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Abstract
Data assimilation is a central problem in many
geophysical applications, such as weather fore-
casting. It aims to estimate the state of a poten-
tially large system, such as the atmosphere, from
sparse observations, supplemented by prior physi-
cal knowledge. The size of the systems involved
and the complexity of the underlying physical
equations make it a challenging task from a com-
putational point of view. Neural networks repre-
sent a promising method of emulating the physics
at low cost, and therefore have the potential to
considerably improve and accelerate data assimi-
lation. In this work, we introduce a deep learning
approach where the physical system is modeled
as a sequence of coarse-to-fine Gaussian prior
distributions parametrized by a neural network.
This allows us to define an assimilation operator,
which is trained in an end-to-end fashion to min-
imize the reconstruction error on a dataset with
different observation processes. We illustrate our
approach on chaotic dynamical physical systems
with sparse observations, and compare it to tradi-
tional variational data assimilation methods.

1. Introduction
Artificial intelligence is transforming many fields, and has
a growing number of applications in industry. In the sci-
ences, it has the potential to considerably accelerate the
scientific process. Geophysics and weather forecasting are
areas where deep learning is particularly active, with re-
cent months seeing an explosion in the number of large
neural models for the weather forecasting problem (Pathak
et al., 2022; Lam et al., 2022; Hoyer et al., 2023). In this
work, we focus on the data assimilation problem that un-
derpins weather forecasting: tomorrow’s weather forecast
is based on today’s weather conditions, which are not di-
rectly measured, but are estimated from few observations.
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Data assimilation is the inverse problem of estimating the
geophysical state of the globe on the basis of these sparse
observations and of prior knowledge of the physics. The es-
timated state then serves as the starting point for forecasting.
While deep learning models are revolutionizing the forecast-
ing problem, they have yet to be applied operationally to
data assimilation.

Related work The application of neural networks to in-
verse problems is an active area of research. For the data
assimilation problem, several approaches have been pro-
posed to incorporate a deep learning in the loop. (Arcucci
et al., 2021) propose a sequential scheme where a neural
network is trained at regular time steps to combine data as-
similation and the forecasting model. Recently, the success
of diffusion models for imaging (Ho et al., 2020) has led
to the development of so-called ”plug and play” methods,
where the neural network is trained to learn a prior (Lau-
mont et al., 2022). Once trained, the neural prior can be
used to solve a large number of inverse problems. In this
line of work, (Rozet & Louppe, 2023) proposed a data as-
similation method based on a diffusion model. An other
type of approaches called “end-to-end” aim at directly train-
ing a neural network to minimize the reconstruction error.
They have the benefit of training the network directly on
the task of interest, but the versatility of the trained model
with respect to the different observational processes is chal-
lenging. An end-to-end neural reconstruction algorithm is
proposed in (Fablet et al., 2021), and aims at learning the
prior distribution of the signal by defining the reconstruc-
tion as a maximum a posterior estimate, leading to a bi-level
optimization problem. However, the complex prior induced
by the neural network may hamper the convergence of this
estimate, as it relies on non-convex optimization. Instead,
we explore a model where the prior has a sufficiently simple
structure to guarantee a convex posterior distribution.

Contributions In this work, we present a neural method
for data assimilation. We introduce a data assimilation
operator parametrized by a neural Gaussian prior, that is
designed to locally improve the likelihood of an estimate.
Our model is trained to minimize the reconstruction error in
an end-to-end fashion. We show how this operator may be
iterated to reconstruct complex signals. The effectiveness of
our method is demonstrated on simulated nonlinear physical
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Neural Incremental Data Assimilation

systems. We also show how our method may be used to
enhance traditional data assimilation methods.

2. The data assimilation inverse problem
The aim of data assimilation is to reconstruct a state x ∈ Rd
from partial noisy measurements y = h(x) + ξ ∈ Rm of
that state, with h(x) the observation process (Bouttier &
Courtier, 2002; Bocquet et al., 2014). For meteorological
applications, for instance, the state x represents the physical
quantities on a grid representing the globe, and the observa-
tions y are partial measurements, from different sources: in
situ measurements, weather balloons, satellites, . . . As these
measurements are very sparse, we cannot generally hope
to recover the state as a function of the data alone. Indeed,
for a given observation vector y, a large number of states
are compatible, making data assimilation an inverse prob-
lem. To reconstruct the state, we need to supplement the
partial observations with another source of prior information
on the state, which comes from our physical or statistical
knowledge of the problem.

The data assimilation problem is then as follows. Given
partial observations y and prior information on the state, the
aim is to estimate the most probable underlying state x. The
Bayesian probabilistic framework lends itself well to the
mathematical formalization of the problem : the theoretical
information about the state physics is captured by a prior
distribution x ∼ p(x), and the noisy, partial observations
of x can be modeled as y|x ∼ h(x) + ξ, with a known
observation process h and an unbiased additive noise that
is typically assumed to be Gaussian ξ ∼ N (0, R) and in-
dependent of x. Then, data assimilation can be seen as the
estimation of the state maximizing the state posterior distri-
bution p(x|y) = p(x)p(y|x)/p(y). Under the assumption
of Gaussian observational noise, this can be formulated as
the following minimization problem

minimize
x∈Rd

U(x) +
1

2
‖h(x)− y‖2R, (2.1)

with U(x) = − log p(x) up to additive constants, and where
we have adopted the notation ‖z‖B = z>B−1z for a posi-
tive definite matrix B.

Problem size For weather prediction, the state x rep-
resents the geophysical variables on a large spatial grid.
It is hence a signal of very high dimension with typi-
cally d ∼ 106 or even d ∼ 109. The size of the data
assimilation problem makes the computations and memory
costs very heavy, severely limiting the computational bud-
get of any numerical method. In the development of new
learning-based methods, it is essential to keep this computa-
tional constraint in mind if we hope to scale up to real-size
systems.

2.1. Least-square Gaussian interpolation

The first approach considered for data assimilation is natu-
rally that of a linear-quadratic model. Assuming a Gaussian
a priori on the state x ∼ N (µ, P ) and a linear observation
function h(x) = Hx, with H ∈ Rm×d, the variational
Bayesian formulation for data assimilation (2.1) becomes a
quadratic least-square problem:

minimize
x∈Rd

1

2
‖x− µ‖2P +

1

2
‖Hx− y‖2R (2.2)

whose maximum a posteriori solution takes the form

MAP(y;µ, P ) := µ+K(y −Hµ), (2.3)

with the H-dependent Kalman gain

K = PH>(HPH> +R)−1 ∈ Rm×d. (2.4)

In the remained of this work, the dependence with respect
to H is implicitly assumed in all quantities that depend on
the observation vector y.

For meteorological applications, the state x that is optimized
for is a snapshot of the set of geophysical variables at a
given time, when the observations have been collected. The
background term µ is the forecast of this state from the past
observations.

Computational cost For large-scale applications, solv-
ing (2.2) by computing the closed-form expression (2.3)
yields a O(m3 + dm) complexity in general, as it involves
solving a m × m linear system and computing a matrix-
vector products of size d×m. In operational geophysical
applications, this cost may be prohibitive as d and m may
reach prohibitively large values. To avoid such costs, (2.2)
is solved by such as conjugate gradient (Fletcher & Reeves,
1964). In the data assimilation community, this variational
approach for the estimation of a large-scale geophysical
spatial state is called 3D-Var (Courtier et al., 1998).

2.2. Spatiotemporal data assimilation

So far, the prior knowledge of the state has taken the form
of a Gaussian distribution, which can capture the proximity
of the searched state to an estimate, and the correlations of
one state variable to another. Least squares interpolation
then searches for the state most faithful to the data, within
a fluctuation zone around the estimate. Although simple
and analytically solvable, this approach does not use signal
physics equations as prior information.

In the 1990s, the quality of data assimilation analyses im-
proved significantly by incorporating a physical model to
the reconstruction algorithm, leading to the state-of-the-
art variational assimilation algorithm 4D-Var (Le Dimet &
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Neural Incremental Data Assimilation

Talagrand, 1986). This algorithm is a generalization of 3D-
Var to time-distributed observations, where the estimated
signal x is a temporal sequence of the spatial geophysi-
cal state on a time window, i.e. a trajectory, rather than
one single snapshot. It is applied sequentially on a sliding
time window, in combination with a forecasting model, to
produce regularly updated estimates of the meteorological
variables. Alongside 4D-Var, other algorithms exist for
data assimilation of dynamical systems, including sequen-
tial methods such as the celebrated Kalman filter, and its
extensions to nonlinear models (Jazwinski, 2007), and to
ensembling (Evensen, 2003). In this work, we focus on the
so-called weak-constraint 4D-Var algorithm (Fisher et al.,
2012), which we briefly explain next. Weak-constraint 4D-
Var has the advantage being naturally related to the Bayesian
formulation (2.1), and is used in operational systems.

For simplicity, we abstract from the time dimension in our
mathematical formalism, and still denote the spatiotemporal
signal as x ∈ Rd. The knowledge of a physical dynamical
model materializes as knowledge of a prior distributionU(x)
in (2.1), which can be computed and differentiated through
with respect to x. In geophysics, this model is typically a
fluid dynamics simulator, and its gradients are computed us-
ing the adjoint method (Talagrand & Courtier, 1987). Hence,
the resulting U(x) is more complex and more informative
than a Gaussian prior, but comes with heavy computational
costs. In the remained of this work, we assume that the
observational processes are linear: h(x) = Hx. In prac-
tice, h is nonlinear and is sequentially approximated by its
linear approximation. We argue that linearizing the physical
model is computationally far more expensive than lineariz-
ing the observational process, and hence that considering
only linear observations does not severly restrict the problem
generality.

The weak-constraint 4D-Var algorithm aims at
minimizing (2.1) by a Gauss-Newton descent algo-
rithm (Gauss, 1877), with line-serach correction (Nocedal
& Wright, 1999). More precisely, a sequence of
estimates zk ∈ Rd, 1 ≤ k ≤ ` approximating the recon-
struction signal is iteratively computed. At each iteration k,
the objective function is approximated by its quadratic
expansion in the vicinity of zk. Specifically, the prior term
is approximated as

U(x) ' U(z) +∇U(z)>(x− z)

+
1

2
(x− z)>∇2U(z)(x− z).

(2.5)

We may express expansion (2.5) as a Gaussian log-
likelihood:

U(x) ' 1

2
‖x− µ(z)‖2P (z), (2.6)

with
P (z) ' ∇2U(z), (2.7a)

µ(z) = z − P (z)−1U(z), (2.7b)

the approximation above refering to the gradient-hessian
approximation.

Weak-constraint 4D-Var is described in Algorithm 1. We
see that the sequence of estimates (zk) is iterated with a
recursion taking the form

xk = A(zk, y), (2.8)

where assimilation operator A improves the current esti-
mate z using the observations and the local approximation
of the model, by performing a local optimal interpolation:

A(z, y) = MAP(y;µ(z), P (z)). (2.9)

Computational cost The 4D-Var algorithm represents the
state of the art for data assimilation in geophysics, and is
deployed in operational meteorological centers. Its main
limitation is the high computational cost of simulating and
differentiating through the physical model. In Algorithm 1,
each computation of Pk and µk comes with a large cost
in addition to the cost of computing (2.9), hence limiting
the method’s accuracy. Additionally, the complexity of U
may lead to a complex minimization landscape, making the
descent algorithm likely to be stuck in local minima (Gratton
et al., 2007).

In the next section, we propose to overcome these limitations
by learning operator A from data.

3. Neural data assimilation
Deep neural networks hold great promise for solving inverse
problems (Bai et al., 2020), as they can help recover the cor-
rupted signal by using the large amount statistical informa-
tion acquired on a training dataset. For the data assimilation
problem in meteoroloy or oceanography, the ground truth
signals x are not available as the geophysical systems are
not observed. However, a promising research direction con-
sists in training a deep neural network to learn a prior on
high-resolution simulations, or on the reanalysis datasets
such as ERA5, like neural weather models (Ben Bouallègue
et al., 2024).

Deep learning approaches to inverse problems may be sep-
arated in two categories (Mukherjee et al., 2021). A first
category of algorithms aims at learning a prior U(x) from
a training dataset, using a neural network, independently
of the inverse problem. Once trained, the learned prior can
be adapted to a reconstruction algorithm to reconstruct the
signal. These algorithms are often called “plug-and-play”,
as the trained neural prior can be used for any downstream
inverse problem. In a second category of algorithms, refered
to as “end-to-end” learning algorithms, the neural network
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Algorithm 1 Incremental weak-constraint 4D-Var
input observation vector y ∈ Rm, observation ma-
trix H , iteration number `, initial estimate z0, tangent
linear physical model µ, P
output state estimation z`
initialize z0 := x0
for 0 ≤ k ≤ `− 1 do

compute Pk := P (zk), µk = µ(zk)
estimate xk = MAP(y;µk, Pk)
compute line search parameter αk
update zk+1 = zk + αk(xk − zk)

end for

is explicitly trained to solve the inverse problem. In this
case, the training consists of minimizing the neural net-
work’s reconstruction error, based on a dataset of state and
observations pairs (x(i), y(i)).

One challenge in training end-to-end algorithms is the multi-
plicity of possible observation processes: the trained neural
network must be compatible with all possible (x, y), and
hence with varying observation processes H , with differ-
ent dimensions m for the observations. It should therefore
model only the prior distribution U(x), and not depend on
the observation process H .

3.1. Neural assimilation operator

We adopt an end-to-end learning approach and we aim at
learning a neural assimilation algorithm by minimizing a
reconstruction error. We observe that, unlike other inverse
problems such as image impainting, data assimilation often
starts with a first physically plausible estimate zof the un-
known state. Therefore, rather than learning to interpolate
the observations from scratch, we train a neural network
to improve the state estimate given z. Drawing inspiration
from the 4D-Var algorithm, we learn an assimilation op-
erator A(z, y; θ), where θ denotes the parameter vector of
a neural network. As in (2.6), we model the local prior
distribution conditioned on z as a Gaussian prior

x|z ∼ N (µ(z; θ), P (z; θ)), (3.1)

where µ(z; θ) and P (z; θ) are trainable neural networks.
Given this Gaussian prior, the observations are incorporated
by solving the least-square interpolation (2.2):

A(z, y; θ) = MAP(y;µ(z; θ), P (z; θ)). (3.2)

By formulating it as the solution of a y-dependent interpo-
lation problem, our assimilation operator (3.2) is defined
for any observation process (H, y), although the underlying
neural network models only the prior distribution. Given a
dataset (x(i), y(i), z(i)0 ) consisting of signals x(i) and partial
observations y(i), supplemented with coarse estimates z(i)

Algorithm 2 Incremental neural data assimilation
input observation vector y ∈ Rm, observation ma-
trix H , iteration number `, initial estimate z0, neural
models µ, P , trained parameter θ
output state estimation z`
initialize z0 := x0
for 0 ≤ k ≤ `− 1 do

compute Pk := P (zk; θ, sk), µk = µ(zk; θ, sk)
estimate xk = MAP(y;µk, Pk)
compute temperature parameter sk
update zk+1 = zk + sk(xk − z0)

end for

of the signal, the neural prior (3.1) is trained to minimize
the reconstruction error with the following objective:

minimize
θ∈Rn

N∑
i=1

1

2
‖A(z(i), y(i); θ)− x(i)‖2

subject to A(z, y; θ) = MAP(y;µ(z; θ), P (z; θ)).
(3.3)

This training objective takes the form of a bi-level optimiza-
tion problem. It is similar to that of (Fablet et al., 2021),
where a neural interpolator called 4DVarNet is used to learn
both the global prior U(x) and the minimization algorithm
of (2.1), rather than a local operator A(z, y) 7→ x. In our
case, however, the inner optimization problem (2.1) can be
solved explicitly because the cost is quadratic. In contrast,
it is only approximatively solved in the case of 4DVarNet,
due to the non-convexity of the inner cost.

Training We train our model by minimizing (3.3) us-
ing stochastic gradient descent, with the ADAM opti-
mizer (Kingma & Ba, 2015). Computing the optimal inter-
polation involves solving a linear systems of size m, and we
need to propagate the gradients with respect to θ through
this no-trivial operation during training. This may be han-
dled by implicit differentiation, allowing to compute the
gradients of the solution with respect to θ, without explicitly
inverting the system’s matrices (Johnson, 2012).

3.2. Incremental neural data assimilation

Since our assimilation operator is trained to reconstruct the
signal from coarse approximation, a one-shot reconstruction
is likely to yield blurry results. To improve reconstruction,
we may iterate this operator, with the aim of progressively
improving the reconstruction signal. Building on the recent
advances of cold diffusion (Bansal et al., 2024), we propose
an iterative strategy aiming at reconsctruting the signal in a
coarse-to-fine fashion. We introduce a scalar temperature
parameter 0 ≤ s ≤ 1 modelling the coarseness of the
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reconstruction, and we allow our neural prior to depend
on s as µ(z; θ, s), P (z; θ, s). Intuitively, the prior should
be coarser for larger values of s, and become sharper and
more local as s → 0. We provide initial estimates z(i)k
at different temperature levels {s1 ≥ · · · ≥ s`} as linear
interpolations between z(i)0 and z(i)k :

z
(i)
k = skz

(i)
0 + (1− sk)z(i)0 . (3.4)

Our training objective is adapted as

minimize
θ∈Rn

∑̀
k=1

N∑
i=1

‖A(z(i)k , y(i); θ, sk)− x(i)‖2. (3.5)

At prediction time, the signal is reconstructed by iteratively
applying A(z, y; θ, s) following the sampling algorithm in-
troduced in (Bansal et al., 2024). We provide a detailed
description of our iterative reconstruction method in Algo-
rithm 2.

4. Experiments on physical systems
In order to evaluate the performances of our data assimila-
tion algorithm, we experiment on two simulated dynamical
systems: the pendulum and the Lorenz 63 dynamical sys-
tems. We train our neural model on a dataset generated
from the dynamical system with different trajectories x
sampled from random initial conditions, and different ob-
servation processes, leading to various (x, y) pairs for the
same x. Our JAX implementation of our neural assimilation
algorithm is available online at https://anonymous.
4open.science/r/assimilation-3F9E.

Architecure We take for µ(z; θ, s) and P (z; θ, s) two
fully-connected neural networks of depth 4 and width 32.
The dependence with respect to s is implemented as a po-
sitional embedding. The d × d matrix P is modeled as a
block-diagonal matrix, hence limiting the computational
cost and imposing a temporal structure in the signal.

4.1. Pendulum

We start with the pendulum, which is is arguably one of the
simplest nonlinear physical systems.

Baseline Importantly, the pendulum is simple enough to
be decently approximated by linear dynamics. It can be
shown that a linear dynamical model with Gaussian model
noise yields a Gaussian prior distribution for the trajec-
tory x. Therefore, a natural data assimilation baseline for
the pendulum consists in the quadratic least-square esti-
mator z0 := MAP(y;µ0, P0), where µ0 and P0 can be
computed analytically as a function of the initial condition
distribution and the pendulum’s linear model.

Data We generate discrete trajectories x(i) of T = 100
time steps from the nonlinear pendulum dynamics with
random initial conditions sampled in phase space, which
is of dimension 2, hence d = 2 × 100 = 200. The
observations are generated by observing the pendulum’s
position at sparse time steps, with Gaussian observation
noise ξ ∼ N (0, ρ2Im), with ρ = 0.01.

Experimental setup We train an adaptation operator to
reconstruct the signal in one shot from z0, following (3.3).
At prediction time, we apply the trained neural assimilation
map A(z; y; θ) to z0 on a separate independent dataset.

Results Reconstruction samples are presented in Figure 1.
While the linear model fails at reconstructing the trajectories
outside of the linearization zone (angle and momentum close
to 0), one application of our neural assimilation operator
accurately reconstructs the signal.

time
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angle
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neuraloriginal observations
assimilationinterpolation

Gaussian

Figure 1. Reconstructed trajectories for the pendulum.

4.2. Lorenz 63

We now turn to a more complex system. The Lorenz sys-
tem is a simplified physical model for for atmospheric con-
vection (Lorenz, 1963). Three variables are governed by
the following set of coupled nonlinear ordinary differential
equations:

du1
dt

= σ(u2 − u1)

du2
dt

= ρu1 − u2 − u1u3
du3
dt

= u1u2 − βu3.

(4.1)

We set σ = 10, ρ = 28 and β = 8/3, values for which the
system is known to exhibit chaotic solutions. We sample the
initial conditions in the system’s stationary distribution, fol-
lowing the experimental setup of (Rozet & Louppe, 2023).

Data We generate datasets of trajectories by integrat-
ing (4.1) between time steps of length dt = 0.025, and
adding a small amount of Gaussian noise η ∼ N (0,dtI3)
at each time step. The number of time steps is T = 32,
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Figure 2. Reconstructed trajectories for the Lorenz 63 system.
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Figure 3. Output of 4D-Var from various initializations.

hence d = 96. We normalize each component of the tra-
jectory to have zero mean and unit variance. The obser-
vations are sparse samples from the first component u1
only, with observation noise of size 0.05. We take for
the initial state estimate z(i) the maximum likelihood in-
terpolation of y(i) under the moment-matching Gaussian
distribution of x(i), which is the coarse Gaussian approx-
imate of p(x). More precisely, z(i)0 = MAP(y(i); µ̂, P̂ ),
with µ̂ and P̂ the empirical mean and the empirical covari-
ance of {x(i)}. We define {z(i)k } as in (3.4) with regular
spacing sk = 1− k/(`+ 1). We take ` = 5.

Baseline As a baseline, an “unconditional” neural net-
work F (z; θ, s) is trained to restore the signal from the z(i)k
without the information brought by the observations. More
specifically, F (z; θ, s) is a function of z only and not of y,
and it is trained as a cold diffusion model to minimize ob-

Table 1. Average reconstrucition error for the different approaches.

Method Gaussian Unconditional Neural
assimilation

Error 1.5 1.1 0.5

jective (3.5) without the information provided by the obser-
vations.

Experimental setup We train our neural assimilation op-
erator to reconstruct the sginal at different temperatures
following (3.5). At prediction time, we apply Algorithm 2.
Furthermore, in order to establish a link between our new
neural method and traditional assimilation methods, we in-
vestigate how the output of the neural method, which is a
priori uninterpretable, may be transformed into a plausible
physical signal. To do this, we correct these estimates with
several iterations of 4D-Var on top of the neural estimate of
the signal, until the objective function (2.1) becomes lower
than 0.05. As a result, the new output is constrained to
satisfy the physical model, but potentially at a lower cost
than if we had started from scratch because the initialization
that we provided is already close to the true signal.

Results Figure 2 shows reconstruction samples from the
baseline and from our method. We can see that our neural
data assimilation algorithm can reconstruct the signal while
staying close to the observations. In contrast, the uncondi-
tional baseline cannot efficiently improve both the signal
likelihood and the data fidelity. Table 1 shows the average
reconstruction error for the various methods. Further, we
compare the reconstructed signals corrected by 4D-Var for
an observation sample in Figure 3. The initialization pro-
vided by our method allows to recover the original signal
with very high accuracy by running few steps of 4D-Var
on top of the neural estimate, while the Gaussian initial-
ization leads to an inaccurate local minimum. Importantly,
the improvement with respect to a Gaussian initialization
is significant, both in terms of reconstruction error and in
terms of number of iterations, as the 4D-var algorithm con-
verged after 4 iterations from the neural initialization and
23 iterations from the Gaussian initialization.

5. Conclusion
In this work, we have shown how deep learning methods
may be applied to the data assimilation problem. Our neural
method models in a coarse-to-fine fashion and is trained
to minimize the reconstruction error. Importantly, we have
shown how such a deep learning method may be used in
combination with a traditional data assimilation method to
enhance the reconstruction accuracy and reduce the compu-
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tational time.

In future work, it would be interesting to apply our method
to physical systems of larger scale, and to explore how the
computational burden of data assimilation may be further
reduced on such high-dimensional systems. Another impor-
tant aspect that is crucial for data assimilation is uncertainty
quantification.
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