
Published as a conference paper at ICLR 2025

GOTTACK: UNIVERSAL ADVERSARIAL ATTACKS ON
GRAPH NEURAL NETWORKS VIA GRAPH ORBITS
LEARNING

Zulfikar Alom1, Tran Gia Bao Ngo1, Murat Kantarcioglu2, Cuneyt Gurcan Akcora3

1Department of Computer Science, University of Manitoba, Canada
2Department of Computer Science, Virginia Tech, USA
3AI Initiative - University of Central Florida, USA
md.alom@umanitoba.ca, ngot1@myumanitoba.ca, muratk@vt.edu
cuneyt.akcora@ucf.edu

ABSTRACT

Graph Neural Networks (GNNs) have demonstrated superior performance in node
classification tasks across diverse applications. However, their vulnerability to
adversarial attacks, where minor perturbations can mislead model predictions,
poses significant challenges. This study introduces GOttack, a novel adversarial
attack framework that exploits the topological structure of graphs to undermine the
integrity of GNN predictions systematically.
By defining a topology-aware method to manipulate graph orbits, our approach
generates adversarial modifications that are both subtle and effective, posing a
severe test to the robustness of GNNs. We evaluate the efficacy of GOttack
across multiple prominent GNN architectures using standard benchmark datasets.
Our results show that GOttack outperforms existing state-of-the-art adversarial
techniques and completes training in approximately 55% of the time required by
the fastest competing model, achieving the highest average misclassification rate
in 155 tasks. This work not only sheds light on the susceptibility of GNNs to
structured adversarial attacks but also shows that certain topological patterns may
play a significant role in the underlying robustness of the GNNs. Our Python
implementation is shared at https://github.com/cakcora/GOttack.

1 INTRODUCTION

Recent advances in Graph Neural Networks (GNNs) have brought significant progress in node classifi-
cation tasks, utilizing the power of graph topology and node features to generate insightful inferences
across various application domains such as social networks (Fan et al., 2020), bioinformatics (Zhang
et al., 2021) and communication systems (He et al., 2021). Despite their effectiveness, GNNs exhibit
inherent vulnerabilities to adversarial attacks; a minor yet strategically designed perturbation in the
graph structure or nodal features can deceive the model into erroneous predictions. This suscepti-
bility not only undermines the reliability of GNNs but also poses a grave security risk in critical
applications.

Existing approaches predominantly rely on direct node feature manipulation or edge modifications
without considering their topological impact. We address this limitation by designing a novel
adversarial attack framework that systematically alters the graph topology to induce misclassification
errors. Distinct from existing methods, we leverage node connectivity patterns (i.e., orbits) in local
graph structures to maximize adversarial efficacy.

Our studies of graph topology yield a surprising result; we have uncovered a universal attack strategy
commonly employed by several well-known gradient-based adversarial models. This strategy uses
two graph orbits to delineate the resilience of GNNs to adversarial manipulations. Following this
discovery, we introduce the GOttack algorithm, an advanced method that identifies and exploits these
vulnerable graph orbits. GOttack not only enhances attack misclassification rates but also operates

1

https://github.com/cakcora/GOttack

Published as a conference paper at ICLR 2025

with greater efficiency, reducing the complexity of the attack search associated with such adversarial
interventions.

Through rigorous experiments across three GNN node classification backbones, four state-of-the-
art adversarial models, five benchmark datasets, and four defense models, we demonstrate that
GOttack achieves higher misclassification rates, maintains a lower computational overhead, and
proves effective against defense models.

Our contributions can be summarized as follows:

• We determine a key topological equivalence group among graph nodes, revealing its frequent
use in the selection process of gradient-based adversarial models.

• Our findings present a new vulnerability in GNNs related to graph topology. Our experiments
demonstrate that such attacks are highly effective against state-of-the-art defense models.

• Our proposed attack strategy, GOttack, achieves the highest misclassification rate and
represents a scalable attack model suitable for large graphs.

2 NOTATION AND PRELIMINARIES

We consider the task of node classification in a graph, denoted as G = (V, E ,X), where V represents
the set of nodes, E ⊆ {(v, w) | v, w ∈ V} is the set of edges, and X = {x0, x1, . . . , xn−1} comprises
feature vectors such that xi ∈ RM is the M -dimensional feature vector of node i. The adjacency
matrix A ∈ {0, 1}N×N for the graph G has elements Avw = 1 if there is an edge evw connecting
nodes v and w, and 0 otherwise.

A subset of nodes VL ⊆ V is labeled, each associated with class labels from the set C = {1, . . . , c},
where yv denotes the true label of node v in VL. This setup facilitates examining how shared labels
influence edge formation between nodes, an essential aspect of understanding neighbor influence
on node classification. Homophily (Zhu et al., 2020) in graphs is traditionally characterized by the
similarity between connected node pairs, where nodes are considered similar if they share identical
labels. The homophily ratio is constructed based on this premise as follows:
Definition 1 (Homophily Ratio). Let G denote the aforementioned graph and y represent the vector
of node labels. The homophily ratio is defined as the proportion of edges connecting nodes with the
same labels, formally given by: h(G, {yv; v ∈ V}) = 1

|E|
∑

(v,w)∈E 1(yv = yw), where 1(·) denotes
the indicator function.

A graph is considered highly homophilous if the homophily ratio h(·) is large, typically within the
range 0.5 ≤ h(·) ≤ 1. Conversely, a low homophily ratio indicates a heterophilous graph.

Node Classification. The goal of node classification is to infer a function g : V → P(C), that assigns
a probability distribution over the class set C to each unlabeled node v, where ŷv is the predicted
class for node v, identified as the class with the highest probability in g(v). This setup, characterized
as transductive learning, implies that the model predictions are based on instances both seen and used
during training.

The Graph Convolutional Network (GCN), as introduced by Kipf & Welling (2017), provides a
foundational model for understanding and analyzing the vulnerabilities exposed by our proposed
attack model. GCN employs a message-passing technique that utilizes the features of neighboring
nodes, making it susceptible to adversarial manipulations that can alter node connections and lead to
misclassifications. As a result, this section will define our attack using the GCN operations, which
are detailed in Appendix B.1.

Adversarial Attack. Adversarial attacks on graph data aim to subtly perturb graph structures or node
features, causing GCN to misclassify specific nodes. This entails creating a new graph G′ = (A′,X′)
from the original G = (A,X), with changes to A (i.e., structural attacks) or X (i.e., feature attacks).
In an attack, a subset of nodes v ∈ VT ⊆ V are targeted to have the GCN misclassify their labels
ŷv ̸= yv within a specified budget ∆ as

∑
u

∑
f

∣∣∣Xuf −X′
uf

∣∣∣+∑
u<w |Auw −A′

uw| ≤ ∆.

The node v may be directly affected (i.e., u = v), or influence attacks can impact any other node
within the graph (i.e., u ̸= v). The attacks take various forms and occur during different phases. i)

2

Published as a conference paper at ICLR 2025

Poisoning attacks occur during training time, aiming to compromise the model by manipulating the
training dataset. Evasion attacks occur at test time, attempting to generate deceptive samples that
evade detection by a trained model. ii) In targeted attacks, the objective is to misclassify specific
target nodes VT , while in non-targeted attacks, the goal is to reduce the overall accuracy of the model.

3 RELATED WORK

Recent interest has grown in adversarial attacks on graph neural networks Günnemann (2022). These
attacks demonstrate how minor changes to input features or graph structure can alter network outputs,
often causing incorrect classifications. We begin with an overview of gradient-based attacks and then
discuss non-gradient-based methods (refer to App. Table 56 for a complete classification).

Gradient-based attacks. Gradient-based attacks on graph neural networks exploit the gradients of
the model to perturb node features or graph structure, aiming to mislead the network into making
incorrect predictions. Zügner et al. (2018) proposed Nettack, which marked the inaugural exploration
of gradient attacks on attributed graphs, revealing significant accuracy declines even with minor
alterations. Another novel approach by Xu et al. significantly reduced classification performance by
causing a small number of edge perturbations (Xu et al., 2019a). Similarly, Li et al. (2023) introduced
the SGA framework to target nodes by using a smaller subgraph around the target node and leveraging
gradient information for attack optimization. Fast Gradient Attack (FGA) used gradient information
from GCNs and outperformed baseline methods by efficiently disturbing network embedding with
minimal link rewiring (Chen et al., 2018). To describe the robustness of deep learning models
for graph-based tasks, Zügner & Günnemann (2019) introduced training-time attacks using meta-
gradients to perturb graph structures, which effectively renders the model near-useless for production
use, all without direct access to the target classifier. Our approach also uses a gradient-based attack;
however, we reduce the amount of costly gradient computations.

Non-gradient-based attacks. Sun et al. (2020) introduced a novel node injection poisoning attack
that used hierarchical Q-learning to optimize the injection process. Likewise, Chang et al. (2022)
proposed the GF-Attack for conducting black-box adversarial attacks on graph embedding models
without access to labels. Hussain et al. (2021) proposed Structack, which uses structural centrality
and similarity insights to lower GNN costs efficiently. Similarly, Zou et al. (2021) proposed the
topological defective graph injection attack, where adversaries inject adversarial nodes into existing
graphs rather than modifying links or node attributes. Zhang et al. (2023) proposed membership
inference attacks targeting edges, also known as link-stealing attacks, which used customized attacks
by introducing a group-based attack paradigm that is suited to various groups of edges. Mu et al.
(2021) proposed the attack as an optimization problem to minimize perturbations to the graph
structure, with a particular emphasis on the difficult hard-label black-box attack scenario.

The approach we propose in this paper differs from all the above-mentioned proposals in that none
have attempted to identify equivalence groups for graph nodes based on graph orbits to minimize
the search space in discrete optimization. Furthermore, our proposed solution introduces a highly
effective and efficient algorithm for universal attacks on node classification models, demonstrating
significantly faster performance compared to existing methods (e.g., attack training in approximately
55% of the time required by the fastest competing model).

4 METHODOLOGY

We propose the GOttack framework to execute adversarial attacks on node classification GNNs while
minimizing changes to the graph’s structure. Figure 1 illustrates the overview of the GOttack research
workflow.

Challenge. A significant attack challenge in our task is the substantial time complexity, as structural
attacks on the underlying graph data might require up to O(2|V|×|V|) steps for finding the optimal
set of edges to remove or add. This scale of complexity necessitates the development of efficient
methods.

GOttack Philosophy. GOttack draws inspiration from the Mapper philosophy of Topological Data
Analysis (TDA), as described by Singh et al. (2007). This philosophy posits that data has shape,
and finding the shape may allow us to build better models. In our case, we focus on identifying and

3

Published as a conference paper at ICLR 2025

Surrogate model

ORCA algorithm

+

Input graph
Modified graph

Figure 1: Complete research workflow diagram of GOttack.

grouping nodes on the graph so that graph topology can help us select which nodes and edges to
attack in GNNs.

GOttack Solution. GOttack utilizes group theory (Bogopolskij, 2008) to identify node equivalence
classes (Alon, 2007) on a graph, which guide our decisions on which edges to add or remove. This
approach strategically groups nodes according to their positions on the graph in potential attack
strategies, thereby enhancing both the precision and time-efficiency of our adversarial interventions.

4.1 ATTACK MODEL

We aim to target a specific node v ∈ V in a targeted, structural, direct poisoning attack to alter its
predicted class. As the prediction of v depends not only on its individual attributes but also on the
characteristics of neighbouring nodes N (v) within the graph, we are focused on perturbations to the
initial graph G with the condition: ∃w,A′

vw ̸= Avw where w ∈ V . However, to prevent the attacker
from completely modifying the graph, we impose a constraint on the total number of allowable
changes, controlled by a specified budget ∆:

∑
w∈V |Avw −A′

vw| ≤ ∆.

Problem Statement. Consider an initial graph G = (A,X), a target node v, and its true class yv.
Our goal is to modify the graph’s structure such that the classification of v changes from yv to yv′ ,
where yv ̸= yv′ , thereby maximizing the difference from its original classification. The proposed
attacks can be mathematically formulated as a bi-level optimization problem:

arg max
(A′,X)∈G′

max
yv′ ̸=yv

lnZ∗
v,yv′ − lnZ∗

v,yv
(1)

u

t

wv

x

k

y

l

z

Figure 2: A toy
graph where shared
node colors imply
similar orbit counts.
Nodes u, z, and w
have 15 and 18 or-
bits, respectively.

where Z∗ = fθ∗(A′,X) and θ∗ = argminθ L(θ;A′,X) subject to the budget
constraint. Specifically, we aim to find a modified graph G′ = (A′,X) in
which the target node v is assigned a label yv′ that maximizes the difference
from its original label yv in terms of probability scores.

4.2 EQUIVALENCE CLASSES IN STRUCTURAL ATTACKS

We utilize an attack strategy based on node equivalence groups to guide our
decisions regarding the addition and deletion of edges. This section begins
by defining graphlets, which are instrumental in identifying node equivalence
groups. We then discuss orbits, representing the specific positions a node can
assume within a graphlet to facilitate effective grouping. As a last step, we
compute Graph Orbit Vectors from all graphlets to develop a multi-orbit based
attack strategy.
Definition 2 (Graphlet (Kloks et al., 2000)). A graphlet Ggp within a larger
graph G = (V, E ,X) is a connected induced subgraph Gs′ = (V ′, E ′,X ′), where V ′ ⊆ V , and
E ′ includes all edges euv ∈ E with both u and v in V ′, and |V ′| typically equals 5 (as defined in
Appendix Figure 6).

There are 30 distinct graphlets of 5-nodes (see Appendix Figure 6 for the shapes). For instance,
consider the nodes {u, x, v, k, y} in Figure 2, which forms a graphlet with |V ′| = 5.

Orbits are defined by automorphisms of the graphlet; an automorphism σ of a graphlet Ggp satisfies
σ · Ggp = Ggp. Nodes v and w in V are similar if there exists an automorphism σ such that σ(v) = w.

4

Published as a conference paper at ICLR 2025

The orbit of a node v, denoted by Orb(Ggp, v), is the set of all nodes w ∈ V that can be mapped onto
v by some automorphism of the graphlet:
Definition 3 (Orbit (Alon, 2007)). Orb(Ggp, v) = {w ∈ V | σ ∈ Aut(Ggp) : σ(v) = w}.

where Aut(Ggp) is the group of automorphisms of Ggp. Each orbit is denoted by Orbj , where j is
a unique identifier for each orbit within a specific graphlet. A node v touches an orbit Orbj if v is
part of an induced subgraph in the graph and v belongs to Orbj . By extension, a node may appear in
multiple graphlets and, hence, occupy multiple orbits. For example, in Figure 2, node x appears in
graphlets comprising of nodesets {x, v, k, l, w} and {x, v, k, y, l} and so on. Overall, the 30 distinct
graphlets create 73 distinct orbits (see Appendix Figure 6 for the orbit positions). The number of
graphlets and orbits are all uniquely determined by the choice of using 5-node graphlets.
Definition 4 (Graph Orbit Vector). We propose a Graph Orbit Vector (GOV) as a numerical repre-
sentation of a node’s participation across the 73 orbits in a graph. Consequently, GOVv of a node
v is an n = 73-dimensional vector, where each dimension corresponds to the count of a specific orbit
touched by node v. This dimensionality reflects the full set of topological positions a node can occupy
across all 5-node graphlets, making it a comprehensive description of a node’s structural embedding.

15

16

17

18

20

21

19

Figure 3: Graphlets
where orbits 15 and
18 are defined.

We initialize the vector element for Orbj of node v at zero and increase it
by one each time v appears in orbit Orbj of any graphlet, where Orbj is an
induced subgraph containing v. This count reflects the number of graphlets
in which v participates through orbit Orbj . As a result, the Graph Orbit
Vector provides a profile of a node’s topological embedding within the graph.
Notably, orbit discovery is performed for the entire graph as a pre-processing
step, eliminating the need for recomputation for each target node.

4.3 GOTTACK: GRAPH STRUCTURE POISONING VIA ORBIT LEARNING

In our exploration of graph topology, we have discovered a distinctive feature
shaped by orbits 15 and 18: nodes touching these orbits appear in peninsula-
like subgraphs (such as the one formed in Figure 2 by nodes {u, x, v, k, t}).
These orbits (see Figure 3) are characteristic of being three or four edges away
from another endpoint in the graphlet and serve as critical indicators of topological peripheries within
a graph. This geometric arrangement lends a substantial foundation to our subsequent analyses
and adversarial strategies on graph data, as discussed in the following hypotheses and experimental
sections.

We start by stating our topological observation as influenced by the Mapper philosophy: 1) Orbit
Proxy. Under the homophily assumption, node classification posits that graph neighbors are similar
to a node in the label. Consequently, nodes in more distant positions, as can be identified by orbits,
are less similar. 2) Periphery Orbits. Orbits 15 and 18 indicate the topological periphery in a graph
and provide a useful proxy for identifying distant nodes that differ in labels.

We claim that the path distance within the graph encodes a notion of remoteness, which in turn yields
minimal information about a node’s label. This indicates that physical proximity within the network
strongly influences the predictive accuracy regarding node labels. In our experiments (Section 5), we
also provide empirical evidence demonstrating the utility of the Orbit Proxy in heterophilic graph
cases, albeit in a weaker form.

In Theorem 1, we formally state that nodes located in orbits 15 and 18, due to their peripheral
placement, are particularly effective for establishing paths to remote parts of the graph. This has
significant implications for designing network protocols and algorithms that rely on efficient data
traversal and retrieval mechanisms.
Theorem 1 (Remote Connection Candidates). Let H(v, w) denote the expected random walk hitting
time from node v to node w in G. For any target node v ∈ V , nodes in orbits 15 and 18 are the most
effective candidates of w for establishing paths to the most remote parts of G, due to their longer
expected hitting times H(v, w) compared to other nodes not in these orbits.

Due to space limitations, the proof is given in Appendix A.

The Periphery Orbits observation forms the backbone of our attack strategy; we identify nodes of
periphery orbits (i.e., 15 and 18) and affect the adjacency matrix (i.e., add or remove edges to these

5

Published as a conference paper at ICLR 2025

nodes) accordingly to confuse a GNN to misclassify a target. Consider the target node v in Figure 2.
Our hypothesis posits that creating an edge from v (or any other node) to either of the (orbit 15
and 18) nodes u, z or w will yield the highest misclassification error in GCN. The selection among
periphery nodes uses a gradient-based method, as we detail below in surrogate loss.

Orbits (15, 18). We define two ordered orbit categories based on the highest and second-highest
orbit counts. The highest is given by Orbvmax = argmax(GOVv). If multiple orbits share this count,
one is chosen arbitrarily. The second-highest is Orbvsec = argmax({j ∈ GOVv | j ̸= Orbvmax}).
Each node is then assigned an orbit category Orbv = Orbmax∥Orbsec, where order does not matter.

Example 1. Consider a node v in graph G. Although GOttack works with k = 5-node graphlets,
for simplicity, this example employs three-node graphlets (k = 3) for orbit counting, yielding a
4-dimensional vector to store all possible orbits. Suppose the orbit count vector for node v is
GOVv = [4, 15, 11, 12]. The task is to identify the largest and second-largest orbit count values in
GOVv. The largest orbit count value is 15, denoted by Orbvmax = 01, and the second-largest orbit
count value is 12, denoted by Orbvsec = 03. Thus, node v is categorized into the orbit category
Orbv = 01|03 or 0103 in short.

Surrogate loss. Our objective is to maximize the discrepancy in log probabilities for the target node
v within a specified budget ∆. The log-probabilities can be simplified to Â2XW . We linearize the
model by replacing the nonlinearity σ(.) with a simple linear activation function. Therefore, from
Eq. 3, Z ′ = softmax(ÂÂXW 1W 2) = softmax(Â2XW). Therefore, the surrogate loss function,
Ls(A,X ;W, v), is designed to optimize the following objective: argmax

(A′,X)∈G′
Ls(A′,X ;W, v), where,

the surrogate loss function Ls is defined as Ls(A′,X ;W, v) = maxw ̸=z[Â
2XW]v,z − [Â2XW]v,w.

This function aims to solve the maximum loss over a set of permissible changes in A of G.

Structure poisoning. We compute a candidate node set called the orbit category, denoted as Orbcat,
consisting only of allowable elements (v, u) where the edge changes from 0 to 1 (i.e., adding an
edge) or vice versa. Specifically, for a given target node v, we create a candidate set such that u ∈ V
where Orbumax = 1518. Among the candidate edge changes, we select the one that yields the highest
surrogate loss. However, to compute the surrogate loss score, we first need to determine the class
prediction of the target node v after adding or removing an edge (u, v). Here, we are optimizing the
loss score with respect to A; the term XW is constant. The log-probabilities of node v are then given
by g(v) = [Â2]v · C, where [Â2]v denotes a row vector and C is the constant term (XW). Thus,
we only need to inspect how this row vector changes to determine the optimal edge manipulation.
Following the insight developed by Zügner & Günnemann (2019), we can derive an incremental
update, so there is no need to recompute the updated [Â2]v from scratch.

We assume access to the complete graph and its training labels, allowing adversaries to exploit its
structure but not the target model, focusing instead on transferable attacks. This setting applies to
domains like social and transaction networks, where graph structures are publicly visible (e.g., social
media friendships, academic citations, and cryptocurrency transactions).

Time Complexity. Orbit discovery is the primary computational cost of GOttack. The time complex-
ity for computing all orbits for all nodes is O(|E| × d+ |V | × d4), where O(|V | × d4) corresponds
to the time required to enumerate all five-node graphlets, and d denotes the maximum degree in the
graph. For instance, orbit discovery on the CORA dataset takes only 0.17 seconds. All time costs for
orbit discovery are provided in Appendix Table 52.

5 EXPERIMENTS

This section presents the experimental evaluation we carried out to show the effectiveness of the
proposed approach. We answer the following questions: i) How effective is the GOttack approach in
terms of misclassification rate compared with existing state-of-the-art approaches? ii) How efficient
is the proposed model in terms of computation time compared with the existing models? iii) How
easy is it to defend against GOttack compared to existing models?

Datasets. We conduct experiments on five widely used node classification datasets, the statistics of
which are provided in Table 1. Cora (Yang et al., 2016), Citeseer (Yang et al., 2016) and Pubmed

6

Published as a conference paper at ICLR 2025

Table 2: Misclassification rate (in %) (↑) of target nodes in five datasets where three backbone
GNNs (GCN, GIN and GraphSAGE) are attacked in node classification with budget ∆ = 1. See
Appendix D.1 for stds.

Cora Citeseer Polblogs BlogCatalog Pubmed

Method GSAGE GCN GIN GSAGE GCN GIN GSAGE GCN GIN GSAGE GCN GIN GSAGE GCN GIN

Random 19.11 2.07 17.30 30.01 2.01 10.03 15.13 12.04 17.04 3.09 12.09 4.19 14.02 20.05 20.05
Nettack 58.04 34.06 46.10 66.09 46.04 57.04 29.02 38.04 13.02 50.11 20.02 65.07 52.01 50.04 47.02

FGA 54.08 32.05 40.09 60.11 31.10 44.10 22.08 31.09 14.02 46.15 10.04 61.09 42.03 32.02 52.00
SGA 61.06 41.05 57.05 60.06 41.06 57.06 35.05 37.07 35.08 51.45 24.03 61.02 30.00 57.04 47.01

PRBCD 35.02 41.06 36.10 35.04 46.04 42.02 8.01 42.07 33.06 33.05 33.05 5.09 38.02 52.03 43.06

GOttack (ours) 59.05 41.52 37.03 61.09 46.07 57.06 29.03 41.08 15.08 52.10 22.04 63.08 52.08 57.09 55.05

(Yang et al., 2016) datasets are citation networks with undirected edges and binary features where
nodes are publications and edges are citation links.

In the Polblogs (Adamic & Glance, 2005) dataset, nodes are political blogs, and edges are links
between them. In the BlogCatalog (Tang & Liu, 2009) dataset, nodes’ attributes are constructed by
keywords, which are generated by users as a short description of their blogs. We split the networks
into labeled (20%) and unlabeled nodes (80%).

Table 1: Dataset statistics.

Dataset Hom. Nodes Edges Features Labels
Cora 0.81 2,485 5,069 1,433 7
Citeseer 0.74 2,110 3,668 3,703 6
Polblogs 0.91 1,222 16,714 1,490 2
Pubmed 0.81 19,717 44,325 500 3
BlogCatalog 0.40 5,196 171,743 8,189 6

We further split the labeled nodes into equal parts
training and validation sets to train the surrogate
model. We have used the ORCA algorithm (Hocevar
& Demsar, 2014) for the orbit discovery process on
these datasets.

Experimental Setup. We have conducted the ex-
periments under the transductive, semi-supervised
learning setting. We have used both common node classifier GNNs, including GCN (Kipf & Welling,
2017), GIN (Xu et al., 2019b), and GraphSAGE (Hamilton et al., 2017) and defense models, including
RobustGCN (Zhu et al., 2019), GCN-Jaccard (Wu et al., 2019), GCN-SVD (Entezari et al., 2020),
and MedianGCN (Chen et al., 2021) as the backbone to evaluate our adversarial attacks.

We average over five different random initializations/splits, where for each, we follow these steps:
Initially, we train the surrogate model on the labeled data. From the test set, among all nodes correctly
classified, we adopt the popular practice of Nettack and select: (i) the 10 nodes with the highest
margin of classification, indicating clear correctness, (ii) the 10 nodes with the lowest margin (still
correctly classified), and (iii) 20 additional nodes randomly chosen. These selected nodes will be the
targets for the attacks. All results presented here are computed by us in the same settings.

In our attack model, the budget ∆ limits the number of allowed perturbations, such as edge additions
or deletions. Its optimal value depends on the graph’s structure, particularly node degrees: small ∆
(e.g., 1 or 2) can significantly impact low-degree nodes, while higher values suit high-degree nodes.
To ensure comparability, we adopt fixed budgets (∆ = 1, . . . , 5), following prior works like Nettack
and FGA.

We compare GOttack against five state-of-the-art graph adversarial attack frameworks: Nettack
(Zügner et al., 2018), FGAttack (FGA)(Chen et al., 2018), SGAttack (SGA) (Li et al., 2023) and
PRBCD (Geisler et al., 2021) as well as a Random (dummy) baseline (see App. Section B.2 for
descriptions). We use GCN as the surrogate model for the attack models except for SGA, which
suggests SGC. We report the misclassification rate, which is the percentage of nodes that were
incorrectly classified by the model in relation to the total number of nodes being classified.

In our experiments, we utilized the PyG (PyTorch Geometric) library, which employs PyTorch
as the backend for implementing GNN models. Additionally, we used the PyTorch adversarial
library DeepRobust (Li et al., 2020) for robustness evaluations. The experiments were conducted
using Python (Version 3.8.19) and PyTorch Version 3.10.0. The computational environment was
a Linux cluster equipped with an AMD Ryzen Threadripper 3960X 24-core processor, 2520GB
RAM and NVIDIA RTX A6000 with 49GB RAM GPUs. Our Python implementation is shared at
https://github.com/cakcora/GOttack.

Parameters setting. Our models were trained using the Adam (Kingma & Ba, 2015) optimization
algorithm, employing a fixed learning rate of 0.01. Training sessions were conducted over a span of
200 epochs; we employed the softmax activation function.

7

https://github.com/cakcora/GOttack

Published as a conference paper at ICLR 2025

1 2 3 4 5
Perturbation Budget

0

20

40

60

80

100

M
isc

la
ss

ifi
ca

tio
n

(%
)

(a) GraphSAGE model

1 2 3 4 5
Perturbation Budget

0

20

40

60

80

100

M
isc

la
ss

ifi
ca

tio
n

(%
) GOttack

Nettack
Random
FGA

SGA
PRBCD

(b) GCN model

1 2 3 4 5
Perturbation Budget

0

20

40

60

80

100

M
isc

la
ss

ifi
ca

tio
n

(%
)

(c) GIN model

Figure 4: Budgeted attack results on the Citeseer dataset.

5.1 GOTTACK MISCLASSIFICATION RESULTS

Table 2 shows the misclassification rate achieved with a single edge perturbation (addition or deletion).
GOttack yields the highest misclassification rates in 7 out of 15 attack settings and ranks second in
5 other settings. SGAttack yields 4 best attacks, while PRBCD and Nettack each perform best in 2
attack settings. PRBCD, a widely used method adopted by PyTorch, yields surprisingly low rates
in two datasets for GSAGE and GIN. GOttack yields the highest overall rate of 52.08, whereas the
second best Nettack yields 47.02.

Likewise, Table 3 shows the misclassification rates of the top-3 attack models on defense models with
a single edge perturbation. GOttack yields the highest misclassification rates in 7 out of 16 attack
settings and ranks second in 7 other settings, while SGA achieves the best performance in 7 attack
settings. GOttack achieves the highest overall rate of 33.07, whereas SGA has a rate of 32.5.

In Figure 4, we gradually increase the attack budget and represent the corresponding misclassification
rates on the Citeseer dataset (see Appendix D for all results). We observe that for GraphSAGE,
GOttack yields better misclassification results, reaching a maximum misclassification score of 97%
with 5 perturbations. Similarly, for the GCN and GIN models, the proposed approach attains
misclassification scores of 77% and 76%, respectively, outperforming the SOTA models.

Extending the analysis of the relationship between increasing budgets (∆ = 1, ..., 5) and misclassifi-
cation rates to all datasets, we observe the following behavior (see Section D for complete results):
GOttack achieves the highest misclassification rate in 28 out of 65 tasks for GCN, GSAGE and
GIN models across all budgets. The numbers are 16 for PRBCD, 16 for SGAttack, and 3 for Nettack.
GOttack achieves the highest average rate of 0.58 over all budgets and datasets compared to
the second best model of PRBCD and SGAttack with 0.57 (Appendix Table 8).

Furthermore, as shown in Table 4, GOttack demonstrates superior computational efficiency and
scalability, making it particularly well-suited for large-scale graph datasets. This efficiency stems
from its topological approach to candidate node selection, which reduces the search space for potential
attack points without sacrificing effectiveness. For example, in the BlogCatalog dataset, GOttack
requires only about 55% of the time taken by Nettack to execute, significantly reducing computational
overhead. Despite its speed, GOttack still maintains a high level of attack effectiveness, generating
attack candidates in less than 10 minutes, even for datasets with a large number of nodes and edges.
This balance between performance and computational cost highlights GOttack’s practical applicability
to real-world scenarios.

While both Nettack and GOttack are scalable for large graphs, their methodologies differ: Nettack
selects candidates based on degree distribution in each iteration, whereas GOttack leverages orbit
structures. Although orbit discovery incurs some overhead, it reduces the candidate set to about 23%
of all nodes (see Appendix Figure 8), making the initial cost worthwhile. Among alternative methods,

Table 3: Misclassification rate (in %) (↑) of target nodes in different datasets against four defense
models (RGCN, GCN-Jaccard, GCN-SVD and MedianGCN) are attacked in node classification with
budget ∆ = 1. See Appendix D.2 for stds.

Cora Citeseer Polblogs BlogCatalog

Method RGCN JAC SVD MDGCN RGCN JAC SVD MDGCN RGCN JAC SVD MDGCN RGCN JAC SVD MDGCN

SGA 44.01 33.02 28.03 32.05 53.00 36.01 24.04 36.01 46.03 43.05 16.01 43.05 25.02 25.02 15.05 20.01
Nettack 48.08 38.01 24.01 32.05 46.04 42.02 28.04 27.05 38.05 46.03 12.04 33.02 35.04 19.03 19.02 17.02

GOttack (ours) 43.04 39.01 28.08 32.07 48.07 42.09 25.03 28.02 40.02 53.06 10.02 34.07 35.05 20.02 20.00 19.03

8

Published as a conference paper at ICLR 2025

15 56 800 1105 1241 1690 2381 2475

57

1306 1978

1510

432 1048 1508 1511

1179

(a) Computation graph before attack

15 56 800 1105 1241 1690 2381 2475

57

1306 1978

1510

432 1048 1508 1511

1179

387

996

(b) Computation graph after attack

Figure 5: The computation graph for the targeted node 1978 from the CORA datasets, as identified
by GNNExplainer (Luo et al., 2020). The edge (1978, 387) is added during the successful attack.
Edge importances change considerably after the attack and negative class gains importance due to the
newly added nodes.

only SGA is more scalable, as it focuses on local neighborhoods for candidate selection; however, its
performance is worse than GOttack.

We compared GOttack to adaptive attacks, which consider specific model architectures during attack
generation. Results (see Appendix Section D) reveal that while adaptive attacks outperform in
single-model scenarios, GOttack’s transferable perturbations exhibit broader applicability across
diverse settings, reinforcing its utility in exploratory research on adversarial robustness.

5.2 INSIGHTS FROM GOTTACK RESULTS

GOttack strategically selects nodes using the graph topology. This selection criterion prompts several
thoughts and questions, which we address below:

The periphery definition. A visual inspection of Figure 6 shows that more orbits, such as 19, 39,
and 27, could fit the periphery definition. The primary reason for not considering these orbits is
their relative scarcity in all the graph datasets. For example, node orbits from the Cora dataset in
Appendix Figure 8 show that most nodes predominantly feature orbits within the 1518 and 1922
groups. Furthermore, as shown in Appendix Section D, attacks based on 1819, 1519 and 1922 yield
less powerful attacks.

Table 4: End-to-end time costs in seconds (↓).
See Appendix Table 51 for stds.

Global Local

GOttack Nettack FGA PRBCD SGA

Cora 48.27 59.57 55.63 242.37 32.24
Citeseer 42.02 46.12 42.43 210.55 41.02
Polblogs 139.68 175.23 165.37 210.87 164.07

BlogCatalog 512.04 916.91 223.02 259.38 335.91
Pubmed 246.96 243.78 533.55 240.23 68.23
Median 139.68 175.23 165.37 240.23 68.23

Higher order orbits. GOttack uses two orbits: 1518.
The decision against using > 2 orbits is influenced
by the fact that nodes typically do not have more
orbits. For the single orbit case, our experiments
had larger time complexity, as a larger pool of nodes
was considered, yet the efficacy of attacks remained
similar.

Gradient-based models target 1518 nodes. Our
analysis reveals that gradient-based models pre-
dominantly target 1518 nodes, as shown for Net-
tack in Table 5 and for other models in Appendix Tables 6 and 7. For instance, Table 5 shows that in
the highly homophilous Polblogs, 97.5% of initial attacks involve 1518 nodes, despite these nodes
comprising only 9.41% of the total. A similar trend appears in the heterophilous BlogCatalog dataset
(2.5% and 22.5% in ∆ = 1, 2 attacks). This highlights the strategic role of orbit 1518 nodes in
network attacks.

Node, Homophily, Distance and Subgraph-based Explanations for GOttack. We conducted
a comprehensive analysis to understand how GOttack causes node misclassification. Initially, we
used GNN explainers (see Appendix Section E.1), which factor in the subgraph effects and node
features in perturbations. Figure 5 shows an example where misclassifications are due to changes in
the importance of existing edges, which offers evidence that explanations specific to nodes or edges
alone are insufficient to adequately explain an attack, as shown in Figure 5. However, as widely noted
in the literature (Li et al., 2024a; Li et al., 2024b), explainers often disagree on the exact interpretation
(see Figure 9b).

9

Published as a conference paper at ICLR 2025

Next, we focused on node-centric metrics to determine the positional changes of the target node
within the graph following the attack. As detailed in Appendix Table 45, the target nodes’ clustering
coefficient, degree, betweenness, and closeness centralities did not show a significant difference
compared to those influenced by other attacks. Secondly, we examined whether the attack brought in
nodes with different labels into the computation graph of the target node (see Appendix Table 50).
We found that after the attack, both similar and differently labeled nodes increased by 0.92 and 3.36
on average, respectively. However, these values are not as pronounced as those seen in other attacks,
suggesting that the induced label diversity change by GOttack is not substantial. Next, we computed
the shortest path distances from the target nodes to nodes with similar and different labels in the entire
graph (see Appendix Table 48). This analysis provided empirical proof supporting our Theorem 1:
the 1518 strategy more significantly reduces the distance to nodes of different labels (−0.03) than to
those of similar labels (−0.02). This behavior, which indicates a targeted modification in network
dynamics, was not observed with other orbits.

Budget Selection and Structural Implications. The choice of the attack budget ∆ is important in
determining the effectiveness and practicality of adversarial attacks. Fixed budgets, as employed in
this study, provide consistency for benchmarking but may oversimplify real-world scenarios where
the impact of a perturbation is context-dependent. For example, a budget of 5 for a node with a
degree of 2 introduces a disproportionate perturbation compared to the same budget applied to a node
with a degree of 2000. Future work could explore dynamic or adaptive budget strategies that account
for degree distribution and other structural factors. Tables 42, 43 and, 44 present comparisons of
GOttack with established budget settings, specifically considering the percentile of node degrees (ϵ).

Table 5: Comparison of orbit-based node se-
lection in sequential Nettack phases.

Dataset Orbits % of nodes % in 1st Attack % in 2nd Attack

Cora (h = 0.81)
1518 24.00% 77.00% 71.10%
1519 14.41% 5.70% 14.29%
1819 11.59% 10.00% 12.50%

Citeseer (h = 0.74)
1518 21.99% 51.60% 61.29%
1519 21.18% 12.50% 15.00%
1819 11.56% 3.29% 0.00%

Polblogs (h = 0.91)
1518 9.41% 97.50% 60.00%
1519 2.29% 0.00% 0.00%
1819 12.93% 2.50% 27.50%

Pubmed (h = 0.81)
1518 20.14% 25.00% 10.00%
1519 23.07% 32.50% 52.50%
1618 2.24% 22.50% 10.00%

BlogCatalog (h = 0.40)
1518 3.25% 2.50% 22.50%
1519 61.57% 62.50% 37.50%
1922 19.77% 35.00% 40.00%

Defenses and Availability. GOttack can be defended
against by attending to node orbit types in GNN ag-
gregations and reducing the importance of neighbors
in 1518 orbits. In that case, topology offers new orbits
to attack, such as 1519 and 1922, as we study and re-
port in Appendix D. We have created a graph-algebra-
based orbit selection scheme in Appendix C.3 that
can attack i) a graph of any size and ii) a graph with-
out the periphery orbits of 1518. However, we note
that in all the datasets used, nodes belonging to orbit
1518 were particularly common (see Figure 8).

Limitations. A notable limitation of our study is the
assumption of access to complete graph and training
labels, which may not always hold in real-world sce-
narios. Future work could relax these assumptions
to enhance practical applicability while retaining the theoretical contributions. GOttack optimizes
candidate node selection for attacks using a topological approach. Our primary hypothesis is that
this topological method offers both efficiency and effectiveness. While brute-force methods or
gradient-based optimizations can theoretically achieve the same attack success by exhaustively ex-
ploring all possible options, these approaches come with significant computational costs. Thus, the
tradeoff between attack efficiency and runtime must be carefully balanced. GOttack addresses this by
providing a principled strategy based on topology, offering a more computationally feasible solution
without sacrificing attack efficacy.

6 CONCLUSION

We have identified a key equivalence group for graph nodes based on their topological positions
within the graph and demonstrated that gradient-based attack models frequently target this group in
their attacks. Our approach, GOttack, introduces a seminal topological strategy in adversarial graph
machine learning. By uncovering this previously unexplored vulnerability tied to graph topology, our
work highlights the susceptibility of graph neural networks to topology-based attacks and paves the
way for developing efficient attack models. GOttack not only enhances misclassification rates but
does so in a scalable manner. For future work, we aim to study topological defenses against attack
models.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work has received funding from Canadian NSERC Discovery Grant RGPIN-2020-05665: Data
Science on Blockchain and Canadian Research Manitoba grant 324278-352400-2000: Bonafide:
Decentralized Services for Sharing and Searching User Generated Data, and from the NSF awards
DMS-2204795, OAC-2115094, CNS-2331424, ARL/Army Research Office awards W911NF-24-1-
0202 and W911NF-24-2-0114 and NIH award 5RM1HG009034-08.

REFERENCES

Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided they
blog. In Proceedings of the 3rd international workshop on Link discovery, pp. 36–43, 2005.

Uri Alon. Network motifs: theory and experimental approaches. Nature Reviews Genetics, 8(6):
450–461, 2007.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinícius Flores
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish
Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan
Wierstra, Pushmeet Kohli, Matthew M. Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu.
Relational inductive biases, deep learning, and graph networks. CoRR, abs/1806.01261, 2018.
URL http://arxiv.org/abs/1806.01261.

Oleg Vladimirovič Bogopolskij. Introduction to group theory, volume 6. European Mathematical
Society, 2008.

Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node embeddings via graph
poisoning. In International Conference on Machine Learning, pp. 695–704. PMLR, 2019.

Raffaella Burioni and Davide Cassi. Random walks on graphs: ideas, techniques and results. Journal
of Physics A: Mathematical and General, 38(8):R45, 2005.

Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, Xin Wang, Wenwu
Zhu, and Junzhou Huang. Adversarial attack framework on graph embedding models with limited
knowledge. IEEE Transactions on Knowledge and Data Engineering, 35(5):4499–4513, 2022.

Jinyin Chen, Yangyang Wu, Xuanheng Xu, Yixian Chen, Haibin Zheng, and Qi Xuan. Fast gradient
attack on network embedding. CoRR, abs/1809.02797, 2018. URL http://arxiv.org/abs/
1809.02797.

Liang Chen, Jintang Li, Qibiao Peng, Yang Liu, Zibin Zheng, and Carl Yang. Understanding structural
vulnerability in graph convolutional networks. In Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI 2021, Canada, 19-27 August 2021, pp. 2249–
2255. ijcai.org, 2021. doi: 10.24963/IJCAI.2021/310. URL https://doi.org/10.24963/
ijcai.2021/310.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack
on graph structured data. In 35th International Conference on Machine Learning, ICML 2018,
Stockholm, Sweden, July 10-15, 2018, volume 80, pp. 1123–1132. PMLR, 2018. URL http:
//proceedings.mlr.press/v80/dai18b.html.

Negin Entezari, Saba A. Al-Sayouri, Amirali Darvishzadeh, and Evangelos E. Papalexakis. All you
need is low (rank): Defending against adversarial attacks on graphs. In WSDM ’20: The Thirteenth
ACM International Conference on Web Search and Data Mining, Houston, TX, USA, February 3-7,
2020, pp. 169–177. ACM, 2020. URL https://doi.org/10.1145/3336191.3371789.

Wenqi Fan, Yao Ma, Qing Li, Jianping Wang, Guoyong Cai, Jiliang Tang, and Dawei Yin. A graph
neural network framework for social recommendations. IEEE Transactions on Knowledge and
Data Engineering, 34(5):2033–2047, 2020.

11

http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1809.02797
http://arxiv.org/abs/1809.02797
https://doi.org/10.24963/ijcai.2021/310
https://doi.org/10.24963/ijcai.2021/310
http://proceedings.mlr.press/v80/dai18b.html
http://proceedings.mlr.press/v80/dai18b.html
https://doi.org/10.1145/3336191.3371789

Published as a conference paper at ICLR 2025

Jian Feng and Shaojian Chen. Link prediction based on orbit counting and graph auto-encoder.
IEEE Access, 8:226773–226783, 2020. doi: 10.1109/ACCESS.2020.3045529. URL https:
//doi.org/10.1109/ACCESS.2020.3045529.

Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan
Günnemann. Robustness of graph neural networks at scale. Advances in Neural Information
Processing Systems, 34:7637–7649, 2021.

Stephan Günnemann. Graph neural networks: Adversarial robustness. Graph neural networks:
foundations, frontiers, and applications, pp. 149–176, 2022.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 1024–1034,
2017.

Shiwen He, Shaowen Xiong, Yeyu Ou, Jian Zhang, Jiaheng Wang, Yongming Huang, and Yaoxue
Zhang. An overview on the application of graph neural networks in wireless networks. IEEE Open
Journal of the Communications Society, 2:2547–2565, 2021.

Tomaz Hocevar and Janez Demsar. A combinatorial approach to graphlet counting. Bioinform., 30
(4):559–565, 2014. URL https://doi.org/10.1093/bioinformatics/btt717.

Hussain Hussain, Tomislav Duricic, Elisabeth Lex, Denis Helic, Markus Strohmaier, and Roman
Kern. Structack: Structure-based adversarial attacks on graph neural networks. In Proceedings of
the 32nd ACM Conference on Hypertext and Social Media, pp. 111–120, 2021.

Di Jin, Bingdao Feng, Siqi Guo, Xiaobao Wang, Jianguo Wei, and Zhen Wang. Local-global defense
against unsupervised adversarial attacks on graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 8105–8113, 2023.

Jeff D Kahn, Nathan Linial, Noam Nisan, and Michael E Saks. On the cover time of random walks
on graphs. Journal of Theoretical Probability, 2:121–128, 1989.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings, 2017. URL https://openreview.net/forum?
id=SJU4ayYgl.

Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced subgraphs
efficiently. Information Processing Letters, 74(3-4):115–121, 2000. doi: 10.1016/S0020-0190(00)
00047-8. URL https://doi.org/10.1016/S0020-0190(00)00047-8.

Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Counting and detecting small subgraphs
via equations. SIAM Journal on Discrete Mathematics, 27(2):892–909, 2013. doi: 10.1137/
110859798. URL https://doi.org/10.1137/110859798.

Jintang Li, Tao Xie, Liang Chen, Fenfang Xie, Xiangnan He, and Zibin Zheng. Adversarial attack on
large scale graph. IEEE Transactions on Knowledge and Data Engineering, 35(1):82–95, 2023.
URL https://doi.org/10.1109/TKDE.2021.3078755.

Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for adversarial attacks and
defenses. CoRR, abs/2005.06149, 2020. URL https://arxiv.org/abs/2005.06149.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
Parameterized explainer for graph neural network. Annual Conference on Neural Information
Processing Systems, 2020.

Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards more practical adversarial attacks on graph
neural networks. Annual Conference on Neural Information Processing Systems, NeurIPS, 2020.

12

https://doi.org/10.1109/ACCESS.2020.3045529
https://doi.org/10.1109/ACCESS.2020.3045529
https://doi.org/10.1093/bioinformatics/btt717
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1016/S0020-0190(00)00047-8
https://doi.org/10.1137/110859798
https://doi.org/10.1109/TKDE.2021.3078755
https://arxiv.org/abs/2005.06149

Published as a conference paper at ICLR 2025

Ine Melckenbeeck, Pieter Audenaert, Didier Colle, and Mario Pickavet. Efficiently counting all
orbits of graphlets of any order in a graph using autogenerated equations. Bioinformatics, 34(8):
1372–1380, 2018. URL https://doi.org/10.1093/bioinformatics/btx758.

Jiaming Mu, Binghui Wang, Qi Li, Kun Sun, Mingwei Xu, and Zhuotao Liu. A hard label black-box
adversarial attack against graph neural networks. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pp. 108–125, 2021.

Gurjeet Singh, Facundo Mémoli, and Gunnar E. Carlsson. Topological methods for the analysis of
high dimensional data sets and 3d object recognition. 4th Symposium on Point Based Graphics,
PBG@Eurographics 2007, Prague, Czech Republic, September 2-3, 2007, pp. 91–100, 2007. URL
https://doi.org/10.2312/SPBG/SPBG07/091-100.

Mingjie Sun, Jian Tang, Huichen Li, Bo Li, Chaowei Xiao, Yao Chen, and Dawn Song. Data
poisoning attack against unsupervised node embedding methods. CoRR, abs/1810.12881, 2018.
URL http://arxiv.org/abs/1810.12881.

Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant G. Honavar. Adversarial
attacks on graph neural networks via node injections: A hierarchical reinforcement learning
approach. WWW ’20: The Web Conference 2020, Taipei, Taiwan, pp. 673–683, 2020. URL
https://doi.org/10.1145/3366423.3380149.

Lei Tang and Huan Liu. Relational learning via latent social dimensions. Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France,
pp. 817–826, 2009. URL https://doi.org/10.1145/1557019.1557109.

Shuchang Tao, Qi Cao, Huawei Shen, Junjie Huang, Yunfan Wu, and Xueqi Cheng. Single node
injection attack against graph neural networks. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 1794–1803, 2021.

Shuchang Tao, Qi Cao, Huawei Shen, Yunfan Wu, Liang Hou, Fei Sun, and Xueqi Cheng. Adversarial
camouflage for node injection attack on graphs. Information Sciences, 649:119611, 2023. URL
https://doi.org/10.1016/j.ins.2023.119611.

Marcin Waniek, Tomasz P. Michalak, Talal Rahwan, and Michael J. Wooldridge. Hiding individuals
and communities in a social network. Nature Human Behaviour, abs/1608.00375, 2016. URL
http://arxiv.org/abs/1608.00375.

Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial
examples for graph data: Deep insights into attack and defense. Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI, Macao, China, August 10-16,
2019, pp. 4816–4823, 2019. URL https://doi.org/10.24963/ijcai.2019/669.

Yihan Wu, Aleksandar Bojchevski, and Heng Huang. Adversarial weight perturbation improves
generalization in graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 10417–10425, 2023.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue
Lin. Topology attack and defense for graph neural networks: An optimization perspective.
In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019, pp. 3961–3967. ijcai.org, 2019a. URL
https://doi.org/10.24963/ijcai.2019/550.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019, 2019b. URL https://openreview.net/forum?id=
ryGs6iA5Km.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with
graph embeddings. In Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, volume 48, pp. 40–48, 2016. URL http://proceedings.mlr.press/v48/
yanga16.html.

13

https://doi.org/10.1093/bioinformatics/btx758
https://doi.org/10.2312/SPBG/SPBG07/091-100
http://arxiv.org/abs/1810.12881
https://doi.org/10.1145/3366423.3380149
https://doi.org/10.1145/1557019.1557109
https://doi.org/10.1016/j.ins.2023.119611
http://arxiv.org/abs/1608.00375
https://doi.org/10.24963/ijcai.2019/669
https://doi.org/10.24963/ijcai.2019/550
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
http://proceedings.mlr.press/v48/yanga16.html
http://proceedings.mlr.press/v48/yanga16.html

Published as a conference paper at ICLR 2025

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Annual Conference on Neural Information
Processing Systems, NeurIPS 2019, Vancouver, BC, Canada, pp. 9240–9251, 2019.

He Zhang, Bang Wu, Shuo Wang, Xiangwen Yang, Minhui Xue, Shirui Pan, and Xingliang Yuan.
Demystifying uneven vulnerability of link stealing attacks against graph neural networks. In
International Conference on Machine Learning, pp. 41737–41752. PMLR, 2023.

Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. Graph neural networks and their current
applications in bioinformatics. Frontiers in genetics, 12:690049, 2021.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Transactions
on Knowledge and Data Engineering, 34(1):249–270, 2022. URL https://doi.org/10.
1109/TKDE.2020.2981333.

He Zhao, Zhiwei Zeng, Yongwei Wang, Deheng Ye, and Chunyan Miao. Hgattack: Transferable
heterogeneous graph adversarial attack. IEEE International Conference on Agents, ICA 2024,
Wollongong, Australia, pp. 100–105, 2024. URL https://doi.org/10.1109/ICA63002.
2024.00028.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI Open, 1:57–81, 2020. URL https://doi.org/10.1016/j.aiopen.2021.01.001.

Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks
against adversarial attacks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD, USA, pp. 1399–1407. ACM, 2019. URL https:
//doi.org/10.1145/3292500.3330851.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Annual Conference
on Neural Information Processing Systems, NeurIPS, 2020.

Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov, Jialiang Lu, and Jie Tang.
Tdgia: Effective injection attacks on graph neural networks. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2461–2471, 2021.

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta learn-
ing. In 7th International Conference on Learning Representations, ICLR 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=Bylnx209YX.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, pp. 6246–6250. ijcai.org, 2018. URL https://doi.
org/10.24963/ijcai.2019/872.

14

https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/ICA63002.2024.00028
https://doi.org/10.1109/ICA63002.2024.00028
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1145/3292500.3330851
https://doi.org/10.1145/3292500.3330851
https://openreview.net/forum?id=Bylnx209YX
https://doi.org/10.24963/ijcai.2019/872
https://doi.org/10.24963/ijcai.2019/872

	Introduction
	Notation and Preliminaries
	Related Work
	Methodology
	Attack Model
	Equivalence Classes in Structural Attacks
	GOttack: Graph Structure Poisoning via Orbit Learning

	Experiments
	GOttack Misclassification Results
	Insights from GOttack Results

	Conclusion
	Random Walks to Orbits 15 and 18
	Graph Neural Network
	Backbone Models
	Baseline Models
	Defense Methods

	Further analysis of graphlets and orbits
	Topological properties of graphlets and orbits
	Additional analysis of 1518 orbit nodes
	Orbit hierarchy

	Experimental Results on all Datasets
	Non-defense GNN backbone
	Attack Results on GCN
	Attack Results on GraphSAGE
	Attack Results on GIN

	Defense GNN backbone
	Attack Results on GCN-Jaccard
	Attack Results on MedianGCN
	Attack Results on RobustGCN
	Attack Results on GCN-SVD
	Attack Results on GNNGuard
	Attack Results on GCORN
	Attack Results on GARNET

	Additional proof of GOttack's impact
	Subgraph-based Explanations

