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ABSTRACT

Graph Neural Networks (GNNs) have demonstrated superior performance in node
classification tasks across diverse applications. However, their vulnerability to
adversarial attacks, where minor perturbations can mislead model predictions,
poses significant challenges. This study introduces GOttack, a novel adversarial
attack framework that exploits the topological structure of graphs to undermine the
integrity of GNN predictions systematically. By defining a topology-aware method
to manipulate graph orbits, our approach can generate adversarial modifications that
are both subtle and effective, posing a severe test to the robustness of GNNs. We
evaluate the efficacy of GOttack across multiple prominent GNN architectures using
standard benchmark datasets. Our results show that GOttack outperforms existing
state-of-the-art adversarial techniques and completes training in approximately
55% of the time required by the fastest competing model, achieving the highest
average misclassification rate in 155 tasks. This work not only sheds light on the
susceptibility of GNNs to structured adversarial attacks but also shows that certain
topological patterns may play a significant role in the underlying robustness of the
GNNs.

1 INTRODUCTION

Recent advances in Graph Neural Networks (GNNs) have brought significant progress in node classifi-
cation tasks, utilizing the power of graph topology and node features to generate insightful inferences
across various application domains such as social networks (Fan et al., 2020), bioinformatics (Zhang
et al., 2021) and communication systems (He et al., 2021). Despite their effectiveness, GNNs exhibit
inherent vulnerabilities to adversarial attacks; a minor yet strategically designed perturbation in the
graph structure or nodal features can deceive the model into erroneous predictions. This suscepti-
bility not only undermines the reliability of GNNs but also poses a grave security risk in critical
applications.

Existing approaches predominantly rely on direct node feature manipulation or edge modifications
without considering their topological impact. We address this limitation by designing a novel
adversarial attack framework that systematically alters the graph topology to induce misclassification
errors. Distinct from existing methods, we leverage node connectivity patterns (i.e., orbits) in local
graph structures to maximize adversarial efficacy.

Our studies of graph topology yield a surprising result; we have uncovered a universal attack strategy
commonly employed by several well-known gradient-based adversarial models. This strategy uses
two graph orbits to delineate the resilience of GNNs to adversarial manipulations. Following this
discovery, we introduce the GOttack algorithm, an advanced method that identifies and exploits these
vulnerable graph orbits. GOttack not only enhances attack misclassification rates but also operates
with greater efficiency, reducing the complexity of the attack search associated with such adversarial
interventions.

Through rigorous experiments across three GNN node classification backbones, four state-of-the-
art adversarial models, five benchmark datasets, and four defense models, we demonstrate that
GOttack achieves higher misclassification rates, maintains a lower computational overhead, and
proves effective against defense models.
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Our contributions can be summarized as follows:

• We determine a key topological equivalence group among graph nodes, revealing its frequent
use in the selection process of gradient-based adversarial models.

• Our findings present a new vulnerability in GNNs related to graph topology. Our experiments
demonstrate that such attacks are highly effective against state-of-the-art defense models.

• Our proposed attack strategy, GOttack, achieves the highest misclassification rate and
represents a scalable attack model suitable for large graphs.

2 NOTATION AND PRELIMINARIES

In general, we consider the task of node classification in a graph, denoted as G = (V, E ,X), where V
represents the set of nodes, E ⊆ {(v, w) | v, w ∈ V} is the set of edges, and X = {x0, x1, . . . , xn−1}
comprises feature vectors such that xi ∈ RM is the M -dimensional feature vector of node i. The
adjacency matrix A ∈ {0, 1}N×N for the graph G has elements Avw = 1 if there is an edge evw
connecting nodes v and w, and 0 otherwise.

A subset of nodes VL ⊆ V is labeled, each associated with class labels from the set C = {1, . . . , c},
where yv denotes the true label of node v in VL. This setup facilitates examining how shared labels
influence edge formation between nodes, an essential aspect of understanding neighbor influence
on node classification. Homophily (Zhu et al., 2020) in graphs is traditionally characterized by the
similarity between connected node pairs, where nodes are considered similar if they share identical
labels. The homophily ratio is constructed based on this premise as follows:
Definition 1 (Homophily Ratio). Let G denote the aforementioned graph and y represent the vector
of node labels. The homophily ratio is defined as the proportion of edges connecting nodes with the
same labels, formally given by:

h(G, {yv; v ∈ V}) = 1

|E|
∑

(v,w)∈E

1(yv = yw),

where 1(·) denotes the indicator function.

A graph is considered highly homophilous if the homophily ratio h(·) is large, typically within the
range 0.5 ≤ h(·) ≤ 1. Conversely, a low homophily ratio indicates a heterophilous graph.

Node Classification. The goal of node classification is to infer a function g : V → P(C), that assigns
a probability distribution over the class set C to each unlabeled node v, where ŷv is the predicted
class for node v, identified as the class with the highest probability in g(v). This setup, characterized
as transductive learning, implies that the model predictions are based on instances both seen and used
during training.

The Graph Convolutional Network (GCN), as introduced by Kipf & Welling (2016), provides a
foundational model for understanding and analyzing the vulnerabilities exposed by our proposed
attack model. GCN employs a message-passing technique that utilizes the features of neighbouring
nodes, making it susceptible to adversarial manipulations that can alter node connections and lead to
misclassifications. As a result, this section will define our attack using the GCN operations, which
are detailed in Appendix B.1.

Adversarial Attack. Adversarial attacks on graph data aim to subtly perturb graph structures or node
features, causing GCN to misclassify specific nodes. This entails creating a new graph G′ = (A′,X′)
from the original G = (A,X), with changes to A (i.e., structural attacks) or X (i.e., feature attacks).
In an attack, a subset of nodes v ∈ VT ⊆ V are targeted to have the GCN misclassify their labels
ŷv ̸= yv within a specified budget ∆ as follows:∑

u

∑
f

∣∣Xuf −X′
uf

∣∣+ ∑
u<w

|Auw −A′
uw| ≤ ∆ (1)

The node v may be directly affected (i.e., u = v), or influence attacks can impact any other node
within the graph (i.e., u ̸= v). The attacks take various forms and occur during different phases. i)
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Poisoning attacks occur during training time, aiming to compromise the model by manipulating the
training dataset. Evasion attacks occur at test time, attempting to generate deceptive samples that
evade detection by a trained model. ii) In targeted attacks, the objective is to misclassify specific
target nodes VT , while in non-targeted attacks, the goal is to reduce the overall accuracy of the model.

3 RELATED WORK

Recent interest has grown in adversarial attacks on graph neural networks. These attacks demonstrate
how minor changes to input features or graph structure can alter network outputs, often causing
incorrect classifications. We begin with an overview of gradient-based attacks and then discuss
non-gradient-based methods (refer to Table 46 for a complete classification).

Gradient-based attacks. Gradient-based attacks on graph neural networks exploit the gradients of
the model to perturb node features or graph structure, aiming to mislead the network into making
incorrect predictions. Zügner et al. (2018) proposed Nettack, which marked the inaugural exploration
of gradient attacks on attributed graphs, revealing significant accuracy declines even with minor
alterations. Another novel approach by Xu et al. significantly reduced classification performance by
causing a small number of edge perturbations (Xu et al., 2019). Similarly, Li et al. (2021) introduced
the SGA framework to target nodes by using a smaller subgraph around the target node and leveraging
gradient information for attack optimization. Fast Gradient Attack (FGA) used gradient information
from GCNs and outperformed baseline methods by efficiently disturbing network embedding with
minimal link rewiring (Chen et al., 2018). To describe the robustness of deep learning models
for graph-based tasks, Zügner & Günnemann (2019) introduced training-time attacks using meta-
gradients to perturb graph structures, which effectively renders the model near-useless for production
use, all without direct access to the target classifier. Our approach uses a gradient-based attack as
well; however, we reduce the amount of costly gradient computations.

Non-gradient-based attacks. Sun et al. (2020) introduced a novel node injection poisoning attack
that used hierarchical Q-learning to optimize the injection process. Likewise, Chang et al. (2022)
proposed the GF-Attack for conducting black-box adversarial attacks on graph embedding models
without access to labels. Hussain et al. (2021) proposed Structack, which uses structural centrality
and similarity insights to efficiently lower GNN costs. Similarly, Zou et al. (2021) proposed the
topological defective graph injection attack, where adversaries inject adversarial nodes into existing
graphs rather than modifying links or node attributes. Zhang et al. (2023) proposed membership
inference attacks targeting edges, also known as link-stealing attacks, which used customized attacks
by introducing a group-based attack paradigm that is suited to various groups of edges. Mu et al.
(2021) proposed the attack as an optimization problem to minimize perturbations to the graph
structure, with a particular emphasis on the difficult hard-label black-box attack scenario.

The approach we propose in this paper differs from all the above-mentioned proposals in that none
have attempted to identify equivalence groups for graph nodes based on graph orbits to minimize
the search space in discrete optimization. Furthermore, our proposed solution introduces a highly
effective and efficient algorithm for universal attacks on node classification models, demonstrating
significantly faster performance compared to existing methods (e.g., attack training in approximately
55% of the time required by the fastest competing model).

4 METHODOLOGY

We propose the GOttack framework to execute adversarial attacks on node classification GNNs
while minimizing changes to the graph’s structure. Figure 1 illustrates the overview of the complete
GOttack research workflow.

Challenge. A significant attack challenge in our task is the substantial time complexity, as structural
attacks on the underlying graph data might require up to O(2|V|×|V|) steps for finding the optimal
set of edges to remove or add. This scale of complexity necessitates the development of efficient
methods.

GOttack Philosophy. GOttack draws inspiration from the Mapper philosophy of Topological Data
Analysis (TDA), as described by Singh et al. (2007). This philosophy posits that data has shape,
and finding the shape may allow us to build better models. In our case, we focus on identifying and
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Surrogate model

ORCA algorithm

+

Input graph
Modified graph

Figure 1: Complete research workflow diagram of GOttack.

grouping nodes on the graph such that graph topology can allow us to select which nodes and edges
to attack in GNNs.

GOttack Solution. GOttack utilizes and advances concepts from group theory (Bogopolskij, 2008)
to identify node equivalence classes (Alon, 2007) on a graph, which guide our decisions on which
edges to add or remove. This approach strategically groups nodes according to their positions on the
graph in potential attack strategies, thereby enhancing both the precision and time-efficiency of our
adversarial interventions.

4.1 ATTACK MODEL

We aim to target a specific node v ∈ V in a targeted, structural, direct poisoning attack to alter its
predicted class. As the prediction of v depends not only on its individual attributes but also on the
characteristics of neighbouring nodes N (v) within the graph, we are focused on perturbations to the
initial graph G with the condition: ∃w,A′

vw ̸= Avw where w ∈ V . However, to prevent the attacker
from completely modifying the graph, we impose a constraint on the total number of allowable
changes, controlled by a specified budget ∆:

∑
w∈V |Avw −A′

vw| ≤ ∆.

Problem Statement. Consider an initial graph G = (A,X ), a target node v, and its true class yv.
Our goal is to modify the graph’s structure such that the classification of v changes from yv to yv′ ,
thereby maximizing the difference from its original classification. The proposed attacks can be
mathematically formulated as a bi-level optimization problem:

arg max
(A′,X )∈G′

max
yv′ ̸=yv

lnZ∗
v,yv′ − lnZ∗

v,yv
(2)

where Z∗ = fθ∗(A′,X ) and θ∗ = argminθ L(θ;A′,X ) subject to the budget constraint. Specifically,
we aim to find a modified graph G′ = (A′,X ) in which the target node v is assigned a label yv′ that
maximizes the difference from its original label yv in terms of probability scores.

4.2 EQUIVALENCE CLASSES IN STRUCTURAL ATTACKS

We utilize an attack strategy based on node equivalence groups to guide our decisions regarding the
addition and deletion of edges. This section begins by defining graphlets, which are instrumental in
identifying node equivalence groups. We then discuss orbits, representing the specific positions a
node can assume within a graphlet to facilitate effective grouping. As a last step, we compute Graph
Orbit Vectors from all graphlets to develop a multi-orbit based attack strategy.

Definition 2 (Graphlet (Kloks et al., 2000)). A graphlet Ggp within a larger graph G = (V, E ,X ) is
a connected induced subgraph Gs′ = (V ′, E ′,X ′), where V ′ ⊆ V , and E ′ includes all edges euv ∈ E
with both u and v in V ′, and |V ′| typically equals 5 (as defined in Appendix Figure 6).

There are 30 distinct graphlets of 5-nodes (see Appendix Figure 6 for the shapes). For instance,
consider the path u → x → v → k → y in Figure 2, which forms a graphlet with |V ′| = 5.

Orbits are defined by automorphisms of the graphlet; an automorphism σ of a graphlet Ggp satisfies
σ · Ggp = Ggp. Nodes v and w in V are similar if there exists an automorphism σ such that σ(v) = w.

4
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The orbit of a node v, denoted by Orb(Ggp, v), is the set of all nodes w ∈ V that can be mapped onto
v by some automorphism of the graphlet:

Definition 3 (Orbit (Alon, 2007)). Orb(Ggp, v) = {w ∈ V | σ ∈ Aut(Ggp) : σ(v) = w}.

u

t

wv

x

k

y

l

z

Figure 2: A toy graph
where shared node col-
ors imply similar orbit
counts. Nodes u, z and
w have 15 and 18 orbits
respectively.

where Aut(Ggp) is the group of automorphisms of Ggp. Each orbit is
denoted by Orbj , where j is a unique identifier for each orbit within
a specific graphlet. A node v touches an orbit Orbj if v is part of an
induced subgraph in the graph and v belongs to Orbj . By extension,
a node may appear in multiple graphlets and hence occupy multiple
orbits. For example, in Figure 2, node x appears in graphlets comprising
of nodesets {x, v, k, l, w} and {x, v, k, y, l} and so on. Overall the 30
graphlets create 73 distinct orbits (see Appendix Figure 6 for the orbit
positions).

Graph Orbit Vector. We propose a Graph Orbit Vector (GOV) as a
numerical representation of a node’s participation across different orbits
in a graph. Let GOVv ∈ Zn

≥0 be an n = 73-dimensional vector. We
compute GOV by mapping the presence of a node in specific orbits, where
each element of the vector corresponds to an orbit uniquely identified by
Orbj . Specifically, the vector element for Orbj is incremented each time
a node v appears in orbit Orbj of any graphlet where Orbj is an induced
subgraph and v is a part of Orbj . Thus, the Graph Orbit Vector provides a
comprehensive profile of a node’s topological embedding within the graph, capturing its involvement
in different graphlets.

15

16

17

18

20

21

19

Figure 3: Graphlets
where orbits 15 and 18
are defined.

We note that orbit discovery on graphlets is completed for the entire graph
as a pre-processing step; hence, it does not require recomputations for
each target node.

4.3 GOTTACK:
GRAPH STRUCTURE POISONING VIA ORBIT LEARNING

In our exploration of graph topology, we discover a distinctive fea-
ture shaped by orbits 15 and 18: nodes touching these orbits appear
in peninsula-like subgraphs (such as the one formed in Figure 2 by nodes
{u, x, v, k, t}). These orbits (see Figure 3) are characteristic of being
three or four edges away from another endpoint in the graphlet and serve
as critical indicators of topological peripheries within a graph. This ge-
ometric arrangement lends a substantial foundation to our subsequent
analyses and adversarial strategies on graph data, as discussed in the
following hypotheses and experimental sections.

We start by stating our topological observation as influenced by the Mapper philosophy: 1) Orbit
Proxy. Under the homophily assumption, node classification posits that graph neighbors are similar
to a node in the label. Consequently, nodes in more distant positions, as can be identified by orbits,
are less similar. 2) Periphery Orbits. Orbits 15 and 18 indicate the topological periphery in a graph
and provide a useful proxy for identifying distant nodes that differ in labels.

We claim that the path distance within the graph encodes a notion of remoteness, which in turn yields
minimal information about a node’s label. This indicates that physical proximity within the network
strongly influences the predictive accuracy regarding node labels. In our experiments (Section 5), we
also provide empirical evidence demonstrating the utility of the Orbit Proxy in heterophilic graph
cases, albeit in a weaker form.

In Theorem 1, we formally state that nodes located in orbits 15 and 18, due to their peripheral
placement, are particularly effective for establishing paths to remote parts of the graph. This has
significant implications for designing network protocols and algorithms that rely on efficient data
traversal and retrieval mechanisms.

Theorem 1 (Remote Connection Candidates). Let H(v, w) denote the expected random walk hitting
time from node v to node w in G. For any target node v ∈ V , nodes in orbits 15 and 18 are the most
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effective candidates for establishing paths to the most remote parts of G, due to their longer expected
hitting times H(v, w) compared to other nodes not in these orbits.

Due to space limitations, the proof is given in Appendix A.

The Periphery Orbits observation forms the backbone of our attack strategy; we identify nodes of
periphery orbits (i.e., 15 and 18) and affect the adjacency matrix (i.e., add or remove edges to these
nodes) accordingly to confuse a GNN to misclassify a target. Consider the target node v in Figure 2.
Our hypothesis posits that creating an edge from v (or any other node) to either of the (15 and 18)
nodes u, z or w will yield the highest misclassification error in GCN. The selection among periphery
nodes is carried out using a gradient-based method, as we detail below in surrogate loss.

Orbits (15, 18). We utilize two ordered orbit categories based on the largest and second-largest
orbit count values. The largest orbit count value is identified using Orbvmax = max(GOVv), and the
second-largest orbit count value is defined by Orbvsec = max({j ∈ GOVv | j < max(GOVv)}).
Consequently, each node is assigned to an orbit category denoted as Orbcat = Orbmax∥Orbsec. Note
that Orbmax∥Orbsec is equivalent to Orbsec∥Orbmax.

Example 1. Consider a node v in graph G. Although GOttack works with k = 5-node graphlets,
for simplicity, this example employs three-node graphlets (k = 3) for orbit counting, yielding a
4-dimensional vector to store all possible orbits. Suppose the orbit count vector for node v is
GOVv = [4, 15, 11, 12]. The task is to identify the largest and second-largest orbit count values in
GOVv. The largest orbit count value is 15, denoted by Orbvmax = 01, and the second-largest orbit
count value is 12, denoted by Orbvsec = 03. Thus, node v is categorized into the orbit category 0103,
denoted as Orbv0103.

Surrogate loss. Our objective is to maximize the discrepancy in log probabilities for the target node
v within a specified budget ∆. The log-probabilities can be simplified to Â2XW . We linearize the
model by replacing the nonlinearity σ(.) with a simple linear activation function. Therefore, from
Eq. 4, Z ′ = softmax(ÂÂXW 1W 2) = softmax(Â2XW ). Therefore, the surrogate loss function,
Ls(A,X ;W, v), is designed to optimize the following objective: argmax

(A′,X)∈G′
Ls(A′,X ;W, v), where,

the surrogate loss function Ls is defined as Ls(A′,X ;W, v) = maxw ̸=z[Â
2XW ]v,z − [Â2XW ]v,w.

This function aims to solve the maximum loss over a set of permissible changes in A of G.

Structure poisoning. We compute a candidate node set called the orbit category, denoted as Orbcat,
consisting only of allowable elements (v, u) where the edge changes from 0 to 1 (i.e., adding an
edge) or vice versa. Specifically, for a given target node v, we create a candidate set such that u ∈ V
where Orbumax = 15 or 18, and Orbusec = 15 or 18. Among the candidate edge changes, we select the
one that yields the highest surrogate loss. However, to compute the surrogate loss score, we first need
to determine the class prediction of the target node v after adding or removing an edge (u, v). Here,
we are optimizing the loss score with respect to A; the term XW is constant. The log-probabilities of
node v are then given by g(v) = [Â2]v · C, where [Â2]v denotes a row vector and C is the constant
term (XW). Thus, we only need to inspect how this row vector changes to determine the optimal
edge manipulation. Following the insight developed by Zügner & Günnemann (2019), we can derive
an incremental update, so there is no need to recompute the updated [Â2]v from scratch.

Time Complexity. Orbit discovery is the primary computational cost of GOttack. The time complex-
ity for computing all orbits for all nodes is O(|E| × d+ |V | × d4), where O(|V | × d4) corresponds
to the time required to enumerate all five-node graphlets, and d denotes the maximum degree in the
graph. For instance, orbit discovery on the CORA dataset takes only 0.17 seconds.

5 EXPERIMENTS

This section presents the experimental evaluation we carried out to show the effectiveness of the
proposed approach. We attempt to answer the following questions: i) How effective is the GOttack
approach in terms of misclassification rate compared with existing state-of-the-art approaches? ii)
How efficient is the proposed model in terms of computation time compared with the existing models?
iii) How easy is it to defend against GOttack compared to existing models?
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Table 2: Misclassification rate (in %) (↑) of target nodes in five datasets where three backbone
GNNs (GCN, GIN and GraphSAGE) are attacked in node classification with budget ∆ = 1. See
Appendix D.1 for stds.

Cora Citeseer Polblogs BlogCatalog Pubmed

Method GSAGE GCN GIN GSAGE GCN GIN GSAGE GCN GIN GSAGE GCN GIN GSAGE GCN GIN

Random 19.11 2.07 17.30 30.01 2.01 10.03 15.13 12.04 17.04 3.09 12.09 4.19 14.02 20.05 20.05
Nettack 58.04 34.06 46.10 66.09 46.04 57.04 29.02 38.04 13.02 50.11 20.02 65.07 52.01 50.04 47.02

FGA 54.08 32.05 40.09 60.11 31.10 44.10 22.08 31.09 14.02 46.15 10.04 61.09 42.03 32.02 52.00
SGA 61.06 41.05 57.05 60.06 41.06 57.06 35.05 37.07 35.08 51.45 24.03 61.02 30.00 57.04 47.01

PRBCD 35.02 41.06 36.10 35.04 46.04 42.02 8.01 42.07 33.06 33.05 33.05 5.09 38.02 52.03 43.06

GOttack (ours) 59.05 41.52 37.03 61.09 46.07 57.06 29.03 41.08 15.08 52.10 22.04 63.08 52.08 57.09 55.05

Table 1: Dataset statistics and homophily ratios.

Dataset Hom. Nodes Edges Features Labels
Cora 0.81 2,485 5,069 1,433 7
Citeseer 0.74 2,110 3,668 3,703 6
Polblogs 0.91 1,222 16,714 1,490 2
Pubmed 0.81 19,717 44,325 500 3
BlogCatalog 0.40 5,196 171,743 8,189 6

Datasets. We conduct experiments on five
widely used node classification datasets, the
statistics of which are provided in Table 1. Cora
(Yang et al., 2016), Citeseer (Yang et al., 2016)
and Pubmed (Yang et al., 2016) datasets are
citation networks with undirected edges and bi-
nary features where nodes are publications and
edges are citation links.

In the Polblogs (Adamic & Glance, 2005)
dataset, nodes are political blogs, and edges are links between them. In the BlogCatalog (Tang & Liu,
2009) dataset, nodes’ attributes are constructed by keywords, which are generated by users as a short
description of their blogs. We split the networks into labeled (20%) and unlabeled nodes (80%).

We further split the labeled nodes into equal parts training and validation sets to train the surrogate
model. We have used the ORCA algorithm (Hočevar & Demšar, 2014) for the orbit discovery process
on these datasets.

Experimental Setup. We have conducted the experiments under the transductive, semi-supervised
learning setting. We have used both common node classifier GNNs, including GCN (Kipf & Welling,
2016), GIN (Xu et al., 2018), and GraphSAGE (Hamilton et al., 2017) and defense models, including
RobustGCN (Zhu et al., 2019), GCN-Jaccard (Wu et al., 2019), GCN-SVD (Entezari et al., 2020),
and MedianGCN (Chen et al., 2021) as the backbone to evaluate our adversarial attacks. We provide
the implementation of GOttack at https://anonymous.4open.science/r/GOttack/.

We average over five different random initializations/splits, where for each, we follow these steps.
Initially, we train the surrogate model on the labeled data. From the test set, among all nodes correctly
classified, we adopt the popular practice of Nettack and select: (i) the 10 nodes with the highest
margin of classification, indicating clear correctness, (ii) the 10 nodes with the lowest margin (still
correctly classified), and (iii) 20 additional nodes randomly chosen. These selected nodes will be the
targets for the attacks. All results presented here are computed by us in the same settings.

We compare GOttack against five state-of-the-art graph adversarial attack frameworks: Nettack
(Zügner et al., 2018), FGAttack (FGA)(Chen et al., 2018), SGAttack (SGA) (Li et al., 2021) and
PRBCD (Geisler et al., 2021) as well as a Random (dummy) baseline (see Section B.2 for descriptions).
We use GCN as the surrogate model for the attack models except for SGA, which suggests SGC.

We report the misclassification rate, which is the percentage of nodes that were incorrectly classified
by the model in relation to the total number of nodes being classified.

In our experiments, we utilized the PyG (PyTorch Geometric) library, which employs PyTorch as
the backend for implementing GNN models. Additionally, we used the PyTorch adversarial library
DeepRobust (Li et al., 2020) for robustness evaluations. The experiments were conducted using
Python (Version 3.8.19) and PyTorch Version 3.10.0. The computational environment was a Linux
cluster equipped with an AMD Ryzen Threadripper 3960X 24-core processor, 2520GB RAM and
NVIDIA RTX A6000 with 49GB RAM GPUs.

Parameters setting. Our models were trained using the Adam (Diederik P Kingma, 2014) optimiza-
tion algorithm, employing a fixed learning rate of 0.01. Training sessions were conducted over a span
of 200 epochs; we employed the softmax activation function.
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Figure 4: Budgeted attack results on the Citeseer dataset.

5.1 GOTTACK MISCLASSIFICATION RESULTS

Table 2 shows the misclassification rate achieved with a single edge perturbation (addition or deletion).
GOttack yields the highest misclassification rates in 7 out of 15 attack settings and ranks second in
5 other settings. SGAttack yields 4 best attacks, while PRBCD and Nettack each achieve the best
performance in 2 attack settings. GOttack yields the highest overall rate of 52.08, whereas the second
best Nettack yields 47.02.

Likewise, Table 3 shows the misclassification rates of the top-3 attack models on defense models with
a single edge perturbation. PRBCD, a widely used method adopted by PyTorch, yields surprisingly
low rates in two datasets. GOttack yields the highest misclassification rates in 7 out of 16 attack
settings and ranks second in 7 other settings, while SGA achieves the best performance in 7 attack
settings. GOttack achieves the highest overall rate of 33.07, whereas SGA has a rate of 32.5.

In Figure 4, we gradually increase the attack budget and represent the corresponding misclassification
rates on the Citeseer dataset (see Appendix D for all results). We observe that for GraphSAGE,
GOttack yields better misclassification results, reaching a maximum misclassification score of 97%
with 5 perturbations. Similarly, for the GCN and GIN models, the proposed approach attains
misclassification scores of 77% and 76%, respectively, outperforming the SOTA models.

Extending the analysis of the relationship between increasing budgets (∆ = 1, ..., 5) and misclassifi-
cation rates to all datasets, we observe the following behavior (see Section D for complete results):
GOttack achieves the highest misclassification rate in 28 out of 65 tasks for GCN, GSAGE and
GIN models across all budgets. The numbers are 16 for PRBCD, 16 for SGAttack, and 3 for Nettack.
GOttack achieves the highest average rate of 0.58 over all budgets and datasets compared to
the second best model of PRBCD and SGAttack with 0.57 (Appendix Table 8).

Furthermore, as shown in Table 4, GOttack demonstrates superior computational efficiency and
scalability, making it particularly well-suited for large-scale graph datasets. This efficiency stems
from its topological approach to candidate node selection, which reduces the search space for potential
attack points without sacrificing effectiveness. For example, in the BlogCatalog dataset, GOttack
requires only about 55% of the time taken by Nettack to execute, significantly reducing computational
overhead. Despite its speed, GOttack still maintains a high level of attack effectiveness, generating
attack candidates in less than 10 minutes, even for datasets with a large number of nodes and edges.
This balance between performance and computational cost highlights GOttack’s practical applicability
to real-world scenarios.

While both Nettack and GOttack are scalable for large graphs, their methodologies differ: Nettack
selects candidates based on degree distribution in each iteration, whereas GOttack leverages orbit
structures. Although orbit discovery incurs some overhead, it reduces the candidate set to about 23%

Table 3: Misclassification rate (in %) (↑) of target nodes in different datasets against four defense
models (RGCN, GCN-Jaccard, GCN-SVD and MedianGCN) are attacked in node classification with
budget ∆ = 1. See Appendix D.2 for stds.

Cora Citeseer Polblogs BlogCatalog

Method RGCN JAC SVD MDGCN RGCN JAC SVD MDGCN RGCN JAC SVD MDGCN RGCN JAC SVD MDGCN

SGA 44.01 33.02 28.03 32.05 53.00 36.01 24.04 36.01 46.03 43.05 16.01 43.05 25.02 25.02 15.05 20.01
Nettack 48.08 38.01 24.01 32.05 46.04 42.02 28.04 27.05 38.05 46.03 12.04 33.02 35.04 19.03 19.02 17.02

GOttack (ours) 43.04 39.01 28.08 32.07 48.07 42.09 25.03 28.02 40.02 53.06 10.02 34.07 35.05 20.02 20.00 19.03
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(a) Computation graph before attack
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(b) Computation graph after attack

Figure 5: The computation graph for the targeted node 1978 from the CORA datasets, as identified
by GNNExplainer (Luo et al., 2020). The edge (1978, 387) is added during the successful attack.
Edge importances change considerably after the attack and negative class gains importance due to the
newly added nodes.

of all nodes (see Appendix Figure 8), making the initial cost worthwhile. Among alternative methods,
only SGA is more scalable, as it focuses on local neighborhoods for candidate selection; however, its
performance is worse than GOttack.

5.2 INSIGHTS FROM GOTTACK RESULTS

GOttack strategically selects nodes using the graph topology. This selection criterion prompts several
thoughts and questions, which we address below:

The periphery definition. A visual inspection of Figure 6 shows that more orbits, such as 19, 39,
and 27, could fit the periphery definition. The primary reason for not considering these orbits is their
relative scarcity in all the graph datasets. For example, the correlation matrix of node orbits from the
Cora dataset in Appendix Figure 8 shows that most nodes predominantly feature orbits within the
1518 and 1922 groups. Furthermore, as shown in Appendix Section D, attacks based on 1819, 1519
and 1922 yield less powerful attacks.

Table 4: End-to-end time costs in seconds (↓). See
Appendix Table 42 for stds.

Global Local

GOttack Nettack FGA PRBCD SGA

Cora 48.27 59.57 55.63 242.37 32.24
Citeseer 42.02 46.12 42.43 210.55 41.02
Polblogs 139.68 175.23 165.37 210.87 164.07

BlogCatalog 512.04 916.91 223.02 259.38 335.91
Pubmed 246.96 243.78 533.55 240.23 68.23
Median 139.68 175.23 165.37 240.23 68.23

Higher order orbits. GOttack uses two orbits:
1518. The decision against using > 2 orbits is
influenced by the fact that nodes typically do
not have more orbits. For the single orbit case,
our experiments had larger time complexity, as
a larger pool of nodes was considered, yet the
efficacy of attacks remained similar.

Gradient-based models target 1518 nodes. An
interesting result of our studies is the discovery
that gradient-based models predominantly target
1518 nodes, as shown for Nettack in Table 5 and
other models in Appendix Tables 6 and 7. For
example, Table 5 shows that 97.5% of the initial attacks involve 1518 nodes in the highly homophilous
Polblogs, while only 9.41% of the nodes are 1518 nodes. We observe similar behavior in the
heterophilous BlogCatalog dataset (2.5% and 22.5% in ∆ = 1, 2 attacks). This pattern underscores
the strategic importance of selecting orbit 1518 nodes in network attacks.

Node, Homophily, Distance and Subgraph-based Explanations for GOttack. We conducted a
comprehensive analysis to understand how GOttack causes node misclassification. Initially, we used
GNN explainers (see Appendix Section E.1) which factor in the subgraph effects and node features
in perturbations. Figure 5 shows an example where misclassifications are due to changes in the
importance of existing edges within the computation graph, which offers evidence that explanations
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specific to nodes or edges alone are insufficient to adequately explain an attack as shown in Figure 5.
However, the explainers do not concur on the specific explanation (see Figure 9b).

Next, we focused on node-centric metrics to determine the positional changes of the target node
within the graph following the attack. As detailed in Appendix Table 38, the target nodes’ clustering
coefficient, degree, betweenness, and closeness centralities did not show a significant difference
compared to those influenced by other attacks. Secondly, we examined whether the attack brought in
nodes with different labels into the computation graph of the target node (see Appendix Table 41).
We found that after the attack, both similar and differently labeled nodes increased by 0.92 and 3.36
on average, respectively. However, these values are not as pronounced as those seen in other attacks,
suggesting that the induced label diversity change by GOttack is not substantial. Next, we computed
the shortest path distances from the target nodes to nodes with similar and different labels in the entire
graph (see Appendix Table 39). This analysis provided empirical proof supporting our Theorem 1:
the 1518 strategy more significantly reduces the distance to nodes of different labels (−0.03) than to
those of similar labels (−0.02). This behavior, which indicates a targeted modification in network
dynamics, was not observed with other orbits, highlighting the distinct impact of the GOttack strategy.

Table 5: Comparison of orbit-based node selection
in sequential Nettack phases.

Dataset Orbits % of nodes % in 1st Attack % in 2nd Attack

Cora (h = 0.81)
1518 24.00% 77.00% 71.10%
1519 14.41% 5.70% 14.29%
1819 11.59% 10.00% 12.50%

Citeseer (h = 0.74)
1518 21.99% 51.60% 61.29%
1519 21.18% 12.50% 15.00%
1819 11.56% 3.29% 0.00%

Polblogs (h = 0.91)
1518 9.41% 97.50% 60.00%
1519 2.29% 0.00% 0.00%
1819 12.93% 2.50% 27.50%

Pubmed (h = 0.81)
1518 20.14% 25.00% 10.00%
1519 23.07% 32.50% 52.50%
1618 2.24% 22.50% 10.00%

BlogCatalog (h = 0.40)
1518 3.25% 2.50% 22.50%
1519 61.57% 62.50% 37.50%
1922 19.77% 35.00% 40.00%

Defenses and Availability. GOttack can be de-
fended against by attending to node orbit types
in GNN aggregations and reducing the impor-
tance of neighbors in 1518 orbits. In that case,
topology offers new orbits to attack, such as
1519 and 1922, as we study and report in Ap-
pendix D. We have also created a graph-algebra-
based orbit selection scheme in Appendix C.3
that can attack i) a graph of any size and ii)
a graph without the periphery orbits of 1518.
However, we note that in all the datasets used,
nodes belonging to orbit 1518 were particularly
common (Fig 8).

Performance Limits. GOttack optimizes candi-
date node selection for attacks using a topologi-
cal approach. Our primary hypothesis is that this
topological method offers both efficiency and
effectiveness. While brute-force methods or gradient-based optimizations can theoretically achieve
the same attack success by exhaustively exploring all possible options, these approaches come with
significant computational costs. Thus, the tradeoff between attack efficiency and runtime must be
carefully balanced. GOttack addresses this by providing a principled strategy based on topology,
offering a more computationally feasible solution without sacrificing attack efficacy.

6 CONCLUSION

We have identified a key equivalence group for graph nodes based on their topological positions
within the graph, and demonstrated that gradient-based attack models frequently target this group in
their attacks. Our approach, GOttack, introduces a seminal topological strategy in adversarial graph
machine learning. By uncovering this previously unexplored vulnerability tied to graph topology, our
work highlights the susceptibility of graph neural networks to topology-based attacks and paves the
way for developing efficient attack models.

GOttack, informed by theoretical and empirical insights, not only enhances misclassification rates
but does so in a scalable manner, strongly advocating its application in improving the security and
integrity of GNNs across diverse use cases. For future work, we aim to study topological defenses
against attack models.
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Tomaž Hočevar and Janez Demšar. A combinatorial approach to graphlet counting. Bioinformatics,
30(4):559–565, 2014.

Hussain Hussain, Tomislav Duricic, Elisabeth Lex, Denis Helic, Markus Strohmaier, and Roman
Kern. Structack: Structure-based adversarial attacks on graph neural networks. In Proceedings of
the 32nd ACM Conference on Hypertext and Social Media, pp. 111–120, 2021.

Di Jin, Bingdao Feng, Siqi Guo, Xiaobao Wang, Jianguo Wei, and Zhen Wang. Local-global defense
against unsupervised adversarial attacks on graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 8105–8113, 2023.

Jeff D Kahn, Nathan Linial, Noam Nisan, and Michael E Saks. On the cover time of random walks
on graphs. Journal of Theoretical Probability, 2:121–128, 1989.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced subgraphs
efficiently. Inf. Process. Lett., 74(3-4):115–121, 2000. doi: 10.1016/S0020-0190(00)00047-8.
URL https://doi.org/10.1016/S0020-0190(00)00047-8.

Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Counting and detecting small subgraphs
via equations. SIAM J. Discret. Math., 27(2):892–909, 2013. doi: 10.1137/110859798. URL
https://doi.org/10.1137/110859798.

Jintang Li, Tao Xie, Liang Chen, Fenfang Xie, Xiangnan He, and Zibin Zheng. Adversarial attack on
large scale graph. IEEE Transactions on Knowledge and Data Engineering, 35(1):82–95, 2021.

Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for adversarial attacks
and defenses. arXiv preprint arXiv:2005.06149, 2020.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
Parameterized explainer for graph neural network. Advances in neural information processing
systems, 33:19620–19631, 2020.

Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards more practical adversarial attacks on graph
neural networks. Advances in neural information processing systems, 33:4756–4766, 2020.

Ine Melckenbeeck, Pieter Audenaert, Didier Colle, and Mario Pickavet. Efficiently counting all
orbits of graphlets of any order in a graph using autogenerated equations. Bioinform., 34(8):
1372–1380, 2018. doi: 10.1093/BIOINFORMATICS/BTX758. URL https://doi.org/10.
1093/bioinformatics/btx758.

Jiaming Mu, Binghui Wang, Qi Li, Kun Sun, Mingwei Xu, and Zhuotao Liu. A hard label black-box
adversarial attack against graph neural networks. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pp. 108–125, 2021.

Gurjeet Singh, Facundo Mémoli, Gunnar E Carlsson, et al. Topological methods for the analysis of
high dimensional data sets and 3d object recognition. PBG@ Eurographics, 2:091–100, 2007.

Mingjie Sun, Jian Tang, Huichen Li, Bo Li, Chaowei Xiao, Yao Chen, and Dawn Song. Data
poisoning attack against unsupervised node embedding methods. arXiv preprint arXiv:1810.12881,
2018.

Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar. Non-target-specific
node injection attacks on graph neural networks: A hierarchical reinforcement learning approach.
In Proc. WWW, volume 3, 2020.

Lei Tang and Huan Liu. Relational learning via latent social dimensions. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 817–826,
2009.

12

https://doi.org/10.1016/S0020-0190(00)00047-8
https://doi.org/10.1137/110859798
https://doi.org/10.1093/bioinformatics/btx758
https://doi.org/10.1093/bioinformatics/btx758


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shuchang Tao, Qi Cao, Huawei Shen, Junjie Huang, Yunfan Wu, and Xueqi Cheng. Single node
injection attack against graph neural networks. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 1794–1803, 2021.

Shuchang Tao, Qi Cao, Huawei Shen, Yunfan Wu, Liang Hou, Fei Sun, and Xueqi Cheng. Adversarial
camouflage for node injection attack on graphs. Information Sciences, 649:119611, 2023.

Marcin Waniek, Tomasz P Michalak, Michael J Wooldridge, and Talal Rahwan. Hiding individuals
and communities in a social network. Nature Human Behaviour, 2(2):139–147, 2018.

Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial
examples on graph data: Deep insights into attack and defense. arXiv preprint arXiv:1903.01610,
2019.

Yihan Wu, Aleksandar Bojchevski, and Heng Huang. Adversarial weight perturbation improves
generalization in graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 10417–10425, 2023.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin.
Topology attack and defense for graph neural networks: An optimization perspective. arXiv
preprint arXiv:1906.04214, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

He Zhang, Bang Wu, Shuo Wang, Xiangwen Yang, Minhui Xue, Shirui Pan, and Xingliang Yuan.
Demystifying uneven vulnerability of link stealing attacks against graph neural networks. In
International Conference on Machine Learning, pp. 41737–41752. PMLR, 2023.

Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. Graph neural networks and their current
applications in bioinformatics. Frontiers in genetics, 12:690049, 2021.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Trans.
Knowl. Data Eng., 34(1):249–270, 2022. doi: 10.1109/TKDE.2020.2981333. URL https:
//doi.org/10.1109/TKDE.2020.2981333.

He Zhao, Zhiwei Zeng, Yongwei Wang, Deheng Ye, and Chunyan Miao. Hgattack: Transferable
heterogeneous graph adversarial attack. arXiv preprint arXiv:2401.09945, 2024.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI Open, 1:57–81, 2020. doi: 10.1016/J.AIOPEN.2021.01.001. URL https://doi.org/10.
1016/j.aiopen.2021.01.001.

Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks
against adversarial attacks. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 1399–1407, 2019.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793–7804, 2020.

Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov, Jialiang Lu, and Jie Tang.
Tdgia: Effective injection attacks on graph neural networks. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2461–2471, 2021.

13

https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations (ICLR), 2019.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 2847–2856, 2018.

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning, 2024.

14


	Introduction
	Notation and Preliminaries
	Related Work
	Methodology
	Attack Model
	Equivalence Classes in Structural Attacks
	GOttack: Graph Structure Poisoning via Orbit Learning

	Experiments
	GOttack Misclassification Results
	Insights from GOttack Results

	Conclusion
	Random Walks to Orbits 15 and 18
	Graph Neural Network
	Backbone Models
	Baseline Models
	Defense Methods

	Further analysis of graphlets and orbits
	Topological properties of graphlets and orbits 
	Additional analysis of 1518 orbit nodes
	Orbit hierarchy

	Experimental Results on all Datasets
	Non-defense GNN backbone
	Attack Results on GCN
	Attack Results on GraphSAGE
	Attack Results on GIN

	Defense GNN backbone
	Attack Results on GCN-Jaccard
	Attack Results on MedianGCN
	Attack Results on RobustGCN
	Attack Results on GCN-SVD


	Additional proof of GOttack's impact
	Subgraph-based Explanations




