
BiMatting: Efficient Video Matting via Binarization

Haotong Qin∗1,2, Lei Ke∗2,3, Xudong Ma1, Martin Danelljan2, Yu-Wing Tai4,
Chi-Keung Tang3, Xianglong LiuB1, Fisher Yu2

1Beihang University 2ETH Zürich 3HKUST 4Dartmouth College

Abstract
Real-time video matting on edge devices faces significant computational resource
constraints, limiting the widespread use of video matting in applications such as
online conferences and short-form video production. Binarization is a powerful
compression approach that greatly reduces computation and memory consumption
by using 1-bit parameters and bitwise operations. However, binarization of the
video matting model is not a straightforward process, and our empirical analysis
has revealed two primary bottlenecks: severe representation degradation of the
encoder and massive redundant computations of the decoder. To address these
issues, we propose BiMatting, an accurate and efficient video matting model using
binarization. Specifically, we construct shrinkable and dense topologies of the
binarized encoder block to enhance the extracted representation. We sparsify the
binarized units to reduce the low-information decoding computation. Through
extensive experiments, we demonstrate that BiMatting outperforms other binarized
video matting models, including state-of-the-art (SOTA) binarization methods, by
a significant margin. Our approach even performs comparably to the full-precision
counterpart in visual quality. Furthermore, BiMatting achieves remarkable savings
of 12.4× and 21.6× in computation and storage, respectively, showcasing its
potential and advantages in real-world resource-constrained scenarios. Our code
and models are released at https://github.com/htqin/BiMatting.

1 Introduction

0

15

30

45

200

10-1

M
ea

n
Ab

so
lu

te
 D

iff
er

en
ce

17MB
13MB DeepLabV3

(32-bit)

223MB

�

BGMv2
(32-bit)

19.4MB
�0.64MB

RVM-ReActNet
(1-bit)

�

0.57MB
RVM-BNN

(1-bit)
�

0.57MB
RVM-DoReFa

(1-bit)�

BiMatting
(1-bit)

0.67MB

Model FLOPs(G) Mad

DeepLabV3 136 14.47

BGMv2 8.46 25.19

RVM 4.57 6.08

bs1-bnn 0.50 189.13

bs1-dorefa 0.52 51.64

bs1-reactnet 0.55 28.49

ours 0.37 12.82

14.5MB

RVM
(32-bit)
�

101100

FLOPs [G]
103102

Figure 1: BiMatting enjoys impres-
sive computation/storage savings
while surpassing SOTA 1-bit and
some 32-bit models in accuracy.

The success of deep neural networks has led to remarkable
advancements in computer vision tasks, including video mat-
ting [1, 2, 3, 4, 5, 6, 1, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. How-
ever, many practical applications based on deep networks re-
quire real-time processing with minimal latency, which is chal-
lenging due to the high computational and storage demands. To
address this issue, researchers have developed lightweight video
matting algorithms such as Robust Video Matting (RVM) [1]
and BGMv2 [10]. While these methods achieve significant
speedups and memory reductions, they still rely on expensive
floating-point operations, leaving room for further compression.

One of the most promising approaches to improving the effi-
ciency of neural networks is network binarization [17, 18, 19,
20, 21, 22, 23, 24, 25, 26]. Binary neural networks (BNNs)
have emerged as a highly effective technique for optimizing
neural networks by reducing parameter bit width to 1-bit. BNNs leverage compact binary parameters
that occupy less memory space and use efficient bitwise operations, which are much less computation-
ally expensive than floating-point operations. By employing the binarization approach, researchers
can significantly reduce the computational and storage demands of video matting applications.

∗ equal contribution B corresponding author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/htqin/BiMatting

Encoder

SBB
(16, 32)

Encoder

SBB×2
(32, 64)

Encoder

SBB×2
(64, 1024)Co

nv
(3

, 1
6)

A
SP

P
(1

02
4,

 1
28

) Decoder

neck
(1/16)

Decoder

SAB
(1/8)

Decoder

SAB
(1/4)

Decoder

SAB
(1/2)

Decoder

SAB
(1)D

ow
ns

am
pl

e

Input

D
G

F

Output

Shrinkable Binarized Block (SBB)

sparse mask guidance

Sparse-Assisted Binarization (SAB)

SA-BiConv 3×3

BiConv 1×1

feature

mask sparse-feature

⊕

Shrinkable Binarized Block (SBB)

⊕
⊘

𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐯𝐯𝟏𝟏
(𝑘𝑘, 𝑘𝑘)

𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐯𝐯𝟑𝟑
(𝑘𝑘, 𝑘𝑘)

𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐯𝐯𝟏𝟏
(2𝑘𝑘, 𝑘𝑘)

𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐯𝐯𝟑𝟑
(2𝑘𝑘, 2𝑘𝑘)

avg

Shrinkable Binarized Block (SBB)

⊕
⊘

Figure 2: BiMatting overview. We apply Shrinkable Binarized Block (SBB) for the accurate encoder
and Sparse-Assisted Binarization (SAB) for the efficient decoder. Arrows → indicate the flow of
features, ⊕, ⊘, and avg indicate concatenation, splitting, and averaging of features, respectively.

Despite that the generic binarization methods have been studied extensively by the binarization
community, the direct binarization for existing video matting models still leaves severe accuracy
and efficiency bottlenecks. First, to construct an efficient architecture, many video matting methods
contain encoders with lightweight full-precision backbones to obtain intermediate features. For
example, MobileNet architectures are widely applied as lightweight extractors in several video
matting models to provide strong features [1, 11]. However, this practice introduces an accuracy
bottleneck in the binarized video matting model. Our analysis shows that the computing units and
topology of existing lightweight encoder architectures are unfriendly to binarization, leading to severe
degradation in the quality of intermediate features extracted by its binarized counterpart. Second, we
identify that the architecture of the existing video matting decoder [1] causes immense redundant
computation at the multi-scale decode stage. Intensive computation is still needed in large portions of
certain foreground or background regions (spatial regions outside unknown parts of the trimap) of
the high-resolution feature maps. This weakens the savings brought by binarization, which hinders
efficiency improvements in the context of extremely compressed bit-width.

In this paper, we provide empirical studies of the above-mentioned bottlenecks. This leads us to
propose BiMatting, a Binarized model for accurate and efficient video Matting (overview in Fig. 2).
To tackle the accuracy bottleneck, we first investigate the limitations of existing binarized encoders
in representation extraction. Then, we propose Shrinkable Binarized Block (SBB), which follows
a binarization-friendly computation-dense paradigm to construct a flexible block structure. SBB
effectively extracts high-quality features with improved topology and operators. In addition, given
a reliable binarized encoder, we further develop Sparse-Assisted Binarization (SAB) to effectively
reduce the computational consumption of the binarized decoder. The overall burden is thus greatly
reduced. SAB removes repeated computation by spatial sparseness [27] while preserving the accuracy
of binarized units, resulting in a notable computation reduction without compromising performance.

Our BiMatting is the first binarization solution for video matting tasks, which surpasses 1-bit matting
models using existing binarization algorithms by a significant margin [21, 17, 23, 18]. Notably,
BiMatting even outperforms some full-precision models [28, 11] in terms of accuracy while being
highly efficient. Our extensive experiments on fundamental tasks across VideoMatte240K (VM) [10],
Distinctions-646 (D646) [29], and Adobe Image Matting (AIM) [30] datasets demonstrate that the
advantages of BiMatting are task-independent. In addition, our SBB and SAB components are highly
efficient, allowing BiMatting to achieve 12.4× FLOPs and 21.6× storage savings compared to the
full-precision counterpart, leading a promising way for the video matting on edge scenarios (Fig. 1).

2 A Baseline for Binarized Video Matting

In this section, we first build a baseline to study the binarized video matting model. The baseline is
based on straightforward binarization and an existing lightweight video matting architecture.

2.1 Binarization Framework

Binarization applies the sign function to compress weights and activations to 1-bit for computing
units of the binarized network [17, 19, 20, 22, 31], and the propagation process can be expressed as

sign(x) =

{
+1, if x ≥ 0

−1, otherwise
,

∂L
∂x

=

{
∂L

∂ sign(x) , if x ∈ (−1, 1)

0, otherwise
, (1)

2

0 1 2 3 4 5 6

Bi-Backbone

Bi-Aspp

Bi-Decoder

Bi-DGF

Bi-All

#Param (M)
#FLOPs (G)

(a) Accuracy perspective

0 5 10 15 20 25 30

Original
Bi-Backbone

Bi-Aspp
Bi-Decoder

Bi-DGF
Bi-All

MAD

(b) Efficiency perspective
Figure 3: Analysis of bottlenecks for the binarized video matting baseline respectively in accuracy
and efficiency on the VM dataset. We report (a) the MAD metrics of binarizing each component, and
(b) the FLOPs and storage consumption of each component in the binarized baseline.

where L as the loss function. To build a strong binarized baseline by existing techniques, we apply
floating-point scaling factors for weights W [19, 23] and learnable thresholds for activations A [23]:

Bw = sign(W), Ba = sign(A− τ), o = αBw ⊗Ba, (2)

where Bw and Ba denote the binarized weight and activation, respectively. The channel-wise α
is obtained by mean(|W |), and the layerwise threshold τ is initialized as 0. Note that the Straight-
Through Estimator (STE) [32] is uniformly applied to all experiments and binarization methods,
approximating the gradient of the sign function as clip function (as the backward in Eq. (1)), since
most other estimators consume unaffordable GPU memory [31, 22]. Binarization is applied to
computation layers except for those who access original inputs or produce final outputs.

2.2 Video Matting Architecture

Matting model aims to break down a frame I into a foreground F and a background B, using an α
coefficient to represent the linear combination of the two [1, 7],

I = αF + (1− α)B. (3)

Compared to image matting [2, 3, 4, 5, 6, 33, 34, 35, 36], matting methods specifically developed
for video sequence should be more effective in utilizing spatial-temporal information in videos [1,
7, 8, 9, 10, 11, 37, 38]. Among them, the recent Robust Video Matting (RVM) [1] method achieves
the SOTA accuracy of the video matting task and stands out significantly in terms of efficiency.
The architecture of RVM mainly comprises a lightweight MobileNetV3-based encoder (including
backbone and Atrous Spatial Pyramid Pooling (ASPP) [39] module), a recurrent decoder, and a deep
guided filter (DGF) [40] module. The concise architecture brings efficiency, even realizing real-time
matting at high resolution. While RVM is one of the lightest video matting models available, there is
still significant potential for compression in terms of reducing bit width, given the high cost of both
the floating-point parameters and computations involved.

3 The Rise of BiMatting

3.1 Bottlenecks of Binarized Video Matting Baseline

Our goal is to achieve practical and resource-efficient video matting via binarization. However, the
encoder and decoder of the binarized baseline pose accuracy and efficiency bottlenecks, respectively.

From an accuracy perspective, Fig. 3 (a) compares the accuracy drops on the VideoMatting (VM)
dataset by binarizing every single part in the RVM model. Specifically, we find that binarizing
the existing lightweight MobileNetV3 backbone in the encoder causes the most significant drop in
accuracy among all parts, with a drop almost equivalent to directly binarizing the entire network
(Bi-All 28.49 vs. Bi-Backbone 23.56 for MAD metric). In contrast, binarizing the ASPP, decoder,
and DGF parts produce less harm to accuracy (less than a 3.05 MAD increase). Thus, improving
the backbone of the encoder to make it more amenable to binarization is of the highest priority in
addressing the accuracy drop in the binarized video matting model.

From the efficiency perspective, we show in Fig. 3 (b) the computation and storage usage for each
part of the binarized video matting model to demonstrate the individual consumption in efficiency.
Our analysis from an efficiency perspective reveals that the decoder consumes a significant amount

3

of computational resources, accounting for 71.8% (0.38G) FLOPs with only 12.1% parameters after
binarization. Conversely, the binarized encoder has a higher parameter count (81.8%), but its FLOP
consumption is only 16.6%. Negligible consumption is observed for the other parts. Based on these
observations, it is evident that the computational redundancy of the decoder significantly impacts
the acceleration performance of the overall model. Thus, there is ample room for computational
optimization after direct binarization to further enhance the model’s efficiency.

Given the observations from the aforementioned experiments, we find that the current baseline
presents two major challenges: 1) the encoder’s lightweight backbone is unsuitable for binarization
and fails to generate practical features, and 2) the decoder continues to exhibit considerable computa-
tional redundancy even after binarization. Thus, we propose a binarization-friendly encoder and a
computationally-efficient decoder to construct an accurate and efficient binarized matting model.

3.2 Shrinkable Binarized Block

3.2.1 Binarization-evoked Encoder Degradation

The binarized video matting baseline in Sec. 2 employs a lightweight MobileNetV3 as the encoder’s
backbone and directly binarizes its convolutional and linear layers. However, the extensive use
of groupwise and pointwise convolutions presents significant challenges to binarization [41, 23],
resulting in severe accuracy degradation. Fig. 3 shows that directly using binarized MobileNetV3
leads to over 4× MAD metric degradation. On the other side, existing binarized networks are also far
from the efficiency level of binarized MobileNetV3, making it hard to be transferred straightforwardly
to construct the binarized matting model. For example, some binarized MobileNet-based models
suffer at least 3-8× FLOPs than binarized MobileNetV3 [23, 41, 26]. Therefore, a new binarized
backbone is necessary for feature extraction to achieve high-quality features for the decoder while
keeping the model ultra-lightweight.

We first analyze the degradation of the binarized encoder in existing baselines. We note the binarized
convolution as BiConvn(·) or GBiConvn(·), where n is the kernel size of the convolution and G
mark denotes groupwise. Their superscripts up, eq, and dn indicate the number of their output channels
is greater than, equal to, or less than that of their input channels, respectively. Then the binarized
MobileNetV3 block in the baseline’s encoder can be expressed as

MBV3 Block (1): o = BiConveq
1 (GBiConveq

n (BiConv
eq
1 (x))) + x, s.t. cx = co

MBV3 Block (2): o = BiConvdn
1 (GBiConveq

n (BiConv
up
1 (x))) + [cx = co]x,

(4)

where x and o denote the input and output, respectively, kernel size n ∈ {3, 5}, and [·] denotes the
Iverson bracket [42], evaluating to 1 if the condition inside the parentheses is true, and 0 otherwise.
The batch normalization and the activation layers following convolutions are omitted.

Eq. (4) suggests at least two issues that impede accurate binarization. Firstly, all convolutions are
groupwise or pointwise that have fewer parameters than regular convolutions, thus are sensitive
to binarization and hard to recover from crashes caused by mutual influence. Secondly, utilizing
only per-block short connection is insufficient since convolution-specific shortcuts are critical to
achieving performance recovery [22, 23]. Several existing binarization methods aim to address the
aforementioned issues, e.g., applying regular convolutions instead of grouped ones [23, 26, 41],
or creating shortcuts for channel-constant convolutions [23, 41]. Though these techniques may be
effective, they are significantly more computational-expensive than directly binarized MobileNetV3
and still suffer representation loss. Therefore, it is necessary to develop stronger feature extraction
encoders for binarized video matting models to address these limitations.

3.2.2 Shrinkable Binarized Block for Accurate Encoder

To mitigate the degradation of the encoder caused by binarization while keeping it lightweight, we
present an efficient Shrinkable Binarized Block (SBB) for building a binarized video matting encoder,
which is conducive to a flexible and lightweight architecture via channel-shrinkable design while
retaining the representations and gradients.

Based on the analysis in Sec. 3.2.1, we determine that the crucial paradigm of an accurate binarized
encoder is the computation-dense form of binarized block. In terms of topology, we ensure that
every binarized convolution has a corresponding/dense connection to preserve the representation

4

accurately. In terms of the operator, introducing computation-dense regular convolutions can prevent
groupwise and pointwise ones from becoming exclusive. Following this paradigm, SBB recovers the
representation in the binarized block such that enables the backbone to effective feature extraction in
flexible dimensional space.

Specifically, we first introduce the sub-blocks of SBB. Based on the above analysis, we find that the
key element to constructing the flexible binarized architecture is to allow various sub-blocks in the
feature extractor to freely adjust (increase, maintain, or shrink) the channel number of the outputs,
while the shortcut should accompany with each binarized convolution to maintain representation.
Therefore, the channel-shrunk SBB sub-block can be first constructed as follows:

Sub-SBB (1) θdn(x) : o = BiConvdn
1 (x′) + mean

(
x′(1, 12 c

x),x′(1
2 c

x,cx)
)
,

x′ = BiConveq
3 (x) + x, s.t. cx = 2co,

(5)

where x′(m,n) denotes taking the m to n channels of x′. In the sub-block, we introduce shortcuts for
channel-shrunk binarized convolution with channel splitting and averaging operations, allowing the
channel to shrink while constructing a shortcut with negligible overhead. This design enables the
binarized encoder to leverage computing units with higher output channels (such as 32 or 64) for
extracting low-channel representations (16 or 32, correspondingly), resulting in dependable features
for the decoder. Inspired by [23, 41], the channel-maintain and increased sub-blocks are as follows:

Sub-SBB (2) θeq(x) : o = BiConveq
1 (x

′) + x′, x′ = BiConveq
3 (x) + x, s.t. cx = co

Sub-SBB (3) θup(x) : o = ((BiConveq
1 1(x

′) + x′)⊕ (BiConveq
1 2(x

′) + x′)),

x′ = BiConveq
3 (x) + x, s.t. cx = co/2

(6)

where ⊕ denotes the concatenate operation. Benefiting from the above sub-block variants, SBB can
implement a flexible feature extraction architecture.

Next, we create SBB by assembling these sub-blocks. Each SBB is made up of three sub-blocks: the
head, middle, and tail. The head and tail sub-blocks produce identical output channels, while the
middle sub-block extracts feature in higher dimensions with double output channels:

SBB : o = θdn · θup(x′) + x′, x′ = θeq(x)[cx = co] + θup (x)

[
cx =

1

2
co
]
. (7)

where x′ is the output of the head sub-block that varies θeq or θup depending on the channel constraint
in Iverson brackets. The binarized sub-blocks in the middle and at the end of the sequence respectively
increase and decrease the feature dimension for thorough extraction, while also incorporating shortcut
across sub-blocks that allows the representations to remain intact. Using the block-level crossing
shortcut also mitigates the influence of the splitting and averaging procedure on the representations in
the trail channel-contracted sub-block.

3.3 Sparse-Assisted Binarization

3.3.1 Computational Decoder Redundancy

In Sec. 3.1, we discover that while binarizing the decoder prevents accuracy performance from
deteriorating, it results in significant computational costs (greater than 71.8%) despite having a
relatively small parameter size (less than 12.1%). This inefficiency creates a bottleneck for the
binarized video matting model. This is attributed to the decoder where high-resolution features are
computationally demanding. To illustrate, consider the decoder’s output block, which uses two 3×3
convolutions to perform computations on the original scale’s features. Since grouped convolutions
that are unfriendly to binarization are not utilized here, the accuracy reduction of decoder binarization
is not as severe as it is on the encoder. But the computation of this single block in the decoder (the
last one in 5 decoder blocks) is even equivalent to 103% of the entire encoder in a binarized baseline.

However, it is worth noting that not all spatial computations are equally crucial. In the case of video
matting, the majority of frames have large, uninterrupted foreground and background areas, which
can usually be identified at a lower resolution. Nevertheless, the current decoder architecture repeats
these computations at various scales, leading to significant computational overhead, particularly on
high-resolution feature maps. This issue renders constructing an efficient decoder challenging, even

5

with the most aggressive 1-bit binarization approach. As a result, a fundamental redesign of the
computation unit is required to create an efficient decoder that minimizes redundant computation
while maintaining accurate matting results. Such a revamp should consider the context of binarization
and focus on streamlining the computation process while preserving the quality of the output.

3.3.2 Sparse-Assisted Binarization for Efficient Decoder

To address the computational redundancy problem in the decoder of the binarized video matting
model, we propose the Sparse-Assisted Binarization (SAB) method in BiMatting.

Fortunately, benefiting from the analysis in Sec. 3.3.1, the solution to the computational redundancy
of the decoder is intuitive, that is, to reduce the repeated intensive computation of continuous regions
in the decoder, especially at the high-resolution features. First, inspired by the sparse segmentation
and spatial region classification of the trimap, we hypothesize that most computation inside the
matting decoder should be used in the unknown alpha matting regions, instead of an equal distribution
on the certain foreground/background regions of the whole image. To approximate such unknown
regions, we compute the incoherent regions Minc following [27] using the low-resolution output mask
M ∈ {0, 1} N

16×
N
16 from the first decoder block, where N denotes the original input scale.

Incoherent regions are primarily found along object instance boundaries or high-frequency areas
(blue grids of the sparse feature in Fig. 2), and the points inside the incoherent regions are considered
to be uncertain in alpha estimation. The remaining regions outside of the incoherent regions can be
skipped/reduced in computation. Since the features of this process are the lowest resolution among
the 4 sets of features input by the decoder, we obtain the mask Minc at a low cost.

Then, we employ the detected mask Minc to transform the convolutions in high-resolution blocks
into sparse-assisted binarized convolutions for efficient computation. Our designed masked sparse
convolution is different from [27, 43] on performing pointwise attention for the whole incoherent
regions, resulting in a more binarization-friendly [44] and computation-efficient design. Specifically,
we transform the 3×3 convolution in the up-sample block of the decoder into:

SAB : o = SA-BiConv3(x; bilinear
k(Minc)) + BiConv1(x), (8)

where SA-BiConv3(· ;M) represents the sparse-assisted binarized 3×3 convolution under the
guidance of sparse mask Minc, in which the weight and sparse activation are binarized, and bilineark

denotes a bilinear interpolation up-sampling operation, and the low-resolution sparse mask Minc
is up-sampled by k times, k ∈ {2, 4, 8, 16}. For this binarized convolution SA-BiConv3, the
implementation of sparse computation follows [45, 27] to skip Minc(x, y) = 0 masked regions during
inference. However, this does not change that the essence of this convolution is still a non-grouped
3×3 convolution, which retains binarization-friendliness in practice. Moreover, as in Eq. (8), besides
the sparse-assisted binarized 3×3 convolution, we also apply one 1×1 binarized convolution layer to
process extraction in the whole feature and fuse the output obtained to that of SA-BiConv to guide
the finer predictions of continuous regions.

Our SAB first obtains a sparse binary mask prediction based on low-resolution features, which is
then used to assist sparse binarization in the higher-resolution features of the decoder. As validated in
the experiment section (Tab. 1), SAB greatly reduces the computation of the binarized video matting
model by reducing computational FLOPs by 30% while maintaining the accuracy of video matting.

3.4 Training Pipeline of BiMatting

We present the training pipeline for our BiMatting model, which involves additional training steps
and iterations to ensure complete convergence of the binarized video matting model, as compared
to the training of the full-precision RVM counterpart [1]. The training pipeline of our BiMatting is
comprised of two phases, namely the pre-training phase and the matting training phase.

Pre-training phase: In the pre-training phase, we trained the binarized SBB backbone on the
ImageNet classification dataset for 200 epochs to obtain a well-pre-trained backbone. This pre-
training phase made it easier to converge during the matting training phase. Moreover, since the
direct binarization of the full-precision pre-trained model, such as MobileNetV3, can lead to almost
crashing, we apply the full pre-training phase for all compared binarized video matting models.

6

Table 1: Ablation result of BiMatting on VM [10] dataset. We ablate SBB and SAB in BiMatting at
the encoder and decoder, respectively. Binarized RVM with MobileNetV3 is used as the baseline.

Model Method #Bit #FLOPs(G) #Param(MB) MAD MSE Grad Conn dtSSD

RVMmbv3 - 32 4.57 14.5 6.08 1.47 0.88 0.41 1.36

RVMmbv3 - 1 0.55 0.64 28.49 18.16 6.80 3.74 3.64
RVMSBB SBB 1 0.57 0.67 14.81 7.63 3.16 1.70 2.70
RVMSAB SAB 1 0.35 0.67 189.13 184.33 15.01 27.39 3.65
BiMatting (Ours) SBB+SAB 1 0.37 0.67 12.82 6.65 2.97 1.44 2.69

Matting training phase: This phase is binarization-aware and built following [1], divided into 4
stages. Stage 1 involves training on the low-resolution VM dataset for 20 epochs without DGF,
with T = 15 frames for quick updates. The SBB backbone’s learning rate is set as 1e−4 and the
rest as 2e−4. Additionally, the input resolution h,w is sampled independently from 256-512px for
improving robustness. In Stage 2, the network is trained with T = 50, with halved learning rate
and 2 more epochs to enable learning of long-term dependencies. In Stage 3, the DGF module is
attached, and 1 epoch is trained on both low-resolution long and high-resolution short sequences
from the VM dataset. The low-resolution pass is T = 40, h and w are the same with stage 1 without
DGF, while the high-resolution pass employs DGF with downsample factor s = 0.25, T̂ = 6, and
ĥ, ŵ ∼ (1024, 2048). The learning rate of DGF is 2e−4, and that of the rest is 1e−5. In Stage 4, the
network is trained for 5 epochs on D646 and AIM, increasing the decoder’s learning rate to 5e−5.

4 Experiments

We extensively evaluate the accuracy and efficiency of our proposed BiMatting. We first ablate our
method and illustrate the contributions of SBB and SAB on the VM [10] dataset. Then we compare
BiMatting with binarized video matting models that utilize existing binarization techniques on
VM [10], D646 [29], and AIM [30], where our designs excel and even outperform some full-precision
video matting models. Concerning efficiency, BiMatting impressively reduces computational FLOPs
and model size by 11.2× and 21.6×, respectively. On metrics, we evaluate α using mean absolute
difference (MAD), mean squared error (MSE), spatial gradient (Grad), and connectivity (Conn) for
quality, and dtSSD for temporal coherence. We also measure pixels where α > 0 by MSE for F [1].
All stages of our experiments use batch size 4 splits across 4 Nvidia A100 GPUs.

4.1 Ablation Study

Tab. 1 demonstrates that the binarized video matting baseline experiences a significant drop in
performance across all accuracy metrics for VM data recall. Despite its 22.7× parameter compression,
the model only realizes an 8.3× computational savings in the efficiency metric. Upon substituting
the encoder with our SBB alone, the binary model’s accuracy is considerably restored, affirming
that the encoder is the principal performance bottleneck in the baseline. However, the decoder’s
implementation of the efficient SAB does not fully resolve the performance bottleneck, where
the accuracy of the binarized model is perilously close to collapsing. By integrating both of our
contributions, both accuracy and efficiency performance is substantially enhanced. Notably, in
BiMatting, combining these two improvements can produce a remarkable enhancement in accuracy
performance, underscoring the importance that the decoder should concentrate on less but crucial
representations to heighten model performance by providing high-quality features.

4.2 Comparison Results

To create the comparison benchmark, we combine test samples from the VM, D646, and AIM datasets
with 20 video backgrounds and 20 image backgrounds, following the settings in [1, 47]. Each test
clip contains 100 frames where motion augmentation is applied to image samples. We compare our
BiMatting model with other video matting models that have been binarized using existing methods.
These binarization methods include classical BNN [41] and DoReFa [18], as well as state-of-the-art
(SOTA) ReActNet [23] and ReCU [21], where the latter two are considered as best practices for
generic binarization [44]. In addition, we have also included results from some full-precision video
matting methods for comparisons, such as the RVM [1] with MobileNetV3 [48] backbone (oracle),
DeepLabV3 [28], and background-based BGMv2 [10] with MobileNetV2 [49] backbone. To ensure

7

Table 2: Low-resolution comparison on VM, D646, and AIM datasets. Bold indicates the best
performance among binarized video matting models and † indicates the results is crashed.

Alpha FG

Dataset Method #Bit #FLOPs(G) #Param(MB) MAD MSE Grad Conn dtSSD MSE

VM DeepLabV3 32 136.06 223.66 14.47 9.67 8.55 1.69 5.18 -
512×288 BGMv2 32 8.46 19.4 25.19 19.63 2.28 3.26 2.74 -

RVM (oracle) 32 4.57 14.5 6.08 1.47 0.88 0.41 1.36 -

RVM-BNN† 1 0.50 0.57 189.13 184.33 15.01 27.39 3.65 -
RVM-DoReFa 1 0.52 0.57 51.64 34.50 8.85 7.14 4.09 -
RVM-ReCU† 1 0.52 0.64 189.13 184.33 15.01 27.39 3.65 -
RVM-ReAct 1 0.55 0.64 28.49 18.16 6.80 3.74 3.64 -
BiMatting (Ours) 1 0.37 0.67 12.82 6.65 2.97 1.42 2.69 -

D646 DeepLabV3 32 241.89 223.66 24.50 20.1 20.30 6.41 4.51 -
512×512 BGMv2 32 16.48 19.4 43.62 38.84 5.41 11.32 3.08 2.60

RVM (oracle) 32 8.12 14.5 7.28 3.01 2.81 1.83 1.01 2.93

RVM-BNN† 1 0.88 0.57 281.20 276.85 25.26 73.59 1.08 6.95
RVM-DoReFa 1 0.92 0.57 133.63 116.69 17.09 35.08 2.58 6.97
RVM-ReCU† 1 0.92 0.64 281.20 276.85 25.26 73.59 1.08 6.95
RVM-ReAct 1 0.97 0.64 56.41 43.10 14.05 14.85 2.56 6.85
BiMatting (Ours) 1 0.66 0.67 32.74 24.48 9.34 8.62 2.21 5.86

AIM DeepLabV3 32 241.89 223.66 29.64 23.78 20.17 7.71 4.32 -
512×512 BGMv2 32 16.48 19.4 44.61 39.08 5.54 11.60 2.69 3.31

RVM (oracle) 32 8.12 14.5 14.84 8.93 4.35 3.83 1.01 5.01

RVM-BNN† 1 0.88 0.57 327.02 321.15 23.80 85.55 0.75 7.84
RVM-DoReFa 1 0.92 0.57 129.29 107.79 17.31 34.18 2.62 7.85
RVM-ReCU† 1 0.92 0.64 327.02 321.15 23.80 85.55 0.75 7.84
RVM-ReAct 1 0.97 0.64 59.90 44.08 14.32 15.90 2.37 8.00
BiMatting (Ours) 1 0.66 0.67 35.17 26.53 9.42 9.24 1.82 7.00

Table 3: High-resolution comparison on VM, D646, and AIM datasets. ∗ indicates using the officially
released model directly [46].

Dataset Method #Bit #FLOPs(G) #Param(MB) SAD MSE Grad dtSSD

VM RVM 32 4.15 14.5 6.57 1.93 10.55 1.90
1920×1080 BGMv2∗ 32 9.86 19.4 49.83 44.71 74.71 4.09

RVM-ReAct 1 0.53 0.64 31.60 20.29 34.28 4.08
BiMatting (Ours) 1 0.38 0.67 18.16 11.15 21.90 3.25

D646 RVM 32 8.37 14.5 8.67 4.28 30.06 1.64
2048×2048 BGMv2∗ 32 15.19 19.4 57.40 52.00 149.20 2.56

RVM-ReAct 1 1.07 0.64 57.38 42.14 71.24 3.03
BiMatting (Ours) 1 0.77 0.67 52.85 44.08 61.60 3.12

AIM RVM 32 8.37 14.5 14.89 9.01 34.97 1.71
2048×2048 BGMv2∗ 32 15.19 19.4 45.76 38.75 124.06 2.02

RVM-ReAct 1 1.07 0.64 57.38 42.14 71.24 3.03
BiMatting (Ours) 1 0.77 0.67 48.27 38.37 61.72 2.80

a fair comparison, we apply the exact same training pipeline to all binarized video matting networks
as we did to BiMatting, as explained in Sec. 3.4. As for the full-precision video matting model, we
follow the results reported in previous studies [1], unless otherwise specified.

Tab. 2 presents a comparison of methods that use low-resolution input. The findings indicate that
applying BNN and ReCU directly to full-precision RVM leads to completely collapsed results. This
is surprising given that the latter is among the SOTA binary methods, highlighting that binarizing
existing video matting architectures is not a straightforward task. In contrast, our BiMatting model
performs significantly better than all existing binarization models across all datasets, which predicts
alpha with higher accuracy and consistency, resulting in more coherent and accurate performance.
Further details will be presented in Sec. 4.3 with comprehensive visualizations. Furthermore, BiMat-
ting even outperforms some 32-bit full-precision models when using only 1-bit limit bit width. For
instance, BiMatting surpasses BGMv2 on VM, D646, and AIM datasets, as well as DeepLabV3 on

8

Input RVM-ReActNet BiMatting (ours) RVM (32-bit)

(a) Frame matting comparison.
Input RVM-ReActNet BiMatting (ours) RVM (32-bit)

2

(b) Temporal coherence comparison.
Figure 4: We compare our BiMatting with the existing SOTA binarized RVM-ReActNet and 32-bit
full-precision (32-bit) RVM models to demonstrate its excellent accuracy.

VM datasets. These results demonstrate the enormous potential of binarization for efficient video
matting. Tab. 3 presents a comparison between our BiMatting approach and other methods using high-
resolution datasets. Our method consistently outperforms existing binarization models and BGMv2
across multiple metrics, demonstrating the robustness of BiMatting under varying resolutions.

Moreover, BiMatting has demonstrated its high potential for video matting in efficiency with impres-
sive accuracy. As Tab. 2 and Tab. 3 show, in comparison to the full-precision counterpart (RVM),
BiMatting achieves a computational FLOPs savings of 12.4 times and parameter savings of 21.6
times, making it the most promising solution for edge deployment. Moreover, BiMatting outper-
forms existing binarization methods, which offer significant acceleration advantages with only a tiny
parameter overhead, such as a 0.1M increase compared to RVM-BNN.

4.3 Visualization

Input RVM-ReActNet BiMatting (ours) RVM (32-bit)
Figure 5: Alpha detail comparison.

Fig. 4 and Fig. 5 show qual-
itative comparisons of nat-
ural videos. Fig. 4 com-
pares our BiMatting model
with RVM-ReActNet (the
current SOTA binarized video matting model) and the full-precision RVM (can be seen as the
32-bit counterpart of BiMatting). In general, BiMatting’s performance is close to the full-precision
counterpart with greatly reduced resource consumption. Specifically, in Fig. 4(a), we conduct experi-
ments on videos from diverse video frames. Our results reveal that BiMatting is more robust against
semantic errors. Furthermore, BiMatting outperforms the other two models in matting edge regions.
Fig. 4(b) compares temporal coherence, where our BiMatting consistently produces superior results,
while RVM-ReActNet produces different areas of error. In Fig. 5, a comparison is made among the
alpha predictions of various methods. Observe that our method outperforms the SOTA binarized
video matting model by more accurately predicting intricate details, such as individual strands of hair.

Limitation. Though significantly improved, our BiMatting is not yet on par with its full-precision
counterpart, the 32-bit RVM, particularly when it comes to local details such as the hair ends which
tend to get blurred, while also favoring simpler backgrounds that lead to accurate matting results.

5 Conclusion

Our proposed model, BiMatting, is an efficient and accurate solution that utilizes binarization to
achieve real-time video matting on edge devices constrained by computational resources. In this paper,
we address the primary bottlenecks of binarization by constructing shrinkable and dense topologies
for the binarized encoder block to enhance representation and sparsifying the binarized units to
reduce redundant decoder computation. Our exhaustive experiments demonstrate that the proposed
BiMatting outperforms existing binarized video matting models by a significant margin while
producing a comparable performance to the full-precision counterpart in visual quality. BiMatting
achieves significant savings in computation and storage, making it an attractive solution for real-world
resource-constrained scenarios such as online conferences and short-form video production.

Acknowledgement This work was supported by the National Natural Science Foundation of China
(No. 62022009), the State Key Laboratory of Software Development Environment (SKLSDE-
2022ZX-23).

9

References
[1] Shanchuan Lin, Linjie Yang, Imran Saleemi, and Soumyadip Sengupta. Robust high-resolution

video matting with temporal guidance. In WACV, 2022.

[2] Yagiz Aksoy, Tunc Ozan Aydin, and Marc Pollefeys. Designing effective inter-pixel information
flow for natural image matting. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 29–37, 2017.

[3] Xue Bai and Guillermo Sapiro. A geodesic framework for fast interactive image and video
segmentation and matting. In 2007 IEEE 11th International Conference on Computer Vision,
pages 1–8. IEEE, 2007.

[4] Qifeng Chen, Dingzeyu Li, and Chi-Keung Tang. Knn matting. IEEE transactions on pattern
analysis and machine intelligence, 35(9):2175–2188, 2013.

[5] Yung-Yu Chuang, Brian Curless, David H Salesin, and Richard Szeliski. A bayesian approach
to digital matting. In Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001, volume 2, pages II–II. IEEE, 2001.

[6] Xiaoxue Feng, Xiaohui Liang, and Zili Zhang. A cluster sampling method for image matting
via sparse coding. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part II 14, pages 204–219. Springer, 2016.

[7] Jiachen Li, Vidit Goel, Marianna Ohanyan, Shant Navasardyan, Yunchao Wei, and Humphrey
Shi. Vmformer: End-to-end video matting with transformer. arXiv preprint arXiv:2208.12801,
2022.

[8] Yanan Sun, Guanzhi Wang, Qiao Gu, Chi-Keung Tang, and Yu-Wing Tai. Deep video matting
via spatio-temporal alignment and aggregation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6975–6984, 2021.

[9] Yunke Zhang, Chi Wang, Miaomiao Cui, Peiran Ren, Xuansong Xie, Xian-Sheng Hua, Hujun
Bao, Qixing Huang, and Weiwei Xu. Attention-guided temporally coherent video object matting.
In Proceedings of the 29th ACM International Conference on Multimedia, pages 5128–5137,
2021.

[10] Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sengupta, Brian L Curless, Steven M Seitz, and
Ira Kemelmacher-Shlizerman. Real-time high-resolution background matting. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8762–8771,
2021.

[11] Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steven M Seitz, and Ira Kemelmacher-
Shlizerman. Background matting: The world is your green screen. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2291–2300, 2020.

[12] Zixiang Zhao, Jiangshe Zhang, Xiang Gu, Chengli Tan, Shuang Xu, Yulun Zhang, Radu
Timofte, and Luc Van Gool. Spherical space feature decomposition for guided depth map
super-resolution. In ICCV, 2023.

[13] Zixiang Zhao, Jiangshe Zhang, Shuang Xu, Zudi Lin, and Hanspeter Pfister. Discrete cosine
transform network for guided depth map super-resolution. In CVPR, 2022.

[14] Zixiang Zhao, Jiangshe Zhang, Haowen Bai, Yicheng Wang, Yukun Cui, Lilun Deng, Kai Sun,
Chunxia Zhang, Junmin Liu, and Shuang Xu. Deep convolutional sparse coding networks for
interpretable image fusion. In CVPRW, 2023.

[15] Zixiang Zhao, Shuang Xu, Jiangshe Zhang, Chengyang Liang, Chunxia Zhang, and Junmin
Liu. Efficient and model-based infrared and visible image fusion via algorithm unrolling. IEEE
TCSVT, 2022.

[16] Zixiang Zhao, Haowen Bai, Yuanzhi Zhu, Jiangshe Zhang, Shuang Xu, Yulun Zhang, Kai
Zhang, Deyu Meng, Radu Timofte, and Luc Van Gool. Ddfm: Denoising diffusion model for
multi-modality image fusion. In ICCV, 2023.

10

[17] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In NeurIPS. 2016.

[18] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth gradients. CoRR,
abs/1606.06160, 2016.

[19] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In ECCV, 2016.

[20] Adrian Bulat and Georgios Tzimiropoulos. Xnor-net++: Improved binary neural networks.
CoRR, abs/1909.13863, 2019.

[21] Zihan Xu, Mingbao Lin, Jianzhuang Liu, Jie Chen, Ling Shao, Yue Gao, Yonghong Tian, and
Rongrong Ji. Recu: Reviving the dead weights in binary neural networks. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 5198–5208, 2021.

[22] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real
net: Enhancing the performance of 1-bit cnns with improved representational capability and
advanced training algorithm. In ECCV, 2018.

[23] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng. Reactnet: Towards
precise binary neural network with generalized activation functions. In ECCV, 2020.

[24] Yuzhang Shang, Dan Xu, Bin Duan, Ziliang Zong, Liqiang Nie, and Yan Yan. Lipschitz
continuity retained binary neural network. In ECCV, 2022.

[25] Yuzhang Shang, Dan Xu, Ziliang Zong, Liqiang Nie, and Yan Yan. Network binarization via
contrastive learning. In ECCV, 2022.

[26] Joseph Bethge, Christian Bartz, Haojin Yang, Ying Chen, and Christoph Meinel. Meliusnet: Can
binary neural networks achieve mobilenet-level accuracy? arXiv preprint arXiv:2001.05936,
2020.

[27] Lei Ke, Martin Danelljan, Xia Li, Yu-Wing Tai, Chi-Keung Tang, and Fisher Yu. Mask transfiner
for high-quality instance segmentation. In CVPR, 2022.

[28] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

[29] Yu Qiao, Yuhao Liu, Xin Yang, Dongsheng Zhou, Mingliang Xu, Qiang Zhang, and Xiaopeng
Wei. Attention-guided hierarchical structure aggregation for image matting. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13676–13685,
2020.

[30] Ning Xu, Brian Price, Scott Cohen, and Thomas Huang. Deep image matting. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2970–2979, 2017.

[31] Yixing Xu, Kai Han, Chang Xu, Yehui Tang, Chunjing Xu, and Yunhe Wang. Learning
frequency domain approximation for binary neural networks. In NeurIPS, 2021.

[32] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[33] Leo Grady, Thomas Schiwietz, Shmuel Aharon, and Rüdiger Westermann. Random walks for
interactive alpha-matting. In Proceedings of VIIP, volume 2005, pages 423–429. Citeseer, 2005.

[34] Quan Chen, Tiezheng Ge, Yanyu Xu, Zhiqiang Zhang, Xinxin Yang, and Kun Gai. Semantic
human matting. In Proceedings of the 26th ACM international conference on Multimedia, pages
618–626, 2018.

[35] Jinlin Liu, Yuan Yao, Wendi Hou, Miaomiao Cui, Xuansong Xie, Changshui Zhang, and Xian-
sheng Hua. Boosting semantic human matting with coarse annotations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8563–8572, 2020.

11

[36] Qihang Yu, Jianming Zhang, He Zhang, Yilin Wang, Zhe Lin, Ning Xu, Yutong Bai, and
Alan Yuille. Mask guided matting via progressive refinement network. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1154–1163, 2021.

[37] Zhanghan Ke, Kaican Li, Yurou Zhou, Qiuhua Wu, Xiangyu Mao, Qiong Yan, and Ryn-
son WH Lau. Is a green screen really necessary for real-time portrait matting? arXiv preprint
arXiv:2011.11961, 2020.

[38] Zeqi Gu, Wenqi Xian, Noah Snavely, and Abe Davis. Factormatte: Redefining video matting
for re-composition tasks. arXiv preprint arXiv:2211.02145, 2022.

[39] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence,
40(4):834–848, 2017.

[40] Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang. Fast end-to-end trainable guided
filter. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1838–1847, 2018.

[41] Hai Phan, Zechun Liu, Dang Huynh, Marios Savvides, Kwang-Ting Cheng, and Zhiqiang
Shen. Binarizing mobilenet via evolution-based searching. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 13420–13429, 2020.

[42] Kenneth E Iverson. A programming language. In Proceedings of the May 1-3, 1962, spring
joint computer conference, pages 345–351, 1962.

[43] Lei Ke, Henghui Ding, Martin Danelljan, Yu-Wing Tai, Chi-Keung Tang, and Fisher Yu. Video
mask transfiner for high-quality video instance segmentation. In ECCV, 2022.

[44] Haotong Qin, Mingyuan Zhang, Yifu Ding, Aoyu Li, Ziwei Liu, Fisher Yu, and Xianglong Liu.
Bibench: Benchmarking and analyzing network binarization. In ICML, 2023.

[45] Keyu Tian, Yi Jiang, Qishuai Diao, Chen Lin, Liwei Wang, and Zehuan Yuan. Designing
bert for convolutional networks: Sparse and hierarchical masked modeling. arXiv preprint
arXiv:2301.03580, 2023.

[46] Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sengupta, Brian L Curless, Steven M Seitz, and
Ira Kemelmacher-Shlizerman. Backgroundmattingv2, 05 2023.

[47] Shanchuan Lin, Linjie Yang, Imran Saleemi, and Soumyadip Sengupta. Robustvideomatting,
05 2023.

[48] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 1314–1324,
2019.

[49] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.

[50] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

12

Supplementary Material:
BiMatting: Efficient Video Matting via Binarization

6 Overview

We offer further information in this supplementary material. Section 7 elaborates on our network
architecture, providing detailed insights. In Section 8, we present additional results for detailed
comparison and also showcase visual examples of our composited matting data samples. We highlight
that video results are included in our supplementary material. We encourage readers to refer to our
provided video for extensive matting results comparisons.

7 Details of Network Architecture

For the encoder (Table 4) constructed by our proposed SBB, it operates on individual frames to
extract feature maps at various spatial scales ranging from 1

2 to 1
16 . Within each SBB, the number of

feature channels is either doubled or stays the same in the first sub-block, then doubled again in the
second sub-block, and finally halved in the third sub-block. This design enables each SBB to carry
out feature extraction in a channel dimension space that exceeds the input dimension. Meanwhile,
the computation-dense structure guarantees the utilization of binarized convolutions to acquire high-
quality features. While traditional full-precision MobileNetV3 backbones operate at 1

32 scale, we
made modifications to the last block. Specifically, we utilize convolutions with a dilation rate of 2
and a stride of 1, following the design principles from [1]. Furthermore, the final feature map (1

16
scale) is passed to the LR-ASPP module, which compresses it into 128 channels.

Module Conv32bit SBB_1 SBB_2 SBB_3

Sub-Module Sub-SBB (3) Sub-SBB (3) Sub-SBB (1) Sub-SBB (3) Sub-SBB (3) Sub-SBB (1) Sub-SBB (2) Sub-SBB (3) Sub-SBB (1)

In/Out Channel (3, 16) (16, 32) (32, 64) (64, 32) (32, 64) (64, 128) (128, 64) (64, 64) (64, 128) (128, 64)

Extracted Feature 1
2

1
4

1
8

Module SBB_4 SBB_5 ASPP

Sub-Module Sub-SBB (3) Sub-SBB (3) Sub-SBB (1) Sub-SBB (2) Sub-SBB (3) Sub-SBB (1) Sub-SBB (3) Sub-SBB (3)

In/Out Channel (64, 128) (128, 256) (256, 128) (128, 128) (128, 256) (256, 128) (128, 256) (256, 1024) (1024, 128)

Extracted Feature 1
16

Table 4: The details in the encoder of our BiMatting, where "Feature Scale" indicates the scale of
features extracted by this sub-block that is utilized by the decoder. Sub-SBB (1), (2), and (3) follow
the notations of Eq. (5) and (6) in our paper to represent different types of sub-blocks.

For the decoder (Table 5), as mentioned in our paper, the SAB is employed in every decoder block
except the first one to accelerate computations. The binary mask used by the SABs is obtained from
the first non-sparse binarized block, which has the smallest feature scale and acquires the mask at a
minimal cost. This design significantly improves the efficiency of the decoder.

Module BottleNeck SAB_1 (Upsampling) SAB_2 (Upsampling) SAB_3 (Upsampling) SAB_4 (Output)

Feature Scale 1
16

1
8

1
4

1
2

1
1

Input Mask Minc Minc Minc Minc

Produced Mask Minc

Table 5: The details in the decoder of our BiMatting, where "Extracted Feature" indicates that the
features extracted by this sub-block are utilized by the decoder. Sub-SBB (1), (2), and (3) follow the
notations of Eq. (5) and (6) in our paper to represent different types of sub-blocks. Minc is the sparse
mask to guide the decoder computation mainly in “difficult” regions.

13

RVM-ReActNet (1-bit) BiMatting (1-bit) RVM (32-bit)RVM-DoReFa (1-bit)Input (Original) RVM-BNN (1-bit)

Figure 6: More visual results. Compared to 1-bit video matting models using existing binarization
methods, our BiMatting significantly surpasses them and achieves near full-precision performance.
Note that the results of RVM-BNN indicate the model fully crashes.

For other parts, the Deep Guided Filter (DGF) incorporates a limited number of binarized 1 × 1
convolutions internally. For more detailed specifications, please refer to [40, 1]. The complete
network is constructed and trained using PyTorch [50].

8 Additional Visualizations

8.1 Visual Results

We show more visual results in Fig. 6, where we can more clearly see the advantages of our BiMatting
over other binarization methods, both in edge details and local region matting. At the same time, we
also provide a video (BiMatting.mp4 file in the supplementary material) to show the advantages of
our BiMatting in more detail.

8.2 Composited Datasets

We follow [1] as a guide to constructing composite training and test samples. We show some
examples of composited training samples from the matting datasets in Fig. 7. The clips contain
natural movements when compositing with videos as well as artificial movements generated by
the motion augmentation. Motion augmentation was exclusively applied to the foreground and
background of the image in the testing samples (Fig. 8). The motion augmentation solely involved
affine transforms. Moreover, the strength of the augmentation was deliberately toned down in
comparison to the training augmentation, ensuring that testing samples possess a high-degree realism.

14

Figure 7: Composite training samples. The last column is the pixels’ temporal standard deviation.

Figure 8: Example testing samples.

15

	Introduction
	A Baseline for Binarized Video Matting
	Binarization Framework
	Video Matting Architecture

	The Rise of BiMatting
	Bottlenecks of Binarized Video Matting Baseline
	Shrinkable Binarized Block
	Binarization-evoked Encoder Degradation
	Shrinkable Binarized Block for Accurate Encoder

	Sparse-Assisted Binarization
	Computational Decoder Redundancy
	Sparse-Assisted Binarization for Efficient Decoder

	Training Pipeline of BiMatting

	Experiments
	Ablation Study
	Comparison Results
	Visualization

	Conclusion
	Overview
	Details of Network Architecture
	Additional Visualizations
	Visual Results
	Composited Datasets

