, note that the difference between the two functions $-\frac{1}{t}$ and $\frac{1}{t} \frac{1}{1 - t\tau_i(t)} - \frac{1}{t}$ has a positive lower bound

$$\left| \frac{1}{t} \frac{1}{1 - t\tau_i(t)} \right| \geq \left| \frac{1}{1 - t\tau_i(t)} \right| \geq \left| \frac{1}{t\tau_i(t)} \right| \geq \left| \frac{1}{\tau_i(t)} \right| \geq \frac{1}{\|A + I\|_2 + C_1 \mathcal{L}_{\text{MMD}}^{\frac{1}{4}}}. \quad (34)$$

Therefore, for some t in the middle, both $|\lambda_i(t) + \frac{1}{t}|$ and $|\lambda_i(t) - \frac{\tau_i(t)}{1 - t\tau_i(t)}|$ are larger than

$$\frac{1}{2(\|A + I\|_2 + C_1 \mathcal{L}_{\text{MMD}}^{\frac{1}{4}})}$$

1311 Next, we give a rigorous proof for this contradiction. Let
 1312

$$1313 t^* = \inf \{t \in [0, 1] : 1 - t\tau_i(t) = 0 \text{ for some } i\}.$$

1314 Note that the set above is non-empty because $\max_i \tau_i(t) > 1$ for all $t \in [0, 1]$. If we do not have the
 1315 assumption $\lambda_1(0) > 1$, then $\tau_i(t) < 1$ may not be well-defined. By definition of t^* , we can find an
 1316 index j such that $1 - t^*\tau_j(t^*) = 0$. Therefore, $\tau_j(t^*) \geq 1$. Let $t_0 = \frac{1}{3K}$, then for $t \in [0, t_0]$, we
 1317 have
 1318

$$1319 |1 + t\lambda_j(t)| \geq 1 - t_0 K = \frac{2}{3}. \quad (35)$$

1320 Let $t_1 = t^* - \Delta t$, where $\Delta t = \frac{1}{2K(1+2K)}$ then for all $t \in [t_1, t^*]$, we have
 1321

$$\begin{aligned} 1322 |(1 - t\tau_j(t))\lambda_j(t) - \tau_j(t)| &\geq |\tau_j(t)| - |1 - t\tau_j(t)| |\lambda_j(t)| \\ 1323 &\geq |\tau_j(t^*)| - K|t - t^*| - |1 - t\tau_j(t)| K \\ 1324 &\geq 1 - K\Delta t - K(|1 + t^*\tau_j(t^*)| + |t^*\tau_j(t^*) - t\tau_j(t)|) \\ 1325 &\geq 1 - K\Delta t - K(0 + 2K|t - t^*|) \geq 1 - \Delta t K(2K + 1) = \frac{1}{2}. \end{aligned} \quad (36)$$

1326 If $t_0 \geq t_1$, we pick $t \in [t_1, t_0]$ and then multiply (35) and (36), we reach a contradiction with (33).
 1327 If $t_0 < t_1$, then we consider the behavior of
 1328

$$(1 + t\lambda_j(t)) [(1 - t\tau_j(t))\lambda_j(t) - \tau_j(t)].$$

1329 When $t \in [0, t_0]$, $\lambda_j(t)$ is close to $\frac{\tau_j(t)}{1 - t\tau_j(t)}$ because (35) and (33) implies
 1330

$$1331 |(1 - t\tau_j(t))\lambda_j(t) - \tau_j(t)| \leq \frac{3}{2} C_2 \mathcal{L}_{\text{HJ}}^{\frac{1}{3}},$$

1332 which gives
 1333

$$1334 \left| \lambda_j(t) - \frac{\tau_j(t)}{1 - t\tau_j(t)} \right| \leq \frac{3C_2 \mathcal{L}_{\text{HJ}}^{\frac{1}{3}}}{2(1 - t|\tau_j(t)|)} \leq \frac{9C_2 \mathcal{L}_{\text{HJ}}^{\frac{1}{3}}}{4}. \quad (37)$$

1335 When $t \in [t_1, t^*]$, $\lambda_j(t)$ is close to $-\frac{1}{t}$ because (36) and (33) implies
 1336

$$1337 |1 + t\lambda_j(t)| \leq 2C_2 \mathcal{L}_{\text{HJ}}^{\frac{1}{3}}.$$

1338 This implies
 1339

$$1340 \left| \lambda_j(t) + \frac{1}{t} \right| \leq \frac{2C_2 \mathcal{L}_{\text{HJ}}^{\frac{1}{3}}}{t} \leq \frac{2C_2 \mathcal{L}_{\text{HJ}}^{\frac{1}{3}}}{t_1} \leq 6KC_2 \mathcal{L}_{\text{HJ}}^{\frac{1}{3}}, \quad (38)$$

1341 where the last inequality is because $t_1 > t_0 = \frac{1}{3K}$. Therefore, as explained before, there has to be a
 1342 shift between the two approximations (37) and (38) in the middle when $t \in [t_0, t_1]$ because $\lambda_j(t)$ is
 1343 Lipschitz continuous. However, the difference between the two functions has a positive lower bound
 1344 (34)

$$1345 \left| -\frac{1}{t} - \frac{\tau_j(t)}{1 - t\tau_j(t)} \right| = \left| \frac{1}{t(1 - t\tau_j(t))} \right| \geq \frac{1}{\|A + I\|_2 + C_1 \mathcal{L}_{\text{MMD}}^{\frac{1}{4}}}.$$

1346 Therefore, there exists $t_2 \in [t_0, t_1]$ s.t.
 1347

$$1348 \left| \lambda_j(t_2) - \frac{\tau_j(t_2)}{1 - t_2\tau_j(t_2)} \right| \geq \frac{1}{2(\|A + I\|_2 + C_1 \mathcal{L}_{\text{MMD}}^{\frac{1}{4}})} \quad (39)$$

1349 and

$$1350 \left| \lambda_j(t_2) + \frac{1}{t_2} \right| \geq \frac{1}{2(\|A + I\|_2 + C_1 \mathcal{L}_{\text{MMD}}^{\frac{1}{4}})}. \quad (40)$$

1351 Finally, we split into two cases.
 1352

1353 *Case 1.* If $|1 - t_2\tau_j(t_2)| \leq \frac{1}{3K}$, then
 1354

$$1355 \tau_j(t_2) \geq \frac{1}{t_2} \left(1 - \frac{1}{3K} \right) \geq 1 - \frac{1}{3K}$$

1368 and

$$\begin{aligned}
& |(1 - t_2 \tau_j(t_2)) \lambda_j(t_2) - \tau_j(t_2)| \\
& \geq \tau_j(t_2) - |(1 - t_2 \tau_j(t_2))| |\lambda_j(t_2)| \\
& \geq 1 - \frac{1}{3K} - \frac{1}{3K} K \geq \frac{1}{3}.
\end{aligned}$$

1374 This implies

$$\begin{aligned}
& |(1 + t_2 \lambda_j(t_2)) [(1 - t_2 \tau_j(t_2)) \lambda_j(t_2) - \tau_j(t_2)]| \\
& \geq \frac{1}{3} |1 + t_2 \lambda_j(t_2)| = \frac{1}{3} |t_2| \left| \frac{1}{t_2} + \lambda_j(t_2) \right| \\
& \geq \frac{1}{3} \frac{1}{3K} \frac{1}{2 \left(\|A + I\|_2 + C_1 \mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \right)} = \mathcal{O}(1),
\end{aligned}$$

1382 which contradicts to (33).

1383 *Case 2.* If $|1 - t_2 \tau_j(t_2)| > \frac{1}{3K}$, then

$$\begin{aligned}
& |(1 + t_2 \lambda_j(t_2)) [(1 - t_2 \tau_j(t_2)) \lambda_j(t_2) - \tau_j(t_2)]| \\
& = |t_2| \left| \frac{1}{t_2} + \lambda_j(t_2) \right| |1 - t_2 \tau_j(t_2)| \left| \lambda_j(t_2) - \frac{\tau_j(t_2)}{1 - t_2 \tau_j(t_2)} \right| \\
& \geq \frac{1}{3K} \frac{1}{2 \left(\|A + I\|_2 + C_1 \mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \right)} \frac{1}{3K} \frac{1}{2 \left(\|A + I\|_2 + C_1 \mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \right)} = \mathcal{O}(1),
\end{aligned}$$

1392 which also contradicts to (33).

1393 Combining *Case 1* and *Case 2*, we conclude that the assumption $\lambda_1(0) > 1$ cannot hold. Therefore, 1394 (29) hold. This further implies $|I - \Lambda(0)| = I - \Lambda(0)$. Plugging back into (27) and (26), we get

1395
$$\|I - \Lambda(0) - Q(0)AQ(0)^\top\|_2 \leq C\mathcal{L}_{\text{MMD}}^{\frac{1}{4}}$$

1397 and

1398
$$\|\theta_2(0) - (I - A)\|_2 \leq C\mathcal{L}_{\text{MMD}}^{\frac{1}{4}}.$$

1400 Therefore, we obtain

1401
$$\|\theta_2(0) - (I - A)\|_F \leq C\mathcal{L}_{\text{MMD}}^{\frac{1}{4}}. \quad (41)$$

1403 **Step 4.** We show that $\theta_2(t)$, $\theta_1(t)$, and $\theta_0(t)$ satisfies the error estimations (16).1404 **Step 4.1.** We estimate $\theta_2(t)$ first.1405 We first show that $1 - t\tau_i(t)$ has a positive lower bound. Recall that $\tau_i(t)$ is the diagonal element of 1406 $\tilde{u}_2(t) = Q(t)^\top \theta_2(0)Q(t)$. We first observe that any diagonal element for 1407

1408
$$Q(t)^\top (I - t(I - A))Q(t) = Q(t)^\top ((1 - t)I + tA)Q(t)$$

1409 must be larger than or equal to $\min\{1, \lambda_A\}$. By (41), $1 - t\tau_i(t)$, as a diagonal element of 1410

1411
$$I - tQ(t)^\top \theta_2(0)Q(t) = Q(t)^\top [(1 - t)I + tA + t(I - A - \theta_2(0))]Q(t)$$

1412 must satisfies

1413
$$1 - t\tau_i(t) \geq 1 - t + t\lambda_A - tC\mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \geq \min\{1, \lambda_A\} - C\mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \geq \frac{1}{2} \min\{1, \lambda_A\}.$$

1416 Therefore, $1 - t\tau_i(t)$ has a positive lower bound.1417 Next, we claim that, for any (fixed) i , $1 + t\lambda_i(t)$ has a positive lower bound. Similar to *step 3*, (33) 1418 can be rewritten as

1419
$$|1 + t\lambda_i(t)| |1 - t\tau_i(t)| \left| \lambda_i(t) - \frac{\tau_i(t)}{1 - t\tau_i(t)} \right| \leq C\mathcal{L}_{\text{HJ}}^{\frac{1}{3}}.$$

1422 Therefore, the lower bound for $1 - t\tau_i(t)$ implies

1423
$$|1 + t\lambda_i(t)| \left| \lambda_i(t) - \frac{\tau_i(t)}{1 - t\tau_i(t)} \right| \leq C\mathcal{L}_{\text{HJ}}^{\frac{1}{3}} \quad (42)$$

1425 for all $t \in [0, 1]$ and i . If we further restrict ourself to $t \in [\frac{1}{3K}, 1]$, we have
 1426

$$1427 \quad \left| \lambda_i(t) - \left(-\frac{1}{t} \right) \right| \left| \lambda_i(t) - \frac{\tau_i(t)}{1 - t\tau_i(t)} \right| \leq C\mathcal{L}_{\text{HJ}}^{\frac{1}{3}} \quad \text{for } t \in [\frac{1}{3K}, 1], \quad (43)$$

1429 implying that $\lambda_i(t)$ must be close to either $-\frac{1}{t}$ or $\frac{\tau_i(t)}{1 - t\tau_i(t)}$.
 1430

1431 Next, we show the lower bound for $1 + t\lambda_i(t)$. For $t \in [0, \frac{1}{3K}]$,
 1432

$$1433 \quad 1 + t\tau_i(t) \geq 1 - tK \geq \frac{2}{3}.$$

1435 Therefore, we must have $\forall t \in [0, \frac{1}{3K}]$

$$1437 \quad \left| \lambda_i(t) - \frac{\tau_i(t)}{1 - t\tau_i(t)} \right| \leq C\mathcal{L}_{\text{HJ}}^{\frac{1}{3}}. \quad (44)$$

1439 For $t \in [\frac{1}{3K}, 1]$, similar to the argument in *step 3*, by (43), $\lambda_i(t)$ must be close to either $-\frac{1}{t}$ or
 1440 $\frac{\tau_i(t)}{1 - t\tau_i(t)}$, but cannot be close to both because the difference between the two functions has a positive
 1441 lower bound of $\mathcal{O}(1)$:

$$1443 \quad \left| -\frac{1}{t} - \frac{\tau_i(t)}{1 - t\tau_i(t)} \right| = \left| \frac{1}{t} \frac{1}{1 - t\tau_i(t)} \right| \geq \left| \frac{1}{1 - t\tau_i(t)} \right| \geq \frac{1}{\max\{1, |\tau_i(t)|\}} \\ 1444 \quad \geq \frac{1}{\max\{1, \|I - A\|_2 + C\mathcal{L}_{\text{MMD}}^{\frac{1}{4}}\}} \geq \frac{1}{2\max\{1, \|I - A\|_2\}} =: c_{\text{diff}}, \quad (45)$$

1447 where the second last inequality is because of (41). (43) and (45) imply that $\lambda_i(t)$ cannot “shift”
 1448 between $-\frac{1}{t}$ and $\frac{1}{t} \frac{1}{1 - t\tau_i(t)} - \frac{1}{t}$ during $t \in [\frac{1}{3K}, 1]$. Since we already have (44) at $t = \frac{1}{3K}$, (43)
 1449 implies that $\lambda_i(t)$ is close to $\frac{\tau_i(t)}{1 - t\tau_i(t)}$ for all $t \in [\frac{1}{3K}, 1]$ and hence
 1450

$$1452 \quad \left| \lambda_i(t) - \left(-\frac{1}{t} \right) \right| \geq c_{\text{diff}} - C\mathcal{L}_{\text{HJ}}^{\frac{1}{3}} \geq \frac{1}{2}c_{\text{diff}} = \mathcal{O}(1).$$

1454 Therefore, for all $t \in [\frac{1}{3K}, 1]$

$$1455 \quad |1 + t\lambda_i(t)| \geq \frac{c_{\text{diff}}}{6K} = \mathcal{O}(1).$$

1457 Combining the lower bound for $t \in [0, \frac{1}{3K}]$, we finish proving the claim that $1 + t\lambda_i(t)$ has a positive
 1458 lower bound of $\mathcal{O}(1)$ that is independent of i . This positive lower bound also implies that $I + t\theta_2(t)$
 1459 is invertible and has a positive lower bound (recall $\lambda_i(t)$ are eigenvalues of $\theta_2(t)$). Therefore, by
 1460 definition of $\Gamma_2(t)$ and (28),

$$1461 \quad \|(I - t\theta_2(0))\theta_2(t) - \theta_2(0)\|_F = \|(I + t\theta_2(t))^{-1}\Gamma_2(t)\|_F \leq C\mathcal{L}_{\text{HJ}}^{\frac{1}{3}}. \quad (46)$$

1463 Next, we give a positive lower bound for $I - t\theta_2(0)$. Note that

$$1465 \quad I - t\theta_2(0) = (1 - t)I + tA + t(I - A - \theta_2(0)).$$

1466 By (41), we know that the smallest eigenvalue of $I - t\theta_2(0)$ is larger than or equal to

$$1467 \quad (1 - t) + t\lambda_A - tC\mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \geq \frac{1}{2} \min\{1, \lambda_A\} = \mathcal{O}(1),$$

1469 which gives a lower bound for $I - t\theta_2(0)$. Applying this bound to (46), we obtain
 1470

$$1471 \quad \|\theta_2(t) - (I - t\theta_2(0))^{-1}\theta_2(0)\|_F \leq C\mathcal{L}_{\text{HJ}}^{\frac{1}{3}}. \quad (47)$$

1472 We further notice that by (41)

$$1473 \quad \begin{aligned} & \left\| (I - t(I - A))^{-1}(I - A) - (I - t\theta_2(0))^{-1}\theta_2(0) \right\|_F \\ 1474 & \leq \left\| (I - t(I - A))^{-1}(I - A - \theta_2(0)) \right\|_F \\ 1475 & \quad + \left\| (I - t(I - A))^{-1}t(I - A - \theta_2(0))(I - t\theta_2(0))^{-1}\theta_2(0) \right\|_F \\ 1476 & \leq \min\{1, \lambda_A\}^{-1} \cdot C\mathcal{L}_{\text{MMD}}^{\frac{1}{4}} + \min\{1, \lambda_A\}^{-1} \cdot C\mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \cdot 2\min\{1, \lambda_A\}^{-1} \cdot K \\ 1477 & = C\mathcal{L}_{\text{MMD}}^{\frac{1}{4}}. \end{aligned}$$

1482 Therefore, for any $t \in [0, 1]$,

$$\begin{aligned}
 1484 \quad & \|\theta_2(t) - \theta_2^*(t)\|_F = \left\| \theta_2(t) - (I - t(I - A))^{-1} (I - A) \right\|_F \\
 1485 \quad & \leq \left\| \theta_2(t) - (I - t\theta_2(0))^{-1} \theta_2(0) \right\|_F + \left\| (I - t\theta_2(0))^{-1} \theta_2(0) - (I - t(I - A))^{-1} (I - A) \right\|_F \\
 1486 \quad & \leq C \left(\mathcal{L}_{\text{HJ}}^{\frac{1}{3}} + \mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \right). \\
 1487 \quad & \\
 1488 \quad & \\
 1489 \quad & \\
 1490 \quad &
 \end{aligned} \tag{48}$$

1491 **Step 4.2.** We verify that $\theta_1(t)$ has small error. We first give an error estimation for $\theta_1(0)$. Recall the
1492 true value is

$$1493 \quad \theta_1^*(0) = A\mathbf{b}_\mu - \mathbf{b}_\nu = (I - \theta_2^*(0))\mathbf{b}_\mu - \mathbf{b}_\nu.$$

1494 Therefore

$$\begin{aligned}
 1495 \quad & \|\theta_1(0) - \theta_1^*(0)\| \\
 1496 \quad & \leq \|\theta_1(0) - ((I - \theta_2(0))\mathbf{b}_\mu - \mathbf{b}_\nu)\| + \|(I - A - \theta_2(0))\mathbf{b}_\mu\| \\
 1497 \quad & \leq C\mathcal{L}_{\text{MMD}}^{\frac{1}{2}} + C\mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \leq C\mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \\
 1498 \quad &
 \end{aligned} \tag{49}$$

1499 where we used (24) and (41) in the second inequality. Next, we give error estimate of $\theta_1(t)$ for
1500 $t \in [0, 1]$. Recall that

$$1501 \quad \Gamma_1(t) = (I + t\theta_2(t))(\theta_1(t) - t\theta_2(0)\theta_1(t) - \theta_1(0))$$

1502 satisfies the estimation (28). Since $I + t\theta_2(t)$ has a positive lower bound (shown in *step 4.1*), we
1503 have

$$1504 \quad \|\theta_1(t) - t\theta_2(0)\theta_1(t) - \theta_1(0)\| = \|(I + t\theta_2(t))^{-1}\Gamma_1(t)\| \leq C\mathcal{L}_{\text{HJ}}^{\frac{1}{3}}. \tag{50}$$

1505 Therefore, for any $t \in [0, 1]$,

$$\begin{aligned}
 1506 \quad & \|\theta_1(t) - \theta_1^*(t)\| = \left\| \theta_1(t) - ((1-t)I + At)^{-1} (A\mathbf{b}_\mu - \mathbf{b}_\nu) \right\| \\
 1507 \quad & = \left\| \theta_1(t) - (I - t\theta_2^*(0))^{-1} \theta_1^*(0) \right\| \leq C \|(I - t\theta_2^*(0))\theta_1(t) - \theta_1^*(0)\| \\
 1508 \quad & \leq C (\|(I - t\theta_2(0))\theta_1(t) - \theta_1(0)\| + \|t(\theta_2(0) - \theta_2^*(0))\theta_1(t)\| + \|\theta_1(0) - \theta_1^*(0)\|) \\
 1509 \quad & \leq C \left(\mathcal{L}_{\text{HJ}}^{\frac{1}{3}} + \mathcal{L}_{\text{MMD}}^{\frac{1}{4}} + \mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \right) \leq C \left(\mathcal{L}_{\text{HJ}}^{\frac{1}{3}} + \mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \right). \\
 1510 \quad & \\
 1511 \quad & \\
 1512 \quad & \\
 1513 \quad & \\
 1514 \quad &
 \end{aligned} \tag{51}$$

1515 In the third inequality, we used (50), (41), and (49).

1516 **Step 4.3.** Finally, we verify that $\theta_0(t)$ has small error. Recall that $\theta_0^*(t)$ is uniquely defined up to an
1517 additive constant and

$$\begin{aligned}
 1518 \quad \theta_0^*(t) - \theta_0^*(0) &= \frac{t}{2}(\mathbf{b}_\nu - A\mathbf{b}_\mu)^\top ((1-t)I + At)^{-1} (\mathbf{b}_\nu - A\mathbf{b}_\mu) \\
 1519 \quad &= \frac{t}{2}\theta_1^*(0)^\top (I - t\theta_2^*(0))^{-1} \theta_1^*(0) = \frac{t}{2}\theta_1^*(t)^\top \theta_1^*(0).
 1520 \quad & \\
 1521 \quad & \\
 1522 \quad &
 \end{aligned}$$

1523 Also recall that

$$\begin{aligned}
 1524 \quad \Gamma_0(t) &= \theta_0(t) - \theta_0(0) + \frac{t}{2}\theta_1(t)^\top \theta_1(t) - \frac{t^2}{2}\theta_1(t)^\top \theta_2(0)\theta_1(t) - t\theta_1(t)^\top \theta_1(0) \\
 1525 \quad &= \theta_0(t) - \theta_0(0) + \frac{t}{2}\theta_1(t)^\top [(I - t\theta_2(0))\theta_1(t) - \theta_1(0)] - \frac{t}{2}\theta_1(t)^\top \theta_1(0).
 1526 \quad & \\
 1527 \quad & \\
 1528 \quad &
 \end{aligned}$$

1529 Therefore,

$$\begin{aligned}
 1530 \quad & |(\theta_0(t) - \theta_0(0)) - (\theta_0^*(t) - \theta_0^*(0))| \\
 1531 \quad & = \left| \Gamma_0(t) - \frac{t}{2}\theta_1(t)^\top [(I - t\theta_2(0))\theta_1(t) - \theta_1(0)] + \frac{t}{2}\theta_1(t)^\top \theta_1(0) - \frac{t}{2}\theta_1^*(t)^\top \theta_1^*(0) \right| \\
 1532 \quad & \leq C \left[\mathcal{L}_{\text{HJ}}^{\frac{1}{3}} + \frac{t}{2}K\mathcal{L}_{\text{HJ}}^{\frac{1}{3}} + \frac{t}{2}(|\theta_1(t) - \theta_1^*(t)| |\theta_1(t)| + |\theta_1^*(t)| |\theta_1(0) - \theta_1^*(0)|) \right] \\
 1533 \quad & \leq C \left(\mathcal{L}_{\text{HJ}}^{\frac{1}{3}} + \mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \right),
 1534 \quad & \\
 1535 \quad & \\
 1536 \quad & \\
 1537 \quad &
 \end{aligned} \tag{52}$$

1538 where (28) and (50) are used in the first inequality. (51) and (49) are used in the second inequality.

1539 Finally, combining (48), (51), and (52), we conclude
 1540

$$1541 \max_{t \in [0,1]} (\|\theta_2(t) - \theta_2^*(t)\|_F + \|\theta_1(t) - \theta_1^*(t)\| + |\theta_0(t) - \theta_0^*(t)|) \leq C \left(\mathcal{L}_{\text{HJ}}^{\frac{1}{3}} + \mathcal{L}_{\text{MMD}}^{\frac{1}{4}} \right),$$

1543 which implies (16). \square
 1544

1545 Finally we make two remarks to this stability analysis. First, we omit the discretization error and
 1546 generalization error in this analysis in order to obtain a clear environment for studying the loss
 1547 function. Second, while we prove the stability result in Gaussian setting, we believe the stability
 1548 result hold for general distributions, as long as they belongs to some class with sufficient regularity
 1549 condition.

1550

1551 B IMPLEMENTATION DETAILS

1553 **Empirical Loss via Monte Carlo Approximation.** In practice, the training loss function is ap-
 1554 proximated via Monte Carlo estimation. For \mathcal{L}_{HJ} (13), we set ϱ as the uniform distribution on a com-
 1555 pact computation domain $D \subset \Omega$. We uniformly sample a batch of collocation points $\{(\mathbf{x}^{(i)}, t_i)\}_{i=1}^N$
 1556 from the space-time computational domain $D \times [0, t_f]$ to obtain the empirical loss

$$1558 \mathcal{E}_{\text{HJ}} = \frac{1}{N} \sum_{i=1}^N \left(u_{\theta}^{(i)} + t_i h \left(\nabla u_{\theta}^{(i)} \right) - t_i \nabla u_{\theta}^{(i) \top} \nabla h \left(\nabla u_{\theta}^{(i)} \right) - u_{\theta}^{(i)} \left(\mathbf{x}^{(i)} - t_i \nabla h \left(\nabla u_{\theta}^{(i)} \right), 0 \right) \right)^2,$$

1561 where $u_{\theta}^{(i)} = u(\mathbf{x}^{(i)}, t_i)$. Similarly, the MMD term (12) is estimated empirically through samples
 1562 $\{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^N$ from the initial and target distributions
 1563

$$1564 \mathcal{E}_{\text{MMD}} = \frac{1}{N^2} \sum_{i,j=1}^N \left(k(\tilde{\mathbf{x}}^{(i)}, \tilde{\mathbf{x}}^{(j)}) + k(\mathbf{y}^{(i)}, \mathbf{y}^{(j)}) - 2k(\tilde{\mathbf{x}}^{(i)}, \mathbf{y}^{(j)}) \right),$$

1567 where $\tilde{\mathbf{x}}^{(i)} = \mathbf{x}^{(i)} + t_f \nabla u_{\theta}(\mathbf{x}^{(i)}, 0)$. To better learn bidirectional OT, we employ the MMD loss in
 1568 both forward and backward directions. The total loss is
 1569

$$1570 \min_{\theta} \mathcal{E}_{\text{HJ}}(u_{\theta}) + \lambda \mathcal{E}_{\text{MMD}}((T_{\mu}^{\nu} [u_{\theta}])_{\sharp} \mu, \nu) + \lambda \mathcal{E}_{\text{MMD}}(\mu, (T_{\nu}^{\mu} [u_{\theta}])_{\sharp} \nu). \quad (53)$$

1572 B.1 IMPLEMENTATION DETAILS FOR 2D EXPERIMENTS

1574 **Training.** For the experiments for 2D toy distributions in Sections 6.1.1 and 6.2.1, we use a sim-
 1575 ple 5-layer MLP with hidden dimension 64 and Softplus activation (with $\beta = 100$). The model is
 1576 trained using the Adam optimizer with a learning rate of 10^{-3} . We sampled 50,000 points from
 1577 each distribution to create the corresponding sample datasets. At each training epoch, we uniformly
 1578 sample 1,000 collocation points from the computational domain $D = [-1, 1]^2$ to compute the im-
 1579 plicit solution formula loss (13). For the MMD loss, we randomly select 750 samples from the given
 1580 dataset at each epoch.

1581 **Baselines.** For the NOT baseline, we follow the official implementation provided in the public
 1582 repository¹ without any modification. The HJ-PINN ablation model was trained under the exact
 1583 same experimental settings as our proposed NCF across all experiments. For GNOT in the class-
 1584 conditional setting, we use the official code released by the authors² without modification.
 1585

1586 B.2 IMPLEMENTATION DETAILS FOR GAUSSIAN EXPERIMENTS

1588 **Training.** For the high-dimensional Gaussian experiments in Section 6.1.2, we employ the Den-
 1589 seICNN architecture, which is a fully connected neural network with additional input-quadratic skip
 1590 connections, to ensure a fair comparison with the baseline models provided in (Korotin et al., 2021a).
 1591 Since our method does not require input convexity, we omit the commonly imposed constraints that
 1592 enforce positivity of certain neural network weights, which are typically used to guarantee convex-
 1593 ity. Following Korotin et al. (2021a), we adopt the network architecture DenseICNN[1; max(2d,64),

1¹<https://github.com/iamalexkorotin/NeuralOptimalTransport>

2²<https://github.com/machinestein/GNOT>

1596 max($2d, 64$), max($d, 32$)] for a d -dimensional problem. The model is optimized using Adam with a
 1597 fixed learning rate of 10^{-4} , regardless of the input dimension. To construct dataset, we randomly
 1598 sample 10^5 points from each of the source and target distributions. We set D as the bounding box
 1599 (i.e., axis-aligned minimum and maximum values) of these samples and define it as the compu-
 1600 tational domain for solving the HJ equation. At each training epoch, we uniformly sample 1,000
 1601 collocation points from D to compute the implicit solution formula loss (13). For the MMD loss,
 1602 we randomly select 2,000 points from the given source and target datasets at every epoch.
 1603

1604 **Baselines.** The baselines LS, WGAN-QC, MM-v1 and MM:R are all used via the official imple-
 1605 ments from the public repository of Korotin et al. (2021a)³. The implementations of NOT and
 1606 HJ-PINNs follow the same settings described in Appendix B.1.

1607 **Evaluation Metric.**

- 1610 • **Unexplained Variance Percentage (UVP):** Given the predicted transport map \hat{T} from μ
 1611 to ν , UVP is defined by $\mathcal{L}^2 - \text{UVP}(\hat{T}) := 100 \left\| \hat{T} - T^* \right\|_{L^2(\mu)} / \text{Var}(\nu)$ (%). A UVP
 1612 value approaching 0% indicates that \hat{T} provides a close approximation to the OT map T^* ,
 1613 whereas values substantially exceeding 100% imply that the estimated map fails to capture
 1614 the underlying structure of the OT. We use 10^5 random samples drawn from μ to compute
 1615 UVP.
- 1617 • **Memory and Time Metrics:** Memory consumption is reported as the peak memory usage
 1618 during training. Training time is measured as the average runtime per epoch over 100
 1619 epochs. Inference time refers to the time required to transport 10^5 test samples using the
 1620 learned map. Additionally, we measure the memory required to store the trained networks
 1621 for the bidirectional OT maps. For our method, this corresponds to the storage size of a
 1622 single spatio-temporal solution function for the HJ equation. For dual-based baselines, this
 1623 reflects the memory needed to store both the primal and dual potential functions. For the
 1624 NOT baseline, which learns the forward and backward OT maps separately, we report the
 1625 total memory required to store both learned transport maps.

1626 **B.3 IMPLEMENTATION DETAILS FOR COLOR TRANSFER**

1628 **Training.** The color transfer experiments in Section 6.1.3 are trained using exactly the same ex-
 1629 perimental setup as in the high-dimensional Gaussian case described in Appendix B.2, to ensure a
 1630 fair comparison with the baseline models.

1632 **Baselines.** For the classical methods, we implemented Reinhard color transfer using OpenCV’s
 1633 Bradski & Kaehler (2008) color space conversion and channel-wise mean-std matching. Histogram
 1634 matching was implemented by computing per-channel histograms and CDFs, then applying the
 1635 resulting pixel value mapping directly. Since these methods only support one-way transfer, we con-
 1636 ducted forward and backward transfers separately. Both methods serve as standard, straightforward
 1637 baselines.

1638 **Evaluation Metrics.**

- 1640 • **Earth-Mover Distance (EMD):** For both the target and transported images, we compute
 1641 normalized color histograms separately for each BGR channel. The EMD quantifies the
 1642 minimal cost required to transform one histogram into another, offering a perceptually
 1643 meaningful measure of distributional difference. We compute the EMD independently for
 1644 each channel and report the average across all three. Lower EMD values indicate greater
 1645 similarity.
- 1647 • **Histogram Intersection (HI):** HI measures the overlap between the normalized color his-
 1648 tograms of the target and transported images. For each BGR channel, we compute the
 1649 intersection as the sum of the minimum values across corresponding bins. The final score
 1650 is obtained by averaging over all three channels. Higher values (closer to 1) indicate greater
 1651 similarity.

1652 ³<https://github.com/iamalexkorotin/Wasserstein2Benchmark>

1653 B.4 IMPLEMENTATION DETAILS FOR SECTION 6.2.2
1654

1655 This series of experiments focuses on the MNIST dataset (LeCun, 1998), which comprises 10 classes
1656 of 28×28 grayscale images of handwritten digits ranging from 0 to 9; And the Fashion MNIST
1657 dataset consisting of 10 classes of 28×28 grayscale images of clothing items, labeled from 0 to 9.

1658 For both MNIST & Fashion MNIST datasets, the value of each pixel of the grayscale images takes
1659 integer value from 1 to 255. We always normalized the pixel values of each data point to $[0, 1]$ by
1660 dividing by 255 before calculation.

1661

1662 **VAE Pretraining.** In our study, we employ pretrained β -VAE models (Kingma et al., 2013; Hig-
1663 gins et al., 2017), which offer satisfactory generative quality and faithful manifold representations
1664 for image encoding. Advanced auto-encoder architectures (Berthelot et al., 2018; Feng & Strohmer,
1665 2024) that better preserve the interpolation quality of decoded images will be considered in future
1666 work. Although the ambient dimension of the data is 784, prior work has shown that the dataset
1667 exhibits a moderately low intrinsic dimension (Pope et al., 2021). Thus, in our implementation, we
1668 set the latent dimension to $d_l = 10$ for in-domain transport tasks on MNIST data set, and to $d_l = 35$
1669 for cross-domain transport between Fashion MNIST and MNIST data sets.

1670 To train the VAE, we consider the encoder $E_\phi(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}^{d_l}$, and encoding variance $S_\phi(\cdot) : \mathbb{R}^d \rightarrow$
1671 \mathbb{R}^{d_l} , which share the same parameter ϕ , together with the decoder $D_\omega(\cdot) : \mathbb{R}^{d_l} \rightarrow \mathbb{R}^d$, with ϕ, ω
1672 being the tunable parameters. For arbitrary \mathbf{x}_i from the dataset and the latent variable $\mathbf{z} \in \mathbb{R}^{d_l}$,
1673 the ELBO-type loss $\mathcal{L}_\beta(\phi, \omega; \mathbf{x}_i) := \mathbb{E}_{\mathbf{z} \sim q_\phi(\mathbf{z}|\mathbf{x}_i)} \log p_\omega(\mathbf{x}_i|\mathbf{z}) - \beta D_{\text{KL}}(q_\phi(\cdot|\mathbf{x}_i) \| p_\omega(\cdot))$ is considered,
1674 where we set the conditional probability $p_\omega(\cdot|\mathbf{z}) = \mathcal{N}(D_\omega(\mathbf{z}), \sigma_*^2 \mathbf{I}_{d_l})$, the prior $p_\mathbf{z}(\cdot) = \mathcal{N}(\mathbf{0}, \mathbf{I}_{d_l})$,
1675 and the posterior $q_\phi(\cdot|\mathbf{x}_i) = \mathcal{N}(E_\phi(\mathbf{x}_i), \Sigma_\phi(\mathbf{x}_i))$. Here σ_*^2 is predetermined variance, and $\Sigma_\phi(\mathbf{x}_i) =$
1676 $\exp(\text{diag}(S_\phi(\mathbf{x}_i)))$. We optimize the following to obtain E_ϕ, D_ω :

$$\begin{aligned} \max_{\phi, \omega} \frac{1}{M} \sum_{i=1}^M \mathcal{L}_\beta(\phi, \omega; \mathbf{x}_i) = & -\frac{1}{2M} \left(\sum_{i=1}^M \frac{1}{\sigma_*^2} \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \|\mathbf{x}_i - D_\omega(E_\phi(\mathbf{x}_i) + \sqrt{\Sigma_\phi(\mathbf{x}_i)} \odot \epsilon)\|^2 \right. \\ & \left. + \beta(-S_\phi(\mathbf{x}_i)^\top \mathbf{1} + \|E_\phi(\mathbf{x}_i)\|^2 + \exp(S_\phi(\mathbf{x}_i))^\top \mathbf{1}) \right). \end{aligned}$$

1683 Here we denote $\mathbf{1} = (1, \dots, 1) \in \mathbb{R}^{d_l}$. In our experiment, we pick $\sigma_*^2 = \frac{1}{100}$, and set $\beta = 0.1$ to
1684 ensure reconstruction fidelity over regularization.

1685 We train the VAE pairs $(E_\phi^1(\cdot), D_\omega^1(\cdot))$ and $(E_\phi^2(\cdot), D_\omega^2(\cdot))$ on MNIST dataset $\{\mathbf{x}_i^{(1)}\}$ and Fashion
1686 MNIST dataset $\{\mathbf{x}_i^{(2)}\}$ respectively. We set batch size as 32, and apply the Adam algorithm (Kinga
1687 et al., 2014) with learning rate 10^{-4} for 150 epochs. In practice, the trained VAE reproduces MNIST
1688 images with an accuracy 98.2%, and reproduces Fashion MNIST images with an accuracy 87.0%.

1689

1690 **Encoding & Normalization.** Denote $\mathbf{y}_i^{(k)} = E_\phi^k(\mathbf{x}_i^{(k)})$, $k = 1, 2$, we normalize the latent samples
1691 $\{\mathbf{y}_i^{(k)}\}_{1 \leq i \leq N}$ by $\tilde{\mathbf{y}}_i^{(k)} = (\boldsymbol{\sigma}^{(k)})^{-1}(\mathbf{y}_i^{(k)} - \bar{\mathbf{y}}^{(k)})$ for $1 \leq i \leq N$, $k = 1, 2$. Here we denote $\bar{\mathbf{y}}^{(k)} =$
1692 $\frac{1}{N} \sum_{i=1}^N \mathbf{y}_i^{(k)}$ as the mean of the dataset, and $\boldsymbol{\sigma}^{(k)} = \text{diag}(\boldsymbol{\Sigma}^{(k)})$ as the entrywise variance, where
1693 $\text{diag}(\boldsymbol{\Sigma}^{(k)})$ denotes a diagonal matrix with its diagonal entries taken from the empirical covariance
1694 matrix $\boldsymbol{\Sigma}^{(k)} = \frac{1}{N} \sum_{i=1}^N (\mathbf{y}_i^{(k)} - \bar{\mathbf{y}}^{(k)}) (\mathbf{y}_i^{(k)} - \bar{\mathbf{y}}^{(k)})^\top$.

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1700 **Loss function & Training.** We denote μ, ν as the distribution of the normalized latent samples
1701 $\tilde{\mathbf{y}}_i^{(k)}$, where $k = 1$ or 2. To compute the OT map between μ, ν , we set $t_f = 1$, and introduce neural
1702 network $u_\theta : \mathbb{R}^{d_l} \times [0, t_f] \rightarrow \mathbb{R}$. In practice, we incorporate the loss functional for backward OT
1703 into the original loss (14), that is, we consider

$$\min_{\theta} \left\{ \mathcal{L}_{\overrightarrow{\text{HJ}}}(u_\theta) + \mathcal{L}_{\overleftarrow{\text{HJ}}}(u_\theta) + \lambda(\mathcal{E}_{\text{class}}((T_\mu^\nu[u_\theta])_\# \mu, \nu) + \mathcal{E}_{\text{class}}(\mu, (T_\nu^\mu[u_\theta])_\# \nu)) \right\},$$

1704 where we denote $\mathcal{L}_{\overrightarrow{\text{HJ}}}(u_\theta) := \mathcal{L}_{\text{HJ}}(u_\theta)$ as defined in (13), and define the corresponding backward
1705 implicit loss as

$$\mathcal{L}_{\overleftarrow{\text{HJ}}}(u_\theta) = \iint_{\Omega \times [0, t_f]} \left(u_\theta - th(\nabla u_\theta) + t \nabla u_\theta^\top \nabla h(\nabla u_\theta) - u_\theta(\mathbf{x} + t \nabla h(\nabla u_\theta), t_f) \right)^2 d\varrho(\mathbf{x}) dt.$$

Since the latent samples are normalized as described above, we set $\varrho = \mathcal{N}(\mathbf{0}, \mathbf{I}_{d_l})$ and independently draw $x_i \sim \varrho$ and t_i uniformly from $[0, t_f]$ to form the collocation points $\{(x_i, t_i)\}$ for approximating \mathcal{L}_{HJ} and \mathcal{L}_{HJ} . In implementation, we set $\lambda = 500$ in order to balance the scales of the implicit HJ loss and the MMD loss. We denote N_{HJ} , N_{MMD} as the batch size for evaluating the implicit loss and MMD between distributions of certain classes. In our experiments, we choose $N_{\text{HJ}} = 4000$ and $N_{\text{MMD}} = 400$. We apply the Adam method with learning rate 10^{-4} for optimizing θ . The algorithm is conducted for 1000000 iterations.

Neural Net Architectures. The architectures for the β -VAE encoder and decoder are summarized in Table 5 and Table 6. Regarding the OT map, we parameterize $u_\theta : \mathbb{R}^{d_l+1} \rightarrow \mathbb{R}$ using a ResNet architecture He et al. (2016) with depth L and width (hidden dimension) $\tilde{d} = 128$. Specifically, we define

$$u_\theta(x, t) = f_L \circ f_{L-1} \circ \cdots \circ f_2 \circ f_1(x, t),$$

where each layer f_k is given by

$$f_k(y) = \begin{cases} A_k y + b_k, & k = 1, \quad A_1 \in \mathbb{R}^{\tilde{d} \times (d_l+1)}, b_1 \in \mathbb{R}^{\tilde{d}}, \\ y + \kappa A_k \sigma(y) + b_k, & 2 \leq k \leq L-1, \quad A_k \in \mathbb{R}^{\tilde{d} \times \tilde{d}}, b_k \in \mathbb{R}^{\tilde{d}}, \\ A_k y + b_k, & k = L, \quad A_L \in \mathbb{R}^{1 \times \tilde{d}}, b_L \in \mathbb{R}. \end{cases}$$

We use the hyperbolic tangent activation $\sigma(\cdot) = \tanh(\cdot)$ and set the residual scaling parameter $\kappa = 1$. We set $L = 5$ for in-domain transports on MNIST, and use $L = 6$ for cross-domain trasport task between Fashion MNIST and MNIST.

Table 5: Encoder architecture for β -VAE for image size $(H, W, C) = (28, 28, 1)$, latent dimension $d_l = 10$.

Layer	Parameters	Output Shape
Input (\mathbf{x})	—	(H, W)
Conv2D	128 filters, 5×5 , stride 1, ReLU	$(H, W, 128)$
Conv2D	128 filters, 3×3 , stride 1, ReLU	$(H, W, 128)$
Conv2D	64 filters, 3×3 , stride 2, ReLU	$(H/2, W/2, 64)$
Conv2D	64 filters, 3×3 , stride 1, ReLU	$(H/2, W/2, 64)$
Conv2D	64 filters, 3×3 , stride 1, ReLU	$(H/2, W/2, 64)$
Conv2D	64 filters, 3×3 , stride 1, ReLU	$(H/2, W/2, 64)$
Conv2D	64 filters, 3×3 , stride 1, ReLU	$(H/2, W/2, 64)$
Flatten	—	$(H/2 \cdot W/2 \cdot 64)$
Dense	$(16 \cdot H \cdot W, 64)$, ReLU	$(16 \cdot H \cdot W)$
Dense (mean $E_\phi(\mathbf{x})$)	$(64, d_l)$	(d_l)
Dense (log variance $S_\phi(\mathbf{x})$)	$(64, d_l)$	(d_l)
Output (reparam.)	$\mathbf{y} = E_\phi(\mathbf{x}) + \exp(\frac{1}{2}\text{diag}(S_\phi(\mathbf{x}))) \odot \epsilon$	(d_l)

Table 6: Decoder architecture for β -VAE for image size $(H, W, C) = (28, 28, 1)$, latent dimension $d_l = 10$.

Layer	Parameters	Output Shape
Input (\mathbf{y})	—	(d_l)
Dense	$(d_l, 16 \cdot H \cdot W)$, ReLU	$(16 \cdot H \cdot W)$
Reshape	—	$(H/2, W/2, 64)$
Conv2DTranspose	64 filters, 3×3 , stride 1, ReLU	$(H/2, W/2, 64)$
Conv2DTranspose	64 filters, 3×3 , stride 1, ReLU	$(H/2, W/2, 64)$
Conv2DTranspose	64 filters, 3×3 , stride 1, ReLU	$(H/2, W/2, 64)$
Conv2DTranspose	64 filters, 3×3 , stride 1, ReLU	$(H/2, W/2, 64)$
Conv2DTranspose	64 filters, 3×3 , stride 2, ReLU	$(H, W, 64)$
Conv2DTranspose	128 filters, 3×3 , stride 1, ReLU	$(H, W, 128)$
Conv2DTranspose	128 filters, 5×5 , stride 1, ReLU	$(H, W, 128)$
Conv2DTranspose	1 filter, 5×5 , stride 1, ReLU	$(H, W, 1)$
Output	$\mathbf{x} = D_\omega(\mathbf{y})$	(H, W)

Evaluation Metrics. All methods are evaluated on the *testing* portions of the MNIST datasets.

- **Classification Accuracy:** We evaluate the class-wise accuracy of the generated data. Following (Asadulaev et al., 2024), we train ResNet-18 classifiers achieving 98.85% accuracy on the MNIST test set.

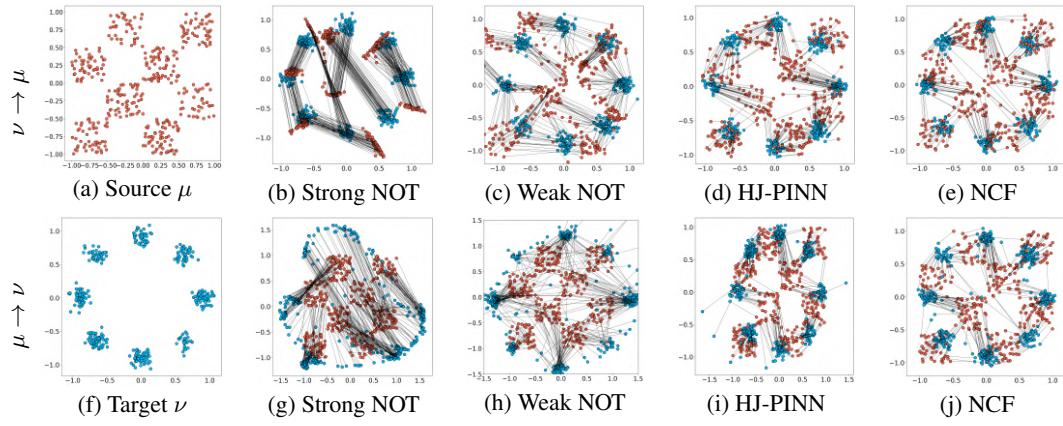


Figure 5: *Checkerboard* (μ) \rightleftarrows *Eight Gaussians* (ν): The top row shows transport in the direction $\nu \rightarrow \mu$, and the bottom row shows $\mu \rightarrow \nu$, with μ and ν at the leftmost column.

- **FID score:** The FID score is evaluated on the entire test set, which consists of approximately 1,000 samples per class.

C FURTHER RESULTS

C.1 ADDITIONAL RESULTS FOR 2D TOY EXAMPLES

”Results on 2D distributions with multiple modes are presented in Figure 5. As in Section 6.1.1, the proposed NCF successfully learns bidirectional OT even in multi-modal settings with a single network. Compared to baselines, it not only transports the distributions more accurately but also produces transport maps with less overlap, indicating that it learns more optimal transport paths.

Ablation Study on the Regularization Parameter We further present an ablation study to investigate the effect of the regularization parameters λ_f and λ_b in the proposed loss function (14). These parameters control the balance between the implicit HJ loss and the MMD loss. Specifically, the implicit HJ loss promotes the optimality of the transport map by encouraging alignment with the HJ equation, while the MMD loss measures how well the transported distribution matches the target distribution. Since all experiments in the paper are conducted under the setting $\lambda_f = \lambda_b$, we vary λ_f to examine how this trade-off influences the learned transport map. We conduct experiments on the two-dimensional examples introduced in Section 6.1.1 and above. The results are summarized in Figure 6. The case $\lambda_f = \infty$ corresponds to training without the implicit HJ loss, using only the MMD loss.

As shown in the figure, when λ_f is small (i.e., the MMD loss dominates), the transported distribution aligns well with the target, but the resulting transport map becomes highly entangled. This indicates that the model learns a map far from the optimal one, due to the lack of guidance from the HJ constraint. In contrast, increasing λ_f enforces stronger adherence to the HJ equation, resulting in a smoother, more structured transport map that closely resembles the optimal solution. However, when λ_f becomes too small, the influence of the MMD term diminishes, leading to inaccurate matching of the distributions. These results highlight the complementary roles of the implicit HJ loss and the MMD loss, as also supported by Theorem 5.4, and underscore the importance of appropriately tuning λ_f . Additionally, the relatively small difference in performance between $\lambda_f = 0.1$ and $\lambda_f = 0.05$ suggests that the model is not overly sensitive to the choice of this parameter.

C.2 FURTHER RESULTS ON TRAINING STABILITY

Figure 7 illustrates the training stability of our method compared to the representative baseline MM:R in high-dimensional Gaussian experiments in Section 6.1.2. MM:R optimizes a min-max problem, which exhibits severe training instability: although the UVP error initially decreases in the early epochs, it tends to grow substantially as training continues. Following the original paper (Korotin et al., 2021a), the smallest UVP errors observed during training are reported in Table 2. However, in practical OT scenarios the true optimal transport map is unknown, making it unclear

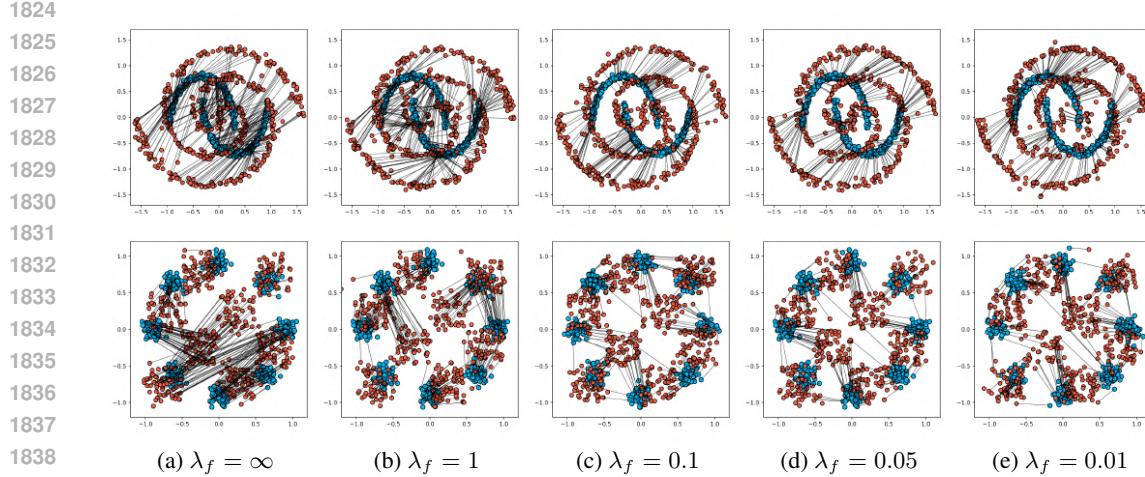


Figure 6: Effect of the regularization parameter λ_f in the loss function. Each figure visualizes the transport from the source distribution μ (blue) to the target distribution ν (red) for varying values of λ_f . Results are shown for two examples introduced in Section 6.1.1 and Appendix C.1.

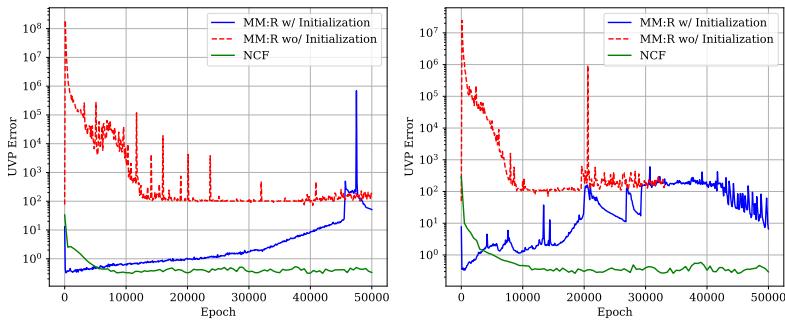


Figure 7: Training stability of our method compared to MM:R on high-dimensional Gaussian experiments.

when training should be stopped or which solution is preferable. Therefore, the ability to maintain stable training over many epochs, as demonstrated by our method, is a crucial advantage.

In the original MM:R implementation (Korotin et al., 2021a), the model relies on a special identity-potential pretraining to stabilize training. Without this initialization, training becomes highly unstable and can completely fail to approximate the OT map. In contrast, our method does not require any special pretraining and maintains stable UVP reduction throughout training, highlighting a key practical strength.

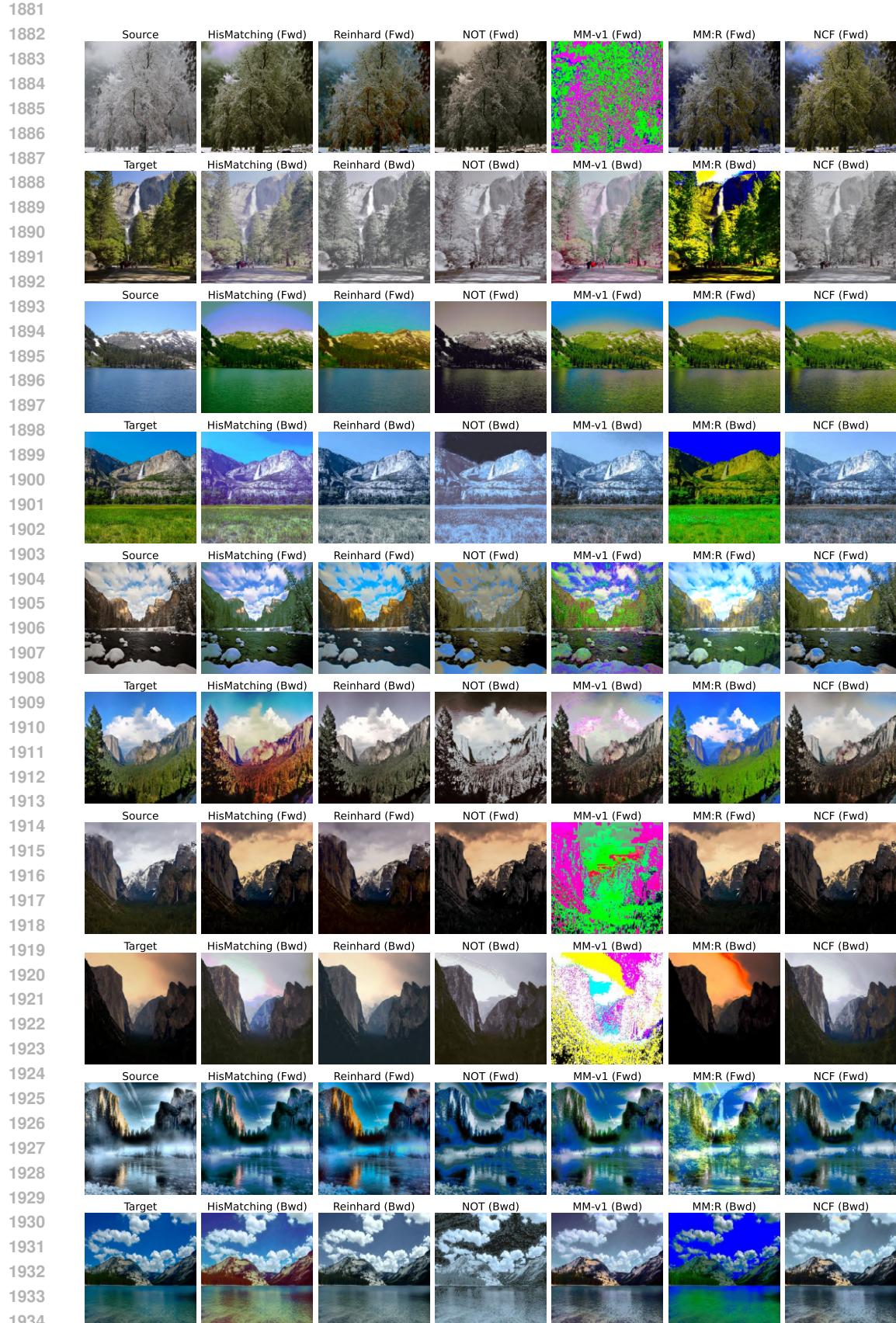
In contrast, our method demonstrates robust and stable learning, as shown in Figure 7. Our method does not require any special pretraining and maintains stable UVP reduction throughout training, steadily decreasing over epochs. This stability represents a significant practical advantage, ensuring reliable convergence even over long training schedules.

C.3 ADDITIONAL QUALITATIVE RESULTS FOR COLOR TRANSFER

Figures 8, 9, and 10 present qualitative results for bidirectional color transfer across three distinct categories of image pairs. In each figure, the leftmost columns display the source and target images, while the remaining columns show the results of various methods applied in both the forward (source \rightarrow target) and backward (target \rightarrow source) directions.

C.4 ADDITIONAL RESULTS FOR CLASS-CONDITIONAL OT FOR MNIST & FASHION MNIST DATASETS

In this section, we provide additional results from all the tasks conducted in our experiments. All methods are evaluated on the *testing* portions of the MNIST and Fashion MNIST datasets. Following (Asadulaev et al., 2024), we train ResNet-18 classifiers achieving 98.85% accuracy for evaluation.

Figure 8: *Winter \leftrightarrow Summer*: Qualitative results for bidirectional color transfer between seasonal image pairs.

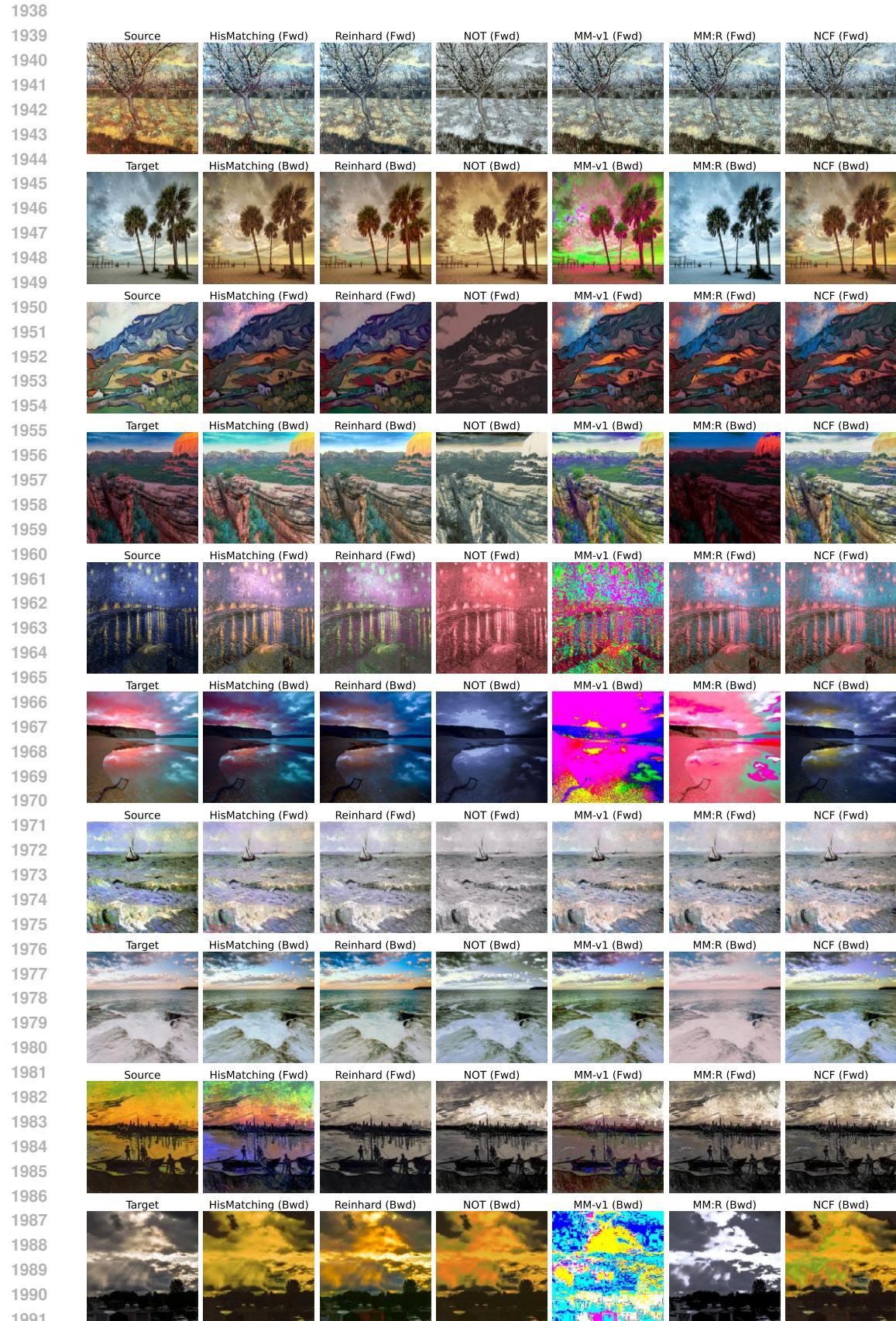


Figure 9: *Gogh painting \leftrightarrow Photograph*: Qualitative results for bidirectional color transfer between Gogh paintings and real-world photographs.

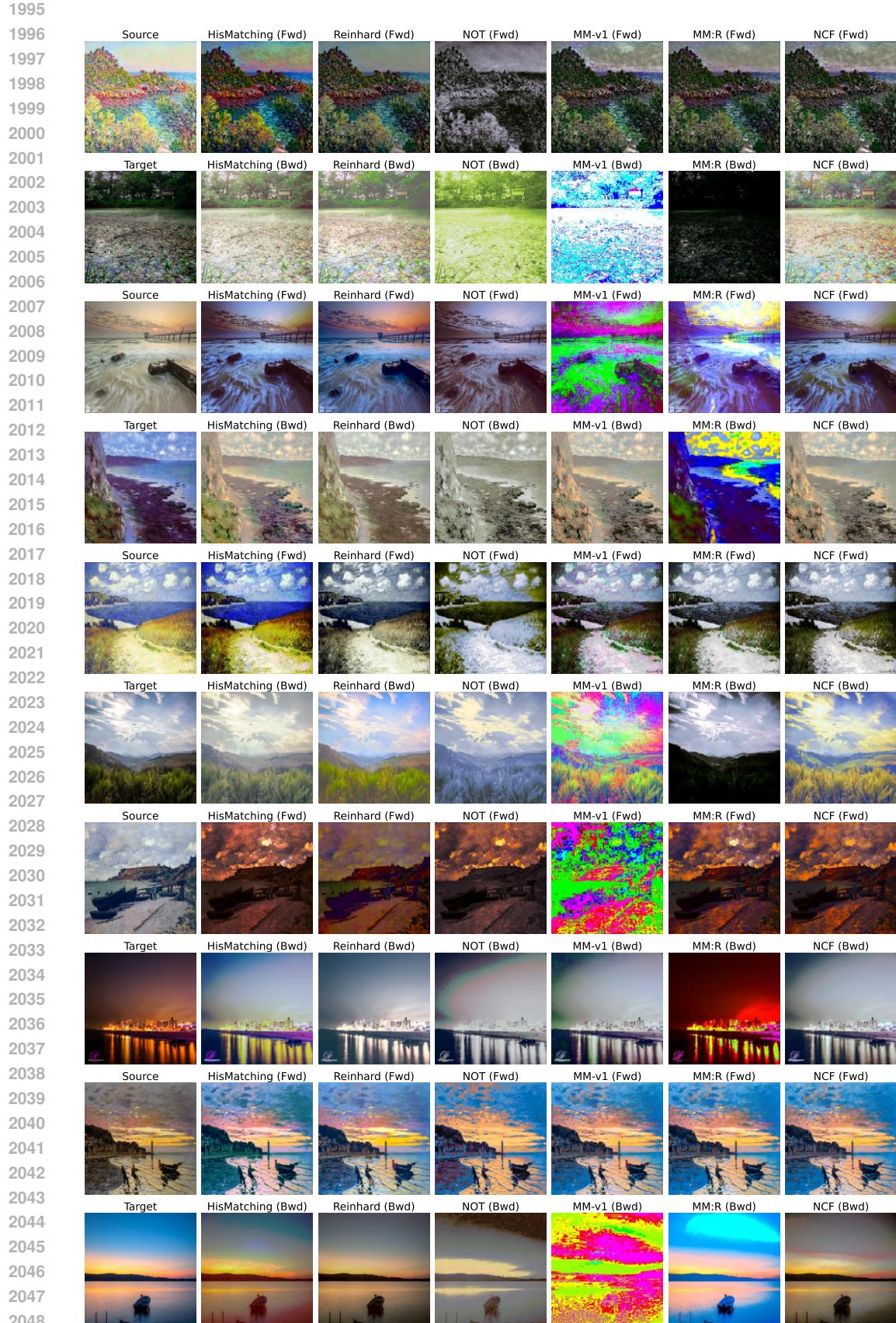


Figure 10: *Monet painting \leftrightarrow Photograph*: Qualitative results for bidirectional color transfer between Monet paintings and real-world photographs.

2052 A generated sample is deemed accurate if the trained classifier assigns it to the corresponding target
 2053 class. Table 7 reports the accuracy and Fréchet Inception Distance (FID) of the generated images
 2054 across the first two experimental tasks.

2055 Table 7: Performance metrics of NCF across all tasks. For the FID row, each bracketed value repre-
 2056 sents the distance between the OT-generated distribution $(D_\omega \circ T_\mu^\nu[u_\theta])_{\#}\mu$ (resp. $(D_\omega \circ T_\nu^\mu[u_\theta])_{\#}\nu$)
 2057 and the decoded distribution $D_{\omega\#}\nu$ (resp. $D_{\nu\#}\mu$), where D_ω denotes the appropriate VAE decoder
 2058 corresponding to μ or ν .

Metric	Task 1		Task 2	
	Forward	Backward	Forward	Backward
Accuracy(%) \uparrow	95.58	95.08	92.51	92.73
FID \downarrow	19.93 (2.65)	18.91 (2.45)	18.98 (2.25)	19.01 (2.26)

2064 **Task 1 (In-class transfer: Map each MNIST class i to the class $i + 5$, for $i = 0, \dots, 4$.)** We
 2065 present in Figure 11 the uncurated MNIST images generated using the forward (resp. backward)
 2066 mapping, $D_\omega^1 \circ T_\mu^\nu[u_\theta](\tilde{\mathbf{y}}^{(1)})$, $\tilde{\mathbf{y}}^{(1)} \sim \mu$ (resp. $D_\omega^1 \circ T_\nu^\mu[u_\theta](\tilde{\mathbf{y}}^{(2)})$,
 2067 $\tilde{\mathbf{y}}^{(2)} \sim \nu$).

2084 (a) Images generated @ t_f . (b) Images generated @ 0.

2085 Figure 11: Task 1: Uncurated images generated using the computed forward (Left) & backward
 2086 (Right) OT maps.

2088 **Task 2 (In-class shift: Map each MNIST class i to the class $(i + 1) \bmod 10$, for $i = 0, \dots, 9$.)**
 2089 Similar to Task 1, Figure 12 shows the uncurated MNIST images generated by the computed map-
 2090 pings. In this experiment, the forward (resp. backward) maps are also trained without incorpo-
 2091 rating the implicit HJ loss \mathcal{L}_{HJ} , and are therefore not guaranteed to be optimal. By contrast, the mappings
 2092 produced by our proposed method—explicitly designed to account for optimality—exhibit superior
 2093 preservation of MNIST digit styles (e.g., thickness, orientation, etc.), as further illustrated in Figure
 2094 13.

2096 **Task 3 (Inter-class transport: Map each class in Fashion MNIST to its corresponding class in**
 2097 **MNIST.)** The uncurated MNIST and Fashion MNIST images generated by the computed maps are
 2098 shown in Figure 14. While our method effectively recovers the overall profiles of Fashion MNIST
 2099 images, the encoder-decoder scheme faces difficulties in capturing fine texture details. As a future
 2100 research direction, we aim to enhance our approach by incorporating U-net architectures and directly
 2101 performing OT in the pixel space. Furthermore, in Figure 15, we present the KDE plots of the
 2102 pushforward distributions $T_\mu^\nu[u_\theta]_{\#}\mu$ (resp. $T_\nu^\mu[u_\theta]_{\#}\nu$) together with their targets ν (resp. μ), which
 2103 demonstrate the satisfactory generative quality of the computed OT map $T_\mu^\nu[u_\theta]$; Figure 16 presents
 2104 the classification accuracy (%) of the generated images on the test dataset over training iterations. We
 2105 display only the first 70000 iterations, since the accuracy no longer improves as training progresses.

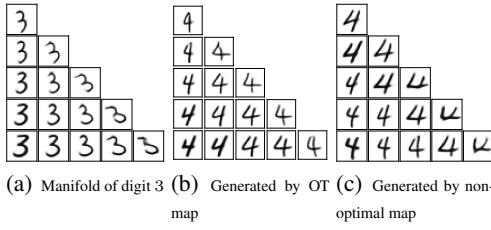
2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127

(a) Images generated @ t_f .

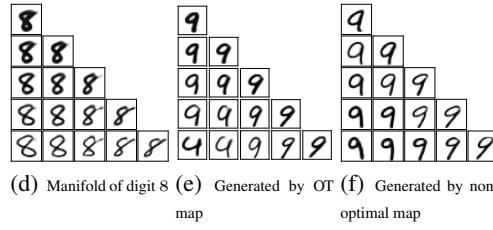
(b) Images generated @ 0.

Figure 12: Task 2: Uncurated images generated using the computed forward (**Left**) & backward (**Right**) OT maps.

2130
 2131
 2132



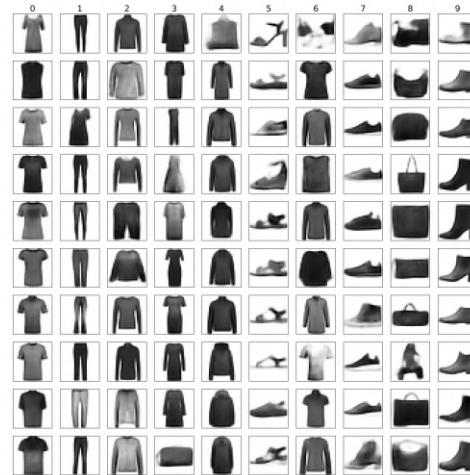
2133 (a) Manifold of digit 3 (b) Generated by OT map (c) Generated by non-optimal map



2138 (d) Manifold of digit 8 (e) Generated by OT map (f) Generated by non-optimal map

Figure 13: The style of each MNIST digit is better preserved by the computed optimal transport map. The triangular table is produced using linear interpolation in VAE latent space.

2140
 2141
 2142
 2143
 2144
 2145

(a) MNIST images generated @ t_f .

(b) Fashion MNIST images generated @ 0.

Figure 14: Task 3: Uncurated images generated using the computed forward (**Left**) & backward (**Right**) OT maps.

2161
 2162
 2163
 2164
 2165

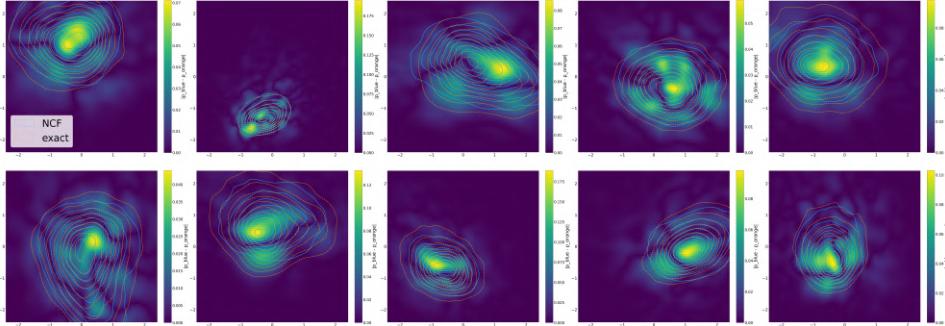


Figure 15: KDE contours of the MNIST latent samples generated using the computed OT map (blue) and the target samples (orange), conditioned on each MNIST class (0–9, arranged left to right and top to bottom). The samples are projected onto the first two PCA dimensions. The heat maps illustrate the discrepancies between the two distributions.

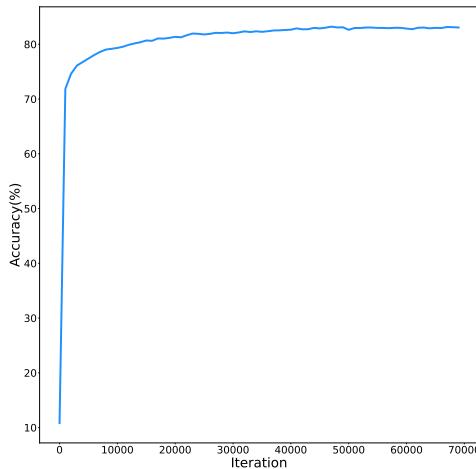


Figure 16: Accuracy(%) of trained forward class-conditional transport map versus training iterations. Results are displayed for the first 70000 iterations, beyond which the accuracy exhibits no significant improvement.