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Abstract

We develop a technique to design efficiently computable estimators for sparse linear
regression in the simultaneous presence of two adversaries: oblivious and adaptive.
Consider the model 𝑦∗ = 𝑋∗𝛽∗ + 𝜂 where 𝑋∗ is an 𝑛 × 𝑑 random design matrix,
𝛽∗ ∈ R𝑑 is a 𝑘-sparse vector, and the noise 𝜂 is independent of 𝑋∗ and chosen by the
oblivious adversary. Apart from the independence of 𝑋∗, we only require a small
fraction entries of 𝜂 to have magnitude at most 1. The adaptive adversary is allowed
to arbitrarily corrupt an 𝜀-fraction of the samples (𝑋∗

1 , 𝑦
∗
1), . . . , (𝑋∗

𝑛 , 𝑦
∗
𝑛). Given the

𝜀-corrupted samples (𝑋1 , 𝑦1), . . . , (𝑋𝑛 , 𝑦𝑛), the goal is to estimate 𝛽∗. We assume
that the rows of 𝑋∗ are iid samples from some 𝑑-dimensional distribution 𝒟 with
zero mean and (unknown) covariance matrix Σ with bounded condition number.
We design several robust algorithms that outperform the state of the art even
in the special case of Gaussian noise 𝜂 ∼ 𝑁(0, 1)𝑛 . In particular, we provide
a polynomial-time algorithm that with high probability recovers 𝛽∗ up to error
𝑂(

√
𝜀) as long as 𝑛 ⩾ �̃�(𝑘2/𝜀), only assuming some bounds on the third and

the fourth moments of 𝒟. In addition, prior to this work, even in the special case
of Gaussian design 𝒟 = 𝑁(0,Σ) and noise 𝜂 ∼ 𝑁(0, 1), no polynomial time
algorithm was known to achieve error 𝑜(

√
𝜀) in the sparse setting 𝑛 < 𝑑2. We show

that under some assumptions on the fourth and the eighth moments of 𝒟, there is
a polynomial-time algorithm that achieves error 𝑜(

√
𝜀) as long as 𝑛 ⩾ �̃�(𝑘4/𝜀3).

For Gaussian distribution 𝒟 = 𝑁(0,Σ), this algorithm achieves error 𝑂(𝜀3/4).
Moreover, our algorithm achieves error 𝑜(

√
𝜀) for all log-concave distributions if

𝜀 ⩽ 1/polylog(d).
Our algorithms are based on the filtering of the covariates that uses sum-of-squares
relaxations, and weighted Huber loss minimization with ℓ1 regularizer. We provide
a novel analysis of weighted penalized Huber loss that is suitable for heavy-tailed
designs in the presence of two adversaries. Furthermore, we complement our
algorithmic results with Statistical Query lower bounds, providing evidence that
our estimators are likely to have nearly optimal sample complexity.

1 Introduction

Linear regression is the fundamental task in statistics, with many applications in data science and
machine learning. In ordinary (non-sparse) linear regression, we are given observations 𝑦∗1 , . . . , 𝑦

∗
𝑛 and

𝑋∗
1 , . . . , 𝑋

∗
𝑛 ∈ R𝑑 such that 𝑦∗

𝑖
=

〈
𝑋∗
𝑖
, 𝛽∗

〉
+𝜂𝑖 for some 𝛽∗ ∈ R𝑑 and some noise 𝜂 ∈ R𝑛 , and the goal
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is to estimate 𝛽∗. If 𝜂 is independent of 𝑋∗ and has iid Gaussian entries 𝜂𝑖 ∼ 𝑁(0, 1), the classical least

squares estimator �̂� with high probability achieves the prediction error 1√
𝑛
∥𝑋∗(�̂�−𝛽∗)∥ ⩽ 𝑂

(√
𝑑/𝑛

)
.

Note that if 𝑑/𝑛 → 0, the error is vanishing.

Despite the huge dimensions of modern data, many practical applications only depend on a small
part of the dimensions of data, thus motivating sparse regression, where only 𝑘 ≪ 𝑑 explanatory
variables are actually important (i.e., 𝛽∗ is 𝑘-sparse). In this case we want the error to be small even
if we only have 𝑛 ≪ 𝑑 samples. In this case, there exists an estimator that achieves prediction

error 𝑂
(√
𝑘 log(𝑑)/𝑛

)
(for 𝜂 ∼ 𝑁(0, 1)𝑛). However, this estimator requires exponential computation

time. Moreover, under a standard assumption from computational complexity theory (NP ⊄ P/poly),
estimators that can be computed in polynomial time require an assumption on 𝑋∗ called a restricted

eigenvalue condition in order to achieve error 𝑂
(√
𝑘 log(𝑑)/𝑛

)
(see [ZWJ14] for more details). One

efficiently computable estimator that achieves error 𝑂
(√
𝑘 log(𝑑)/𝑛

)
under the restricted eigenvalue

condition is Lasso, that is, a minimizer of the quadratic loss with ℓ1 regularizer. In particular, the
restricted eigenvalue condition is satisfied for 𝑋∗ with rows 𝑋∗

𝑖

iid∼ 𝑁(0,Σ), where Σ has condition
number 𝑂(1), as long as 𝑛 ≳ 𝑘 log 𝑑 (with high probability).

Further we assume that the designs have iid random rows, and the condition number of the covariance
matrix is bounded by some constant. In addition, for random designs, we use the standard error
∥Σ1/2(�̂� − 𝛽∗)∥. Note that when the number of samples is large enough, this error is very close to

1√
𝑛
∥𝑋∗(�̂� − 𝛽∗)∥.

Recently, there was an extensive interest in the linear regression with the presence of adversarially
chosen outliers. Under the assumption 𝑋∗

𝑖

iid∼ 𝑁(0,Σ), the line of works [TJSO14, BJKK17, SBRJ19,
dNS21, dLN+21] studied the case when the noise 𝜂 is unbounded and chosen by an oblivious
adversary, i.e., when 𝜂 is an arbitrary vector independent of 𝑋∗. As was shown in [dLN+21], in this
case, it is possible to achieve the same error (up to a constant factor) as for 𝜂 ∼ 𝑁(0, 1)𝑛 if we only
assume that Ω(1) fraction of the entries of 𝜂 have magnitude at most 1. They analyzed the Huber loss
estimator with ℓ1 regularizer.

Another line of works [BJK15, DT19, MNW22, Tho23] assumed that 𝜂 has iid random entries that
satisfy some assumptions on the moments, but an adversarially chosen 𝜀-fraction of 𝑦∗1 , . . . , 𝑦

∗
𝑛

is replaced by arbitrary values by an adaptive adversary that can observe 𝑋∗, 𝛽∗ and 𝜂 (so the
corruptions can depend on them). [Tho23] showed that for 𝑋∗ with iid sub-Gaussian rows and 𝜂
with iid sub-Gaussian entries with unit variance, Huber loss estimator with ℓ1 regularizer achieves an

error of 𝑂
(√
𝑘 log(𝑑)/𝑛 + 𝜀 log(1/𝜀)

)
with high probability. Note that the second term depends on

𝜀, but not on 𝑛; hence, even if we take more samples, this term does not decrease (if 𝜀 remains the
same). It is inherent: in the presence of the adaptive adversarial outliers, even for 𝑋∗

𝑖

iid∼ 𝑁(0, Id) and

𝜂 ∼ 𝑁(0, 1)𝑛 , the information theoretically optimal error is Ω
(√
𝑘 log(𝑑)/𝑛 + 𝜀

)
, so independently

of the number of samples, it is Ω(𝜀). In the algorithmic high-dimensional robust statistics, we are
interested in estimators that are computable in time poly(𝑑). There is evidence that it is unlikely that
poly(𝑑)-time computable estimators can achieve error 𝑂(𝜀) [DKS17]. Furthermore, for other design
distributions the optimal error can be different.

Hence the natural questions to ask are : Given an error bound 𝑓 (𝜀), does there exist a poly(𝑑)-time
computable estimator that achieves error at most 𝑓 (𝜀) with high probability? If possible, what is the
smallest number of samples 𝑛 that is enough to achieve error 𝑓 (𝜀) in time poly(𝑑)? In the rest of this
section, we write error bounds in terms of 𝜀 and mention the number of samples that is required to
achieve this error. In addition, we focus on the results for the high dimensional regime, where 𝑓 (𝜀)
does not depend polynomially on 𝑘 or 𝑑.

Another line of works [BDLS17, LSLC20, PJL20, Sas22, SF23] considered the case when the
adaptive adversary is allowed to corrupt 𝜀-fraction of all observed data, i.e. not only 𝑦∗1 , . . . , 𝑦

∗
𝑛 ,

but also 𝑋∗
1 , . . . , 𝑋

∗
𝑛 , while the noise 𝜂 is assumed to have iid random entries that satisfy some

concentration assumptions. For simplicity, to fix the scale of the noise, we formulate their results
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assuming that 𝜂 ∼ 𝑁(0, 1)𝑛 . In non-sparse settings, [PJL20] showed that in the case of identity
covariance sub-Gaussian designs, Huber loss minimization after a proper filtering of 𝑋∗ achieves
error �̃�(𝜀) with 𝑛 ≳ 𝑑/𝜀2 samples. Informally speaking, filtering removes the samples 𝑋∗

𝑖
that look

corrupted, and if the distribution of the design is nice enough, then after filtering we can work with
(𝑋∗ , 𝑦∗) just like in the case when only 𝑦∗ is corrupted. For unknown covariance they showed a bound

𝑂
(√

𝜀
)

for a large class of distributions of the design. If 𝑋∗
𝑖

iid∼ 𝑁(0,Σ) for unknown Σ, one can use
𝑛 ⩾ �̃�

(
𝑑2/𝜀2) samples to robustly estimate the covariance, and achieve nearly optimal error �̃�(𝜀) in

the case (see [DKS19] for more details).

In the sparse setting, there is likely an information-computation gap for the sample complexity of this
problem, even in the case of the isotropic Gaussian design 𝑋∗

𝑖

iid∼ 𝑁(0, Id). While it is information-
theoretically possible to achieve optimal error 𝑂(𝜀) with 𝑛 ⩾ �̃�(𝑘/𝜀2) samples, achieving any
error 𝑜(1) is likely to be not possible for poly(𝑑)-time computable estimators if 𝑛 ≪ 𝑘2. Formal
evidence for this conjecture include reductions from some version of the Planted Clique problem
[BB20], as well as a Statistical Query lower bound (Proposition 1.10). For 𝑛 ⩾ �̃�(𝑘2/𝜀2), several
algorithmic results are known to achieve error �̃�(𝜀), in particular, [BDLS17, LSLC20], and [SF23]
for more general isotropic sub-Gaussian designs. Similarly to the approach of [PJL20], [SF23] used
(ℓ1-penalized) Huber minimization after filtering 𝑋∗.

The non-isotropic case (when Σ ≠ Id is unknown) is more challenging. [SF23] showed that for
sub-Gaussian designs it is possible to achieve error 𝑂

(√
𝜀
)

with 𝑛 ⩾ �̃�(𝑘2) samples. [Sas22] showed
that 𝑂

(√
𝜀
)

error with 𝑛 ⩾ �̃�(𝑘2 + ∥𝛽∗∥4
1/𝑘2) samples can be achieved under some assumptions on

the fourth and the eighth moments of the design distribution. While this result works for a large class
of designs, the clear disadvantage is that the sample complexity depends polynomially on the norm
of 𝛽∗. For example, if all nonzero entries of 𝛽∗ have the same magnitude and ∥𝛽∗∥ =

√
𝑑, then the

sample complexity is 𝑛 > 𝑑2, which is not suitable in the sparse regime.

Prior to this work, no poly(𝑑)-time computable estimator that could achieve error 𝑜
(√

𝜀
)

with

unknown Σ was known, even in the case of Gaussian designs 𝑋∗
𝑖

iid∼ 𝑁(0,Σ) and the Gaussian noise
𝜂 ∼ 𝑁(0, 1)𝑛 (apart from the non-sparse setting, where such estimators require 𝑛 > 𝑑2).

1.1 Results

We present two main results, both of them follow from a more general statement; see Theorem B.3.
Before formally stating the results, we define the model as follows.

Definition 1.1 (Robust Sparse Regression with 2 Adversaries). Let 𝑛, 𝑑, 𝑘 ∈ N such that 𝑘 ⩽ 𝑑,
𝜎 > 0, and 𝜀 ∈ (0, 1) is smaller than some sufficiently small absolute constant. Let 𝒟 be a probability
distribution in R𝑑 with mean 0 and covariance Σ. Let 𝑦∗ = 𝑋∗𝛽∗ + 𝜂, where 𝑋∗ is an 𝑛 × 𝑑 random

matrix with rows 𝑋∗
𝑖

iid∼ 𝒟, 𝛽∗ ∈ R𝑑 is 𝑘-sparse, 𝜂 ∈ R𝑛 is independent of 𝑋∗ and has at least 0.01 · 𝑛
entries bounded by 𝜎 in absolute value1. We denote by 𝜅(Σ) the condition number of Σ.

An instance of our model is a pair (𝑋, 𝑦), where 𝑋 ∈ R𝑛×𝑑 is a matrix and 𝑦 ∈ R𝑛 is a vector such
that there exists a set 𝑆good ⊆ [𝑛] of size at least (1 − 𝜀)𝑛 such that for all 𝑖 ∈ 𝑆good, 𝑋𝑖 = 𝑋∗

𝑖
and

𝑦𝑖 = 𝑦∗
𝑖
.

Note that random noise models studied in prior works are captured by our model in Definition 1.1.
For example, if 𝜂 has iid entries that satisfy E|𝜂𝑖 | ⩽ 𝜎/2, by Markov’s inequality, |𝜂𝑖 | ⩽ 𝜎 with
probability at least 1/2, and with overwhelming probability, at least 0.01 · 𝑛 entries of 𝜂 are bounded
by 𝜎 in absolute value. In addition, Cauchy noise (that does not have the first moment) with location
parameter 0 and scale 𝜎 also satisfies these assumptions, as well as other heavy-tailed distributions
studied in literature (with appropriate scale parameter 𝜎).

1Our result also works for more general model, where we require 𝛼𝑛 entries to be bounded by 𝜎 for some
𝛼 ≳ 𝜀. The error bound in this case also depends on 𝛼.
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We formulate our results assuming that the condition number of the covariance is bounded by some
constant: 𝜅(Σ) ⩽ 𝑂(1). In the most general formulation (Theorem B.3), we show the dependence2 of
the number of samples and the error on 𝜅(Σ).

1.1.1 Robust regression with heavy-tailed designs

We use the following notion of boundness of the moments of 𝒟:

Definition 1.2. Let 𝑀 > 0, 𝑡 ⩾ 2 and 𝑑 ∈ N. We say that a probability distribution 𝒟 in R𝑑 with
zero mean and covariance Σ has 𝑀-bounded 𝑡-th moment, if for all 𝑢 ∈ R𝑑(

E
𝑥∼𝒟

|⟨𝑥, 𝑢⟩|𝑡
)1/𝑡
⩽ 𝑀 ·

√
∥Σ∥ · ∥𝑢∥ .

Note that an arbitrary linear transformation of an isotropic distribution with 𝑀-bounded 𝑡-th moment
also has 𝑀-bounded 𝑡-th moment. Also note that if 𝑡′ ⩽ 𝑡 and a distribution 𝒟 has 𝑀-bounded 𝑡-th
moment, then the 𝑡′-th moment of 𝒟 is also 𝑀-bounded. In particular, 𝑀 cannot be smaller than 1,
since the second moment cannot be 𝑀-bounded for 𝑀 < 1. In addition, we will need the following
(weaker) notion of the boundness of moments:
Definition 1.3. Let 𝜈 > 0, 𝑡 ⩾ 2 and 𝑑 ∈ N. We say that a probability distribution 𝒟 in R𝑑 with zero
mean and covariance Σ has entrywise 𝜈-bounded 𝑡-th moment, if

max
𝑗∈[𝑑]

E
𝑥∼𝒟

|𝑥 𝑗 |𝑡 ⩽ 𝜈𝑡 · ∥Σ∥𝑡/2 .

If a distribution has 𝑀-bounded 𝑡-th moment, then it also has entrywise 𝑀-bounded 𝑡-th moment,
but the converse might not be true for some distributions. Now we are ready to state our first result.
Theorem 1.4. Let 𝑛, 𝑑, 𝑘, 𝑋, 𝑦, 𝜀,𝒟 ,Σ, 𝜎, 𝛽∗ be as in Definition 1.1. Suppose that 𝜅(Σ) ⩽ 𝑂(1)
and that for some 1 ⩽ 𝑀 ⩽ 𝑂(1) and 1 ⩽ 𝜈 ⩽ 𝑂(1), 𝒟 has 𝑀-bounded 3-rd moment and entrywise
𝜈-bounded 4-th moment. There exists an algorithm that, given 𝑋, 𝑦, 𝑘, 𝜀, 𝜎, in time (𝑛 + 𝑑)𝑂(1)

outputs �̂� ∈ R𝑑 such that if 𝑛 ≳ 𝑘2 log(𝑑)/𝜀 , then with probability at least 1 − 𝑑−10,

∥Σ1/2(�̂� − 𝛽∗)∥ ⩽ 𝑂(𝜎 ·
√
𝜀) .

Let us compare Theorem 1.4 with the state of the art. For heavy-tailed designs, prior to this work, the
best estimator was [Sas22]. That estimator also achieves error 𝑂(𝜎

√
𝜀), but its sample complexity

depends polynomially on the norm of 𝛽∗, while our sample complexity does not depend on it.
In addition, they require the distribution to have bounded 4-th moment (as opposed to our 3-rd
moment assumption), and bounded entrywise 8-th moment (as opposed to our entrywise 4-th moment
assumption). Finally, our noise assumption is weaker than theirs since they required the entries of 𝜂
to be iid random variables such that E|𝜂𝑖 | ⩽ 𝜎′ for some 𝜎′ > 0 known to the algorithm designer; as
we mentioned after Definition 1.1, it is a special case of the oblivious noise with 𝜎 = 2𝜎′.

Let us also discuss our assumptions and possibilities of an improvement of our result. The third
moment assumption can be relaxed, more precisely, it is enough to require the 𝑡-th moment to be
bounded, where 𝑡 is an arbitrary constant greater than 2, and in this case the sample complexity is
increased by a constant factor3; see Theorem B.3 for more details. The entrywise fourth moment
assumption is not improvable with our techniques, that is, we get worse dependence on 𝑘 if we relax
it to, say, the third moment assumption.

The dependence of 𝑛 on 𝜀 is not improvable with our techniques4. The dependence of the error on 𝜎
is optimal. The dependence of 𝑛 on 𝑘 and the error on

√
𝜀 is likely to be (nearly) optimal: Statistical

Query lower bounds (Proposition 1.10 and Proposition 1.11) provide evidence that for 𝜎 = Θ(1), it is
unlikely that polynomial-time algorithms can achieve error 𝑜(1) if 𝑛 ≪ 𝑘2, or error 𝑜(

√
𝜀) if 𝑛 ≪ 𝑘4.

Remark 1.5. Our results also imply bounds on other types of error studied in literature. In particular,
observe that ∥�̂� − 𝛽∗∥ ⩽ ∥Σ1/2(�̂� − 𝛽∗)∥/

√
𝜆min(Σ), where 𝜆min(Σ) is the minimal eigenvalue of Σ.

2We did not aim to optimize this dependence.
3This factor depends on 𝑀 and 𝜅(Σ), as well as on 𝑡. In particular, it goes to infinity when 𝑡 → 2.
4Some dependence of 𝑛 on 𝜀 is inherent, but potentially our dependence could be suboptimal. For sub-

exponential distributions it is possible to get better dependence, see Remark 1.9 and Appendix H.
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In addition, our estimator also satisfies ∥�̂� − 𝛽∗∥1 ⩽ 𝑂(∥Σ1/2(�̂� − 𝛽∗)∥ ·
√
𝑘/𝜆min(Σ)). The same is

also true for our estimator from Theorem 1.7 below. These relations between different types of errors
are standard for sparse regression, and they are not improvable.

1.1.2 Beyond
√
𝜀 error

Prior to this work, no polynomial-time algorithm for (non-isotropic) robust sparse regression was
known to achieve error 𝑜(𝜎

√
𝜀), even for Gaussian designs 𝑋∗

𝑖

iid∼ 𝑁(0,Σ) and Gaussian 𝜂 ∼ 𝑁(0, 𝜎)𝑛 .
In this section we show that for a large class of designs, it is possible to achieve error 𝑜(𝜎

√
𝜀) in

polynomial time, even when 𝜂 is chosen by an oblivious adversary. For our second result, we require
not only some bounds on the moments of 𝒟, but also their certifiability in the sum-of-squares proof
system:
Definition 1.6. Let 𝑀 > 0 and let ℓ ⩾ 4 be an even number. We say that a probability distribution
𝒟 in R𝑑 with zero mean and covariance Σ has ℓ -certifiably 𝑀-bounded 4-th moment, if there exist
polynomials ℎ1 , . . . , ℎ𝑚 ∈ R[𝑢1 , . . . , 𝑢𝑑] of degree at most ℓ/2 such that

E
𝑥∼𝒟

⟨𝑥, 𝑢⟩4 +
𝑚∑
𝑖=1

ℎ2
𝑖 (𝑢) = 𝑀4 · ∥Σ∥2 · ∥𝑢∥4 .

Definition 1.6 with arbitrary ℓ implies Definition 1.2 (with the same 𝑀). Under standard complexity-
theoretic assumptions, there exist distributions with bounded moments that are not ℓ -certifiably
bounded even for very large ℓ [HL19]. Note that similarly to Definition 1.2, an arbitrary linear
transformation of an isotropic distribution with ℓ -certifiably 𝑀-bounded 4-th moment also has
ℓ -certifiably 𝑀-bounded 4-th moment.

Distributions with certifiably bounded moments are very important in algorithmic robust statistics.
They were extensively studied in literature, e.g. [KS17a, KS17b, HL18, HL19, DKK+22].

Now we can state our second result.
Theorem 1.7. Let 𝑛, 𝑑, 𝑘, 𝑋, 𝑦, 𝜀,𝒟 ,Σ, 𝜎, 𝛽∗ be as in Definition 1.1. Suppose that 𝜅(Σ) ⩽ 𝑂(1),
and that for some 𝑀 ⩾ 1, some even number ℓ ⩾ 4, and 1 ⩽ 𝜈 ⩽ 𝑂(1), 𝒟 has ℓ -certifiably
𝑀-bounded 4-th moment and entrywise 𝜈-bounded 8-th moment. There exists an algorithm that,
given 𝑋, 𝑦, 𝑘, 𝜀, 𝜎, 𝑀, ℓ , in time (𝑛 + 𝑑)𝑂(ℓ ) outputs �̂� ∈ R𝑑 such that if 𝑛 ≳ 𝑀4 · 𝑘4 log(𝑑)/𝜀3 ,

then with probability at least 1 − 𝑑−10,

∥Σ1/2(�̂� − 𝛽∗)∥ ⩽ 𝑂(𝑀 · 𝜎 · 𝜀3/4) .

In particular, in the regime 𝑀 ⩽ 𝑂(1), as long as 𝑛 ⩾ �̃�(𝑘4/𝜀3), the algorithm recovers 𝛽∗ from
(𝑋, 𝑦) up to error 𝑂(𝜎𝜀3/4) (with high probability). If ℓ ⩽ 𝑂(1), the algorithm runs in polynomial
time. Note that in this theorem we do not assume that 𝑀 is constant as opposed to Theorem 1.4 since
for some natural classes of distributions, only some bounds on 𝑀 that depend on 𝑑 are known.

The natural question is what distributions have certifiably bounded fourth moment with ℓ ⩽ 𝑂(1).
First, these are products of one-dimensional distributions with 𝑀-bounded fourth moment, and their
linear transformations (with ℓ = 4). Hence, linear transformations of products of one-dimensional
distributions with 𝑂(1)-bounded 8-th moment satisfy the assumptions of the theorem with 𝑀 ⩽ 𝑂(1)
and ℓ = 4. Note that such distributions might not even have a 9-th moment. This class also includes
Gaussian distributions (since they are linear transformations of the 𝑁(0, 1)𝑑 and 𝑁(0, 1) has 𝑂(1)-
bounded 8-th moment).

Another important class is the distributions that satisfy Poincaré inequality. Concretely, these dis-
tributions, for some 𝐶𝑃 ⩾ 1, satisfy Var𝑥∼𝒟 𝑔(𝑥) ⩽ 𝐶2

𝑃
· ∥Σ∥ · E𝑥∼𝒟 ∥∇𝑔(𝑥)∥2

2 for all continuously
differentiable functions 𝑔 : R𝑑 → R. [KS17a] showed that such distributions have 4-certifiably
𝑂(𝐶𝑃)-bounded fourth moment. We will not further discuss Poincaré inequality, and focus on the
known results on the classes of distributions satisfy this inequality.

The Kannan-Lovász-Simonovits (KLS) conjecture from convex geometry says that 𝐶𝑃 is bounded
by some universal constant for all log-concave distributions. Recall that a distribution 𝒟 is called
log-concave if for some convex function 𝑉 : R𝑑 → R, the density of 𝒟 is proportional to 𝑒−𝑉(𝑥).
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Apart from the Gaussian distribution, examples include uniform distributions over convex bodies, the
Wishart distribution and the Dirichlet distribution ([Pré71], see also [KBJ00] for further examples).
In recent years there has been a big progrees towards the proof of the KLS conjecture. [Che21]
showed that 𝐶𝑃 ⩽ 𝑑𝑜(1), and since then, the upper bound has been further significantly improved.
The best current bound is 𝐶𝑃 ⩽ 𝑂(

√
log 𝑑) obtained by [Kla23]. This bound implies that for all

log-concave distributions whose covariance has bounded condition number, the error of our estimator
is 𝑂(𝜎

√
log 𝑑 · 𝜀3/4). Hence for 𝜀 ⩽ 𝑜(1/log2(𝑑)) and 𝜎 ⩽ 𝑂(1), the error is 𝑜(

√
𝜀). Note that if the

KLS conjecture is true, the error of our estimator is 𝑂(𝜎𝜀3/4) for all log-concave distributions with
𝜅(Σ) ⩽ 𝑂(1), without any restrictions on 𝜀 (except the standard 𝜀 ≲ 1).
Remark 1.8. Theorem 1.7 can be generalized as follows: If the (2𝑡)-th moment of 𝒟 is 𝑀-bounded
for a constant 𝑡 ∈ N⩾2, if this bound can be certified by a constant degree sum-of-squares proof5, and
if 𝒟 has entrywise (4𝑡)-th 𝑂(1)-bounded moment, then with high probability, there is a poly(𝑑)-time
computable estimator that achieves error 𝑂(𝑀𝜎𝜀1−1/(2𝑡)) as long as 𝑛 ≳ 𝑀4𝑘2𝑡 log(𝑑)/𝜀2𝑡−1. See
Theorem B.3 for more details.
Remark 1.9. The dependence of 𝑛 on 𝜀 can be improved under the assumption that 𝒟 is a sub-
exponential distribution. In particular, all log-concave distributions are sub-exponential. Under this
additional assumption, in order to achieve the error 𝑂(𝜎

√
𝜀), it is enough to take 𝑛 ≳ 𝑘2 polylog(𝑑)+

𝑘 log(𝑑)/𝜀, and to achieve error 𝑂(𝑀𝜎𝜀3/4), it is enough to take 𝑛 ≳ 𝑘4 polylog(𝑑) + 𝑘 log(𝑑)/𝜀3/2

samples (assuming, as in Theorem 1.7, that the fourth moment is 𝑀-certifiably bounded).

1.1.3 Lower bounds

We provide Statistical Query (SQ) lower bounds by which our estimators likely have optimal sample
complexities needed to achieve the errors 𝑂(

√
𝜀) and 𝑜(

√
𝜀), even when the design and the noise are

Gaussian. SQ lower bounds are usually interpreted as a tradeoff between the time complexity and
sample complexity of estimators; see Appendix G and [DKS17] for more details. Our proofs are very
similar to prior works [DKS17, DKS19, DKK+22] since as was observed in [DKS19], lower bounds
for mean estimation can be used to prove lower bounds for linear regression, and we use the lower
bounds for sparse mean estimation from [DKS17, DKK+22].

Let us fix the scale of the noise 𝜎 = 1. The first proposition shows that already for Σ = Id, 𝑘2 samples
are likely to be necessary to achieve error 𝑜(1):
Proposition 1.10 (Informal, see Proposition G.9). Let 𝑛, 𝑑, 𝑘, 𝑋, 𝑦, 𝜀,𝒟 ,Σ, 𝜎, 𝛽∗ be as in Defi-
nition 1.1. Suppose that 𝒟 = 𝑁(0, Id) and 𝜂 ∼ 𝑁(0, �̃�2)𝑛 , where 0.99 ⩽ �̃� ⩽ 1. Suppose that
𝑑 0.01 ⩽ 𝑘 ⩽

√
𝑑, 𝜀 ≳ 1√

log 𝑑
, and 𝑛 ⩽ 𝑘1.99. Then for each SQ algorithm 𝐴 that finds �̂� such that

∥𝛽∗ − �̂�∥ ⩽ 10−5, the simulation of 𝐴 with 𝑛 samples has to simulate super-polynomial (exp(𝑑Ω(1)))
number of queries.

Note that under assumptions of Proposition 1.10, Theorem 1.4 implies that if we take 𝑛 ⩾
𝑘2 polylog(𝑑) samples, the estimator achieves error 𝑂(

√
𝜀) that is 𝑜(1) if 𝜀 → 0 as 𝑑 → ∞.

The second proposition shows that for 1
2 ⪯ Σ ⪯ Id, 𝑘4 samples are likely to be necessary to achieve

error 𝑜(
√
𝜀):

Proposition 1.11 (Informal, see Proposition G.10). Let 𝑛, 𝑑, 𝑘, 𝑋, 𝑦, 𝜀,𝒟 ,Σ, 𝜎, 𝛽∗ be as in Defini-
tion 1.1. Suppose that 𝒟 = 𝑁(0,Σ) for some Σ such that 1

2 ⪯ Σ ⪯ Id, and 𝜂 ∼ 𝑁(0, �̃�2)𝑛 , where
0.99 ⩽ �̃� ⩽ 1. Suppose that 𝑑 0.01 ⩽ 𝑘 ⩽

√
𝑑, 𝜀 ≳ 1

log 𝑑 , and 𝑛 ⩽ 𝑘3.99. Then for each SQ algorithm

𝐴 that finds �̂� such that ∥𝛽∗ − �̂�∥ ⩽ 10−5√𝜀, the simulation of 𝐴 with 𝑛 samples has to simulate
super-polynomial (exp(𝑑Ω(1))) number of queries.

Note that under assumptions of Proposition 1.11, Theorem 1.7 implies that if we take 𝑛 ⩾
𝑘4 polylog(𝑑) samples, the estimator achieves error 𝑂(𝜀3/4) that is 𝑜(

√
𝜀) if 𝜀 → 0 as 𝑑 → ∞.

5See Definition B.2 for formal definition.
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2 Techniques

Since the problem has multiple aspects, we first illustrate our approach on the simplest example
𝑋∗
𝑖

iid∼ 𝑁(0,Σ) under the assumption that 0.1 · Id ⪯ Σ ⪯ 10 · Id. Note that already in this case, even
for 𝜂 ∼ 𝑁(0, 1)𝑛 , our estimator from Theorem 1.7 outperforms the state of the art. In addition, we
assume that 𝜎 = 1.

Our estimators are based on preprocessing 𝑋, and then minimizing ℓ1-penalized Huber loss. In the
Gaussian case, the preprocessing step consists only of filtering, while for heavy-tailed designs, an
additional truncation step is required. The idea of using filtering before minimizing the Huber loss
first appeared in [PJL20] for the dense settings, and was applied to sparse settings in [Sas22, SF23].
We will not discuss the filtering method in detail, and rather focus on its outcome: It is a set �̂� ⊆ [𝑛]
of size at least (1 − 𝑂(𝜀))𝑛 that satisfies some nice properties6. Further, we will see what properties
we need from �̂�, and now let us define the Huber loss estimator.

Definition 2.1. For 𝑆 ⊆ [𝑛], the Huber loss function restricted to 𝑆 is defined as

𝐻𝑆(𝛽) = 1
𝑛

∑
𝑖∈𝑆

ℎ(⟨𝑋𝑖 , 𝛽⟩ − 𝑦𝑖) where ℎ(𝑥𝑖) =
{

1
2 𝑥

2
𝑖

if |𝑥𝑖 | ⩽ 2;
2|𝑥𝑖 | − 2 otherwise.

For a penalty parameter 𝜆, the ℓ1-penalized Huber loss restricted to 𝑆 is defined as 𝐿𝑆(𝛽) :=
𝐻𝑆(𝛽) +𝜆 · ∥𝛽∥1. We use the notation 𝜙(𝑥) for the derivative of ℎ(𝑥). Note that for all 𝑥, |𝜙(𝑥)| ⩽ 2.

Our estimator is the minimizer �̂��̂� of 𝐿�̂�(𝛽), where �̂� is the set returned by the filtering algorithm. To
investigate the properties of this estimator, it is convenient to work with elastic balls. The 𝑘-elastic
ball of radius 𝑟 is the following set: ℰ𝑘(𝑟) := {𝑢 ∈ R𝑑 | ∥𝑢∥ ⩽ 𝑟 , ∥𝑢∥1 ⩽

√
𝑘 · 𝑟} . Note that this

ball contains all 𝑘-sparse vectors with Euclidean norm at most 𝑟 (as well as some other vectors).
Elastic balls are very useful for sparse regression since if the following two properties hold,

1. Gradient bound: For all 𝑢 ∈ ℰ𝑘(𝑟), |⟨∇𝐻�̂� , 𝑢⟩| ≲ 𝑟√
𝑘
∥𝑢∥1 + 𝑟∥𝑢∥ ,

2. Strong convexity on the boundary: For all 𝑢 ∈ ℰ𝑘(𝑟) such that ∥𝑢∥ = 𝑟,

𝐻�̂�(𝛽∗ + 𝑢) − 𝐻�̂�(𝛽∗) − ⟨∇𝐻�̂� , 𝑢⟩ ⩾ Ω
(
𝑟2) ,

then for an appropriate choice of the penalty parameter 𝜆, then
𝛽∗ − �̂��̂�

 < 𝑟 .7

Hence it is enough to show these two properties. In the Gaussian case, the strong convexity property
can be proved in exactly the same way as it is done in [dLN+21] for the case of the oblivious
adversary, while for heavy-tailed designs it is significantly more challenging. Since we now discuss
the Gaussian case, let us focus on the gradient bound. Denote 𝐻∗

𝑆
(𝛽) = 1

𝑛

∑
𝑖∈𝑆 ℎ

(
⟨𝑋∗

𝑖
, 𝛽⟩ − 𝑦∗

𝑖

)
. By

triangle inequality,

|⟨∇𝐻�̂� , 𝑢⟩| = |⟨∇𝐻∗
𝑆good∩�̂�

, 𝑢⟩ + ⟨∇𝐻𝑆bad∩�̂� , 𝑢⟩|

⩽ |⟨∇𝐻∗
[𝑛] , 𝑢⟩| + |⟨∇𝐻∗

[𝑛]\(𝑆good∩�̂�) , 𝑢⟩| + |⟨∇𝐻
𝑆bad∩�̂�

, 𝑢⟩| .

Since the first term can be bounded by ∥∇𝐻∗
[𝑛]∥∞ · ∥𝑢∥1, it is enough to show that ∥∇𝐻∗

[𝑛]∥∞ ≲ 𝑟/
√
𝑘,

where 𝑟 is the error we aim to achieve. Note that ∇𝐻∗
[𝑛] =

1
𝑛

∑𝑛
𝑖=1 𝜙(𝜂𝑖)⟨𝑋∗

𝑖
, 𝑢⟩ does not depend

on the outliers created by the adaptive adversary. The sharp bound on ∥∇𝐻∗
[𝑛]∥∞ can be derived in

exactly the same way as in [dLN+21] (or other prior works): Since 𝜂 and 𝑋∗ are independent and
|𝜙(𝜂)| ⩽ 2, ∇𝐻∗

[𝑛] is a Gaussian vector whose entries have variance (1/𝑛). By standard properties of

Gaussian vectors, ∥∇𝐻∗
[𝑛]∥∞ ⩽ 𝑂(

√
log(𝑑)/𝑛) with high probability.

6Technically, the filtering we use returns weights of the samples. For simplicity we assume here that the
weights are 0 or 1.

7For simplicity, we omit some details, e.g. we need to work with ℰ𝑘′(𝑟) instead of ℰ𝑘(𝑟), where 𝑘′ ≳ 𝑘. See
Theorem A.3 for the formal statement. Similar statements appeared in many prior works on sparse regression.
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To bound the second and the third term, we can use Cauchy–Schwarz inequality and get 𝑂(
√
𝜀)

dependence on the error (like it is done in prior works on robust sparse regression, for example,
[Sas22] or [SF23]), or use Hölder’s inequality and get better dependence, but also more challenges
since we have to work with higher (empirical) moments of 𝑋∗ and 𝑋. Let us use Hölder’sinequality
and illustrate how we work with higher moments. Note that both sets [𝑛] \ (𝑆good ∩ �̂�) and 𝑆bad ∩ �̂�
have size at most 𝑂(𝜀𝑛). Hence the second term can be bounded by

𝑂(𝜀3/4) ·
( ∑
𝑖∈[𝑛]\(𝑆good∩�̂�)

1
𝑛 ⟨𝑋

∗
𝑖 , 𝑢⟩

4)1/4
⩽ 𝑂(𝜀3/4) ·

( ∑
𝑖∈[𝑛]

1
𝑛 ⟨𝑋

∗
𝑖 , 𝑢⟩

4)1/4
,

while the third term is bounded by

𝑂(𝜀3/4) ·
( ∑
𝑖∈𝑆bad∩�̂�

1
𝑛 ⟨𝑋𝑖 , 𝑢⟩

4)1/4
⩽ 𝑂(𝜀3/4) ·

(∑
𝑖∈�̂�

1
𝑛 ⟨𝑋𝑖 , 𝑢⟩

4)1/4
.

A careful probabilistic analysis shows that with high probability, for all 𝑟 ⩾ 0 and all 𝑢 ∈ ℰ𝑘(𝑟),∑
𝑖∈[𝑛]

1
𝑛 ⟨𝑋∗

𝑖
, 𝑢⟩4 ⩽ 𝑂

(
∥𝑢∥4) . Hence, our requirement on �̂� is that

∑
𝑖∈�̂�

1
𝑛 ⟨𝑋𝑖 , 𝑢⟩4 ⩽ 𝑂(1) for all

𝑢 ∈ ℰ𝑘(1) (by scaling argument, it is enough to consider 𝑟 = 1). If we find such a set �̂�, we get
the desired bound. Indeed, if 𝑛 ≳ 𝑘 log(𝑑)/𝜀3/2, ∥∇𝐻∗

[𝑛]∥∞ ⩽ 𝑂(𝜀3/4/
√
𝑘), and the other terms are

bounded by 𝑂(𝜀3/4), implying that
�̂� − �̂��̂�

 < 𝑟 = 𝑂(𝜀3/4).
Note that such sets of size (1 − 𝑂(𝜀))𝑛 exist since 𝑆good satisfies this property. It is clear how to find
such a set inefficiently: we just need to check all candidate sets 𝑆 and maximize the quartic function∑
𝑖∈𝑆⟨𝑋𝑖 , 𝑢⟩4 over 𝑢 ∈ ℰ𝑘(1). Furthermore, the by-now standard filtering method allows to avoid

checking all the sets: If we can maximize
∑
𝑖∈𝑆⟨𝑋𝑖 , 𝑢⟩4 over 𝑢 ∈ ℰ𝑘(1) efficiently, we can also find

the desired set efficiently.

Before explaining how we maximize this function, let us see how prior works [BDLS17, SF23],
optimized a simpler quadratic function

∑
𝑖∈𝑆⟨𝑋𝑖 , 𝑢⟩2 over 𝑢 ∈ ℰ𝑘(1). They use the basic SDP

relaxation for sparse PCA, that is, they optimize the linear function
∑
𝑖∈𝑆⟨𝑋𝑖𝑋⊤

𝑖
, 𝑈⟩ over ℬ𝑘 :=

{𝑈 ∈ R𝑑×𝑑 | 𝑈 ⪰ 0 , Tr(𝑈) ⩽ 1 , ∥𝑈 ∥1 ⩽ 𝑘}. This set has been used in literature for numerous
sparse problems since it is a nice (perhaps the best) convex relaxation of the set 𝒮𝑘 = {𝑢𝑢⊤ | 𝑢 ∈
R𝑑 , ∥𝑢∥ ⩽ 1 , ∥𝑢∥0 ⩽ 𝑘}. Moreover, crucially for sparse regression, it is easy to see that ℬ𝑘 also
contains all matrices 𝑢𝑢⊤ such that 𝑢 ∈ ℰ𝑘(1). Hence, one may try to optimize quartic functions by
using relaxations of 𝒮𝑘 = {𝑢⊗4 | 𝑢 ∈ R𝑑 , ∥𝑢∥ ⩽ 1 , ∥𝑢∥0 ⩽ 𝑘}. A natural relaxation is the sum-
of-squares with sparsity constraints. [DKK+22] used these relaxations for sparse mean estimation8.
They showed that these relaxations provide nice guarantees for distributions with certifiably bounded
4-th moment, assuming that the distribution has sub-exponential tails. Since we now discuss the
Gaussian case, the assumption on the tails is satisfied. However, there is no guarantee that these
relaxations capture 𝑢⊗4 for all 𝑢 ∈ ℰ𝑘(1). So, for sparse regression, we need another relaxation.

We use the sum-of-squares relaxations with elastic constraints. These constraints ensure that the
set of relaxations 𝒫𝑘 ⊂ R𝑑4

is guaranteed to contain 𝑢⊗4 for all 𝑢 ∈ ℰ𝑘(1). We show that if
𝑛 ≳ �̃�(𝑘4), there is a degree-𝑂(1) sum-of-squares proof from the elastic constraints of the fact that
1
𝑛

∑
𝑖∈[𝑛]⟨𝑋𝑖 , 𝑢⟩4 ⩽ 𝑂(1). It implies that the relaxation is nice: If 1

𝑛

∑
𝑖∈𝑆⟨𝑋𝑖 , 𝑢⟩4 ⩽ 𝑂(1) for all

𝑢 ∈ ℰ𝑘(1), then 1
𝑛

∑
𝑖∈𝑆⟨𝑋⊗4

𝑖
, 𝑈⟩ ⩽ 𝑂(1) for all𝑈 ∈ 𝒫𝑘 . Since we can efficiently optimize over 𝒫𝑘 ,

we get an efficiently computable estimator with error 𝑂(𝜀3/4) for Gaussian distributions. Furthermore,
if we first use a proper thresholding (that we discuss below), our sum-of-squares proof also works for
heavy-tailed distributions, that, apart from the certifiably bounded 4-th moment (that we cannot avoid
with the sum-of-squares approach), are only required to have entrywise bounded 8-th moment.

Robust sparse regression with heavy-tailed designs is much more challenging. Again, for simplicity
assume that 0.1 · Id ⪯ Σ ⪯ 10 · Id and 𝜎 = 1. First, there is an issue even without the adversarial
noise: ∥∇𝐻∗

[𝑛]∥∞ can be very large. Even under bounded fourth moment assumption, it can have

magnitude �̃�(𝑑1/4/𝑛), which is too large in the sparse setting. Hence we have to perform an additional
thresholding step and remove large entries of 𝑋. Usually thresholding of the design matrix should be

8These relaxations were also used in [dKNS20] in the context of sparse PCA, but they used them in a different
way.
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done very carefully since it breaks the relation between 𝑋 and 𝑦. [Sas22] required the thresholding
parameter 𝜏 to be large enough and depend polynomially on ∥𝛽∗∥ so that this dependence does
not break significantly. Since ∥∇𝐻∗

[𝑛]∥∞ can be as large as �̃�(𝜏/𝑛), the sample complexity of their
estimator also depends polynomially on ∥𝛽∗∥.

Our idea of thresholding is very different, and it plays a significant role in our analysis, especially in
the proof of strong convexity. Since we already have to work with outliers chosen by the adaptive
adversary, we know that for an 𝜀-fraction of samples, the dependence of 𝑦 on 𝑋 can already be
broken. So, if we choose the thresholding parameter 𝜏 to be large enough so that with high probability
it only affects an 𝜀-fraction of samples, we can simply treat the samples affected by such thresholding
as additional adversarial outliers, and assume that the adaptive adversary corrupted 2𝜀𝑛 samples.
Note that since 𝒟 is heavy-tailed, each sample 𝑋∗

𝑖
might have entries of magnitude 𝑑Ω(1). However, 𝑦

depends only on the inner products ⟨𝑋∗
𝑖
, 𝛽∗⟩, and this inner product depends only on the entries of 𝑋∗

that correspond to the support of 𝛽∗. Even though we don’t know the support, we can guarantee that
for 𝜏 ⩾ 20

√
𝑘/𝜀, all entries of 𝑋𝑖 from the support of 𝛽∗ are bounded by 𝜏 with probability 1 − 𝜀/2.

Indeed, since the variance of each entry is bounded by 10, Chebyshev’s inequality implies that this
entry is smaller than 𝜏 with probability at least 1 − 𝜀/(2𝑘), and by union bound, ⟨𝑋∗

𝑖
, 𝛽∗⟩ is not

affected by the thresholding with probability 1 − 𝜀/2. Hence by Chernoff bound, with overwhelming
probability, the number of samples affected by our thresholding is at most 𝜀𝑛.

Let us denote the distribution of the rows of 𝑋∗ after thresholding with parameter 𝜏 by 𝒟(𝜏). After
the thresholding step, we can assume that 𝑋∗

𝑖

iid∼ 𝒟(𝜏). Note that thresholding can shift the mean, i.e.
E𝑋∗

𝑖
can be nonzero. It is easy to see that ∥E𝑥∼𝒟(𝜏) 𝑥∥∞ ⩽ 𝑂(1/𝜏). Hence by Bernstein’s inequality,

∥∇𝐻∗
[𝑛]∥∞ ⩽ �̃�

(√
1/𝑛 + 𝜏/𝑛 + 1/𝜏

)
with high probability9. In particular, in order to get the error

bounded by 𝑂(𝜀3/4), we need to take 𝜏 ≳
√
𝑘/𝜀3/4, and it affects sample complexity. Furthermore,

our sum-of-squares proof requires that
 1
𝑛

∑𝑛
𝑖=1

(
𝑋∗
𝑖

)⊗4 − E
(
𝑋∗

1

)⊗4

∞

is smaller that 1/𝑘2. It can

be shown that this quantity is bounded by �̃�
(√

1/𝑛 + 𝜏4/𝑛 + 1/𝜏4
)

with high probability10. In

particular, we need 𝑛 ⩾ �̃�
(
𝜏4𝑘2) , so for 𝜏 ≳

√
𝑘/𝜀3/4, we have to take 𝑛 ⩾ �̃�

(
𝑘4/𝜀3) . As was

discussed in Remark 1.9, if 𝒟 has sub-exponential tails, we do not have to do the thresholding, and
the bounds from [DKK+22] allow to avoid this dependence of 𝑛 on 𝜀. Note that due to the SQ lower
bound (Proposition 1.11), sample complexity 𝑘4 is likely to be necessary, even for Gaussian designs.

Finally, let us discuss the strong convexity property. Here, we do not assume any properties related to
sum-of-squares, and focus on the weak assumptions of Theorem 1.4. First, assume that we need to
show strong convexity only for sparse vectors, and not for all 𝑢 ∈ ℰ𝑘(𝑟). As was observed in prior
works on regression with oblivious outliers, e.g. [dLN+21], 𝜌(𝑢) := 𝐻�̂�(𝛽∗+𝑢)−𝐻�̂�(𝛽∗)− ⟨∇𝐻�̂� , 𝑢⟩
can be lower bounded by 1

2
∑
𝑖∈�̂�⟨𝑋𝑖 , 𝑢⟩21[|⟨𝑋𝑖 ,𝑢⟩−𝑦𝑖 |⩽1]1[|⟨𝑋𝑖 ,𝑢⟩|⩽1]. Let 𝐶(𝑢) = 𝑆good∩ �̂�∩𝐴∩𝐵(𝑢),

where 𝐴 is the set of samples where |𝜂𝑖 | ⩽ 1 and 𝐵(𝑢) = {𝑖 ∈ [𝑛] | |⟨𝑋𝑖 , 𝑢⟩| ⩽ 1}. Then,
𝜌(𝑢) ⩾ Ω(∑𝑖∈𝐶(𝑢)⟨𝑋∗

𝑖
, 𝑢⟩2). It can be shown that for some suitable 𝑟 and for each 𝑘-sparse 𝑢 of

norm 𝑟, 𝐶(𝑢) is a large subset of the set 𝐴 (of size at least 0.99|𝐴|). Note that since 𝐴 is independent
of 𝑋∗, the rows of 𝑋∗ that correspond to indices from 𝐴 are just iid samples from 𝒟. If 𝑋∗

𝑖
were

Gaussian, we could have applied concentration bounds and prove strong convexity via union bound
argument over subsets of size 0.99|𝐴|. In the heavy-tailed case, we need a different argument. For a
fixed set 𝐶 of size 0.99|𝐴|, we can use Bernstein’s inequality11. We cannot use union bound argument
over all subsets of size 0.99|𝐴| (there are too many), but fortunately we do not need it since for each
𝑘-sparse 𝑢 of norm 𝑟, it is enough to show that

∑
𝑖∈𝑇(𝑢)⟨𝑋∗

𝑖
, 𝑢⟩2 ⩾ Ω(𝑟2), where 𝑇(𝑢) ⊂ 𝐴 is the set

of the smallest (in absolute value) 0.99|𝐴| entries of the vector 𝑋∗
𝐴
𝑢 ∈ R|𝐴| . Hence, we can use an

epsilon-net argument for the set of 𝑘-sparse vectors 𝑢 (of norm 𝑟). This set has very dense nets of

9Here we used the fact that 𝜙(𝜂𝑖) ⩽ 2.
10[DKLP22] used thresholding for robust sparse mean estimation, and showed a similar bound for second-

order tensors. We generalize it to higher order tensors.
11Using a standard truncation argument. See also Proposition C.1. of [PJL20] for a similar argument in the

dense setting.
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(relatively) small size, and this is enough to show the lower bound
∑
𝑖∈𝐶(𝑢)⟨𝑋∗

𝑖
, 𝑢⟩2 ⩾ Ω(𝑟2) for all

𝑘-sparse 𝑢 of norm 𝑟 with high probability, as long as 𝑛 ⩾ �̃�(𝑘2).
In order to show the same bound for all 𝑢 ∈ ℰ𝑘(𝑟) of norm 𝑟, we observe that12 if a quadratic form
is Θ(𝑟2) on 𝐾-sparse vectors of norm 𝑟 for some 𝐾 ≳ 𝑘, then it is also Θ(𝑟2) on all 𝑢 ∈ ℰ𝑘(𝑟), and
applying the argument from the previous paragraph to 𝐾-sparse vectors, we get the desired bound. We
remark that directly proving it for 𝑢 ∈ ℰ𝑘(𝑟) is challenging, since we extensively used the properties
of the set of sparse vectors that are not satisfied by ℰ𝑘(𝑟), e.g. the existence of very dense epsilon-nets
of small size.

3 Future Work

There is an interesting open problem in robust sparse regression that is not captured by our techniques.
For sparse mean estimation, in the Gaussian case, there exists a polynomial time algorithm with
nearly optimal guarantees: It achieves error 𝑂(�̃�) with 𝑘4 polylog(𝑑)/𝜀2 samples ([DKK+22]). This
algorithm uses a sophisticated sum-of-squares program13. It is reasonable to apply the techniques
of [DKK+22] to robust sparse regression in order to achieve nearly optimal error 𝑂(�̃�) with poly(𝑘)
samples. However, simple approaches (e.g. our approach with replacing the sparse constraints by the
elastic constraints) fail in this case. Here we provide a high-level explanation of the issue. In order
to combine the filtering algorithm with their techniques, we need to check whether the values of a
certain quartic form are small on all sparse vectors. The analysis in [DKK+22] shows that this form is
indeed small for the uncorrupted sample with high probability (see their Lemma E.2.). Since we want
the filtering algorithm to be efficient, we have to use a relaxation of sparse vectors. Hence we need to
find a sum-of-squares (or some other nice relaxation) version of the proof from [DKK+22]. However,
in their proof they use a covering argument, and it is not clear how to avoid it. This argument fails for
reasonable relaxations that we have thought about. Both potential outcomes (either an algorithm or a
computational lower bound) are interesting: An algorithm would likely require new sophisticated
ideas, and a lower bound would show a significant difference between robust sparse regression and
robust mean estimation, while, so far, the complexity pictures of these problems have seemed to be
quite similar.

Another interesting direction is to get error 𝑜(
√
𝜀) for distributions that do not necessarily have

certifiably bounded moments. As was shown in [HL19], only moment assumptions (without certi-
fiability) are not enough for efficient robust mean estimation, and the same should be true also for
linear regression. However, other assumptions on distribution 𝒟 can make the problem solvable
in polynomial time. For robust mean estimation, some symmetry assumptions are enough even for
heavy-tailed distributions without the second moment14 (see [NST23]). It is interesting to investigate
what assumptions on the design distribution are sufficient for existence of efficiently computable
estimators for robust sparse regression.
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A Properties of the Huber loss minimizer

Definition A.1. For 𝑤 ∈ R𝑛⩾0, the weighted Huber loss function is defined as

𝐻𝑤(𝛽) =
∑
𝑖∈[𝑛]

𝑤𝑖ℎ(⟨𝑋𝑖 , 𝛽⟩ − 𝑦𝑖) where ℎ(𝑥𝑖) =
{

1
2 𝑥

2
𝑖

if |𝑥𝑖 | ⩽ 2;
2|𝑥𝑖 | − 2 otherwise.

For a penalty parameter 𝜆, the ℓ1-penalized Huber loss restricted to 𝑆 is defined as 𝐿𝑤(𝛽) :=
𝐻𝑤(𝛽) + 𝜆 · ∥𝛽∥1.

Lemma A.2. Suppose that 𝑤 ∈ R𝑛⩾0, 𝑢 ∈ R𝑑, 𝛾1 , 𝛾2 ,𝜆 > 0 satisfy the following properties:

1.
��∑𝑛

𝑖=1 𝑤𝑖𝜙(𝜂𝑖 + 𝜁𝑖)
〈
𝑋′′
𝑖
(𝜏), 𝑢

〉�� ⩽ 𝛾1∥𝑢∥1 + 𝛾2
Σ1/2𝑢

 ,
2. 𝜆 ⩾ 2𝛾1 ,

3. 𝐻𝑤(𝛽∗ + 𝑢) + 𝜆 · ∥𝛽∗ + 𝑢∥1 ⩽ 𝐻𝑤(𝛽∗) + 𝜆 · ∥𝛽∗∥1 .

Then
∥𝑢∥1 ⩽

(
4
√
𝑘/𝜎min + 2𝛾2/𝜆

)
·
Σ1/2𝑢

 ,
where 𝜎min is the minimal eigenvalue of Σ.

Proof. Let 𝒦 = supp(𝛽∗). Note that

∥𝛽∗ + 𝑢∥1 =
𝛽∗ + 𝑢𝒦 + 𝑢𝒦


1 ⩾ ∥𝛽∗∥1 +

𝑢𝒦
1 − ∥𝑢𝒦 ∥1 .

By the convexity of 𝐻𝑤 ,

𝐻𝑤(𝛽∗ + 𝑢) − 𝐻𝑤(𝛽∗) ⩾ −
����� 𝑛∑
𝑖=1

𝑤𝑖𝜙(𝜂𝑖 + 𝜁𝑖)
〈
𝑋′′
𝑖 (𝜏), 𝑢

〉����� ⩾ −𝜆∥𝑢∥1/2 − 𝛾2

Σ1/2𝑢
 .

Hence

0 ⩾ 𝜆 ·
(
∥𝛽∗ + 𝑢∥1 − ∥𝛽∗∥1

)
+ 𝐻𝑤(𝜂 + 𝜁 + 𝑋𝑢) − 𝐻𝑤(𝜂 + 𝜁)

⩾ 𝜆 ·
(𝑢𝒦

1 − ∥𝑢𝒦 ∥1

)
− 1

2𝜆 · ∥𝑢𝒦 ∥1 − 1
2𝜆 ·

𝑢𝒦
1 − 𝛾2

⩾ 1
2𝜆 ·

𝑢𝒦
1 −

3
2𝜆∥𝑢𝒦 ∥1 − 𝛾2 .

Therefore,

𝜆∥𝑢∥1 ⩽ 4𝜆∥𝑢𝒦 ∥1 + 2𝛾2

Σ1/2𝑢
 ⩽ 4𝜆

√
𝑘∥𝑢∥ + 2𝛾2

Σ1/2𝑢
 ⩽ 4𝜆

√
𝑘

𝜎min

Σ1/2𝑢
 + 2𝛾2

Σ1/2𝑢
 .
□

Theorem A.3. Let 𝜌, 𝛾1 , 𝛾2 > 0 and

𝑟 = 100 ·
(
𝜆
√
𝑘/𝜎min

𝜌
+ 𝛾2

𝜌

)
,

where 𝜎min is the minimal eigenvalue of Σ. Let 𝑘′ ⩾ 100𝑘/𝜎min. Consider the 𝑘′-elastic ellipsoid of
radius 𝑟:

ℰ𝑘′(𝑟) =
{
𝑢 ∈ R𝑑

��� ∥Σ1/2𝑢∥ ⩽ 𝑟 , ∥𝑢∥1 ⩽
√
𝑘′ · 𝑟

}
.

Suppose that the weights 𝑤 ∈ R𝑛 are such that the following two properties hold:

1. Gradient bound: For all 𝑢 ∈ ℰ𝑘′(𝑟),����� 𝑛∑
𝑖=1

𝑤𝑖𝜙(𝜂𝑖 + 𝜁𝑖)
〈
𝑋′′
𝑖 (𝜏), 𝑢

〉����� ⩽ 𝛾1∥𝑢∥1 + 𝛾2

Σ1/2𝑢
, ,
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2. Strong convexity on the boundary: For all 𝑢 ∈ ℰ𝑘′(𝑟) such that
Σ1/2𝑢

 = 𝑟,

𝐻𝑤(𝛽∗ + 𝑢) − 𝐻𝑤(𝛽∗) ⩾ −
����� 𝑛∑
𝑖=1

𝑤𝑖𝜙(𝜂𝑖 + 𝜁𝑖)
〈
𝑋′′
𝑖 (𝜏), 𝑢

〉����� + 𝜌 · 𝑟2 .

Let

𝜆 ⩾ 2𝛾1 + 𝛾2 ·
√

𝜎min

𝑘
.

Then the minimizer �̂� of the weighted penalized Huber loss with penalty 𝜆 and weights 𝑤 satisfiesΣ1/2
(
�̂� − 𝛽∗

) < 𝑟 .

Proof. Let �̂� = �̂� − 𝛽∗. If
Σ1/2�̂�

 < 𝑟, we get the desired bound. Otherwise, let 𝑢 be the (unique)
point in the intersection of 𝜕ℰ𝑘′(𝑟) and the segment [0, �̂�] ⊂ R𝑑. By convexity of the penalized loss,

𝐻𝑤(𝜂 + 𝜁 + 𝑋𝑢) + 𝜆 · ∥𝛽∗ + 𝑢∥1 ⩽ 𝐻𝑤(𝜂 + 𝜁) + 𝜆 · ∥𝛽∗∥1 ,

Since 𝑢 ∈ 𝜕ℰ𝑘′(𝑟), either
Σ1/2𝑢

 = 𝑟, or ∥𝑢∥1 =
√
𝑘′ · 𝑟. Let us show that the latter is not possible.

Since 𝜆 ⩾ 2𝛾1, we can apply Lemma A.2:
√
𝑘′ · 𝑟 =

(
4
√
𝑘/𝜎min + 2𝛾2/𝜆

)
· 𝑟 .

Cancelling 𝑟 and using the bound 𝜆 ⩾ 𝛾2 ·
√

𝜎min
𝑘

, we get a contradiction. Hence
Σ1/2𝑢

 = 𝑟. By
the strong convexity and the gradient bound,

𝐻𝑤(𝛽∗ + 𝑢) − 𝐻𝑤(𝛽∗) ⩾ −
����� 𝑛∑
𝑖=1

𝑤𝑖𝜙(𝜂𝑖 + 𝜁𝑖)
〈
𝑋′′
𝑖 (𝜏), 𝑢

〉����� + 𝜌 ·
Σ1/2𝑢

2

⩾ 𝜌 · 𝑟2 − 1
2𝜆 · ∥𝑢∥1 − 𝛾2

Σ1/2𝑢


= 𝜌 · 𝑟2 − 1
2𝜆 · ∥𝑢∥1 − 𝛾2𝑟 .

Note that
𝐻𝑤(𝛽∗ + 𝑢) − 𝐻𝑤(𝛽∗) ⩽ 𝜆 ·

(
∥𝛽∗∥1 − ∥𝛽∗ + 𝑢∥1

)
⩽ 𝜆∥𝑢∥1 .

By putting the above two inequality together and by Lemma A.2 , we have that

𝜌 · 𝑟2 ⩽ 3
2𝜆∥𝑢∥1 + 𝛾2𝑟 ⩽ 6𝜆

√
𝑘/𝜎min · 𝑟 + 5𝛾2𝑟 .

Dividing both sides by 𝜌 · 𝑟, we get

𝑟 < 100 ·
(
𝜆
√
𝑘/𝜎min

𝜌
+ 𝛾2

𝜌

)
,

a contradiction. Therefore,
Σ1/2�̂�

 < 𝑟.

□

B Heavy-tailed Designs

First, we define a bit more general model than Definition 1.1

Definition B.1 (Robust Sparse Regression with 2 Adversaries). Let 𝑛, 𝑑, 𝑘 ∈ N such that 𝑘 ⩽ 𝑑,
𝜎 > 0, 𝛼 ∈ (0, 1] and 𝜀 ≲ 𝛼. Let 𝒟 be a probability distribution in R𝑑 with mean 0 and covariance

14



Σ. Let 𝑦∗ = 𝑋∗𝛽∗ + 𝜂, where 𝑋 is an 𝑛 × 𝑑 random matrix with rows 𝑋∗
𝑖

iid∼ 𝒟, 𝛽∗ ∈ R𝑑 is 𝑘-sparse,
𝜂 ∈ R𝑛 is independent of 𝑋∗ and has at least 𝛼 · 𝑛 entries bounded by 𝜎 in absolute value15.

An instance of our model is a pair (𝑋, 𝑦), where 𝑋 ∈ R𝑛×𝑑 is a matrix and 𝑦 ∈ R𝑛 is a vector such
that there exists a set 𝑆good ⊆ [𝑛] of size at least (1 − 𝜀)𝑛 such that for all 𝑖 ∈ 𝑆good, 𝑋𝑖 = 𝑋∗

𝑖
and

𝑦𝑖 = 𝑦∗
𝑖
.

Definition B.2. Let 𝑀 > 0, 𝑡 ∈ N, and let ℓ ⩾ 2𝑡 be an even number. We say that a probability
distribution 𝒟 in R𝑑 with zero mean and covariance Σ has ℓ -certifiably 𝑀-bounded (2𝑡)-th moment,
if there exist polynomials ℎ1 , . . . , ℎ𝑚 ∈ R[𝑢1 , . . . , 𝑢𝑑] of degree at most ℓ/2 such that

E
𝑥∼𝒟

⟨𝑥, 𝑢⟩2𝑡 +
𝑚∑
𝑖=1

ℎ2
𝑖 (𝑢) = 𝑀2𝑡 · ∥Σ∥𝑡 · ∥𝑢∥2𝑡 .

In this section we prove the following theorem

Theorem B.3 (Heavy-tailed designs, general formulation). Let 𝑛, 𝑑, 𝑘, 𝑋, 𝑦, 𝜀,𝒟 ,Σ, 𝜎, 𝛼 be as in
Definition B.1, and let 𝛿 ∈ (0, 1).
Suppose that for some 𝑠 > 2, 𝑡 ∈ N, 𝑀𝑠 , 𝑀2𝑡 ⩾ 1, and even number ℓ ⩾ 2𝑡, 𝒟 has 𝑀𝑠-bounded 𝑠-th
moment, and ℓ -certifiably 𝑀2𝑡-bounded (2𝑡)-th moment. In addition, 𝒟 has entrywise 𝜈-bounded
(4𝑡)-th moment.

There exists an algorithm that, given 𝑋, 𝑦, 𝑘, 𝜀, 𝜎, 𝑀2𝑡 , ℓ , 𝑡 , 𝛿 and �̂�max such that ∥Σ∥ ⩽ �̂�max ⩽

𝑂(∥Σ∥), in time (𝑛 + 𝑑)𝑂(ℓ ) outputs 𝑋′ ∈ R𝑛×𝑑 and weights 𝑤 = (𝑤1 , . . . , 𝑤𝑛) such that if

𝑛 ≳
1010𝑡

(
𝑀2𝑡

2𝑡 · 𝜈4𝑡 +
(
105𝑀𝑠

) 2𝑠
𝑠−2

)
·
(
𝜅(Σ)4+𝑠/(𝑠−2) + 𝜅(Σ)2𝑡

)
𝜀2𝑡−1

· 𝑘2𝑡 log(𝑑/𝛿)

then with probability at least 1 − 𝛿, the weighted ℓ1-penalized Huber loss estimator �̂�𝑤 = �̂�𝑤(𝑋′, 𝑦)
with weights 𝑤 (as in Definition 2.1) and parameter ℎ satisfiesΣ1/2

(
�̂�𝑤 − 𝛽∗

) ⩽ 𝑂 (
𝑀2𝑡

√
𝜅(Σ)

𝛼
· 𝜎 · 𝜀1− 1

2𝑡

)
.

Let us explain how this result implies Theorem 1.4 and Theorem 1.7.

Theorem 1.4 is a special case of Theorem B.3 with 𝑡 = 1, 𝑠 = 3, ℓ = 2, 𝑀2𝑡 = 1, 𝑀𝑠 = 𝑀, 𝛼 = 0.01.
Indeed, we only need to estimate ∥Σ∥ up to a constant factor. We can do it by estimating the variance
of the first coordinate of 𝑥 ∼ 𝒟. Applying median-of-means algorithm16 to the first coordinate, we
get an estimator �̃�2 that is 𝑂(𝜈2∥Σ∥

√
𝜀)-close to the variance of the first coordinate 𝜎2

1 . Note that
∥Σ∥/𝜅(Σ) ⩽ 𝜎2

1 ⩽ ∥Σ∥. Since in Theorem 1.4 𝜅(Σ) and 𝜈 are constants, and 𝜀 is sufficiently small,
we get that 1

2𝜅(Σ) ∥Σ∥ ⩽ �̃�2
max ⩽ 2∥Σ∥. Hence for a constant 𝐶 ⩾ 𝜅(Σ), �̂�max = 2𝐶 �̃�2 is the desired

estimator of ∥Σ∥.

Similarly, Theorem 1.7 is a special case of Theorem B.3 with 𝑡 = 2, 𝑠 = 4, 𝑀2𝑡 = 𝑀𝑠 = 𝑀,
𝛼 = 0.01. ∥Σ∥ can be estimated using the procedure described above.

Before proving the theorem, note that we can without loss of generality assume that 𝜎 = 1. Indeed,
since 𝜎 is known, we can simply divide 𝑋 and 𝑦 by it before applying the algorithm.

B.1 Truncation

We cannot work with 𝑋∗ directly since it might have very large values, and Bernstein inequality that
we use for random vectors concentration would give very bad bounds if we work with 𝑋∗. Fortunately,

15Our result also works for more general model, where we require 𝛼𝑛 entries to be bounded by 𝜎 for some
𝛼 ≳ 𝜀. The error bound in this case also depends on 𝛼.

16See, for example, Fact 2.1. from [DKLP22], where they state the guarantees of the median-of-means
algorithm.

15



we can perform truncation. This technique was used in [DKLP22] for sparse mean estimation and in
[Sas22] for sparse regression.

For 𝜏 > 0 let 𝑋′
𝑖 𝑗
(𝜏) = 𝑋∗

𝑖 𝑗
1[

|𝑋∗
𝑖 𝑗
|⩽𝜏

] . Note that since P
[
|𝑋∗

𝑖 𝑗
| > 𝜏

]
⩽ ∥Σ∥/𝜏2, if 𝜏 ≳

√
∥Σ∥𝑘/𝜀,

then the number of entries 𝑖 where
〈
𝑋∗
𝑖
, 𝛽∗

〉
≠

〈
𝑋′
𝑖
(𝜏), 𝛽∗

〉
is at most 𝜀𝑛 with probability at least

1 − 2−𝜀𝑛/10 ⩾ 1 − 𝛿/10. Hence in the algorithm we assume that the input is 𝑋′(𝜏) instead of 𝑋∗, and
we treat the entries where

〈
𝑋∗
𝑖
, 𝛽∗

〉
≠

〈
𝑋′
𝑖
(𝜏), 𝛽∗

〉
as corrupted by an adversary.

Concretely, further we assume that we are given
{(
𝑋′′
𝑖
(𝜏), 𝑦𝑖 , 𝑤𝑖

)}𝑛
𝑖=1 such that 𝑦 = 𝑋′(𝜏)𝛽∗ + 𝜂+ 𝜁,

where 𝑋′′(𝜏) ∈ R𝑛×𝑑 differs from 𝑋′(𝜏) ∈ R𝑛×𝑑 only in rows from the set 𝑆bad ⊂ [𝑛] of size at
most �̃�𝑛 (where 𝜀 ⩽ �̃� ⩽ 𝑂(𝜀)), 𝜁 ∈ R𝑛 is an �̃�𝑛-sparse vector such that supp(𝜁) ⊆ 𝑆bad, 𝛽∗ ∈ R𝑑
a 𝑘-sparse vector, and 𝜂 ∈ R𝑛 is oblivious noise such that at least 𝛼𝑛 entries do not exceed 1 in
absolute value.

In addition, we define

𝒲�̃� =

{
𝑤 ∈ R𝑛

����� ∀𝑖 ∈ [𝑛] 0 ⩽ 𝑤𝑖 ⩽ 1/𝑛,
𝑛∑
𝑖=1

𝑤𝑖 ⩾ (1 − �̃�)𝑛
}
.

The weights for the Huber loss will be from 𝒲�̃�.

Appendix E will discuss more properties of the truncation.

B.2 Gradient Bound

Lemma B.4. Let 𝑏, 𝛾1 > 0. Suppose that 𝑤 ∈ 𝒲�̃� and 𝑢 ∈ R𝑑 satisfy∑
𝑖∈[𝑛]

𝑤𝑖
〈
𝑋′′
𝑖 (𝜏), 𝑢

〉2𝑡
⩽ 𝑏2𝑡 ·

Σ1/2𝑢
2𝑡

,

1
𝑛

∑
𝑖∈[𝑛]

〈
𝑋′
𝑖 (𝜏), 𝑢

〉2𝑡
⩽ 𝑏2𝑡 ·

Σ1/2𝑢
2𝑡

,

and  1
𝑛

∑
𝑖∈[𝑛]

𝜙(𝜂𝑖)𝑋′
𝑖 (𝜏)


∞

⩽ 𝛾1 .

Then ����� 𝑛∑
𝑖=1

𝑤𝑖𝜙(𝜂𝑖 + 𝜁𝑖)
〈
𝑋′′
𝑖 (𝜏), 𝑢

〉����� ⩽ 𝛾1 · ∥𝑢∥1 + 6 · 𝑏
Σ1/2𝑢

2𝑡
· �̃�1− 1

2𝑡 .

Proof. Denote 𝐹(𝑤) = ∑
𝑖∈[𝑛](1/𝑛 − 𝑤𝑖)𝜙(𝜂𝑖)

〈
𝑋′
𝑖
(𝜏), 𝑢

〉
. It is a linear function of 𝑤, so |𝐹(𝑤)| is

maximized in one of the vertices of the polytope 𝒲�̃�. This vertex corresponds to set 𝑆𝑤 of size at
least (1 − �̃�)𝑛. That is, the weights of the entries from 𝑆𝑤 are 1/𝑛, and outside of 𝑆𝑤 the weights are
zero. It follows that����� 𝑛∑
𝑖=1

𝑤𝑖𝜙(𝜂𝑖 + 𝜁𝑖)
〈
𝑋′′
𝑖 (𝜏), 𝑢

〉�����
⩽

������∑𝑖∈[𝑛]𝑤𝑖𝜙(𝜂𝑖)〈𝑋′
𝑖 (𝜏), 𝑢

〉������ +
����� ∑
𝑖∈𝑆bad

𝑤𝑖𝜙(𝜂𝑖)
〈
𝑋′
𝑖 (𝜏), 𝑢

〉����� +
����� ∑
𝑖∈𝑆bad

𝑤𝑖𝜙(𝜂𝑖 + 𝜁𝑖)
〈
𝑋′′
𝑖 (𝜏), 𝑢

〉����� (Triangle Inequality)

⩽ 𝛾1 · ∥𝑢∥1 + 2
∑
𝑖∈𝑆𝑤

1
𝑛

��〈𝑋′
𝑖 (𝜏), 𝑢

〉�� + 2
∑
𝑖∈𝑆bad

1
𝑛

��〈𝑋′
𝑖 (𝜏), 𝑢

〉�� + 2
∑
𝑖∈𝑆bad

𝑤𝑖
��〈𝑋′′

𝑖 (𝜏), 𝑢
〉��
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⩽ 𝛾1 · ∥𝑢∥1 + 4 · �̃�1− 1
2𝑡 · ©«

∑
𝑖∈[𝑛]

1
𝑛

〈
𝑋′
𝑖 (𝜏), 𝑢

〉2𝑡ª®¬
1
2𝑡

+ 2�̃�1− 1
2𝑡 · ©«

∑
𝑖∈[𝑛]

𝑤𝑖
〈
𝑋′′
𝑖 (𝜏), 𝑢

〉2𝑡ª®¬
1
2𝑡

(Hölder’s inequality)

⩽ 𝛾1 · ∥𝑢∥1 + 6 · �̃�1− 1
2𝑡 · 𝑏

Σ1/2𝑢
2𝑡

.

□

The following lemma provides a bound on 𝛾1:

Lemma B.5. With probability at least 1 − 𝛿/10, 1
𝑛

∑
𝑖∈[𝑛]

𝜙(𝜂𝑖)𝑋′
𝑖 (𝜏)


∞

⩽ 10
√
∥Σ∥𝑛 log(𝑑/𝛿) + 10𝜏 · log(𝑑/𝛿) + 2𝑛 · ∥Σ∥/𝜏 .

Proof. It follows from Bernstein’s inequality Fact I.1 and the fact that

1
𝑛

∑
𝑖∈[𝑛]

|𝜙(𝜂𝑖)| ·
��E𝑋′

𝑖 (𝜏)
�� ⩽ 2E𝑋′

1(𝜏) ⩽ 2𝑛 · ∥Σ∥/𝜏 ,

where we used Corollary E.4. □

B.2.1 Strong Convexity

Lemma B.6. Suppose that 𝛼 ⩾ 1000�̃�, 𝜏 ≳ 1000 · 𝜈2 · ∥Σ∥
√
𝑘′′/

(
𝑟
√
𝜎min

)
and

𝑛 ≳
(
(𝑘′′)2 log 𝑑 + 𝑘′′ log(1/𝛿)

)
105𝑠/(𝑠−2)𝑀𝑠/(𝑠−2)

𝑠 𝜅(Σ)2+𝑠/(𝑠−2)/𝛼 ,

where 𝑘′′ = 104 · 𝑘′ ·
√
∥Σ∥. Then with probability 1− 𝛿/10, for all 𝑢 ∈ ℰ𝑘′(𝑟) such that

Σ1/2𝑢
 = 𝑟,

𝐻(𝛽∗ + 𝑢) − 𝐻(𝛽∗) ⩾ −
����� 𝑛∑
𝑖=1

𝑤𝑖𝜙(𝜂𝑖 + 𝜁𝑖)⟨𝑋𝑖 , 𝑢⟩
����� + 1

4 · 𝑟2 .

Proof. Denote 𝐴good = 𝑆good ∩ 𝒜, where 𝒜 is a set of entries 𝑖 such that |𝜂𝑖 | ⩽ 1. Note that 𝒜 is
independent of 𝑋∗. It follows that

𝐻(𝛽∗ + 𝑢) − 𝐻(𝛽∗) −
𝑛∑
𝑖=1

𝑤𝑖𝜙(𝜂𝑖 + 𝜁𝑖)⟨𝑋𝑖 , 𝑢⟩ ⩾ 1
2

𝑛∑
𝑖=1

𝑤𝑖 ⟨𝑋𝑖 , 𝑢⟩21[|𝜂𝑖+𝜁𝑖 |⩽1]1[|⟨𝑋𝑖 ,𝑢⟩|⩽1]

⩾ 1
2

∑
𝑖∈𝑆good

𝑤𝑖
〈
𝑋′
𝑖 (𝜏), 𝑢

〉21[|𝜂𝑖 |⩽1]1[|⟨𝑋′
𝑖
(𝜏),𝑢⟩ |⩽1]

⩾ 1
2

∑
𝑖∈𝐴good

𝑤𝑖
〈
𝑋′
𝑖 (𝜏), 𝑢

〉21[|⟨𝑋′
𝑖
(𝜏),𝑢⟩ |⩽1]

⩾ 1
2

∑
𝑖∈𝐴good

𝑤𝑖
〈
�̃�𝑖 , 𝑢

〉21[|⟨�̃�𝑖 ,𝑢⟩ |⩽1] ,

where �̃�𝑖 = 1[
∥𝑋′

𝑖
(𝜏)∥⩽105𝑠/(𝑠−2) ·𝑀𝑠/(𝑠−2)

𝑠

√
∥Σ∥·𝑘′′

]𝑋′
𝑖
(𝜏).

Denote 𝐹(𝑤) = ∑
𝑖∈𝐴good

𝑤𝑖
〈
�̃�𝑖 , 𝑢

〉21[|⟨�̃�𝑖 ,𝑢⟩ |⩽1]. It is a linear function of 𝑤, so it is maximized in
one of the vertices of the polytope 𝒲�̃�. This vertex corresponds to set 𝑆𝑤 of size at least (1 − �̃�)𝑛.
That is, the weights of the entries from 𝑆𝑤 are 1/𝑛, and outside of 𝑆𝑤 the weights are zero.∑

𝑖∈𝐴good

𝑤𝑖
〈
�̃�𝑖 , 𝑢

〉21[|⟨�̃�𝑖 ,𝑢⟩ |⩽1] ⩾
1
𝑛

∑
𝑖∈𝐴good∩𝑆𝑤

〈
�̃�𝑖 , 𝑢

〉21[|⟨�̃�𝑖 ,𝑢⟩ |⩽1] .
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Hence we need a lower bound for
∑
𝑖∈𝐴(𝑢)

〈
�̃�𝑖 , 𝑢

〉2
, where

𝐴(𝑢) = 𝐴good ∩ 𝑆𝑤 ∩
{
𝑖 ∈ [𝑛]

�� |〈�̃�𝑖 , 𝑢〉 | ⩽ 1
}
.

In order to bound
∑
𝑖∈𝐴(𝑢)

〈
�̃�𝑖 , 𝑢

〉2
for vectors 𝑢 from the elastic ball ℰ𝑘′(𝑟), we first show that it is

bounded for 𝑘′′-sparse vectors 𝑢′ for some large enough 𝑘′′. First we need to show that
∑
𝑖∈ℐ

〈
�̃�𝑖 , 𝑢

′〉2

is well-concentrated for a fixed set ℐ. Concretely, we need the following lemma:

Lemma B.7. Suppose that 𝜏 ⩾ 1000 ·𝑀2𝑡 · 𝜈2 · ∥Σ∥
√
𝑘′′/

(
𝑟
√
𝜎min

)
for some 𝑘′′ ∈ N. Then for a

fixed (independent of �̃�) set ℐ of size

|ℐ| ≳
(
(𝑘′′)2 log 𝑑 + 𝑘′′ log(1/𝛿)

)
1010𝑠/(𝑠−2)𝑀2𝑠/(𝑠−2)

𝑠 𝜅(Σ)2+2𝑠/(𝑠−2)

and for all 𝑘′′-sparse vectors 𝑢′ ∈ R𝑑 such that 𝑟 ⩽ ∥Σ1/2𝑢′∥ ⩽ 2𝑟,

0.99 · ∥Σ1/2𝑢′∥2 ⩽ 1
|ℐ|

∑
𝑖∈ℐ

〈
�̃�𝑖 , 𝑢

′〉2
⩽ 1.01 · ∥Σ1/2𝑢′∥2 .

with probability at least 1 − 𝛿.

Proof. First let us show that

0.995 · E
〈
𝑋∗
𝑖 , 𝑢

′〉2
⩽ E

〈
�̃�𝑖 , 𝑢

′〉2
⩽ 1.005 · E

〈
𝑋∗
𝑖 , 𝑢

′〉2
.

Since for each set 𝒦 of size 𝑘′′, E
(𝑋′

𝑖
(𝜏)

)
𝒦

2
=

∑
𝑗∈𝒦 E

(
𝑋′
𝑖 𝑗
(𝜏)

)2
⩽ 2∥Σ∥𝑘′′ , by Markov’s

inequality,

P
[(𝑋′

𝑖 (𝜏)
)
𝒦
2

> 1010𝑠/(𝑠−2) ·𝑀2𝑠/(𝑠−2)
𝑠 · 𝜅(Σ)𝑠/(𝑠−2)∥Σ∥ · 𝑘′′

]
⩽

1

1010𝑠/(𝑠−2) ·𝑀2𝑠/(𝑠−2)
𝑠 · 𝜅(Σ)𝑠/(𝑠−2)

.

Denote 𝐵 = 105𝑠/(𝑠−2) · 𝑀𝑠/(𝑠−2)
𝑠 · 𝜅(Σ)𝑠/(2𝑠−4)√∥Σ∥ · 𝑘′′. By Hölder’s inequality, for all vectors

𝑢′ ∈ R𝑑 with support 𝒦 ,

E
〈
𝑋′
𝑖 (𝜏), 𝑢

′〉2
= E⟨𝑋𝑖(𝜏), 𝑢′⟩21[∥(𝑋′

𝑖
(𝜏))𝒦 ∥⩽𝐵] + E

〈
𝑋′
𝑖 (𝜏), 𝑢

′〉21[∥(𝑋′
𝑖
(𝜏))𝒦 ∥>𝐵]

⩽ E
〈
�̃�𝑖 , 𝑢

′〉2 + 2E
〈
𝑋∗
𝑖 , 𝑢

′〉21[∥(𝑋′
𝑖
(𝜏))𝒦 ∥>𝐵] + 2E

〈
𝑋′
𝑖 (𝜏) − 𝑋

∗
𝑖 , 𝑢

′〉2

⩽ E
〈
�̃�𝑖 , 𝑢

′〉2 + 2
(
E 1[∥(𝑋′

𝑖
(𝜏))𝒦 ∥>𝐵]

)1− 2
𝑠 ·

(
E
〈
𝑋∗
𝑖 , 𝑢

′〉𝑠 ) 2
𝑠 + 2𝜈4∥Σ∥2𝑘′′∥𝑢′∥2

𝜏2

⩽ E
〈
�̃�𝑖 , 𝑢

′〉2 + 2
∥Σ∥ · ∥𝑢∥2

1010 · 𝜅(Σ) + 2𝑟2/106

⩽ E
〈
�̃�𝑖 , 𝑢

′〉2 + 2𝑟2/1010 + 2𝑟2/106 .

where we used Lemma E.1 and the fact that ∥𝑢′𝑢′⊤∥1 ⩽ 𝑘
′′∥𝑢′𝑢′⊤∥ ⩽ 𝑘′′∥𝑢∥2. By Corollary E.5,

E
〈
𝑋∗
𝑖
, 𝑢′

〉2 − 2𝑟2/106 ⩽ ·E
〈
𝑋′
𝑖
(𝜏), 𝑢′

〉2
⩽ E

〈
𝑋∗
𝑖
, 𝑢′

〉2 + 2𝑟2/106. Hence

0.995·E
〈
𝑋∗
𝑖 , 𝑢

′〉2
⩽ 0.999·E

〈
𝑋′
𝑖 (𝜏), 𝑢

′〉2
⩽ E

〈
�̃�𝑖 , 𝑢

′〉2
⩽ 1.001·E

〈
𝑋′
𝑖 (𝜏), 𝑢

′〉2
⩽ 1.005·E

〈
𝑋∗
𝑖 , 𝑢

′〉2
.

For a fixed set 𝒦 of size 𝑘′′ and for all unit vectors 𝑢′ ∈ R𝑑 with support 𝒦 , by Bernstein inequality
for covariance Fact I.2, with probability 1 − 𝛿,����� 1

|ℐ|

∑
𝑖∈ℐ

〈
�̃�𝑖 , 𝑢

′〉2 − E
〈
�̃�𝑖 , 𝑢

′〉2

����� ⩽ 1000 · ©«
√

∥Σ∥𝐵2 log(𝑑/𝛿)
|ℐ| + 𝐵2 log(𝑑/𝛿)

|ℐ|
ª®¬ · ∥𝑢′∥2

⩽ 4000 ·
(√

∥Σ∥𝐵2 log(𝑑/𝛿)
𝜎2

min |ℐ|
+ 𝐵2 log(𝑑/𝛿)

𝜎min |ℐ|

)
· 𝑟2 .
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In order to make this quantity smaller than 𝑟2/1000, it is sufficient to take |ℐ| ≳
1010𝑠/(𝑠−2)𝑀2𝑠/(𝑠−2)

𝑠 𝜅(Σ)2+𝑠/(𝑠−2) · 𝑘′′ log(𝑑/𝛿).
By union bound over all subsets 𝒦 of [𝑑] of size 𝑘′′, we get the desired bound. □

Let us bound the size of 𝐴(𝑢). 𝐴good ∩ 𝑆𝑤 has size at least (𝛼 − 3�̃�)𝑛 ⩾ 0.997𝛼𝑛. By Lemma B.7

and Lemma F.2,
�̃�𝑢2

⩽ 1.1 · 𝛼𝑛𝑟2, hence at most 3𝛼𝑛𝑟2/ℎ ⩽ 0.001𝛼𝑛 entries of �̃�𝑢 can be
greater than ℎ/2. Therefore, |𝐴(𝑢)| ⩾ 0.99𝛼𝑛.

Let 𝑘′′ = min
{
⌈104𝑘′∥Σ∥⌉ , 𝑑

}
. Recall that 𝒜 a set of entries 𝑖 such that |𝜂𝑖 | ⩽ 1, and 𝒜 is

independent of 𝑋∗. By union bound, the result of Lemma B.7 also holds for all sets ℐ that correspond
to the bottom 0.99-fraction of entries of vectors

(
�̃�𝑢′′

)
𝒜 , where 𝑢′′ are from an

(
1/𝑛10)-net 𝒩 in

the set of all 𝑘′′-sparse vectors 𝑢′ such that
Σ1/2𝑢′

 = 1.01𝑟. Let 𝑢′ be an arbitrary 𝑘′′-sparse vector
such that

Σ1/2𝑢′
 = 1.01𝑟, and let 𝑢′′ = 𝑢′ + Δ𝑢 be the closest vector in the net 𝒩 to 𝑢′. It follows

that ∑
𝑖∈𝐴(𝑢)

〈
�̃�𝑖 , 𝑢

′〉2
=

∑
𝑖∈𝐴(𝑢)

〈
�̃�𝑖 , 𝑢

′′ + Δ𝑢
〉2

⩾
∑
𝑖∈𝐴(𝑢)

〈
�̃�𝑖 , 𝑢

′′〉2 − 2𝑛3/𝑛10

⩾ 0.99𝛼𝑛 · 𝑟2 − 2𝑛−7

⩾ 0.9𝛼𝑛 · 𝑟2 .

If 𝑘′′ = 𝑑, we get the desired bound, since we can take 𝑢′ = 𝑢. Otherwise, by Lemma B.7,∑
𝑖∈𝐴(𝑢)

〈
�̃�𝑖 , 𝑢

′〉2
⩽

∑
𝑖∈𝒜

〈
�̃�𝑖 , 𝑢

′〉2
⩽ 1.1 · 𝛼𝑛 · 𝑟2 ,

and we get the desired bound by Lemma F.2.

□

B.3 Putting everything together

First, we truncate the entries of 𝑋 and 𝑋∗ and obtain 𝑋′′(𝜏) and 𝑋′(𝜏) using some 𝜏 such that

𝜏 ≳ 𝑀2𝑡

√
∥Σ∥ · 𝜈2 ·

√
𝑘′′/𝜀1− 1

2𝑡 ,

where 𝑘′′ = 106 · 𝑘 · 𝜅(Σ). We discuss the choice of 𝜏 further in this subsection. Let us denote
𝜏′ = 𝜏/

√
∥Σ∥.

Then we find the weights 𝑤1 , . . . 𝑤𝑛 using Algorithm C.1.

We will show all the conditions of Theorem A.3 are satisfied if

𝑛 ⩾ 𝐶 ·
1010𝑡

(
𝑀2𝑡

2𝑡 · 𝜈4𝑡 +
(
105𝑀𝑠

) 2𝑠
𝑠−2

)
·
(
𝜅(Σ)4+𝑠/(𝑠−2) + 𝜅(Σ)2𝑡

)
𝜀2𝑡−1

· 𝑘2𝑡 log(𝑑/𝛿)

for some large enough absolute constant 𝐶 and

𝜆 = 1000 ·𝑀2𝑡

√
�̂�max · 𝜀1−1/(2𝑡)/

√
𝑘 ⩾ 1000 ·

𝑀2𝑡
√
𝜅(Σ) · 𝜀1−1/(2𝑡)√
𝑘/𝜎min

.

First let us show that the assumptions of Lemma B.4 are satisfied with 𝛾1 ⩽ 100 · 𝑀2𝑡
√
∥Σ∥ ·

𝜀1−1/(2𝑡)/
√
𝑘 and 𝛾2 ⩽ 10𝑀2𝑡

√
𝜅(Σ).

First we bound 𝛾2. Note that if 𝑢 ∈ ℰ𝑘′(𝑟) for 𝑘′ = 100𝑘/𝜎min, then ∥𝑢∥1 ⩽ 𝑘′′∥𝑢∥. Hence if

𝑛 ⩾ 1000
(
𝜈4𝑡 · (𝑘′′)𝑡 + (𝜏′)2𝑡

)
· (𝑘′′)𝑡 · 𝑡 log(𝑑/𝛿) ,
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then Lemma D.2 implies that for all 𝑢 ∈ ℰ𝑘′(𝑟), with probability 1 − 𝛿/10,

1
𝑛

∑
𝑖∈[𝑛]

〈
𝑋′
𝑖 (𝜏), 𝑢

〉2𝑡
⩽

(
2𝑀2𝑡

√
∥Σ∥

)2𝑡
· ∥𝑢∥2𝑡 ⩽

(
2𝑀2𝑡

√
𝜅(Σ)

)2𝑡
·
Σ1/2𝑢

2𝑡
.

Lemma D.2 and Lemma C.2 imply that for all 𝑢 ∈ ℰ𝑘′(𝑟), with probability 1 − 𝛿/10,∑
𝑖∈[𝑛]

𝑤𝑖
〈
𝑋′′
𝑖 (𝜏)(𝜏), 𝑢

〉2𝑡
⩽

(
2𝑀2𝑡

√
𝜅(Σ)

) 𝑡
·
Σ1/2𝑢

2𝑡
.

Let us bound 𝛾1. By Lemma B.5, if

𝑛 ⩾ 1000
(
𝑘 log(𝑑/𝛿)/𝜀2−1/𝑡 + 𝜏 log(𝑑/𝛿)

√
𝑘′/𝜀1−1/(2𝑡)

)
,

then by with probability 1 − 𝛿/10, 𝛾1 ⩽ 100 · 𝑀2𝑡

√
𝜅(Σ)·𝜀1−1/(2𝑡)
√
𝑘/𝜎min

.

The strong convexity holds by Lemma B.6 with probability 1 − 𝛿/10 as long as

𝑛 ≳
(
𝑘2 log(𝑑/𝛿)

)
105𝑠/(𝑠−2)𝑀𝑠/(𝑠−2)

𝑠 𝜅(Σ)4+𝑠/(𝑠−2)/𝜀 ,

where we used the fact that 𝜀 ≲ 𝛼 and that 𝜏 ≳
√
∥Σ∥ · 𝜈2 ·

√
𝑘′′/𝜀1− 1

2𝑡 satisfies the assumption of
that lemma.

Therefore, all the conditions of Theorem A.3 are satisfied and we attain the desired bound of

𝑂

(
𝑀2𝑡

√
𝜅(Σ)

𝛼 · 𝜀1− 1
2𝑡

)
stated in Theorem B.3.

Now let us discuss the choice of 𝜏. First we can find an estimator �̂� of 𝜅(Σ) by plugging it into the
formula

𝑛 = 𝐶 ·
1010𝑡 ·

(
�̂�4+𝑠/(𝑠−2) + �̂�2𝑡

)
𝜀2𝑡−1

· 𝑘2𝑡 log(𝑑/𝛿).

Then we can take 𝜏′ = 0.01 ·
(

𝑛
�̂�𝑡 ·𝑘𝑡 ·𝑡 log(𝑑/𝛿)

)1/(2𝑡)
. Note that if we express 𝑛 in terms of �̂� and plug

into the formula for 𝜏′, we get that 𝜏′ is an increasing function of �̂�. Also note that �̂� ⩾ 𝜅(Σ). Hence
both conditions are satisfied: 𝜏 :=

√
�̂�max · 𝜏′ is larger than the required lower bound for it, and 𝑛 is

larger than 10000(𝜏′)2𝑡 · (𝑘′′)𝑡 log(𝑑/𝛿) and 10000𝜏 log(𝑑/𝛿)
√
𝑘′/𝜀1−1/(2𝑡) as required.

C Filtering

We use the following system of elastic constraints with sparsity parameter 𝐾 ⩾ 1 and variables
𝑣1 , . . . , 𝑣𝑑 , 𝑠1 , . . . , 𝑠𝑑:

𝒜𝐾 :



∀𝑖 ∈ [𝑑] 𝑠2
𝑖 = 1

∀𝑖 ∈ [𝑑] 𝑠𝑖𝑣𝑖 ⩾ 𝑣𝑖
∀𝑖 ∈ [𝑑] 𝑠𝑖𝑣𝑖 ⩾ −𝑣𝑖

𝑑∑
𝑖=1

𝑣2
𝑖 ⩽ 1

𝑑∑
𝑖=1

𝑠𝑖𝑣𝑖 ⩽
√
𝐾


(C.1)

Note that the vectors from the elastic ball
{
𝑣 ∈ R𝑑

��� ∥𝑣∥ ⩽ 1 , ∥𝑣∥1 ⩽
√
𝐾
}

satisfy these constraints

with 𝑠𝑖 = sign(𝑣𝑖). We will later discuss the corresponding sum-of-squares certificates in Appendix D.

Let 𝑎 > 0 be such that
〈

1
𝑛

∑𝑛
𝑖=1

(
𝑋∗
𝑖

)⊗2𝑡
, Ẽ𝑣⊗2𝑡

〉
⩽ 𝑎2𝑡 .
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Algorithm C.1 (Filtering algorithm).

1. Assign weights 𝑤1 = . . . 𝑤𝑛 = 1/𝑛.

2. Find a degree 2ℓ pseudo-expectation Ẽ that satisfies 𝒜𝐾 and maximizes
〈∑𝑛

𝑖=1 𝑤𝑖𝑋
⊗𝑡
𝑖
, Ẽ𝑣⊗𝑡

〉
.

3. If
〈

1
𝑛

∑𝑛
𝑖=1 𝑋

⊗2𝑡
𝑖
, Ẽ𝑣⊗2𝑡

〉
< 10𝑡 𝑎2𝑡 , stop.

4. Compute 𝜏𝑖 =
〈
𝑋⊗2𝑡
𝑖
, Ẽ𝑣⊗2𝑡

〉
and reweight: 𝑤′

𝑖
= (1 − 𝜏𝑖

∥𝜏∥∞ ) · 𝑤𝑖 .

5. goto 2.

Lemma C.2. If at each step
〈

1
𝑛

∑𝑛
𝑖=1

(
𝑋∗
𝑖

)⊗2𝑡
, Ẽ𝑣⊗2𝑡

〉
⩽ 𝑎2𝑡 , then the algorithm terminates in at

most ⌈2𝜀𝑛⌉ steps, and the resulting weights satisfy
∑𝑛
𝑖=1 𝑤𝑖 ⩾ 1 − 2𝜀.

To prove it, we will use the following lemma:

Lemma C.3. Assume that
〈

1
𝑛

∑𝑛
𝑖=1

(
𝑋∗
𝑖

)⊗2𝑡
, Ẽ𝑣⊗2𝑡

〉
⩽ 𝑎2𝑡 ,

〈
1
𝑛

∑𝑛
𝑖=1 𝑋

⊗2𝑡
𝑖
, Ẽ𝑣⊗2𝑡

〉
⩾ 10𝑡 𝑎2𝑡 and∑

𝑖∈𝑆𝑔

(
1
𝑛
− 𝑤𝑖

)
⩽

∑
𝑖∈𝑆𝑏

(
1
𝑛
− 𝑤𝑖

)
.

Then ∑
𝑖∈𝑆𝑔

(
1
𝑛
− 𝑤′

𝑖

)
<

∑
𝑖∈𝑆𝑏

(
1
𝑛
− 𝑤′

𝑖

)
.

Proof of Lemma C.3. Note, that it is enough to show that∑
𝑖∈𝑆𝑔

𝑤𝑖 − 𝑤′
𝑖 <

∑
𝑖∈𝑆𝑏

𝑤𝑖 − 𝑤′
𝑖 .

Further, recall that 𝑤′
𝑖
=

(
1 − 𝜏𝑖

𝜏max

)
𝑤𝑖 , so for all 𝑖 ∈ [𝑛], 𝑤𝑖 − 𝑤′

𝑖
= 1

𝜏max
𝜏𝑖𝑤𝑖 . Hence is enough to

show that ∑
𝑖∈𝑆𝑔

𝜏𝑖𝑤𝑖 <
∑
𝑖∈𝑆𝑏

𝜏𝑖𝑤𝑖 .

Since 𝑆𝑔 and 𝑆𝑏 partition [𝑛] and

𝑛∑
𝑖=1

𝑤𝑖𝜏𝑖 =

〈
𝑛∑
𝑖=1

𝑤𝑖𝑋
⊗2𝑡
𝑖
, Ẽ𝑣⊗2𝑡

〉
.

we can prove
∑
𝑖∈𝑆𝑔 𝜏𝑖𝑤𝑖 <

∑
𝑖∈𝑆𝑏 𝜏𝑖𝑤𝑖 by showing that∑

𝑖∈𝑆𝑔
𝜏𝑖𝑤𝑖 ⩽ 𝑎

2𝑡 <

〈∑𝑛
𝑖=1 𝑤𝑖𝑋

⊗𝑡
𝑖
, Ẽ𝑣⊗2𝑡

〉
2

.

Note that ∑
𝑖∈𝑆𝑔

𝜏𝑖𝑤𝑖 =

〈∑
𝑖∈𝑆𝑔

𝑤𝑖𝑋
⊗2𝑡
𝑖
, Ẽ𝑣⊗2𝑡

〉
⩽

〈
1
𝑛

𝑛∑
𝑖=1

(
𝑋∗
𝑖

)⊗2𝑡
, Ẽ𝑣⊗2𝑡

〉
⩽ 𝑎2𝑡 .

□

Proof of Lemma C.2. We will show that the algorithm terminates after at most ⌈2𝜀𝑛⌉ iterations.
Assume that it does not terminate after 𝑇 = ⌈2𝜀𝑛⌉ iterations. Note that the number of entries of 𝑤
that are equal to 0 increases by at least 1 in every iteration. Hence, after 𝑇 iterations we have set
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at least 𝜀𝑛 entries of 𝑤 to zero whose index lies in 𝑆𝑔 . By assumption that the algorithm did not
terminate and Lemma C.3, it holds that

𝜀 ⩽
∑
𝑖∈𝑆𝑔

(
1
𝑛
− 𝑤(𝑇)

𝑖

)
<

∑
𝑖∈𝑆𝑏

(
1
𝑛
− 𝑤(𝑇)

𝑖

)
⩽

|𝑆𝑏 |
𝑛
⩽ 𝜀 ,

a contradiction.

Let 𝑇 be the index of the last iteration of the algorithm before termination. Then 1
𝑛
− 𝑤(𝑇)


1
=

∑
𝑖∈𝑆𝑔

1
𝑛
− 𝑤(𝑇)

𝑖
+

∑
𝑖∈𝑆𝑏

1
𝑛
− 𝑤(𝑇)

𝑖
< 2

∑
𝑖∈𝑆𝑏

1
𝑛
− 𝑤(𝑇)

𝑖
⩽ 2𝜀 .

□

D Sum-of-Squares Certificates

We use the standard sum-of-squares machinery, used in numerous prior works, e.g. [KS17a, KS17b,
HL18, HL19, dKNS20, DKK+22].

Let 𝑓1 , 𝑓2 , . . . , 𝑓𝑟 and 𝑔 be multivariate polynomials in 𝑥. A sum-of-squares proof that the constraints
{ 𝑓1 ⩾ 0, . . . , 𝑓𝑚 ⩾ 0} imply the constraint {𝑔 ⩾ 0} consists of sum-of-squares polynomials
(𝑝𝑆)𝑆⊆[𝑚] such that

𝑔 =
∑
𝑆⊆[𝑚]

𝑝𝑆 ·Π𝑖∈𝑆 𝑓𝑖 .

We say that this proof has degree ℓ if for every set 𝑆 ⊆ [𝑚], the polynomial 𝑝𝑆Π𝑖∈𝑆 𝑓𝑖 has degree at
most ℓ . If there is a degree ℓ SoS proof that { 𝑓𝑖 ⩾ 0 | 𝑖 ⩽ 𝑟} implies {𝑔 ⩾ 0}, we write:

{ 𝑓𝑖 ⩾ 0 | 𝑖 ⩽ 𝑟}
ℓ
{𝑔 ⩾ 0} .

We provide degree 2ℓ sum-of-squares proofs from the system 𝒜𝐾 (see below) of (𝑛 + 𝑑)𝑂(1)

constraints. The sum-of-squares algorithm (that appeared it [Sho87, Par00, Nes00, Las01]. See, e.g.,
Theorem 2.6. [DKK+22] for the precise formulation) returns a linear functional Ẽ : R[𝑥]⩽2ℓ → R,
that is called a degree 2ℓ pseudo-expectation, that satisfies the constraints of 𝒜𝐾 in time (𝑛 + 𝑑)𝑂(ℓ ).
In particular, it means that once we prove in sum-of-squares of degree 2ℓ that constraints 𝒜𝐾 imply
that some polynomial 𝑔(𝑢) is non-negative, the value of the Ẽ returned by the algorithm on 𝑔(𝑢) is
also non-negative.

Recall the system 𝒜𝐾 of elastic constraints in Equation (C.1) as follows:

𝒜𝐾 :



∀𝑖 ∈ [𝑑] 𝑠2
𝑖 = 1

∀𝑖 ∈ [𝑑] 𝑠𝑖𝑣𝑖 ⩾ 𝑣𝑖
∀𝑖 ∈ [𝑑] 𝑠𝑖𝑣𝑖 ⩾ −𝑣𝑖

𝑑∑
𝑖=1

𝑣2
𝑖 ⩽ 1

𝑑∑
𝑖=1

𝑠𝑖𝑣𝑖 ⩽
√
𝐾


Also recall that the vectors from the elastic ball

{
𝑣 ∈ R𝑑

��� ∥𝑣∥ ⩽ 1 , ∥𝑣∥1 ⩽
√
𝐾
}

satisfy these

constraints with 𝑠𝑖 = sign(𝑣𝑖).
The following lemma is similar to Lemma 3.4 from [DKK+22], but we prove it in using the elastic
constraints. The derivation from the elastic constraints requires a bit more work.
Lemma D.1. For arbitrary polynomial 𝑝(𝑣) = ∑

1⩽𝑖1 ,...,𝑖𝑡⩽𝑑 𝑝𝑖1 ...𝑖𝑡 · 𝑣𝑖1 · · · 𝑣𝑖𝑡 of degree at most 𝑡 we
have

𝒜𝐾 4𝑡
𝑠,𝑣

{
(𝑝(𝑣))2 ⩽ ∥𝑝∥2

∞ · 𝐾𝑡
}
.
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Proof. Observe that 𝒜𝐾 2
𝑠,𝑣

𝑠𝑖𝑣𝑖 ⩾ 0, hence 𝒜𝐾 4𝑡
𝑠,𝑣

(∑𝑑
𝑖=1 𝑠𝑖𝑣𝑖

)2𝑡
⩽ 𝐾𝑡 . In addition, by note that,

𝑣𝑖1 · · · 𝑣𝑖𝑡 ⩽ 𝑠𝑖1𝑣𝑖1 · · · 𝑠𝑖𝑡𝑣𝑖𝑡 . It follows that

𝒜𝐾 2𝑡
𝑠,𝑣

{ ∑
1⩽𝑖1 ,...,𝑖𝑡⩽𝑑

𝑝𝑖1 ...𝑖𝑡 · 𝑣𝑖1 · · · 𝑣𝑖𝑡 ⩽
∑

1⩽𝑖1 ,...,𝑖𝑡⩽𝑑

|𝑝𝑖1 ,...𝑖𝑡 |𝑠𝑖1𝑣𝑖1 · · · 𝑠𝑖𝑡𝑣𝑖𝑡

}

2𝑡
𝑠,𝑣

{
−

∑
1⩽𝑖1 ,...,𝑖𝑡⩽𝑑

𝑝𝑖1 ...𝑖𝑡 · 𝑣𝑖1 · · · 𝑣𝑖𝑡 ⩽
∑

1⩽𝑖1 ,...,𝑖𝑡⩽𝑑

|𝑝𝑖1 ,...𝑖𝑡 |𝑠𝑖1𝑣𝑖1 · · · 𝑠𝑖𝑡𝑣𝑖𝑡

}

4𝑡
𝑠,𝑣


( ∑

1⩽𝑖1 ,...,𝑖𝑡⩽𝑑

𝑝𝑖1 ...𝑖𝑡 · 𝑣𝑖1 · · · 𝑣𝑖𝑡

)2

⩽

( ∑
1⩽𝑖1 ,...,𝑖𝑡⩽𝑑

|𝑝𝑖1 ,...𝑖𝑡 |𝑠𝑖1𝑣𝑖1 · · · 𝑠𝑖𝑡𝑣𝑖𝑡

)2
4𝑡
𝑠,𝑣


( ∑

1⩽𝑖1 ,...,𝑖𝑡⩽𝑑

𝑝𝑖1 ...𝑖𝑡 · 𝑣𝑖1 · · · 𝑣𝑖𝑡

)2

⩽ ∥𝑝∥2
∞

(
𝑑∑
𝑖=1

𝑠𝑖𝑣𝑖

)2𝑡
4𝑡
𝑠,𝑣


( ∑

1⩽𝑖1 ,...,𝑖𝑡⩽𝑑

𝑝𝑖1 ...𝑖𝑡 · 𝑣𝑖1 · · · 𝑣𝑖𝑡

)2

⩽ ∥𝑝∥2
∞ · 𝐾𝑡

 .
□

The following lemma shows that we can certify an upper bound on the value of the empirical moments
(as polylinear functions) of truncated distribution 𝑍𝑖(𝜏) on the vectors from the elastic ball.
Lemma D.2 (Certifiable bound on empirical moments). Suppose that for some 𝑡 , ℓ ∈ N and 𝑀2𝑡 ⩾ 1,

𝒜𝐾 ℓ

𝑠,𝑣 {
E⟨𝑋∗

1 , 𝑣⟩2𝑡 ⩽ 𝑀2𝑡
2𝑡 · ∥Σ∥

𝑡
}
,

and for some 𝜈 ⩾ 1
max
𝑗∈[𝑑]
E|𝑋∗

1𝑗 |
4𝑡 ⩽ 𝜈4𝑡 · ∥Σ∥2𝑡 .

If 𝜏 ≳ 𝜈2 ·
√
𝐾 ·

√
∥Σ∥ and

𝑛 ⩾ 1000©«𝜈4𝑡 · 𝐾𝑡 +
(

𝜏√
∥Σ∥

)2𝑡ª®¬ · 𝐾𝑡 · 𝑡 log(𝑑/𝛿) ,

then with probability at least 1 − 𝛿, for each degree 2ℓ pseudo-expectation Ẽ that satisfies 𝒜𝐾 ,

Ẽ

[
1
𝑛

𝑛∑
𝑖=1

⟨𝑋′
𝑖 (𝜏), 𝑣⟩

2𝑡

]
⩽ (2𝑀2𝑡)2𝑡 · ∥Σ∥𝑡 .

Proof. Consider the polynomial

𝑝(𝑣) = 1
𝑛

𝑛∑
𝑖=1

⟨𝑋′
𝑖 (𝜏), 𝑣⟩

2𝑡 − E⟨𝑋∗
1 , 𝑣⟩2𝑡 , .

By Lemma E.6 and the assumptions on 𝑛 and 𝜏, its coefficients are bounded by

Δ = 20

√
𝜈4𝑡 ∥Σ∥2𝑡 · 𝑡 log(𝑑/𝛿)

𝑛
+ 20

𝜏2𝑡 · 𝑡 log(𝑑/𝛿)
𝑛

+ 2𝑡𝜈4𝑡 · ∥Σ∥2𝑡

𝜏2𝑡
⩽

2𝑡𝑀2𝑡
2𝑡 · ∥Σ∥

𝑡

𝐾𝑡
.

It follows that

𝒜𝐾 2ℓ
𝑠,𝑣


(

1
𝑛

𝑛∑
𝑖=1

⟨𝑋′
𝑖 (𝜏), 𝑣⟩

2𝑡

)2

⩽

(
1
𝑛

𝑛∑
𝑖=1

⟨𝑋′
𝑖 (𝜏), 𝑣⟩

2𝑡 − E⟨𝑋∗
1 , 𝑣⟩2𝑡 + E⟨𝑋∗

1 , 𝑣⟩2𝑡

)2
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2ℓ
𝑠,𝑣


(

1
𝑛

𝑛∑
𝑖=1

⟨𝑋′
𝑖 (𝜏), 𝑣⟩

2𝑡

)2

⩽ 2

(
1
𝑛

𝑛∑
𝑖=1

⟨𝑋′
𝑖 (𝜏), 𝑣⟩

2𝑡 − E⟨𝑋∗
1 , 𝑣⟩2𝑡

)2

+ 2
(
E⟨𝑋∗

1 , 𝑣⟩2𝑡 )2


2ℓ
𝑠,𝑣


(

1
𝑛

𝑛∑
𝑖=1

⟨𝑋′
𝑖 (𝜏), 𝑣⟩

2𝑡

)2

⩽ 2Δ2𝐾2𝑡 + 2𝑀4𝑡
2𝑡 ∥Σ∥

2𝑡


Hence

Ẽ

(
1
𝑛

𝑛∑
𝑖=1

⟨𝑋𝑖 , 𝑣⟩2𝑡

)2

⩽ (2𝑀2𝑡)4𝑡 · ∥Σ∥2𝑡 .

By Cauchy-Schwarz inequality for pseudo-expectations (see, for example, Fact A.2. from [DKK+22])
we get the desired bound. □

E Properties of the truncation

As before, let 𝑋∗
1 , . . . , 𝑋

∗
𝑛 be iid samples from 𝒟.

For 𝜏 > 0, let 𝑋′
𝑖 𝑗
(𝜏) = 𝑋∗

𝑖 𝑗
1[

|𝑋∗
𝑖 𝑗
|⩽𝜏

] . In this section we prove some properties of 𝑋′
𝑖 𝑗
(𝜏) that we use

in the paper. We start with the following lemma.

Lemma E.1. Suppose that for some 𝜈 ⩾ 1,

max
𝑗∈[𝑑]
E|𝑋∗

𝑖 𝑗 |
4 ⩽ 𝜈4 · ∥Σ∥2 .

Then E(𝑋′
𝑖 (𝜏) − 𝑋

∗
𝑖

) (
𝑋′
𝑖 (𝜏) − 𝑋

∗
𝑖

)⊤
∞
⩽

𝜈4 · ∥Σ∥2

𝜏2
.

Proof.���E(𝑋′
𝑖 𝑗(𝜏) − 𝑋

∗
𝑖 𝑗

) (
𝑋′
𝑖 𝑗′(𝜏) − 𝑋

∗
𝑖 𝑗′

)��� = ����E𝑋∗
𝑖 𝑗1

[
|𝑋∗

𝑖 𝑗
|>𝜏

]𝑋∗
𝑖 𝑗′1

[
|𝑋∗

𝑖 𝑗′ |>𝜏
] ����

⩽

√
E 1[

|𝑋∗
𝑖 𝑗
|>𝜏

] (𝑋∗
𝑖 𝑗

)2
·
√
E 1[

|𝑋∗
𝑖 𝑗′ |>𝜏

] (𝑋∗
𝑖 𝑗′

)2

⩽

(
E 1[

|𝑋∗
𝑖 𝑗
|>𝜏

] · E(𝑋∗
𝑖 𝑗

)4
)1/4

·
(
E 1[

|𝑋∗
𝑖 𝑗′ |>𝜏

] · E(𝑋∗
𝑖 𝑗′

)4
)1/4

⩽
(
P
[
|𝑋∗

𝑖 𝑗 |
4 > 𝜏4

]
· P

[
|𝑋∗

𝑖 𝑗′ |
4 > 𝜏4

] )1/4
· 𝜈2∥Σ∥

⩽ 𝜈4∥Σ∥2/𝜏2 .

□

The following lemma shows that the moments of the truncated distribution are close to the moments
of 𝑋∗

𝑖
in ℓ∞-norm.

Lemma E.2. Let 𝑡 ∈ N and suppose that for some 𝐵 > 0 and 𝑞 > 0,

max
𝑗∈[𝑑]
E|𝑋∗

𝑖 𝑗 |
𝑡+𝑞 ⩽ 𝐵𝑡+𝑞 .

Then E(𝑋′
𝑖 (𝜏)

)⊗𝑡 − E(𝑋∗
𝑖

)⊗𝑡
∞
⩽
𝑡 · 𝐵𝑡+𝑞

𝜏𝑞
.
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Proof. Denote 𝑎 = 𝑋′
𝑖
(𝜏), 𝑏 = 𝑋∗

𝑖
. Note that by Hölder’s inequality, for all 𝑠 ∈ [𝑡],

E|𝑏 𝑗1 · · · 𝑏 𝑗𝑠−1 | · |𝑎 𝑗𝑠 − 𝑏 𝑗𝑠 | · |𝑎 𝑗𝑠+1 · · · 𝑎 𝑗𝑡 | = E|𝑏 𝑗1 · · · 𝑏 𝑗𝑠−1𝑏 𝑗𝑠 𝑎 𝑗𝑠+1 · · · 𝑎 𝑗𝑡 | · 1[𝑎 𝑗𝑠=0]

⩽
(
P
[
𝑎 𝑗𝑠 = 0

] ) 𝑞
𝑡+𝑞 ·

(
E|𝑏 𝑗1 · · · 𝑏 𝑗𝑠−1𝑏 𝑗𝑠 𝑎 𝑗𝑠+1 · · · 𝑎 𝑗𝑡 |1+𝑞/𝑡

) 𝑡
𝑡+𝑞

⩽
(
P
[
(𝑋∗

𝑖 𝑗𝑠
)𝑡+𝑞 > 𝜏𝑡+𝑞

] ) 𝑞
𝑡+𝑞 ·

(
E|𝑏 𝑗1 · · · 𝑏 𝑗𝑡 |1+𝑞/𝑡

) 𝑡
𝑡+𝑞

⩽
𝐵𝑞

𝜏𝑞
·
(
max
𝑗∈[𝑑]
E|𝑏 𝑗 |𝑡+𝑞

) 𝑡
𝑡+𝑞

⩽
𝐵𝑡+𝑞

𝜏𝑞

It follows that��E 𝑎 𝑗1 𝑎 𝑗2 · · · 𝑎 𝑗𝑡 − E 𝑏 𝑗1𝑏 𝑗2 · · · 𝑏 𝑗𝑡 �� ⩽ E��𝑎 𝑗1 𝑎 𝑗2 · · · 𝑎 𝑗𝑡 − 𝑏 𝑗1𝑏 𝑗2 · · · 𝑏 𝑗𝑡 ��
⩽ E

��𝑎 𝑗1 𝑎 𝑗2 · · · 𝑎 𝑗𝑡 − 𝑏 𝑗1 𝑎 𝑗2 · · · 𝑎 𝑗𝑡 + 𝑏 𝑗1 𝑎 𝑗2 · · · 𝑎 𝑗𝑡 − 𝑏 𝑗1𝑏 𝑗2 · · · 𝑏 𝑗𝑡 ��
⩽ E|𝑎 𝑗1 − 𝑏 𝑗1 | · |𝑎 𝑗2 · · · 𝑎 𝑗𝑡 | + E|𝑏 𝑗1 | · |𝑎 𝑗2 · · · 𝑎 𝑗𝑡 − 𝑏 𝑗2 · · · 𝑏 𝑗𝑡 |

⩽
𝑡 · 𝐵𝑡+𝑞

𝜏𝑞
.

□

The following statement is a straightforward corollary of Lemma E.2 with 𝑞 = 𝑡:
Corollary E.3. Let 𝑡 ∈ N and suppose that for some 𝐵 > 0,

max
𝑗∈[𝑑]
E|𝑋∗

𝑖 𝑗 |
2𝑡 ⩽ 𝐵2𝑡 .

Then E(𝑋′
𝑖 (𝜏)

)⊗𝑡 − E(𝑋∗
𝑖

)⊗𝑡
∞
⩽
𝑡 · 𝐵2𝑡

𝜏𝑡
.

The following two statements are special cases of Corollary E.3 for 𝑡 = 1 and 𝑡 = 2.
Corollary E.4. E𝑋′

𝑖 (𝜏)

∞ ⩽

∥Σ∥
𝜏

.

Corollary E.5. Suppose that for some 𝜈 ⩾ 1,

max
𝑗∈[𝑑]
E|𝑋∗

𝑖 𝑗 |
4 ⩽ 𝜈4 · ∥Σ∥2 .

Then E(𝑋′
𝑖 (𝜏)

) (
𝑋′
𝑖 (𝜏)

)⊤ − E
(
𝑋∗
𝑖

) (
𝑋∗
𝑖

)⊤
∞
⩽

2 · 𝜈4 · ∥Σ∥2

𝜏2
.

The following lemma shows that the empirical mean of
(
𝑋′
𝑖
(𝜏)

)⊗𝑡 is close to E
(
𝑋∗

1

)⊗𝑡 for an
appropriate choice of 𝜏 and large enough 𝑛.
Lemma E.6. Let 𝑡 ∈ N be and suppose that for some 𝜈 ⩾ 1

max
𝑗∈[𝑑]
E|𝑋∗

𝑖 𝑗 |
2𝑡 ⩽ 𝜈2𝑡 · ∥Σ∥𝑡 .

Then with probability 1 − 𝛿, 1
𝑛

𝑛∑
𝑖=1

(
𝑋′
𝑖 (𝜏)

)⊗𝑡 − E(𝑋∗
1

)⊗𝑡
∞

⩽ 10

√
𝜈2𝑡 · ∥Σ∥𝑡 · 𝑡 log(𝑑/𝛿)

𝑛
+ 10

𝜏𝑡 · 𝑡 log(𝑑/𝛿)
𝑛

+ 𝑡 · 𝜈2𝑡 · ∥Σ∥𝑡

𝜏𝑡
.

Proof. It follows from Corollary E.3, Bernstein inequality Fact I.1, and a union bound over all 𝑑𝑡

entries of E
(
𝑋∗

1

)⊗𝑡 . □
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F Properties of sparse vectors

Lemma F.1. Let Σ ∈ R𝑑×𝑑 be a positive definite matrix, 𝑘′, 𝑘′′ ∈ N, 𝑟, 𝛿 ⩾ 0, and

ℰ𝑘′(𝑟) =
{
𝑢 ∈ R𝑑

��� ∥Σ1/2𝑢∥ ⩽ 𝑟 , ∥𝑢∥1 ⩽
√
𝑘′ · 𝑟

}
,

𝒮𝑘′′(𝑟) =
{
𝑢 ∈ R𝑑

��� ∥Σ1/2𝑢∥ = (1 + 𝛿) · 𝑟 , 𝑢 is 𝑘′′-sparse
}
.

If 𝑘′′ ⩾ 4𝑘′∥Σ∥/𝛿2, then
ℰ𝑘′(𝑟) ⊆ conv(𝒮𝑘′′(𝑟)) .

Proof. Let us take some 𝑢 ∈ ℰ𝑘′(𝑟). Without loss of generality assume that 𝑢1 ⩾ 𝑢2 ⩾ . . . ⩾ 𝑢𝑑.
Let’s split indices {1, 2, . . . , 𝑑} into blocks 𝐵1 . . . , 𝐵⌈𝑑/𝑘′′⌉ of size 𝑘′′ (the last block might be of
smaller size). Let for each block 𝐵𝑖 , let

𝑝𝑖 =
∥Σ1/2𝑢𝐵𝑖 ∥∑⌈𝑑/𝑘′′⌉

𝑗=1 ∥Σ1/2𝑢𝐵𝑗 ∥

Since
∑⌈𝑑/𝑘′′⌉
𝑖

𝑝𝑖 = 1 and 𝑢 =
∑⌈𝑑/𝑘′′⌉
𝑖

𝑝𝑖𝑢𝐵𝑖/𝑝𝑖 , it is sufficient to show that for all 𝑖, ∥Σ1/2𝑢𝐵𝑖 ∥/𝑝𝑖 ⩽
(1 + 𝛿)𝑟.

Note that for all 𝑗 ⩾ 2, since ∥𝑢𝐵𝑗 ∥ ⩽
√
𝑘′′∥𝑢𝐵𝑗 ∥∞ and ∥𝑢𝐵𝑗 ∥∞ ⩽ 1

𝑘′′ ∥𝑢𝐵𝑗−1 ∥1,

∥Σ1/2𝑢𝐵𝑗 ∥ ⩽
√
∥Σ∥ · ∥𝑢𝐵𝑗 ∥ ⩽

√
𝑘′′∥Σ∥ · ∥𝑢𝐵𝑗 ∥∞ ⩽

√
∥Σ∥
𝑘′′

· ∥𝑢𝐵𝑗−1 ∥1 .

By the triangle inequality,

∥Σ1/2𝑢𝐵1 ∥ ⩽ ∥Σ1/2𝑢∥ +
⌈𝑑/𝑘′′⌉∑
𝑗=2

∥Σ1/2𝑢𝐵𝑗 ∥ .

Hence

∥Σ1/2𝑢𝐵𝑖 ∥
𝑝𝑖

=

⌈𝑑/𝑘′′⌉∑
𝑗=1

∥Σ1/2𝑢𝐵𝑗 ∥

⩽ ∥Σ1/2𝑢∥ + 2
⌈𝑑/𝑘′′⌉∑
𝑗=2

∥Σ1/2𝑢𝐵𝑗 ∥

⩽ 𝑟 + 2

√
∥Σ∥
𝑘′′

⌈𝑑/𝑘′′⌉∑
𝑗=2

∥𝑢𝐵𝑗−1 ∥1

⩽ 𝑟 + 2

√
∥Σ∥
𝑘′′

∥𝑢∥1

⩽

(
1 + 2

√
𝑘′∥Σ∥
𝑘′′

)
· 𝑟

⩽ (1 + 𝛿) · 𝑟 .

□

Lemma F.2. Let Σ ∈ R𝑑×𝑑 be a positive definite matrix, and let 𝑋 ∈ R𝑚×𝑑 be a matrix such that for
some 𝑟 > 0 and 𝛿 ∈ (0, 1), for all 𝑘′′-sparse vectors 𝑢′ such that 𝑟 ⩽ ∥Σ1/2𝑢′∥ ⩽ 2𝑟,

(1 − 𝛿) · ∥Σ1/2𝑢′∥ ⩽ 1√
𝑚
∥𝑋𝑢′∥ ⩽ (1 + 𝛿) · ∥Σ1/2𝑢′∥

If 𝑘′′ ⩾ 4𝑘′∥Σ∥/𝛿2, then for all 𝑢 such that ∥Σ1/2𝑢∥ = 𝑟 and ∥𝑢∥1 ⩽ 𝑟
√
𝑘′,

(1 − 4𝛿) · 𝑟 ⩽ 1√
𝑚
∥𝑋𝑢∥ ⩽ (1 + 4𝛿) · 𝑟 .
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Proof. The inequlity 1√
𝑚
∥𝑋𝑢∥ ⩽ (1 + 𝛿)2 · 𝑟 ⩽ (1 + 4𝛿) · 𝑟 follows from Jensen’s inequality and

Lemma F.1.

Let us show that (1 − 4𝛿) · 𝑟 ⩽ 1√
𝑚
∥𝑋𝑢∥. Let 𝐵1 , . . . , 𝐵⌈𝑑/𝑘′′⌉ be blocks of indices as in the proof of

Lemma F.1. It follows that

1√
𝑚
∥𝑋𝑢∥ ⩾ 1√

𝑚
∥𝑋𝑢𝐵1 ∥ −

⌈𝑑/𝑘′′⌉∑
𝑗=2

1√
𝑚
∥𝑋𝑢𝐵𝑗 ∥

⩾ (1 − 𝛿) · ∥Σ1/2𝑢𝐵1 ∥ − (1 + 𝛿)
⌈𝑑/𝑘′′⌉∑
𝑗=2

∥Σ1/2𝑢𝐵𝑗 ∥

⩾ (1 − 𝛿) · ∥Σ1/2𝑢∥ − 2 · 𝑟
√
𝑘′∥Σ∥
𝑘′′

⩾ (1 − 𝛿)2 · 𝑟 − 𝛿𝑟

⩾ (1 − 4𝛿) · 𝑟 .
□

G Lower bounds

In this section we prove Statistical Query lower bounds. SQ lower bounds is a standard tool of
showing computational lower bounds for statistical estimation and decision problems. SQ algorithms
do not use samples, but have access to an oracle that can return the expectation of any bounded
function (up to a desired additive error, called tolerance). The SQ lower bounds formally show the
trateoff between the number of queries to the oracle and the tolerance. The standard interpretation of
SQ lower bounds relies on the fact that simulating a query with small tolerance using iid samples
requires large number of samples. Hence these lower bounds are interpreted as a tradeoff between the
time complexity (number of queries) and sample complexity (tolerance) of estimators. See [DKS17]
for more details.

First we give necessary definitions. These definitions are standard and can be found in [DKS17].

Definition G.1 (STAT Oracle). Let 𝒟 be a distribution over R𝑑. A statistical query is a function
𝑓 : R𝑑 → [−1, 1]. For 𝜏 > 0 the STAT(𝜏) oracle responds to the query 𝑓 with a value 𝑣 such that
|𝑣 − E𝑋∼𝒟 𝑓 (𝑋)| ⩽ 𝜏. Parameter 𝜏 is called the tolerance of the statistical query.

Simulating a query STAT(𝜏) normally requires Ω(1/𝜏2) iid samples from 𝒟, hence SQ lower
bounds provide a trade-off between the running time (number of queries) and the sample complexity
(Ω(1/𝜏2)).
Definition G.2 (Pairwise Correlation). Let 𝒟1 ,𝒟2 ,𝒟 be absolutely continuous distributions over
R𝑑, and suppose that supp(𝒟) = R𝑑. The pairwise correlation of 𝒟1 and 𝒟2 with respect to 𝒟 is
defined as

𝜒𝐷(𝒟1 ,𝒟2) =
∫
R𝑑

𝑝𝒟1(𝑥)𝑝𝒟2(𝑥)
𝑝𝒟(𝑥) 𝑑𝑥 − 1 ,

where 𝑝𝒟1(𝑥), 𝑝𝒟2(𝑥), 𝑝𝒟(𝑥) are densities of 𝒟1 ,𝒟2 ,𝒟 respectively.
Definition G.3 (Chi-Squared Divergence). Let 𝒟′,𝒟 be absolutely continuous distributions over
R𝑑, and suppose that supp(𝒟) = R𝑑. The chi-squared divergence from 𝒟′ to 𝒟 is

𝜒2(𝒟′,𝒟) = 𝜒𝐷(𝒟′,𝒟′) .
Definition G.4 ((𝛾, 𝜌)-correlation). Let 𝜌, 𝛾 > 0, and let 𝒟 be a distribution over R𝑑. We say that a
family of distributions ℱ over R𝑑 is (𝛾, 𝜌)-correlated relative to 𝒟, if for all distinct 𝒟′,𝒟′′ ∈ ℱ ,
|𝜒𝐷(𝒟′,𝒟′′)| ⩽ 𝛾 and |𝜒𝐷(𝒟′,𝒟′)| ⩽ 𝜌.

Fact G.5. Let 𝒟 be a distribution over R𝑑 and ℱ be a family of distributions over R𝑑 that does not
contain 𝒟, and consider a hypothesis testing problem of determining whether a given distribution
𝒟′ = 𝒟 or 𝒟′ ∈ ℱ .
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Let 𝛾, 𝜌 > 0, 𝑠 ∈ N, and suppose that there exists a subfamily of ℱ of size 𝑠 that is (𝛾, 𝜌)-correlated
relative to 𝒟. Then for all 𝛾′ > 0, every SQ algorithm for the hypothesis testing problem requires
queries of tolerance

√
𝛾 + 𝛾′ or makes at least 𝑠𝛾′/(𝜌 − 𝛾) queries.

We will also need the following facts:

Fact G.6 ([DKS17, Lemma 6.7]). Let 𝑐 ∈ (0, 1) and 𝑘, 𝑑 ∈ N be such that 𝑘 ⩽
√
𝑑. There exists a set

𝒱 ⊂ R𝑑 of 𝑘-sparse unit vectors of size 𝑑𝑐𝑘
𝑐/8 such that for all distinct 𝑢, 𝑣 ∈ 𝒱, ⟨𝑣, 𝑢⟩ ⩽ 2𝑘𝑐−1.

Fact G.7 ([DKS17, Lemma 3.4]). Let 𝑚 ∈ N, and suppose that a distribution ℳ over Rmatches first
𝑚 moments of 𝑁(0, 1). For a unit vector 𝑣 ∈ R𝑑 let 𝒫𝑣 be a distribution such that its projections onto
the direction of 𝑣 has distribution ℳ, the projection onto the orthogonal complement is 𝑁(0, Id𝑑−1),
and these projections are independent. Then for all 𝑢, 𝑣 ∈ R𝑑,��𝜒𝑁(0,Id𝑑)(𝒫𝑣 ,𝒫𝑢)

�� ⩽ |⟨𝑢, 𝑣⟩|𝑚+1𝜒2(ℳ , 𝑁(0, 1)) .

The following fact is a slight reformulation of Lemma E.4 from [DKS19]
Fact G.8 ([DKS19, Lemma E.4]). Let 𝑦 ∼ 𝑁(0, 1), 𝜇0 > 0, 𝑚 ∈ N, and 𝑔 : R→ R. Let ℳ𝜇 be a
family of distributions over R satisfies the following properties:

1. ℳ = (1 − 𝜀𝜇)𝑁(𝜇,Θ(1)) + 𝜀𝜇ℬ𝜇 for some 𝜀𝜇 and ℬ𝜇 such that ℳ𝜇 has the same first 𝑚
moments as 𝑁(0, 1).

2. If |𝜇| ⩾ 10𝜇0, then 𝜀𝜇/(1 − 𝜀𝜇) ⩽ 𝑂
(
𝜇2) and 𝜒2(ℳ , 𝑁(0, 1)) ⩽ 𝑒𝑂(max{1/𝜇2 ,𝜇2}).

3. If |𝜇| ⩽ 10𝜇0, then 𝜀𝜇 = 𝜀 and 𝜒2(ℳ , 𝑁(0, 1)) ⩽ 𝑔(𝜀).

For unit 𝑣 ∈ R𝑑 let 𝒫𝑣,𝜇 be the same as 𝒫𝑣 in Fact G.7 whose projection onto 𝑣 is ℳ𝜇. Let 𝒬′
𝑣 be

a distribution over R𝑑+1 such that (𝑋, 𝑦) ∼ 𝒬′
𝑣 satisfy the following properties: 𝑦 ∼ 𝑁(0, 1), and

𝑋 |𝑦 ∼ 𝒫𝑣,𝜇0 ·𝑦 . Then for all unit 𝑢, 𝑣 ∈ R𝑑,

𝜒𝒟(𝒬′
𝑣 ,𝒬′

𝑢) ⩽ (𝑔(𝜀) + 𝑂(1)) · |⟨𝑣, 𝑢⟩|𝑚+1 ,

where 𝒟 = 𝑁(0, Id𝑑+1).
Proposition G.9 (Formal version of Proposition 1.10). Let 𝑘, 𝑑 ∈ N, 𝑘 ⩽

√
𝑑, 𝜀 ∈ (0, 1/2), 𝑐 ∈ (0, 1).

For a vector 𝛽∗ ∈ R𝑑, and a number 𝜎 > 0, consider the distribution 𝒢(𝛽∗ , 𝜎) over R𝑑+1 such that
(𝑋, 𝑦) ∼ 𝒢(𝛽∗ , 𝜎) satisfy 𝑋 ∼ 𝑁(0, Id) and 𝑦 = ⟨𝑋, 𝛽∗⟩ + 𝜂, where 𝜂 ∼ 𝑁(0, 𝜎2) is independent of
𝑋.

There exist a set ℬ ⊂ R𝑑 of 𝑘-sparse vectors, 0.99 ⩽ 𝜎 ⩽ 1 and a distribution 𝒬 over R𝑑+1, such
that if an SQ algorithm 𝒜 given access to a mixture (1 − 𝜀)𝒢(𝛽∗ ,Σ, 𝜎) + 𝜀𝒬 for 𝛽∗ ∈ ℬ, outputs 𝛽∗

such that ∥𝛽∗ − �̂�∥ ⩽ 10−5, then 𝒜 either

• makes 𝑑𝑐𝑘
𝑐/8 · 𝑘−2+2𝑐 queries,

• or makes at least one query with tolerance smaller than 𝑘−1+𝑐𝑒𝑂(1/𝜀2).

Proof. Note that (𝑋, 𝑦) ∼ 𝒢(𝛽∗ , 𝜎) satisfy 𝑦 ∼ 𝑁(0, 𝜎2
𝑦), where 𝜎2

𝑦 = ∥𝛽∗∥2 + 𝜎2 and 𝑋 |𝑦 ∼
𝑁

(
𝑦

𝜎2
𝑦
𝛽∗ , Id − 1

𝜎2
𝑦
𝛽∗𝛽∗⊤

)
.

We will use vectors 𝛽∗ of norm 10−5. Denote 𝑣 = 𝛽∗/∥𝛽∗∥ and let 𝜎2 = 1 − ∥𝛽∗∥2. Consider
a distribution ℳ𝜇 = (1 − 𝜀)𝑁

(
𝜇, 1 − ∥𝛽∗∥2) + 𝜀𝑁

(
− 1−𝜀

𝜀 𝜇, 1
)
. Note that 𝜒2 (ℳ𝜇 , 𝑁(0, 1)

)
⩽

𝑒𝑂(max{1/𝜇2 ,𝜇2}), and 𝜀/(1 − 𝜀) ⩽ 𝑂
(
𝜇2) for 𝜇 ⩾ 10−4. Hence by Fact G.8,

𝜒𝒟(𝒬′
𝑣 ,𝒬′

𝑢) ⩽ 𝑒𝑂(1/𝜀2)⟨𝑣, 𝑢⟩2

for all unit 𝑣, 𝑢 ∈ R𝑑.

Using Fact G.6, we can apply Fact G.5 with 𝛾 = 𝑘2𝑐−2𝑒𝑂(1/𝜀2), 𝜌 = 𝑒𝑂(1/𝜀2), 𝛾′ = (𝜌 − 𝛾) · 𝑘−2+2𝑐 ,
we get that 𝒜 requires at least 𝑑𝑐𝑘

𝑐/8𝑘−2+2𝑐 queries with tolerance greater than 𝑘−1+𝑐𝑒𝑂(1/𝜀2). □
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Proposition G.10 (Formal version of Proposition 1.11). Let 𝑘, 𝑑 ∈ N, 𝑘 ⩽
√
𝑑, 𝜀 ∈ (0, 1/2),

𝑐 ∈ (0, 1). For a vector 𝛽∗ ∈ R𝑑, a positive definite matrix Σ and a number 𝜎 > 0, consider
the distribution 𝒢(𝛽∗ ,Σ, 𝜎) over R𝑑+1 such that (𝑋, 𝑦) ∼ 𝒢(𝛽∗ ,Σ, 𝜎) satisfy 𝑋 ∼ 𝑁(0,Σ) and
𝑦 = ⟨𝑋, 𝛽∗⟩ + 𝜂, where 𝜂 ∼ 𝑁(0, 𝜎2) is independent of 𝑋.

There exist a set ℬ ⊂ R𝑑 of 𝑘-sparse vectors, 1
2 Id ⪯ Σ ⪯ Id, 0.99 ⩽ 𝜎 ⩽ 1 and a distribution 𝒬 over

R𝑑+1, such that if an SQ algorithm 𝒜 given access to a mixture (1 − 𝜀)𝒢(𝛽∗ ,Σ, 𝜎) + 𝜀𝒬 for 𝛽∗ ∈ ℬ,
outputs �̂� such that ∥𝛽∗ − �̂�∥ ⩽ 10−5√𝜀, then 𝒜 either

• makes 𝑑𝑐𝑘
𝑐/8 · 𝑘−4+4𝑐 queries,

• or makes at least one query with tolerance at least 𝑘−2+2𝑐𝑒𝑂(1/𝜀).

Proof. Note that (𝑋, 𝑦) ∼ 𝒢(𝛽∗ ,Σ, 𝜎) satisfy 𝑦 ∼ 𝑁(0, 𝜎2
𝑦), where 𝜎2

𝑦 = 𝛽∗⊤Σ𝛽∗ + 𝜎2 and 𝑋 |𝑦 ∼
𝑁

(
𝑦

𝜎2
𝑦
Σ𝛽∗ ,Σ − 1

𝜎2
𝑦
(Σ𝛽∗)(Σ𝛽∗)⊤

)
.

We will use vectors 𝛽∗ of norm 10−5√𝜀. Denote 𝑣 = 𝛽∗/∥𝛽∗∥ and let 𝜎2 = 1−𝛽∗⊤Σ𝛽∗, Σ = Id−𝑐′𝑣𝑣⊤,
where 𝑐′ is a constant such that

Σ − 1
𝜎2
𝑦

(Σ𝛽∗)(Σ𝛽∗)⊤ = Id − 𝑐′𝑣𝑣⊤ −
(
10−5(1 − 𝑐′)2𝜀

)
𝑣𝑣⊤ = Id − 𝑣𝑣⊤/3 .

By [DKS19, Lemmas E.2], there exists a distribution ℳ that satisfies the assumption of Fact G.8
with 𝑚 = 3 and 𝑔(𝜀) = 𝑒𝑂(1/𝜀). Hence by Fact G.8,

𝜒𝒟(𝒬′
𝑣 ,𝒬′

𝑢) ⩽ 𝑒𝑂(1/𝜀)⟨𝑣, 𝑢⟩4

for all unit 𝑣, 𝑢 ∈ R𝑑.

Using Fact G.6, we can apply Fact G.5 with 𝛾 = 𝑘4𝑐−4𝑒𝑂(1/𝜀), 𝜌 = 𝑒𝑂(1/𝜀), 𝛾′ = (𝜌 − 𝛾) · 𝑘−4+4𝑐 ,
we get that 𝒜 requires at least 𝑑𝑐𝑘

𝑐/8𝑘−4+4𝑐 queries with tolerance smaller than 𝑘−2+2𝑐𝑒𝑂(1/𝜀). □

H Sub-exponential designs

Recall that a distribution 𝒟 in R𝑑 is called 𝐿-sub-exponential, if it has (𝐿𝑡)-bounded 𝑡-th moment for
each 𝑡 ∈ N. In particular, all log-concave distributions are 𝐿-sub-exponential for some 𝐿 ⩽ 𝑂(1).
In this section we discuss how we can improve the dependence of the sample complexity on 𝜀 if
(in addition to the assumptions of Theorem B.3) we assume that 𝒟 is 𝐿-sub-exponential. For these
designs we do not need a truncation.

First, let us show how the gradient bound Lemma B.5 modifies in this case. It can be obtained directly
from Bernstein’s inequality for sub-exponential distributions ([RH23, Theorem 1.13])

Lemma H.1. With probability at least 1 − 𝛿/10, 1
𝑛

∑
𝑖∈[𝑛]

𝜙(𝜂𝑖)𝑋∗
𝑖


∞

⩽ 10

√
∥Σ∥ log(𝑑/𝛿)

𝑛
+ 10

√
∥Σ∥ · 𝐿 · log(𝑑/𝛿)

𝑛
.

The proof of strong convexity bound (Lemma B.6) is exactly the same, with 𝑋′(𝜏) = 𝑋∗.

Finally, we need to bound
 1
𝑛

∑𝑛
𝑖=1

(
𝑋∗
𝑖

)⊗2𝑡 − E
(
𝑋∗

1

)⊗2𝑡

∞

, since we need to prove Lemma D.2 for

sub-exponential distributions. By Lemma C.1. from [DKK+22], for all 𝐿-sub-exponential distribu-
tions, with probability 1 − 𝛿, 1

𝑛

𝑛∑
𝑖=1

(
𝑋∗
𝑖

)⊗2𝑡 − E
(
𝑋∗

1

)⊗2𝑡


∞

⩽ 𝑂

(√
𝑡 log(𝑑/𝛿)

𝑛
·
(
10𝐿

√
∥Σ∥ · 𝑡2 log(𝑑/𝛿)

)2𝑡
)
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Hence with 𝑛 ≳ 𝐾2𝑡 ·
(
10𝑡2 log(𝑑/𝛿)

)4𝑡+1, we get
 1
𝑛

∑𝑛
𝑖=1

(
𝑋∗
𝑖

)⊗2𝑡 − E
(
𝑋∗

1

)⊗2𝑡

∞
⩽ 𝐿2𝑡 ∥Σ∥𝑡/𝐾𝑡 ,

so we get the conclusion of Lemma D.2.

Putting everything together, the sample complexity is

𝑛 ≳
𝑘 log(𝑑/𝛿)
𝜀2−1/𝑡 +

(
𝑘2 log(𝑑/𝛿)

)
105𝑠/(𝑠−2)𝑀𝑠/(𝑠−2)

𝑠 𝜅(Σ)4+𝑠/(𝑠−2)

𝛼
+𝑘2𝑡 ·𝜅(Σ)2𝑡 ·

(
106 · 𝑡2 log(𝑑/𝛿)

)4𝑡+1
.

Note that we can use 𝑠 = 4 and 𝑀𝑠 = 4𝐿.

Consider the case when 𝒟 is log-concave, so 𝐿 ⩽ 𝑂(1). For 𝜅(Σ) ⩽ 𝑂(1), 𝛼 ⩾ Ω(1), 𝑡 = 1, with
high probability we get error 𝑂(𝜎

√
𝜀) as long as

𝑛 ≳
𝑘 log 𝑑

𝜀
+ 𝑘2 · (log 𝑑)5 .

Similarly, for 𝜅(Σ) ⩽ 𝑂(1), 𝛼 ⩾ Ω(1), 𝑡 = 2, with high probability we get error 𝑂(𝑀𝜎𝜀3/4) (where
𝑀 ⩽ 𝑂(

√
log 𝑑) is the same as in Theorem 1.7) as long as

𝑛 ≳
𝑘 log 𝑑
𝜀3/2

+ 𝑘4 · (log 𝑑)9 .

Note that for sub-Gaussian distributions one can use better tail bounds and the polylog(𝑑) factors
should be better in this case.

I Concentration Bounds

Throughout the paper we use the following versions of versions of Bernstein’s inequality. The proofs
can be found in [Tro15].
Fact I.1 (Bernstein inequality). Let 𝐿 > 0 and let 𝑥 ∈ R𝑑 be a zero-mean random variable. Let
𝑥1 , . . . , 𝑥𝑛 be i.i.d. copies of 𝑥. Suppose that |𝑥 | ⩽ 𝐿. Then the estimator �̄� = 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖 satisfies for

all 𝑡 > 0

P(|�̄� | ⩾ 𝑡) ⩽ 2 · exp
(
− 𝑡2𝑛

2E 𝑥2 + 𝐿𝑡

)
.

Fact I.2 (Bernstein inequality for covariance). Let 𝐿 > 0 and let 𝑥 ∈ R𝑑 be a 𝑑-dimensional
random vector. Let 𝑥1 , . . . , 𝑥𝑛 be i.i.d. copies of 𝑥. Suppose that ∥𝑥∥2 ⩽ 𝐿. Then the estimator
Σ̄ = 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖𝑥

⊤
𝑖

satisfies for all 𝑡 > 0

P
(Σ̄ − E 𝑥𝑥⊤

 ⩾ 𝑡) ⩽ 2𝑑 · exp
(
− 𝑡2𝑛

2𝐿∥Σ∥ + 𝐿𝑡

)
.
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: This is a theory paper, and does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This is a theory paper, and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This is a theory paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [NA]
Justification: This is a theory paper, and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

36


	Introduction
	Results
	Robust regression with heavy-tailed designs
	Beyond  error
	Lower bounds


	Techniques
	Future Work
	References
	Properties of the Huber loss minimizer
	Heavy-tailed Designs
	Truncation
	Gradient Bound
	Strong Convexity

	Putting everything together

	Filtering
	Sum-of-Squares Certificates
	Properties of the truncation
	Properties of sparse vectors
	Lower bounds
	Sub-exponential designs
	Concentration Bounds

