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Abstract001

The performance of pre-trained Large Lan-002
guage Models (LLMs) is often sensitive to nu-003
ances in prompt templates, requiring careful004
prompt engineering, adding costs in terms of005
computing and human effort. In this study,006
we present experiments encompassing multi-007
ple LLMs variants of varying sizes aimed at008
probing their preference with different prompts.009
Through experiments on Question Answering,010
we show prompt preference consistency across011
LLMs of different sizes. We also show that012
this consistency extends to other tasks, such as013
Natural Language Inference. Utilizing this con-014
sistency, we propose a method to use a smaller015
model to select effective prompt templates for016
a larger model. We show that our method sub-017
stantially reduces the cost of prompt engineer-018
ing while consistently matching performance019
with optimal prompts among candidates. More020
importantly, our experiment shows the efficacy021
of our strategy across fourteen LLMs and its022
applicability to a broad range of NLP tasks,023
highlighting its robustness1.024

1 Introduction025

Recent research (Wei et al., 2022; Reynolds and026

McDonell, 2021; Fernando et al., 2023; Nye et al.,027

2021; Wang et al., 2022; Zhou et al., 2022; Wang028

et al., 2023; Arora et al., 2022) has demonstrated029

that prompting is crucial to the downstream per-030

formance of foundation LLMs, requiring effi-031

ciently prompt engineering for practical applica-032

tions. While manually crafted prompts (Reynolds033

and McDonell, 2021) have been widely used, Shin034

et al. (2020) introduced an automated method for035

creating prompts for various tasks using a gradient-036

guided search. However, the method requires iter-037

ative refinement for the prompts, which would be038

prohibitively expensive for current LLMs. Also,039

their assumption of access to LLM logit outputs is040

1Our code and data will be released upon publication.

invalid for black-box LLMs. With the advancement 041

of LLMs, Zhou et al. (2022), Kazemi et al. (2022), 042

and White et al. (2023) have leveraged LLMs to 043

generate instruction candidates and have selected 044

prompts by optimizing a chosen score function. 045

These methods require calculating the score across 046

all candidate prompts using large-sized LLMs to 047

reach optimal performance for each task, which 048

is also computationally expensive. What is worse, 049

the rapid evolution of LLMs also might appear to 050

pose challenges in efficiently updating the prompt 051

template selections for new emerging LLMs. 052

To ascertain whether LLMs of different sizes ex- 053

hibit similar preferences for various prompts, we 054

introduce a series of experiments by generating 055

multiple natural language prompts for Question 056

Answering (QA) and then extends to Natural Lan- 057

guage Inference (NLI) tasks. We evaluate these 058

prompts across a range of LLMs of varying sizes. 059

Our studies prove that various LLMs consistently 060

select identical optimal prompts from the pool of 061

candidate prompts. 062

Based on our findings, we exploit the prompt 063

preferences of smaller models as proxies to that of 064

larger models. With smaller models, it is less com- 065

putationally expensive to gain knowledge of their 066

prompt preference. We propose a Small-to-large 067

Prompt Prediction (S2LPP) approach, leveraging 068

smaller models to identify optimal prompt tem- 069

plates from automatically generated prompt candi- 070

dates for larger target models. This approach would 071

help to reduce the deployment cost of LLMs, espe- 072

cially when faced with diverse and dynamic sets of 073

open-domain knowledge. We show the effective- 074

ness of the S2LPP approach on open-domain QA 075

and NLI across fourteen LLMs of varying sizes, 076

and further extend it to broader NLP tasks such 077

as retrieval-augmented generation and arithmetic 078

reasoning, showcasing its robustness and general- 079

izability. The main contributions of this paper can 080

be summarized as follows: 081
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(a) We provide evidence to present the consis-082

tency of prompt preference across LLMs of differ-083

ent sizes.084

(b) Utilizing the observed consistency, we pro-085

pose a lightweight, automatic strategy to leverage086

small LMs to select optimal prompt templates for087

larger LLMs.088

(c) Through evaluation of QA and NLI tasks,089

we show that our approach outperforms the base-090

lines and effectively reduces computational costs of091

prompt engineering while consistently maintaining092

high performance in larger target models.093

2 Background094

The performance of contemporary LLMs heavily095

depends on the forms and nuances present in the096

natural language prompts they are given (Jiang097

et al., 2022; Jin et al., 2021; Zhang et al., 2023; Shin098

et al., 2020; Arora et al., 2022). However, owing to099

the black-box nature of LLMs, their prompt prefer-100

ence is also underexplained and sometimes depen-101

dent on nuanced variations (Webson and Pavlick,102

2021; Lin, 2024; Kassner and Schütze, 2020; Shin103

et al., 2020), requiring extensive prompt engineer-104

ing to achieve optimal performance for each task.105

Prompt Engineering: Research on manually de-106

signed prompts (Brown et al., 2020; Reynolds107

and McDonell, 2021; Ouyang et al., 2022) high-108

lights the essential role of expert involvement109

in manual prompting processes, which is time-110

consuming and expensive. In addition to manu-111

ally designed prompts, automatically generated112

prompts for LLMs have also been explored. Shin113

et al. (2020) introduced AutoPrompt, a method114

that employs gradient-guided search to automati-115

cally generate prompts. Kazemi et al. (2022) pro-116

pose a backward selection method for optimizing117

prompts, while Yang et al. (2023) present a frame-118

work utilizing LLMs as optimizers for prompt119

tuning, demonstrating improvements over manu-120

ally crafted prompts. However, training the opti-121

mal prompt using large-sized LLMs across diverse122

tasks involves extensive computation, making the123

approaches costly and unstable when generaliz-124

ing to out-of-domain scenarios (Theophilou et al.,125

2023; Zhao et al., 2021) .126

Prompt Consistency: Prompt consistency has127

long been an important topic in the NLP research.128

Si et al. (2022) find that certain prompts maintain129

consistent performance across different sizes of130

the GPT-3 model. Wang et al. (2024) discover that 131

some prompts can yield similar performance across 132

models in the biomedical domain. Additionally, Li 133

et al. (2025) reported that different LLMs exhibit 134

consistent preference of templates in code genera- 135

tion. On the other hand, Voronov et al. (2024) argue 136

that rigid and structured prompt templates perform 137

inconsistently across different models in in-context 138

learning. However, their work focused on analyz- 139

ing consistency among rigid and structured tem- 140

plates. In contrast, our work studies organic natural 141

language prompt templates, addressing a broader 142

and more common scenario in NLP research. 143

In this work, we set up a series of experiments to 144

demonstrate the consistency of prompt preference 145

across LLMs. We present the findings from our 146

analyses in §3, and propose a lightweight approach 147

to leverage these findings for various tasks in §4. 148

3 Consistency of Prompt Preferences 149

across Different Model Sizes 150

In this section, we analyze consistency in prompt 151

preference among LLMs of varying sizes. We set 152

up a series of experiments on two tasks: open- 153

domain QA (§3.1) and NLI (§3.2), respectively, 154

which pose challenges to the current state-of-the- 155

art LLMs. First, we collect multiple natural lan- 156

guage prompt templates for QA and NLI. Then, 157

we evaluate these prompts across LLMs of varying 158

sizes, comparing their performance to determine 159

whether models from the same family, despite dif- 160

ferences in scale, exhibit similar preferences for 161

the best-performing prompt. 162

Models: In our experiments, we evaluate multi- 163

ple prompt templates on DeepSeek-R1 (DeepSeek- 164

AI et al., 2025), LLaMA-2-chat (Touvron et al., 165

2023), LLaMA-3-instruct (AI@Meta, 2024), and 166

Vicuna (Zheng et al., 2023) model families, using 167

models of varying sizes within each family. 168

3.1 Task 1: Open-domain QA 169

Datasets: For open-domain QA, we experiment 170

with two open-domain QA datasets: Google- 171

RE (Petroni et al., 2019) and T-REX (Elsahar 172

et al., 2018). The Google-RE dataset is metic- 173

ulously curated from the Wikipedia knowledge 174

base2 and comprises 5.5K meticulously extracted 175

facts structured in the form of relation triples 176

([X], relation, [Y]). This corpus contains three 177

2https://dumps.wikimedia.org/enwiki
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Datasets Task Samples Prompt source Num of relations Num of prompts prompt description
Google-RE QA 5.5k auto-generated 3 10 per relation A natural question to describe a relation, like PlaceOfBirth.

e.g. “What is the birthplace of [X]?”T-REX QA 31k auto-generated 41 10 per relation

Levy/Holt NLI 1.8k manual-generated 1 5
A binary question to judge if [premise] entails [hypothesis].

e.g. “If Google bought Youtube, then Google owns Youtube”

Table 1: Details of the test sets. For QA, Google-RE includes 3 relations, and T-REX encompasses 41 relations,
each with 10 automatically generated prompt templates per relation. For NLI, the Levy/Holt dataset consists of 1
relation with 5 manually crafted prompts.

distinct relations: PlaceOfBirth, PlaceOfDeath,178

and DateOfBirth. In a similar data format to179

Google-RE, the T-REX dataset contains knowledge180

sourced from a subset of Wikidata (Vrandečić and181

Krötzsch, 2014) with 41 relations, and it subsam-182

ples at most 1000 triples per relation.183

Prompt Candidates: We automatically gener-184

ate prompt templates for QA. Here, we input each185

relation from the test set into ChatGPT (OpenAI,186

2022) and generate 10 distinct natural question187

prompts per relation. For instance, the prompt188

“What is the birthplace of [X]?” is employed for the189

PlaceOfBirth relation. These prompts are then190

filled with the facts to generate relevant questions191

for analysis and evaluation.192

3.2 Task 2: Natutral Language Inference193

Dataset: In our NLI experiments, we select the194

Levy/Holt (Levy and Dagan, 2016; Holt, 2019)195

dataset as our test set. The Levy/Holt dataset com-196

prises premise-hypothesis pairs structured in a spe-197

cific task format: <premise, hypothesis, label>.198

Each premise and hypothesis is also structured as199

a relation triple, containing a single predicate with200

two entity arguments, wherein identical entities are201

present in both the premise and the hypothesis. A202

distinctive feature of the Levy/Holt dataset is the in-203

clusion of inverse pairs for all premise-hypothesis-204

label entailments. Following prior work (Mckenna205

et al., 2023; Cheng et al., 2023; Chen et al., 2022),206

we study the challenging directional subset, where207

the entailments hold in one direction but not both.208

Prompt Candidates: We employ the same209

prompts utilized in prior work (Mckenna et al.,210

2023) for evaluation, consisting of five natural ques-211

tion prompts crafted by human experts. We present212

the manually crafted prompts in Appendix B and213

the detailed experimental settings in Table 1.214

3.3 Metrics215

Accuracy: For open-domain QA tasks, we con-216

sider a response from an LLM to be correct if it217

contains the target entities. This approach allows218

us to calculate accuracy. For NLI tasks, we use 219

the hypothesis-premise pairs from the Levy/Holt 220

dataset as binary questions for the LLMs and sub- 221

sequently calculate the accuracy. 222

Proportion of Optimal-Prompt Matches: In 223

QA and NLI, we take the prompt that achieves 224

the highest accuracy as the optimal-prompt, and 225

we introduce the Proportion of Optimal-Prompt 226

Matches (POPM) as the metric to measure the ra- 227

tio of optimal-prompt matches between pairs of 228

LLMs X and Y. For each relation in each dataset, 229

if model X and model Y share the same optimal 230

prompt template, we count it as 1. The POPM 231

metric is then calculated by dividing the number of 232

matched relations by the total number of relations. 233

3.4 Findings 234

In open-domain QA task, Figure 1 compares the 235

performance of LLMs of different sizes across a 236

spectrum of generated prompts, spanning all the 237

relations present within the Google-RE. The re- 238

sults indicate that, despite differences in model 239

size, LLMs within the same family consistently 240

achieve the highest accuracy with the same prompts 241

(For LLaMA-3, P7 yields the best performance for 242

PlaceOfBirth, P0 for PlaceOfDeath and P3 for 243

DateOfBirth)3, as depicted by the solid bar in the 244

image. Additionally, as shown in Appendix D, we 245

observe the same consistency in LLaMA-2 and 246

Vicuna-1.5 model families. These findings suggest 247

that models of different sizes within the same LLM 248

family exhibit consistent prompt preferences in QA 249

tasks. Due to presentation constraints, we leave 250

the optimal prompts and their performance for in- 251

dividual relations in T-REX to Appendix C and 252

Appendix E, where results are consistent. 253

In NLI tasks, as demonstrated in Figure 2, our 254

findings are also consistent in NLI tasks. Various 255

sizes of LLaMA-3 models exhibit identical prompt 256

preferences, achieving the highest accuracy with 257

3A different set of prompt templates is generated as nat-
ural questions for each relation, so prompt indices are not
comparable across different relations.
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(a) Accuracy of various prompt templates across LLaMA-3 models of different sizes.

(b) Accuracy of various prompt templates across DeepSeek-R1 models of different sizes.

Figure 1: Accuracy of different prompts across LLaMA-3 and DeepSeek-R1 models on Google-RE. The x-axis
represents the various prompts being evaluated. The solid bar indicate the optimal prompt for each respective LLMs.

(a) Accuarcy of prompts across LLaMA-3 of
different sizes.

(b) Accuarcy of prompts across DeepSeek-R1
of different sizes.

Figure 2: The figure illustrates the accuracy of differ-
ent prompts across LLaMA-3 and DeepSeek models of
varying sizes on the directional Levy/Holt (NLI task).
The x-axis represents the various candidate prompts,
while the solid bar represents the optimal prompt for
each LLM.

the same prompt, P0. In the DeepSeek-R1 series258

models, the P0 is still the optimal prompt.259

Furthermore, we present our findings across dif-260

ferent model families with the POPM scores in261

Table 2, where we observe a consistently high ra-262

Models
Datasets

Google-RE TREx Levy/Holt
LLaMA-2-7B 100% (3/3) 70.7% (29/41) 100% (1/1)
LLaMA-2-13B 100% (3/3) 75.6% (31/41) 100% (1/1)

Vicuna-7B 100% (3/3) 78.0% (32/41) 0% (0/1)
Vicuna-13B 100% (3/3) 87.8% (36/41) 100% (1/1)
Vicuna-33B 34% (1/3) 68.3% (28/41) 100% (1/1)

LLaMA-3-8B 34% (1/3) 61.0% (25/41) 100% (1/1)
LLaMA-3-70B 34% (1/3) 68.3% (28/41) 100% (1/1)

DeepSeek-R1-8B 67% (2/3) 73.2% (30/41) 100% (1/1)
DeepSeek-R1-70B 67% (2/3) 78.0% (32/41) 100% (1/1)

Table 2: This table presents the POPM scores across
various LLMs in comparison to GPT-3.5. The table
also presents the number of optimal-prompt-matched
relations relative to the total number of relations.

tio of optimal prompt overlaps between different 263

model families. 264

These findings demonstrate a consistent prefer- 265

ence for prompt template selection across LLMs of 266

varying sizes within the same model family. No- 267

tably, the prompts that perform optimally in smaller 268

models demonstrate effectiveness even when ap- 269

plied to larger models. Furthermore, the observed 270

high ratio of overlaps across different LLM families 271

indicate that it is possible to utilize smaller models 272

from different families to approximate the prompt 273

preference of larger models, and prompt the larger 274

models with approximated optimal prompts at in- 275

ference time, to reach near-optimal performance 276

on unseen tasks at minimal computational cost. 277
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Figure 3: The workflow of S2LPP on open-domain QA: Step 1: For each relation, we utilize the prompt-generation
model to produce top-k candidate prompts. Step 2: We employ the small Selection Model to discern the optimal
prompt from candidates. Step 3: We use the selected prompt to ask questions. Subsequently, we employ the Target
Model to provide responses to these questions.

4 Small-to-large Prompt Prediction278

The previous experiments in §3 have shown the ex-279

istence of consistency in prompt preference among280

various sizes of LLMs. In this section, we exploit281

this consistency to reduce the development cost of282

LLMs in NLP applications.283

We propose the Small-to-Large Prompt284

Prediction (S2LPP) method, leveraging this285

consistency to automatically generate and select286

high-performing prompts for new, unseen open-287

domain knowledge in a computationally efficient288

manner. We evaluate S2LPP on open-domain289

QA and NLI tasks and extend the pipeline to a290

wider range of NLP applications, including using291

smaller LLMs for retrieved document selection in292

open-domain QA and for Chain-of-Thought (CoT)293

prompt selection in arithmetic reasoning tasks.294

4.1 Method295

The S2LPP framework primarily comprises three296

steps: prompt generation, prompt selection, and297

prediction with large target models. We illustrate298

an example workflow of S2LPP in Figure 3.299

Prompt generation: A prompt-generation model300

is used to generate a set of candidate natural lan-301

guage prompt templates.302

Prompt selection: Prompt selection is the cru-303

cial step in the S2LPP pipeline. By leveraging304

the consistency of prompt preference, we utilize305

smaller LMs as the prompt-selection models to306

assess each prompt by its performance on a few307

examples to efficiently select the prompts with the308

best performance.309

Predict with Target Model: After we compute310

the performance of each prompt in the above men-311

tioned step, we select the prompt with the highest312

score and use it in the following evaluation. To be 313

more specific, we integrate test examples into the 314

prompt template to form natural queries. Then, we 315

input these queries into the target larger model and 316

employ their responses as answers. 317

4.2 Experimental Setup 318

Aligned with the experiments in §3, we apply our 319

method to both open-domain QA and NLI tasks. 320

For open-domain QA, in the prompt-generation 321

step, we utilize ChatGPT to generate 10 candidate 322

prompts specific to the relations sourced from the 323

Wikidata knowledge base, with temperature fixed at 324

0. These prompts are generated as a specific natural 325

prompt template, such as “What is the birthplace 326

of [X]?" for the Wikidata relation PlaceOfBirth. 327

Subsequently, entities sourced from the knowledge 328

base are filled into the prompts, transforming them 329

into natural questions posed to prompt-selection 330

models. In the prompt-selection step, we employ 331

fourteen widely-used LLMs of varying sizes as 332

the prompt selection models. In the predict with 333

target model step, we use the GPT-3.5 model as the 334

target model to assess whether the selected prompts 335

enhance their performance. 336

For the NLI task, we similarly use ChatGPT to 337

automatically generate 10 natural language ques- 338

tions as candidates, as presented in Appendix C and 339

then populate these templates with the correspond- 340

ing hypotheses and premises in the dataset. Note 341

that we do not use the manual prompt templates 342

from the analysis above (§3.2) to avoid human la- 343

bor in our proposed approach. 344

4.2.1 Models 345

Besides LLaMA-3, DeepSeek-R1, LLaMA-2 and 346

Vicuna series LLMs, we also include additional 347

LLMs such as Mistral (Jiang et al., 2023), Stable- 348
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Beluga (Mahan et al.) and falcon (Almazrouei349

et al., 2023) series models as prompt selection-350

models for a more in-depth analysis.351

4.2.2 Datasets352

For QA tasks, we curate a sample of 41 relations353

sourced from Wikidata, consistent with those in354

the Google-RE and T-REX datasets. For NLI tasks,355

we again utilize the directional Levy/Holt dataset,356

which consists of premise-hypothesis pairs.357

Development Set: In our experiment, the first358

100 samples of the QA task datasets (Google-RE359

and T-REX) are designated as the development set,360

where the prompt-selection models are utilized to361

identify the optimal prompt. For NLI tasks, we362

directly select 100 samples from the Levy/Holt363

development set.364

Test Set: With the exception of the selected 100365

samples from the Google-RE and T-REX datasets366

used as development sets, we utilized the remaining367

subset as the test set.368

4.2.3 Baselines369

First-generated Prompts: This baseline uses the370

first generated prompt from the set of 10 generated371

candidates since the first prompt also tends to be372

the most favored prompt.373

Average scores among prompts: We compute374

the mean accuracy across the candidates to measure375

the overall performance of all generated prompts.376

This methodology allows us to compare the quality377

of our selected prompts against the average perfor-378

mance level among all prompts.379

Manual Prompts: For each relation in each task,380

we take the manually-crafted prompt templates381

from prior work (Cheng et al., 2023; Mckenna et al.,382

2023; Schmitt and Schütze, 2021).383

Oracle Prompts: We conduct prompt selection384

with the target model itself (GPT-3.5) and identi-385

fied the optimal prompt from the development set386

as the oracle prompt, which is also the upper bound387

among all generated candidate prompts. This up-388

per bound serves as a reference point against which389

to assess the performance gaps between our ap-390

proaches and the pinnacle of performance.391

4.3 Evaluation Metrics392

Utilizing the target models to identify the oracle393

prompt can achieve the upper bound of perfor-394

mance among all candidates, but this process is395

Models
Datatsets

Google-RE T-REX Levy/Holt
Promptfirst−generated 19.26 64.61 54.95

Promptaverage 17.11 61.94 56.98
Promptmanual 23.0 61.10 56.76

Prompt-selection Model (ours) 26.06 67.63 58.74
Promptoracle (upper bound) 27.81 71.30 64.0

Table 3: Accuracy scores achieved using LLaMA-2-
7B as the prompt-selection model on QA and NLI
tasks. We compare with the first-generated prompt
(Promptfirst−generated), average scores among all
prompts (Promptaverage) and the manual prompts
(Promptmanual). Oracle prompt denotes the best-
performing prompt on the target model.

expensive to train. Our prompt selection strategy 396

aims to match this upper-bound performance while 397

incurring lower costs. 398

In addition to accuracy, we introduce a metric 399

to measure the efficacy of the selected prompts 400

against the upper bound: Recovery Rate of Perfor- 401

mance (RRoP). This metric demonstrates the pro- 402

portion that we can recover from the performance 403

of oracle prompts using our selected prompts. The 404

RRoP is defined as follows: 405

RRoP (ptS) =
Acc(ptS)

Acc(ptO)
406

where ptS and ptO denote the selected and oracle 407

prompts, respectively, and Acc(·) represents the 408

accuracy of a prompt. 409

4.4 Results 410

Performance of Selection Model: Table 3 411

compares our small-sized LLM-selected prompts 412

against various baselines. Here, we use the 413

LLaMA-2-7B as the smaller model. Our approach 414

outperforms baselines, demonstrating superior per- 415

formance even when compared to manually crafted 416

prompts. Furthermore, our methods exhibit min- 417

imal deviation from the upper bound, providing 418

evidence that the prompts selected using small-size 419

LMs are also performant with target models. The 420

results highlight the efficacy of employing small- 421

size LMs in open-domain QA and NLI tasks to op- 422

timize computational costs. We also observed that 423

the accuracy of open-domain QA is limited across 424

all prompts, which is attributed to the sparsity of 425

exact matches. We conjecture that performance im- 426

provements can be achieved by using entailments 427

for this task (Cheng et al., 2023). 428

Performance across Various Selection-Models: 429

We conducted additional experiments to analyze 430
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Figure 4: The Recovery Rate of Performance (RRoP) across various LLMs on QA tasks. RRoP scores exceeding
70% are highlighted in red.

Figure 5: Accuracy of different models in the prompt
selection step for QA. The green column represents the
baseline using the first-generated prompt, while the red
column illustrates the accuracy with the oracle prompt,
which is the upper bound of the target model (GPT-3.5).

the effect of various sizes and families of smaller431

models in the prompt-selection process, shown432

in Figure 5. As depicted all LLMs utilized in433

the prompt-selection stage outperform the base-434

lines. Interestingly, some smaller models outper-435

form their medium and larger versions in the selec-436

tion process, possibly because larger LLMs from437

different families are trained on more additional438

diverse corpora, leading to discrepancies with the439

target large model.440

Recovery Rate of Performance across Various441

LLMs: Figure 4 demonstrates the RRoP scores.442

The results show that most selection models can443

recover a high proportion of the performance444

achieved by using oracle prompts, approaching the445

upper bound with lower computing costs. This446

suggests that, in addition to GPT models, other447

language models can also be effectively utilized448

as target models. It highlights the RRoP scores449

achieved when using different selection and target450

models separately, demonstrating the efficacy of451

applying these approaches to new LLM families.452

Google-RE
Contextfirst−paragraph 45.21

ContextDeepSeek−8B (ours) 61.90
Contextwhole−documents 66.82

Table 4: Accuracy across different context settings on
the Google-RE dataset. We use DeepSeek-R1-8B to
select the most relevant paragraph as context and com-
pare its performance against using the first paragraph
of the retrieved documents (first−paragraph) and using
the whole document (whole−document) as context.

4.5 Extend to Broader NLP Applications 453

The core of the S2LPP approach is leveraging the 454

consistency of prompt preference to enable effi- 455

cient prompt selection using smaller LLMs, open- 456

ing up the possibility to extend the pipeline to a 457

broader range of NLP tasks. We further utilize 458

this consistency in more applications, including 459

using smaller LLMs to select relevant contexts 460

for Retrieval-Augmented Generation (RAG) and to 461

select Chain-of-Thought (CoT) prompts for arith- 462

metic reasoning tasks. 463

Context Selection with Small LLMs for RAG: 464

We evaluate the efficiency of using small-sized 465

LLMs to select relevant contexts from retrieved 466

documents for RAG. For each question in the 467

Google-RE dataset, we retrieve 10 candidate docu- 468

ments using the Google Search API and then em- 469

ploy small-sized LLMs, DeepSeek-R1-8B to select 470

the most relevant paragraphs as context from these 471

candidates. The selected paragraph is then concate- 472

nated with the question and passed to GPT-3.5 to 473

generate the final answer. 474

As shown in Table 4, using DeepSeek-R1-8B 475

to select context from retrieved documents yields 476

accuracy that is slightly lower than using the whole 477

retrieved documents (long context) when evalu- 478
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GSM8K
AutomateCoTGPT 79.81

AutomateCoTmistral−7B 77.61
ours AutomateCoTdeepseek−8B 79.37

AutomateCoTllama3−8B 78.75

Table 5: Accuracy scores of AutomateCoT using differ-
ent generation and selection models. AutomateCoTGPT

refers to the CoT prompts from Shum et al. (2023),
where GPT-2 is used for both prompt generation
and selection. Our approach uses DeepSeek-8B for
prompt generation and small-sized LLMs (Mistral-7B,
DeepSeek-8B, LLaMA3-8B) for prompt selection.

ated with GPT-3.5, while saving computing costs4.479

This demonstrates that different LLMs exhibit con-480

sistency in their preference for retrieved contexts,481

aligning with our findings on prompt preference482

consistency, and further supports the effectiveness483

of applying this approach to RAG.484

CoT Prompts Selection with Small LLMs for485

Arithmetic Reasoning: Shum et al. (2023) pro-486

pose a two-step pipeline, AutomateCoT, for gener-487

ating CoT prompts: (1) using the GPT-2 (davinci-488

002) model to automatically generate a pool of489

CoT examples, and (2) selecting the optimal com-490

bination from this pool using a selection model491

trained on devlopment set via reinforcement learn-492

ing, guided by performance from GPT-2. The se-493

lected CoT examples combination are then used as494

few-shot examples during evaluation.495

In our experiments, we follow the same experi-496

mental setup but substitute the GPT-2 model with497

smaller LLMs. For the CoT examples genera-498

tion step, we use DeepSeek-R1-8B to automati-499

cally create a pool of candidate examples. In the500

selection step, we randomly generate 100 candi-501

date combinations and employ small LLMs, in-502

cluding DeepSeek-R1-8B, LLaMA-3-8B-Instruct,503

and Mistral-7B, to select the optimal combination504

by their performance. Evaluation is performed on505

GPT-3.5 using the GSM8K (Cobbe et al., 2021)506

arithmetic reasoning dataset, following the same507

test set as used in Shum et al. (2023).508

As shown in Table 5, small-sized LLMs used509

for CoT prompt generation and selection achieve510

accuracy comparable to GPT-2, while our method511

reduces the computational cost of prompt selection512

by 60% compared to the baseline. The comparable513

performance further suggests that prompt prefer-514

4In our experiments, the average length of the selected
context is 82 tokens, compared to 1000 tokens for the full
documents.

ence consistency can be effectively leveraged not 515

only for prompt selection but also for generation. 516

5 General Discussion 517

The common factor across the set of models is 518

the similarity in the distributions of their pre- 519

training corpora, so we conjecture that this prompt- 520

preference consistency originates from the pre- 521

training and that the prompt templates best aligned 522

with the pre-training distribution would prevail. 523

This also explains the differences between the find- 524

ing in Voronov et al. (2024) and us, where they 525

used rigid templates, and we used organic, natural 526

language prompts, which more closely resemble 527

the pre-training conditions of various LLMs. 528

The S2LPP approach demonstrates the efficacy 529

of exploiting the consistency of prompt preference 530

and offers an efficient method for prompt selection 531

using small-sized models, which can complement 532

SOTA prompt generation methods. Additionally, 533

the prompt-selection models can be seamlessly up- 534

dated with newly released LLMs. With the as- 535

sumption that this prompt preference consistency 536

originates from pre-training, the prompts selected 537

by previous prompt-selection models could be per- 538

formant with newly released target LLMs as well. 539

6 Conclusion 540

Across several major LLM families and experimen- 541

tal settings, we have demonstrated the consistency 542

of prompt preference across LLMs on the QA and 543

NLI tasks, providing significant potential for appli- 544

cations. Our work represent a finding that LLMs 545

from the same model family, regardless of size, ex- 546

hibit similar preferences across different prompts. 547

Based on this finding, we further propose a 548

lightweight approach to utilize the consistency 549

of prompt preference for open-domain questions 550

involving new, unseen knowledge, by exploiting 551

smaller models to select highly performant prompts 552

at minimal cost in computation. We validate the 553

efficacy of the approach in QA and NLI. Experi- 554

ments demonstrate that the prompt templates se- 555

lected with our strategy outperform baselines. Our 556

methods also possess a strong capability to recover 557

the performance of oracle prompts with signifi- 558

cantly lower costs in the prompt selection steps. We 559

further present the generalizability of our method 560

to a broader range of NLP tasks. Deeper investi- 561

gations into the source of this consistency will be 562

important directions for our future work. 563
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Limitations564

In this work, we demonstrate the consistency of565

prompt preferences across LLMs and their exploita-566

tion in natural language tasks. However, our ap-567

proach still has some limitations. In S2LPP, al-568

though we leverage this consistency by using small569

models in the prompt selection step, we still rely570

on powerful LLMs to generate candidates. Further571

research is required in order to explore the potential572

of using smaller models to generate these prompts573

for QA. Additionally, due to the limited computa-574

tional resources and the high cost for evaluation on575

a wide range of models, we only utilize GPT-3.5576

as the target model in the QA, NLI, RAG and arith-577

metic reasoning tasks. We plan to experiment with578

more open-sourced large target LLMs.579
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A Computational Cost862

In our experiments, we allocate resources equiv-863

alent to 4 GPUs (NVIDIA V100) for prompt-864

selection steps. For each relation sourced from865

Wikipedia, the process of selecting the optimal866

prompt among 10 candidates using small-size867

LLMs (LLaMA-2-7B, Vicuna-7B, StableBeluga-868

7B, Mistral-7B, and Falcon-7B) requires approx-869

imately 10 minutes, and it will cost about 30870

minutes with medium-size LLMs (LLaMA-2-13B,871

StableBeluga-13B, Vicuna-13B). In contrast to uti-872

lizing large-size LLMs to achieve the upper bound873

prompt, our approaches facilitate significant sav-874

ings in computational resources while maintaining875

performance levels with minimal gaps.876

B Manually Crafted Prompt in NLI877

As discussed in §3, to determine the consistency of878

prompt preferences in NLI, we utilize five manu-879

ally crafted prompt templates used in prior works880

(Mckenna et al., 2023). These prompts are metic-881

ulously chosen for their clarity and conciseness,882

which also consider the prompt templates used in883

bias-related research on LMs (Schmitt and Schütze,884

2021) for textual entailments. We present the man-885

ually crafted prompt templates below and highlight886

the best-performed prompt template on the target887

model, GPT-3.5, in bold.888

1. prompt0: "If [premise], then [hypothesis]."889

2. prompt1: "[P], so [H]."890

3. prompt2: "[P] entails [H]"891

4. prompt3: "[P], which means that [H]."892

5. prompt3: "[H], because [P]."893

The prompt0 outperforms another prompt template894

in GPT-3.5 and LLaMA-7B, LLaMA-13B, and895

Vicuna-13B models. The prompt0 achieves the896

second highest accuracy among other templates on897

Vicuna-7B, where the optimal prompt is prompt3.898

C Automatically Generated Prompt899

Templates from ChatGPT900

As discussed in §4, we introduce the S2LPP ap-901

proach, which selects the automatically generated902

prompt templates using small LMs. Our method903

uses ChatGPT to generate 10 candidates for open-904

domain QA and NLI separately. The ten generated905

prompt templates used in our experiments for NLI906

tasks are presented below:907

1. prompt0: "Can [H] be inferred from [P]?" 908

2. prompt1: "Does [P] entail [H]?" 909

3. prompt2: "Is it true that [P] leads to [H]?" 910

4. prompt3: "Is [H] a necessary consequence of 911

[P]?" 912

5. prompt4: "Do we conclude [H] from [P]?" 913

6. prompt5: "If [P] is true, must [H] also be 914

true?" 915

7. prompt6: "Does the truth of [P] guarantee the 916

truth of [H]?" 917

8. prompt7: "Is [H] a logical consequence of 918

[P]?" 919

9. prompt8: "Can we derive [H] from [P]?" 920

10. prompt9: "Is [H] implied by [P]?" 921

We also present the generated prompt templates 922

for open-domain QA in Table 6. In this table, 923

the optimal prompt templates for the target model, 924

GPT-3.5, are highlighted in bold. 925

D Consistency across Different Models 926

Besides the LLaMA-3 and DeepSeek-R1 models, 927

we compare the performance of more LLMs across 928

a spectrum of generated prompts in Figure 6, span- 929

ning all the relations present within the Google- 930

RE. The results indicate that, with the exception 931

of LLaMA-2 70B on PlaceOfBirth, LLMs within 932

the same family consistently achieve the highest 933

accuracy with the same prompts, regardless of dif- 934

ferences in model size. As demonstrated in Figure 935

7, our findings are also consistent in NLI tasks. 936

Various sizes of LLaMA-2 models exhibit identi- 937

cal prompt preferences to GPT-3.5, achieving the 938

highest accuracy with the same prompt, P0. In 939

the Vicuna series models, the P0 is still the opti- 940

mal prompt evaluated in Vicuna-13B. Although P0 941

achieves the second-highest score in Vicuna-7B, it 942

closely approaches the performance of the prompt 943

with the highest accuracy in Vicuna-7B model. 944

E Consistency on T-REX 945

We present our consistency analysis experiments 946

on the T-REX dataset, discussed in §3, in table 7. In 947

this experiment, we use the best-performing prompt 948

on GPT-3.5 as the reference label to determine if 949

other models share the same optimal prompt. In the 950
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Relations prompt id Prompt Templates
p0 "What is the birthplace of [X]?",
p1 "Where was [X] born?",
p2 "In which city or town was [X] born?",
p3 "What is the native place of [X]?",

Pace-of-Birth p4 "Could you provide the birth location of [X]?",
p5 "From where does [X] originate?",
p6 "What is the hometown of [X]?",
p7 "Where did [X] come into the world?",
p8 "What is the birth country of [X]?",
p9 "Can you tell me the exact location where [X] was born?"
p0 "Where did [X] pass away?",
p1 "What was the location of [X]’s death?",
p2 "In which city or town did [X] breathe their last?",
p3 "Can you provide the place where [X] died?",
p4 "What is the final resting place of [X]?",

Pace-of-Death p5 "Where was [X] when they passed away?",
p6 "What was the location of [X]’s demise?",
p7 "Could you tell me where [X] met their end?",
p8 "Where did [X] take their last breath?",
p9 "What was the place of departure for [X]?"
p0 "When was [X] born?",
p1 "What is the birth date of [X]?",
p2 "Can you provide the date of birth for [X]?",
p3 "When did [X] come into the world?",
p4 "What day and month was [X] born?",

DateOfBirth p5 "When did [X] celebrate their birthday?",
p6 "What is [X]’s birth year?",
p7 "Can you tell me the exact date when [X] was born?",
p8 "When did [X] first open their eyes to the world?",
p9 "What is [X]’s date of birth according to records?"

Table 6: The table presents the generated prompts for various relations in the Google-RE dataset. The optimal
prompt templates for the target model, GPT-3.5, are highlighted in bold.
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(a) Accuracy of various prompt templates across Vicuna models with different sizes.

(b) Accuracy of various prompt templates across StableBeluga models with different sizes.

(c) Accuracy of various prompt templates across LLaMA-2 models with different sizes.

Figure 6: The figure illustrates the accuracy of different prompts across Vicuna, StableBeluga and LLaMA-2-chat
on Google-RE. The x-axis represents the various prompts being evaluated. The solid bar indicate the optimal prompt
for each respective LLMs.

table 7, we highlight the matches and mismatches951

in blue and red color, respectively.952

F Metrics on open-domain QA953

In our experiment settings, discussed in §3.3, we954

utilize the accuracy in our experimental metrics.955

Note that previous works (Petroni et al., 2019) on956

Google-RE and T-REX use Precision@1 as the957

metric, which is equivalent to the accuracy used in958

our work. In this task, the LLMs provide a single959

response as the answer for each question. Conse-960

quently, the score is the same, which is determined961

by the ratio of correct answers to the total number962

of questions.963
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Relations The optimal prompts across models
Relation Name Relation ID LLaMA-2-7B LLaMA-2-13B Vicuna-7B Vicuna-13B GPT-3.5
place of birth P19 p2 p2 p2 p2 p2
place of death P20 p2 p2 p2 p2 p2

subclass of P279 p3 p3 p8 p8 p8
official language P37 p1 p1 p1 p1 p1

position played on team P413 p0 p0 p0 p0 p0
original network P449 p0 p0 p0 p0 p0

shares border with P47 p8 p8 p8 p8 p3
named after P138 p0 p6 p6 p6 p6

original language of film or TV show P364 p1 p1 p1 p1 p1
member of sports team P54 p0 p0 p0 p0 p0

member of P463 p1 p1 p1 p1 p1
field of work P101 p6 p2 p2 p2 p0
occupation P106 p3 p4 p2 p2 p2

has part P527 p1 p0 p3 p0 p0
diplomatic relation P530 p0 p0 p0 p0 p0

manufacturer P176 p3 p3 p1 p1 p0
country of citizenship P27 p3 p3 p3 p3 p3

language of work or name P407 p0 p0 p0 p0 p0
is located in continent P30 p0 p0 p0 p0 p0

developed by P178 p0 p0 p1 p1 p1
capital of P1376 p1 p0 p0 p0 p2
located in P131 p6 p6 p6 p6 p6

used to communicate in P1412 p0 p0 p0 p0 p0
work for P108 p1 p1 p1 p1 p1

play P136 p6 p5 p1 p3 p3
position held P39 p2 p2 p2 p2 p2
record label P264 p2 p2 p2 p2 p2

location P276 p0 p2 p0 p0 p0
work location P937 p3 p3 p3 p3 p3

religion P140 p0 p0 p0 p0 p0
play music type P1303 p1 p1 p1 p1 p1

owned by P127 p0 p0 p0 p0 p0
native language P103 p2 p2 p2 p2 p2

twinned administrative body P190 p2 p2 p2 p2 p2
legal term in P1001 p2 p2 p0 p0 p4
instance of P31 p0 p0 p0 p0 p0

country of origin P495 p5 p5 p5 p5 p5
headquarters location P159 p0 p2 p0 p2 p2

capital P36 p0 p0 p2 p0 p0
location of formation P740 p2 p2 p2 p2 p2

part of P361 p0 p0 p0 p0 p0
Counts of Matches 29 31 32 36 -

Table 7: This table presents the optimal prompt template matches in the T-REX dataset. We use the best-performing
prompt on GPT-3.5 as the reference label. If other models select the same prompt as their optimal prompt, it is
counted as a match, indicated in blue. Conversely, mismatches are indicated in red.
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(a) Accuarcy of prompts across LLaMA-2-chat and
GPT-3.5.

(b) Accuracy of prompts across Vicuna and GPT-3.5.

Figure 7: The figure illustrates the accuracy of different
prompts across LLaMA-2, Vicuna, and GPT-3.5 models
on the directional Levy/Holt (NLI task). The x-axis
represents the various evaluated prompts, while the solid
bar represents the optimal prompt for each LLM.
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