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ABSTRACT

Transformer-based methods have sparked significant interest in this field, primar-
ily due to their self-attention mechanism’s capacity to capture long-range depen-
dencies. However, existing transformer-based image restoration methods restrict
self-attention on windows or across channels to avoid computational complexity
explosion, limiting their ability to capture long-range dependencies. This leads
us to explore the following question: Is the general architecture abstracted from
Transformers significantly impact the performance of existing Transformer-based
image restoration methods? To this end, we first analyze the existing attention
modules and replace them with solely convolution modules, also known as con-
volution streaming. We demonstrate that these convolution modules deliver com-
parable performance with existing attention modules at the similar cost of compu-
tation burden. Our findings underscore the importance of the overall Transformer
architecture in image restoration, motivating the principle of MetaFormer-a gen-
eral architecture abstracted from transformer-based methods without specifying
the feature mixing manners. To further enhance the capture of long-range depen-
dencies within the powerful MetaFormer architecture, we construct an efficient
global-aware convolution streaming module with Fourier Transform. Integrat-
ing the MetaFormer architecture and global-aware convolution streaming module,
we achieves consistent performance gain on multiple image restoration tasks in-
cluding image deblurring, image denoising, and image deraining, with even less
computation burden.

1 INTRODUCTION

Image restoration aims to recover high-quality images from their low-quality counterparts by re-
moving degradations (e.g., blur, noise), laying the foundation for different vision tasks. Since image
restoration is a highly ill-posed problem, model-based image restoration methods are usually de-
rived from physical principles or statistical assumptions, e.g., priors. Due to the strong ability to
learn image priors from large-scale datasets, Convolutional Neural Networks (CNNs) emerge as a
successful alternative for image restoration.

Recently, transformer models have achieved remarkable success in NLP tasks Vaswani et al. (2017)
and high-level vision tasks Carion et al. (2020). One typical feature of the above transformer mod-
els is the self-attention mechanism, which shows a strong ability to capture long-range dependen-
cies. Since 2021, the breakthroughs from transformer networks have sparked great interest in image
restoration. However, the quadratic increase in computational complexity and memory consumption
with image size has limited the direct application of self-attention to image restoration, especially for
modern high-resolution images. Inspired by window-based self-attention Liu et al. (2021), the main-
stream remedy is to apply self-attention in local windows Liang et al. (2021); Wang et al. (2022);
Chen et al. (2022b); Xiao et al. (2022). For instance, SwinIR Liang et al. (2021) is among the first
to adopt window-based self-attention in image restoration. Restormer Zamir et al. (2022) applies
self-attention across channel dimension instead of spatial dimension.

Although the above transformer-based methods have achieved significant performance gain, restrict-
ing self-attention to local windows or across channels fails to fully utilize self-attention for depen-
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Figure 1: Illustration of representative transformer blocks and MetaFormer. (a) MetaFormer (proposed
general architecture), (b) the transformer block in Uformer Wang et al. (2022), (c) the transformer block
in Restormer Zamir et al. (2022), (d) our proposed block in our F2C1Former, (e) our proposed block in
Uformer171, (f) our proposed block in Restormer1311.

dencies capturing of pixels in the long range. Based on this consideration, this paper aims to answer
the following question: whether the general architecture in Fig. 1a, matters the performance of
existing transformer-based methods?

To answer the question, our paper’s journey begins with a comprehensive analysis of existing at-
tention modules, replacing them with a stack of convolution modules, referred to as convolution
streaming.

Our findings demonstrate that these convolution modules achieve comparable performance to atten-
tion modules under the similar complexity, as shown in Fig. 2. Therefore, we posit that the general
transformer architecture matters the promising performance levels observed. This realization pro-
pels us to introduce the principle of MetaFormer, a general image restoration architecture. As shown
in Fig. 1a, the basic architecture of MetaFormer is LN + FeatureMixing + LN + ChannelMLP. Here,
LN stands for Layer Normalization, and examples of FeatureMixing as well as Channel MLP are
shown in Fig. 3 and Fig. 4.

Although convolution streaming equivalents have demonstrated the effectiveness, capturing global
dependencies is still very important for image restoration, since many image degradation processes
share global statistic. To further enhance the capture of long-range dependencies within the power-
ful MetaFormer architecture, we construct an efficient global-aware convolution streaming module
with Fourier Transform, named FourierC1C1 (F2C1). Our F2C1 is simple and easy to implement
by performing Fourier transform and inverse Fourier transform on both ends of convolution mod-
ules. In other words, convolution operations are performed in the Fourier domain. Integrating the
MetaFormer architecture and global-aware convolution streaming module, we can significantly im-
prove the performance of image restoration tasks with less computation burden.

The main contributions are summarized as follows:

• MetaFormer Principle: We propose the principle of MetaFormer, a general architecture
abstracted from transformer-based methods without specifying the feature mixing manners.
Experimental results demonstrate that MetaFormer matters the performance of existing
transformer models.

• Convolution Streaming Equivalents: We conduct an in-depth analysis of the existing at-
tention mechanisms from the mathematical models. Correspondingly, we also propose
simplified convolution streaming counterparts for each representative attention.

• Global-aware Convolution Streaming: Within the powerful MetaFormer architecture, we
construct the global-aware convolution streaming module with Fourier Transform. Inte-
grating the MetaFormer architecture and global-aware convolution streaming module, we
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Figure 2: Model Performance vs. Parameters vs. MACs. The area of the circles indicate the rela-
tive value of MACs. By replacing the attention modules with simplified convolution streaming versions,
Uformer171/Restormer1311 achieves significant performance gain for deblurring (GoPro) and comparable re-
sults for denoising (SIDD) over Uformer/Restormer.

achieve promising performance on nine datasets of multiple image restoration tasks includ-
ing image deblurring, denoising, and deraining with less computation burden.

The proposal of MetaFormer does not diminish the importance of self-attention, but offers a broader
architectural perspective in image restoration. It can still instantiate FeatureMixing as self-attention,
but not limited to self-attention. Our work calls for more future research to explore more effective
architectures. Additionally, the derived models, i.e., Uformer171 and Restormer1311, are expected
to serve as simple baselines for future image restoration research.

2 RELATED WORK

2.1 IMAGE RESTORATION

Conventional model-based methods focus on designing image priors (e.g., total variation prior Chan
& Wong (1998), channel prior Yan et al. (2017), gradient prior Chen et al. (2019); Pan et al. (2017))
to constrain the solution space for effective image restoration. Data-driven CNNs have been shown
to surpass conventional model-based methods since they can learn more generalizable image priors
from large-scale data. Among the CNN-based methods, several widely embraced methodologies
include the encoder-decoder-based U-Net, skip connections, and spatial/channel attention. The U-
Net, introduced in Ronneberger et al. (2015), has been extensively verified its effectiveness in image
restoration due to its multi-scale processing mechanisms Tao et al. (2018); Zamir et al. (2021); Cho
et al. (2021); Cui et al. (2023b); Tu et al. (2022). Furthermore, skip connections He et al. (2016)
have proven suitable for image restoration since the degradations in images can be seen as resid-
ual signals Zamir et al. (2021); Zhang et al. (2017b; 2019b; 2021); Cui et al. (2023b). Besides,
spatial/channel attention is commonly incorporated since they can selectively strengthen useful in-
formation and inhibit useless information Zamir et al. (2021); Li et al. (2018); Zhang et al. (2018b);
Suin et al. (2020) from the spatial/channel dimension. Despite the remarkable success of CNN-based
restoration methods over the past half-decade, they encounter challenges in modelling long-range
dependencies, which are critical for effective image restoration.

2.2 VISION TRANSFORMERS

The first transformer model is proposed for translation tasks Vaswani et al. (2017), and has rapidly
achieved remarkable success in different NLP tasks. Motivated by the success in NLP, many re-
searchers have applied transformers to high-level vision tasks Touvron et al. (2021); Kolesnikov
et al. (2021). Notably, ViT Kolesnikov et al. (2021) learns the mutual relationships of a sequence
of patches cropped from an image. The typical feature of the above vision transformers is the self-
attention mechanism which has the strong ability to capture long-range dependencies.
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Figure 3: Representative attention modules and simplified convolution streaming modules for mixing features
(FeatureMixing). (a) WSA in Uformer Wang et al. (2022), (b) MDTA in Restormer Zamir et al. (2022), (c)
Conv171 in Uformer171, (d) Conv1311 in Restormer1311, (e) Proposed F2C1.

Since 2021, the breakthroughs from transformer in high-level vision tasks have sparked great inter-
est in low-level vision tasks such as super-resolution Liang et al. (2021); Chen et al. (2022b); Li et al.
(2023), denoising Wang et al. (2022); Chen et al. (2021a); Xiao et al. (2022), and deblurring Zamir
et al. (2022); Tsai et al. (2022). However, due to the quadratic increase in complexity and memory
consumption with respect to the number of pixels, applying self-attention to high-resolution im-
ages—a common requirement in image restoration—becomes infeasible. To tackle this challenge,
the mainstream is to employ self-attention at the patche/window level Chen et al. (2021a); Liang
et al. (2021); Wang et al. (2022) or channel Zamir et al. (2022) level. However, it comes at the
expense of capturing global dependencies.

Recent endeavors by Xiao et al. (2023); Li et al. (2023); Zhou et al. (2023) have merged to focus on
global modelling in image restoration. For instance, GRL Li et al. (2023) proposes anchored stripe
attention for global modelling, albeit with a complexity increase from O(H2) to O(H3), where H
is the height and weight of the square input. ShuffleFormer Xiao et al. (2023) presents a random
shuffle strategy to model non-local interactions with local window transformer. The strategy extends
the local scope without introducing extra parameters, but need compute the attention map multiple
times, and thus consumes more resources (running time or memory). Fourmer, as devised by Zhou
et al. (2023), customizes Fourier spatial interaction modelling and Fourier channel evolution for
image restoration, featuring a core advantage of being lightweight and striking a favorable balance
between parameters and performance.

To sum up, most existing transformer-based methods mainly focus on how to efficiently calculate
self-attention. In contrast to these methods, we encapsulate existing transformer-based techniques
within the MetaFormer framework, examining them from a general framework perspective. For
global modelling, current works either need extra computation resource (memory or computation
cost) or prefer to lightweight models. Different from these methods, we propose a global-aware con-
volution streaming F2C1, capturing the global dependency and enjoying the powerful MetaFormer
architecture.In fact, integrating F2C1 and MetaFormer not only achieves the state-of-the-art perfor-
mance but also further demonstrates the effectiveness of the generalized architecture MetaFormer.

3 METHODOLOGY

3.1 MOTIVATION

Recently, transformer-based methods have achieved promising performance in image restoration,
where the self-attention mechanism capturing long-range dependencies is considered to be one of
the key reasons for its success. To reduce the computation and memory burden of self-attention,
IPT Chen et al. (2021a) computes self-attention on patches of size 48× 48 cropped from an image.
A line of methods applies self-attention on local windows, i.e., window-based attention Liu et al.
(2021), such as SwinIR Liang et al. (2021) and Uformer Wang et al. (2022). The above methods
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Figure 4: Illustration of Channel MLP modules in representative transformer-based image restoration methods.
(a) Locally-enhanced feed-forward network (LeFF) in Uformer Wang et al. (2022), (b) Gated-Dconv feed-
forward network (GDFN) in Restormer Zamir et al. (2022).

have not fully exploited global dependencies. To cope with the issues while remaining efficient,
Restormer Zamir et al. (2022) applies self-attention across channel dimension instead of spatial
dimension. Although the above transformer-based methods have achieved significant performance
gain over CNN-based models, existing attention modules focus on efficiently compute self-attention.
However, it struggles for capturing long-range modelling capabilities, defying the main motivation
of using self-attention..

The above analysis motivates us to examine a fundamental question: Does the general architecture
of transformers matter the advanced performance of current transformer-based techniques? Our
conclusion is that the general architecture of transformers, MetaFormer, matters. In the rest of this
paper, we keep other factors such as U-Net configurations and training strategies unchanged, for fair
comparison.

3.2 METAFORMER

We begin by introducing the concept MetaFormer. As shown in Fig. 1a, the attention module is re-
placed with the FeatureMixing module while the other components are kept the same as conventional
transformers. We denote that the input features X of a MetaFormer block are of size C ×H ×W ,
where C, H , and W denote the number of channels, the height, and the weight, respectively.

In particular, the MetaFormer block consists of two sub-blocks. The first sub-block can be mathe-
matically expressed as

Y = X + FeatureMixing (LN(X)) , (1)

where Y is the output of the first sub-block. LN denotes layer normalization Ba et al. (2016).
FeatureMixing represents a module for mixing features. We plot some examples of FeatureMixing
in existing transformer-based methods in Fig. 3.

The second sub-block is expressed as

O = Y +ChannelMLP (LN(Y )) , (2)

where ChannelMLP represents the module for non-linear transformation, which consists of channel
expansion and reduction operations. Some examples of ChannelMLP in existing transformer-based
methods can be found in Fig. 4.

Instantiations of MetaFormer By specifying the designs of FeatureMixing and ChannelMLP in
MetaFormer, different transformer blocks can be obtained. If FeatureMixing and ChannelMLP are
specified as window-based attention (WSA), and locally-enhanced feed-forward network (LeFF),
respectively, MetaFormer degenerates into Uformer Wang et al. (2022). If FeatureMixing and
ChannelMLP are specified as multi-Dconv head transposed attention (MDTA), and Gated-Dconv
feed-forward network (GDFN), respectively, MetaFormerFormer degenerates into Restormer Zamir
et al. (2022). It is worth noting that MeatFormer do not deny the role of self-attention in image
restoration. MetaFormer includes FeatureMixing, which can be instantiated as self-attention.

3.3 EXISTING ATTENTIONS AND ITS CONVOLUTION VERSIONS

As demonstrated in Section 3.1, current transformer-based methods mainly focus on conducting
self-attention efficiently. In contrast, we pay attention to the general architecture, MetaFormer.
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In this paper, we argue that the general architecture MetaFormer matters the success of transformer-
based methods. To verify this, our solution is conducting experiments by replacing attention mod-
ules with solely convolution modules, and comparing the performance. Without loss of general-
ity, we consider two representative attention modules, i.e., window-based self-attention (WSA) in
Uformer Wang et al. (2022), and multi-Dconv head transposed attention (MDTA) in Restormer Za-
mir et al. (2022). Through our analysis, we propose two stacks of convolutions (convolution stream-
ing), i.e., Conv171 and Conv1311, as simplified approximation. Taking the convolution streaming
as the FeatureMixing, we instantiate MetaFormer in a convolution streaming manner as Uformer171
and Restormer1311, respectively. In particular, we have plotted the illustration of the attention mech-
anisms and the convolution streaming approximation in Fig. 3, and the MetaFormer instantiations
in Fig. 1.

3.3.1 UFORMER171

Uformer applies self-attention in local regions using swin transformer design Liu et al. (2021), i.e.,
window-based self-attention (WSA), as shown in Fig. 3a. The process following Eq. 1 is

Y = X +W1×1Attention (Q,K, V ) ,

Attention (Q,K, V ) = SoftMax(QKT/√
d+B)V,

[Q,K, V ] = W1×1LN(X),

(3)

where Q,K, V ∈ RM2×d are the query, key, and value. M is the window size. d is the dimension of
the query/key. W1×1 represents the 1 × 1 convolution. B ∈ RM2×M2

is the relative position bias.
Since WSA realizes spatial information interaction in the local window of size 8× 8 (M = 8), the
computational complexity is reduced from quadratic to linear with respect to the number of pixels.
However, this manner also restricts its capabilities for long-range dependency modelling Chu et al.
(2022), although with shifted window approach. Based on this, we simplify the attention in WSA to
a 7×7 depth-wise convolution. It is worth noting that we do not aim to get the exact equivalent form
of WSA, but an approximate convolution-equivalent form. Correspondingly, we simplify WSA as
Conv171 (Conv1-Dconv7-Conv1), and term the model as Uformer171 (Fig. 1e).

3.3.2 RESTORMER1311

Restormer Zamir et al. (2022) applies self-attention across channel dimension instead of spatial
dimension, and proposes multi-Dconv head transposed attention (MDTA) in Fig. 3b. The process
following Eq. 1 is

Y = X +W1×1Attention (Q,K, V ) ,

Attention (Q,K, V ) = SoftMax(QKT/
α)V,

[Q,K, V ] = W d
3×3W1×1LN(X),

(4)

where Q,K, V ∈ RC×HW . α is a learnable scale factor. W d
3×3 represents the 3 × 3 depth-wise

convolution. MDTA in essence performs a linear transformation on V in the channel dimension.
Although the computation complexity is linear with respect to the number of pixels, it aggregates
pixel-wise information across channels, and thus we simplify the attention in MDTA into a 1 × 1
convolution. Correspondingly, we simplify MDTA as Conv1311 (Conv1-Dconv3-Conv1-Conv1),
and term the model as Restormer1311 (Fig. 1f).

3.4 F2C1FORMER

Current work mainly focus on efficiently computing self-attention, but at the expense of capturing
global dependencies. Although several solutions have been proposed for global modelling, these
methods either introduce extra computation cost Li et al. (2023); Xiao et al. (2023) or compromise
the performance Zhou et al. (2023). Different from these methods, we propose a global-aware
convolution streaming F2C1 based on the effectiveness of convolution streaming equivalents and
the global property brought by Fourier transform. In the next, we first introduce Fourier transform.
Then, we elaborate on the proposed F2C1.
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Table 1: Computation cost, parameters, and memory comparison.

Module Computation Cost Parameters Memory
WSA Wang et al. (2022) 4HWC2 + 2HWCs2 4C2 8HWC + hHWs2

MDTA Zamir et al. (2022) 4HWC2 + 2HWC2/h 4C2 5HWC + C2/h
F2C1 (Ours) 2HWC2 + 2HWC2/h 2C2 + 2C2/h 5HWC

3.4.1 PRELIMINARY

Fourier transform is a widely used signal processing and analysis tool. For an image or a feature
with multiple channels, the Fourier transform is applied to each channel separately. Given a 2D
signal x ∈ RH×W , the Fourier transform F turns it to Fourier domain as F (x)

F (x) (u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x (h,w) e−j2π( h
H u+ w

W v) (5)

where (u, v) are the coordinates in Fourier domain. We use F−1(x) to defines the inverse Fourier
transform. For the frequency representation F−1(x), there are two utilizable properties: 1) Accord-
ing to Eq. 5, arbitrary pixel at (u, v) is involved with all the pixels in the original domain (image or
feature). In other words, F−1(x) is a inherently global representation, which enjoys elegant theo-
retical guarantees in global modelling. 2) Both F (x) and F−1(x) can be efficiently implemented
with FFT and iFFT, respectively.

3.4.2 PROPOSED MODULE F2C1

By performing Fourier transform and inverse Fourier transform on both ends of convolution mod-
ules, our F2C1, shown in Fig 3(e), is formulated as

Y = X +W1×1Global (Xe) ,
Xe = W d

3×3W1×1LN(X),
(6)

The core component Global (Xe) consists of three steps: 1) Fourier transform, 2) feature transfor-
mation, and 3) inverse Fourier transform. Specifically, given features Xe, we first apply Fourier
transform to X to obtain F−1(Xe). Then we conduct feature transformation using an MLP (two
1 × 1 convolutions with GELU in between). Finally, we transfer the obtained features back to the
original domain with inverse Fourier transform. Overall, the Global (Xe)is formulated as

Global (Xe) = F−1
(
W 2

1×1σW
1
1×1(F (Xe))

)
, (7)

where σ represent the GELU non-linearity. Following multi-head self-attention, we divide channels
into different heads, and learn the interactions in each head parallelly. This design also reduces the
parameters and computation cost.

We also list the computation cost, parameters, and Memory of our F2C1 in Table 1. For comparison,
we also include those of MSA and MDTA. The results demonstrate that Compared with WSA and
MDTA, F2C1 is more compute- and storage-friendly.

4 EXPERIMENTS

4.1 SETUP

We conduct extensive experiments on nine datasets including image deblurring, image denoising,
and image detraining. For image deblurring, GoPro Nah et al. (2017), a widely used dataset,
is adopted. For image denoising, we adopt the widely used SIDD Abdelhamed et al. (2018)
dataset. For the effectiveness of F2C1Former, we conduct extra experiments on image deraining
task. Rain14000 Fu et al. (2017b), Rain1800 Yang et al. (2017), Rain800 Zhang et al. (2020a),
Rain100H Yang et al. (2017), Rain100L Yang et al. (2017), Rain1200 Zhang & Patel (2018), and
Rain12 Li et al. (2016) are adopted.
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Table 2: Quantitative results of Uformer Wang et al. (2022) and Restormer Zamir et al. (2022), and corre-
sponding convolution streaming versions: Uformer171, and Restormer1311 on GoPro and SIDD.

Deblurring (GoPro) Denoising (SIDD)
PSNR SSIM PSNR SSIM Para. (M) Macs. (G)

Uformer 33.05 0.962 39.89 0.960 50.80 85.47
Uformer171 33.38 0.965 39.88 0.960 52.50 81.57
Restormer 32.92 0.961 40.01 0.960 26.13 140.99
Restormer1311 33.54 0.965 39.93 0.960 27.48 137.51

Following Zamir et al. (2022); Wang et al. (2022); Chen et al. (2022a), we adopt PSNR and
SSIM Wang et al. (2004) as the evaluation metrics for quantitative experiments. The implemen-
tation details are given in the supplementary materials.

We assess both MetaFormer and F1C2Former to address the following questions:

• The Impact of Architecture: Does the architectural choice significantly influence results?
Can the generalized MetaFormer, incorporating straightforward convolution streaming, at-
tain state-of-the-art performance? (Section 4.2)

• Enhancing Image Restoration: Does the inclusion of F1C2Former, an augmentation
to MetaFormer featuring non-attention-based global modeling, lead to improved image
restoration performance. (Section 4.3)

4.2 EFFECTIVENESS OF METAFORMER

4.2.1 MOTION DEBLURRING

We give the quantitative results on GoPro in Table 2. The visual results are given in the supplemen-
tary materials.

Uformer171 vs. Uformer Wang et al. (2022). By replacing WSA with Conv171 (Conv1-Dconv7-
Conv1), Ufomer171 achieves competitive results with Uformer on GoPro. Specifically, Uformer171
achieves 0.33 dB performance gain on GoPro over Uformer.

Restormer1311 vs. Restormer Zamir et al. (2022). By replacing MDTA with Conv1311 (Conv1-
Dconv3-Conv1-Conv1), Restormer1311 outperforms Restormer by 0.62 dB in terms of PSNR on
GoPro.

4.2.2 REAL IMAGE DENOISING

We give the quantitative results on SIDD in Table 2. The visual results are given in the supplementary
materials.

Uformer171 vs. Uformer. By replacing WSA with Conv171 (Conv1-Dconv7-Conv1), Ufomer171
achieves competitive results with Uformer on SIDD with comparable complexity and parameters.
Specifically, Uformer171 brings 0.01 dB PSNR loss on SIDD over Uformer.

Restormer1311 vs. Restormer. By replacing MDTA with Conv1311 (Conv1-Dconv3-Conv1-
Conv1), Restormer1311 achieves 0.08 dB PSNR loss over Restormer on SIDD with comparable
complexity and parameters.

The above results demonstrate that the general architecture, MetaFormer, matters the performance
of transformer-based image restoration methods.

4.3 MORE COMPARISONS WITH RECENT ADVANCES

4.3.1 MOTION DEBLURRING

Table 3 gives the quantitative results on the GoPro dataset. F2C1Former (Ours) delivers the state-of-
the-art performance. Compared with ShuffleFormer which aims to achieve non-local interactions,
F2C1Former brings 0.28 dB PSNR improvement. The visual results are given in the supplementary
materials.
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Table 3: Quantitative results on the GoPro dataset
(single image motion deblurring).

Methods PSNR SSIM
DeblurGAN Kupyn et al. (2018) 28.70 0.858
Nah et al. Nah et al. (2017) 29.08 0.914
Zhang et al. Zhang et al. (2018a) 29.19 0.931
DeblurGAN-v2 Kupyn et al. (2019) 29.55 0.934
SRN Tao et al. (2018) 30.26 0.934
Gao et al. Gao et al. (2019) 30.90 0.935
DBGAN Zhang et al. (2020b) 31.10 0.942
MT-RNN Park et al. (2020) 31.15 0.945
DMPHN Zhang et al. (2019a) 31.20 0.940
Suin et al. Suin et al. (2020) 31.85 0.948
SPAIR Purohit et al. (2021) 32.06 0.953
MIMO-UNet+ Cho et al. (2021) 32.45 0.957
IPT Chen et al. (2021a) 32.52 -
MPRNet Zamir et al. (2021) 32.66 0.959
HINet Chen et al. (2021b) 32.71 0.959
Uformer Wang et al. (2022) 33.06 0.967
Restormer Zamir et al. (2022) 32.92 0.961
MAXIM-3S Tu et al. (2022) 32.86 0.961
Stripformer Tsai et al. (2022) 33.08 0.962
Stoformer Xiao et al. (2022) 33.24 0.964
SFNet Cui et al. (2023b) 33.27 0.963
ShuffleFormer Xiao et al. (2023) 33.38 0.965
IRNeXt Cui et al. (2023a) 33.16 0.962
F2C1Former (Ours) 33.64 0.966

Table 4: Quantitative results on the SIDD dataset
(real image denoising).

Methods PSNR SSIM
DnCNN Zhang et al. (2017a) 23.66 0.583
BM3D Dabov et al. (2007) 25.65 0.685
CBDNet Guo et al. (2019) 30.78 0.801
RIDNet Anwar & Barnes (2019) 38.71 0.951
AINDNet Kim et al. (2020) 38.95 0.952
VDN Yue et al. (2019) 39.28 0.956
SADNet Chang et al. (2020) 39.46 0.957
DANet+ Yue et al. (2020) 39.47 0.957
CycleISP Zamir et al. (2020a) 39.52 0.957
MIRNet Zamir et al. (2020b) 39.72 0.959
DeamNet Ren et al. (2021) 39.35 0.955
MPRNet Zamir et al. (2021) 39.71 0.958
HINet Chen et al. (2021b) 39.99 0.958
NBNet Cheng et al. (2021) 39.75 0.959
DAGL Mou et al. (2021) 38.94 0.953
Uformer Wang et al. (2022) 39.89 0.960
Restormer Zamir et al. (2022) 40.02 0.960
MAXIM-3S Tu et al. (2022) 39.96 0.960
CAT Chen et al. (2022b) 40.01 0.960
ShuffleFormer Xiao et al. (2023) 40.00 0.960
F2C1Former (Ours) 40.02 0.960

Table 5: Quantitative results on the Rain14000 dataset (image deraining).

Method DerainNet SEMI DIDMDN UMRL RESCAN PreNet MSPFN
Fu et al. (2017a) Wei et al. (2019) Zhang & Patel (2018) Yasarla & Patel (2019) Li et al. (2018) Ren et al. (2019) Jiang et al. (2020)

PSNR 24.31 24.43 28.13 29.97 31.29 31.75 32.82
SSIM 0.861 0.782 0.867 0.905 0.904 0.916 0.930

Method MPRNet HINet SPAIR Restormer MAXIM-2S SFNet F2C1Former
Zamir et al. (2021) Chen et al. (2021b) Purohit et al. (2021) Zamir et al. (2022) Tu et al. (2022) Cui et al. (2023b) Ours

PSNR 33.64 33.91 33.34 34.18 33.80 33.69 34.18
SSIM 0.938 0.941 0.936 0.944 0.943 0.937 0.945

4.3.2 REAL IMAGE DENOISING

Table 4 gives the quantitative results on the SIDD dataset. F2C1Former (Ours) achieves competitive
results. F2C1Former achieves the highest PSNR. Compared with Restormer, F2C1Former has fewer
parameters and less computation burden, as illustrated in Table 1. The visual results are given in the
supplementary materials.

4.3.3 IMAGE DERAINING

Table 5 gives the quantitative results on the Rain14000 dataset. F2C1Former (Ours) perform
favourably against other methods. Compared with recent method SFNet, F2C1Former achieves
0.49 dB PSNR improvement. The visual results are given in the supplementary materials.

5 CONCLUSIONS

Within this paper, we abstracted the attention modules in existing transformer-based methods, and
proposed a general image restoration structure termed MetaFormer, which matters the performance
of existing transformer-based models. To enhance the of capture long-range dependencies, we also
propose a global-aware convolution streaming F2C1. By specifying the feature mixing module
as F2C1, the integrated F2C1Former achieves superior results on multiple image restoration tasks
including image deblurring, denoising, and deraining.
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