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Abstract

With the advance of diffusion models, today’s
video generation has achieved impressive qual-
ity. To extend the generation length and facilitate
real-world applications, a majority of video dif-
fusion models (VDMs) generate videos in an au-
toregressive manner, i.e., generating subsequent
clips conditioned on the last frame(s) of the previ-
ous clip. However, existing autoregressive VDMs
are highly inefficient and redundant: The model
must re-compute all the conditional frames that
are overlapped between adjacent clips. This issue
is exacerbated when the conditional frames are
extended autoregressively to provide the model
with long-term context. In such cases, the compu-
tational demands increase significantly (i.e., with
a quadratic complexity w.r.t. the autoregression
step). In this paper, we propose Ca2-VDM, an
efficient autoregressive VDM with Causal gen-
eration and Cache sharing. For causal gener-
ation, it introduces unidirectional feature com-
putation, which ensures that the cache of con-
ditional frames can be precomputed in previous
autoregression steps and reused in every subse-
quent step, eliminating redundant computations.
For cache sharing, it shares the cache across
all denoising steps to avoid the huge cache stor-
age cost. Extensive experiments demonstrated
that our Ca2-VDM achieves state-of-the-art quan-
titative and qualitative video generation results
and significantly improves the generation speed.
Code is available: https://github.com/
Dawn-LX/CausalCache-VDM
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Figure 1: (a): Existing autoregressive VDMs with bidirec-
tional generation. The conditional frames can be fixed-
length (Henschel et al., 2025; Zheng et al., 2024) or extend-
able. (b): Our Ca2-VDM, which uses causal generation to
enable KV-cache and introduce cache sharing across all de-
noising timesteps. Cache writing stands for a partial model
forward on the denoised frames (i.e., at timestep t = 0) until
the KV-caches of every layer are computed.

1. Introduction
Video diffusion models (VDMs) (Guo et al., 2024b; Ren
et al., 2024; Lu et al., 2024; Ma et al., 2025) have made
significant advancements by benefiting from the powerful
diffusion techniques (Ho et al., 2020; Song et al., 2021a;b)
and prior studies on image generation (Rombach et al., 2022;
Peebles & Xie, 2023; Chen et al., 2024a). In contrast to
images, VDMs need to capture interactions across multi-
ple frames and generate all frames simultaneously (e.g.,
a 16-frame clip). This is usually facilitated by the tem-
poral attention in prevailing UNet- or Transformer-based
VDMs (Wang et al., 2023b; Ma et al., 2025). They in-
troduce interdependencies during the bidirectional atten-
tion computation. Consequently, the training and inference
lengths must be aligned, extremely restricting the flexibility
of VDMs in real-world applications such as long-term (Hen-
schel et al., 2025) or live-stream (Alonso et al., 2024) video
generation. Meanwhile, simply scaling the clip length at
inference time breaks the alignment and leads to poor gener-
ation quality (e.g., Figure 1(b) in (Qiu et al., 2024)), unless
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one undertakes time-consuming retraining or fine-tuning.

To address this issue, an effective and prevalent solution is
autoregressive VDMs (Blattmann et al., 2023a; Henschel
et al., 2025; Lu et al., 2024): They are capable of autore-
gressively generating subsequent clips conditioned on last
frames of previous clip, as shown in Figure 1(a). However,
the autoregression process of existing VDMs is highly inef-
ficient and redundant: The conditional frames constitute the
overlapping frames between adjacent autoregression chunks
and they are re-computed at each step. This issue is exacer-
bated when the conditional frames are extended autoregres-
sively to provide the model with long-term context. In such
cases, the model must re-compute all the conditional frames
concatenated by the previously generated chunks, with a
quadratic computational demand w.r.t. the autoregressive
step (cf. Figure 6 in Sec. 4.3).

To overcome the above limitations, we propose to cache the
intermediate features (specifically, the keys and values of
every attention layer) at each autoregression (AR) step, and
reuse them in subsequent AR steps, as shown in Figure 1(b).
In this way, the model 1) eliminates the redundant com-
putations in temporal attention blocks, and 2) reduces the
processing length to a constant for other temporal-parallel
blocks (e.g., spatial attention and visual-text cross attention)
while maintaining the extendable long-term context. To
successfully implement the KV-cache in VDMs, two key
factors must be carefully considered:

• Cache Computation. In existing VDMs, the tempo-
ral attention is bidirectional, as shown in Figure 2(a).
The frames z3,4

t are denoised conditioned on z0,1,2
0 , and

key/value features of z0,1,2
0 are also computed condi-

tioned on z3,4
t at every diffusion timestep t (highlighted

by the red box and arrows). It’s impossible to precom-
pute and cache the keys and values of z0,1,2

0 at previous
AR steps, since z3,4

t are not yet available.

• Cache Storage. During inference, the VDM is repeat-
edly called in the denoising process at each AR step,
where each call is taken with a different timestep t. All
most all Existing VDMs (Lu et al., 2024; Ren et al.,
2024) use the same timestep embedding (indexed by t)
for both conditional and noisy frames. This requires
each denoising step to have its own cache, i.e., caching
the key/value features for all denoising steps will con-
sume huge GPU memory.

In this paper, we propose an efficient autoregressive VDM
boosted by causal generation and cache sharing, termed Ca2-
VDM, to handle both challenges. For cache computation,
we propose causal generation: We replace the full temporal
attention in each block of the VDM with causal temporal at-
tention, and propose prefix-enhanced spatial attention. The
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Figure 2: Comparison of bidirectional attention (a) and
causal attention (ours) (b). Our design addresses the cache
computation and cache storage issues.

former ensures each generated frame only depends on its
prefix frames, and the latter enhances the guidance from
the prefix frames. As a result, the cache to be used in sub-
sequent autoregression steps can be precomputed at early
steps. For cache storage, we propose cache sharing. It
leverages the advantages of causal generation: The cache is
determined only by the non-noisy preceding (conditional)
frames and unaffected by the subsequent noisy frames (i.e.,
independent of the timestep t). Thus, by using a distinct
timestep embedding indexed by t = 0 for the conditional
frames in both training and inference, we enable the cache
to be shared across all the denoising steps.

Equipped with causal generation and cache sharing, we pro-
pose to store the KV-cache in a queue so that the model can
exploit the long-term context while maintaining an afford-
able computation and storage cost. To support this queue
design, the training samples are partially noised to keep
clean prefix frames (with random length) as the condition,
and the maximum condition length covers the length of
KV-cache queue at inference time. Meanwhile, sinusoidal
spatial and temporal positional embeddings (i.e., SPEs and
TPEs) are added to the frame sequence following Vision
Transformer (ViT) (Dosovitskiy et al., 2020). During infer-
ence, the TPEs are assigned chunk-by-chunk as the autore-
gression progresses. To ensure TPEs are correctly assigned
when the cumulatively generated video exceeds the train-
ing length, we carefully design a cyclic shift mechanism:
Cyclic-TPEs 1.

We evaluated our Ca2-VDM on multiple public datasets
including MSR-VTT (Xu et al., 2016), UCF-101 (Soomro
et al., 2012), and Sky Timelapse (Zhang et al., 2020) for
both text-to-video and video prediction tasks. The results

1Originally, TPEs are re-assigned from scratch at each AR step.
However, when KV-cache is enabled, early TPEs have been bound
to previous KV-caches. They can not be re-assigned (cf. Figure 4(c)
for more details).
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show that our model achieves significant inference speed im-
provement while maintaining comparable quantitative and
qualitative performance as state-of-the-art VDMs. In sum-
mary, we make three contributions in this paper: 1) A causal
generation structure that allows the intermediate features
of conditional frames can be cached and reused in every
autoregression step, eliminating the redundant computation.
2) A cache sharing strategy implemented on the KV-cache
queue and facilitated by Cyclic-TPEs. It allows the model
to acquire extendable context while significantly reducing
the storage cost. 3) Our Ca2-VDM achieves comparable
performance with SOTA VDMs at a much less computation
demand and a high inference speed.

2. Related Work
Video Diffusion Models (VDMs) have shown impressive
generation capabilities, building on the success of latent dif-
fusion models in image generation applications (Rombach
et al., 2022; Peebles & Xie, 2023; Chen et al., 2024a). Some
works (Lu et al., 2023; Khachatryan et al., 2023; Hong et al.,
2023; Zhang et al., 2024) develop training-free methods
for zero-shot video generation based on pretrained image
diffusion models (e.g., Stable Diffusion (Rombach et al.,
2022)). To leverage video training data and improve the
generation quality, many works (Ge et al., 2023; Guo et al.,
2024b; Wang et al., 2023b; Ren et al., 2024; Dai et al., 2023)
extend the 2D Unet in text-to-image diffusion models with
temporal attention layers or temporal convolution layers.
Recent studies (Ma et al., 2025; Lu et al., 2024) also build
VDMs based on spatial-temporal Transformers due to their
inherent capability of capturing long-term temporal depen-
dencies. We build our Ca2-VDM based on spatial-temporal
Transformers following prior structures.

Tuning-free Video Extrapolation. Prior studies have
explored autoregressively extrapolating videos using pre-
trained short video diffusion models without additional fine-
tuning. These methods usually consist of initializing noise
sequence based on the DDIM inversion (Song et al., 2021a;
Mokady et al., 2023) of previously generated frames (Oh
et al., 2024), co-denoising overlapped short clips (Wang
et al., 2023a), or iteratively denoising short clips with noise-
rescheduling (Qiu et al., 2024). However, their generation
quality is upper-bounded by the pretrained VDMs. Mean-
while, the lack of finetuning also leads to temporal inconsis-
tencies between short clip transitions.

Past-frame Conditioned Video Prediction. To enhance
generation quality and temporal consistency, a popular
paradigm is training VDMs conditioned on past frames to
predict future frames, enabling video extrapolation through
autoregressive model calls. Recent works of autoregres-
sive VDMs have studied a variety of design choices for
injecting conditional frames, such as adaptive layer nor-

malization (Voleti et al., 2022; Lu et al., 2024), cross-
attention (Zhang et al., 2023b; Lu et al., 2024; Henschel
et al., 2025), and explicitly concatenating to the noisy latent
along the temporal-axis (Harvey et al., 2022; Lu et al., 2024)
or channel-axis (Chen et al., 2024b; Girdhar et al., 2024;
Zeng et al., 2024). Some works (Weng et al., 2024; Guo
et al., 2024a) also inject conditional frames by adapter-like
subnets (e.g., T2I-adapter (Mou et al., 2024) or Control-
Net (Zhang et al., 2023a)). In contrast to existing works,
our Ca2-VDM avoids the redundant computation of condi-
tional frames by causal generation and cache sharing, and
significantly improves the generation speed.

3. Method
3.1. Preliminaries and Problem Formulation

Preliminaries. Diffusion Models (Sohl-Dickstein et al.,
2015; Ho et al., 2020) are generative models that model a tar-
get distribution x0 ∼ q(x) by learning a denoising process
with arbitrary noise levels. To do this, a diffusion process is
defined to gradually corrupt x0 with Gaussian noise. Each
diffusion step is q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI),

where t = 1, . . . , T and βt ∈ (0, 1) is the variance schedule.
By applying the reparameterization trick (Ho et al., 2020),
each xt can be sampled as xt =

√
ᾱtx0 +

√
1− ᾱtϵt,

where ϵt ∼ N (0, I) and ᾱt =
∏t

i=1(1−βi). Given the dif-
fusion process, a diffusion model is then trained to approxi-
mate the denoising process. Each denoising step is param-
eterized as pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)),
where θ contains learnable parameters.

Problem Formulation. Following existing mainstream
VDMs (Guo et al., 2024b; Lu et al., 2024; Ma et al.,
2025), we develop Ca2-VDM based on latent diffusion
models (Rombach et al., 2022) to reduce the modeling com-
plexity of high dimensional visual data. This is achieved by
using a pretrained variational autoencoder (VAE) encoder
E to compress x0 into a lower-dimensional latent represen-
tation, i.e., z0 = E(x0). Consequently, the diffusion and
denoising processes are implemented in the latent space, for-
mulated as q(zt|zt−1) and pθ(zt−1|zt), respectively. The
denoised latent ẑ0 is decoded back to the pixel space by the
pretrained VAE decoder D, i.e., x̂0 = D(ẑ0).

In our setting, the model takes as input a VAE encoded latent
sequence2 z0:L

0 = [z0
0 , . . . ,z

L−1
0 ] ∈ RL×H×W×C , where

L is the number of frames, H × W is the downsampled
resolution, and C is the number of channels. Then, it aims
to generate future frames conditioned on past frames, by
learning a distribution pθ(z

P :L
0 |z0:P

0 ). Here the first P pre-
fix frames serve as condition (referred to as clean prefix),
and the remaining L− P frames are those to be denoised

2Throughout this paper, we use “a : b” to denote a half-open
interval ranging from a (inclusive) to b (exclusive)
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Figure 3: Overview of the Ca2-VDM pipeline. (a): During training, we randomly set P frames clean prefix, and set
distinctive timestep embeddings, i.e., tEmb(0) for the clean prefix and tEmb(t) for the denoising target. (b): During
inference, in each autoregression (AR) step, the model denoises an l-frame chunk conditioned on the spatial/temporal
KV-caches shared across all timesteps (denoising stage), and then computes the keys/values of denoised chunk to update the
KV-caches (cache writing stage). (c): Causal generation block. We further illustrate the details of causal temporal attention
with Cyclic-TPEs in Figure 4 and the prefix-enhanced spatial attention is left in the Appendix (cf. Figure 9).

(referred to as denoising target). The model parameterized
by θ is denoted as ϵθ(z0:L

t , t).

The overall pipeline of Ca2-VDM is shown in Figure 3. We
first illustrate the causal generation in the training stage
(Sec. 3.2), as well as the training objectives. Then, we
introduce the KV-cache realization combined with the cache
sharing mechanism in the autoregressive inference stage
(Sec. 3.3), and the queue structure for temporal KV-cache
supported by Cyclic-TPEs (cf. Figure 4).

3.2. Causal Generation and Training Objectives

We first introduce the training objectives, followed by the
causal generation block (cf. Figure 3(c)). Here we focus on
the causal temporal attention and prefix-enhanced spatial
attention layers. For the visual-text cross attention, it is
widely used in VDMs for text-to-video generation (Rom-
bach et al., 2022; Chen et al., 2024a). And it is optional for
pure video prediction (Lu et al., 2024). We refer readers to
related works (Chen et al., 2024a) for more details.

Training Objectives. Existing diffusion models (Ho et al.,
2020; Peebles & Xie, 2023) are trained with the variational
lower bound of z0’s log-likelihood, formulated as Lvlb(θ) =
− log pθ(z0|z1) +

∑
t DKL(q(zt−1|zt, z0)∥pθ(zt−1|zt)),

where DKL is determined by the mean µθ and covariance
Σθ. By re-parameterizing µθ as a noise prediction network
ϵθ and fixing Σθ as a constant variance schedule (Ho et al.,

2020), the model can be trained by a simplified objective:

Lsimple(θ) = E
z,ϵ,t

[
∥ϵθ(zt, t)− ϵ∥22

]
, ϵ ∼ N (0, 1). (1)

In our setting, each sample is partially noised. We randomly
keep P consecutive frames uncorrupted as the clean pre-
fix, and the remaining frames are treated as the denoising
target, as shown in Figure 3(a). We use different timestep
embeddings for the clean prefix (i.e., tEmb(0)) and the de-
noising target (i.e., tEmb(t)), rather than a unified timestep
embedding for the whole video clip as in many existing
VDMs (Lu et al., 2024; Ma et al., 2025). This ensures the
cache from the clean prefix can be correctly shared across
each denoising timestep t at inference time (since the clean
prefix is always assigned with tEmb(0)). Consequently, the
simplified objective function for our model is

L̃simple(θ)= E
z,ϵ,t

[
∥(ϵθ([z0:P

0 , zP :L
t ], t)− ϵ)⊙m∥22

]
, (2)

where [·, ·] stands for concatenation along the temporal axis,
and t is the timestep vector with ti = t if i ≥ P else 0.
m ∈ {0, 1}N is a loss mask to exclude the clean prefix part,
i.e., with mi = 1 if i ≥ P else 0. In practice, we train
the model with learnable covariance Σθ by optimizing a
combination of L̃simple and Lvlb (with the same loss mask)
following (Nichol & Dhariwal, 2021; Peebles & Xie, 2023).
More details are left in Sec. B.

Causal Temporal Attention. To introduce the causality,
we mask the attention map to force each frame to only
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attend to its preceding frames, as shown in Figure 4(a).
Specifically, the input to each layer is first permuted by
treating the spatial resolution H×W as the batch dimension,
and then linearly projected to query, key, and value features
as Q,K,V ∈ RL×C′

(for every spatial grid). The causal
attention is computed as

CausalAttn(Q,K,V )=Softmax
(
QKT

√
C ′

+M

)
V , (3)

where M ∈ RL×L is a lower triangular attention mask with
Mi,j = −∞ if i < j else 0. Note that we only describe
one attention head and omit the diffusion step t for brevity.

Prefix-Enhanced Spatial Attention. In analogy to causal
temporal attention, integrating the clean prefix and denois-
ing target into one attention sequence helps enhance the
guidance of conditional information. Inspired by prior
works (Hu, 2024; Ren et al., 2024), we do this via spatial-
wise concatenation (cf. Figure 9 in the Appendix). Let
h0:L
t ∈ RL×H×W×C′

be the hidden input to each layer,
where the number of frames L is treated as batch dimension
and H ×W is flattened for attention calculation. We take a
sub-prefix of length P ′ and concatenate it to the denoising
target. Specifically, for hi

t from the i-th frame, the query is
Q̄(i) = WQhi

t. The prefix-enhanced key is

K̄(i) =

{
WK [hP−P ′

0 ; ...;hP−1
0 ;hi

t] if i ≥ P

WK [hi
0; ...;h

i
0] if i < P

, (4)

where [·; ·] stands for concatenation along the spatial dimen-
sion, and hi

0 is broadcasted by self-repeat P ′ times for every
i < P (i.e., the clean prefix part). We do the same opera-
tion to obtain the prefix-enhanced value V̄ . Consequently,
for every frame, the prefix-enhanced spatial attention is
computed as Attention(Q̄, K̄, V̄ ) with an attention map of
shape (HW )× ((P ′+1)HW ). In practice, P ′ is relatively
small (e.g., P ′ = 3), as the computational cost scales pro-
portionally with P ′, while adjacent prefix frames tend to
exhibit similar appearances. We empirically show that prefix
enhancement improves the generation quality (cf. Table 4).

3.3. Autoregressive Inference with Cache Sharing

We first introduce an overview of the autoregressive infer-
ence equipped with cache sharing, as shown in Figure 3(b).
Then for each autoregression step, we illustrate the temporal
KV-cache queue and cyclic temporal positional embeddings
(Cyclic-TPEs) . Finally, we introduce the spatial KV-cache
for prefix-enhanced spatial attention.

Autoregressive Inference. The model starts from a given
first frame and generates an l-frame chunk per AR step.
Each AR step consists of a denoising stage and a cache
writing stage. The spatial and temporal KV-caches are
shared across every denoising timestep t (i.e., cache shar-
ing). In the denoising stage, given Pk generated frames
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Figure 4: Illustration of causal temporal attention (a) & (b)
and the temporal KV-cache queue with Cyclic-TPEs (c). In
(c), Ltrain = Pmax + l and Pk+l = Pk + l. We show the state
that autoregressive inference reaches Pk = Pmax.

at AR step k, each denoising step samples zPk:Pk+l
t−1 ∼

pθ(z
Pk:Pk+l
t−1 |zPk:Pk+l

t , z0:Pk
0 ). Here z0:Pk

0 serves as the
clean prefix and zPk:Pk+l

t is the denoising target. Benefiting
from the causal generation, the feature computation is uni-
directional. This means zPk:Pk+l

t−1 is denoised conditioned
on z0:Pk

0 while the cache of z0:Pk
0 could be precomputed in

previous autoregression steps without referring to zPk:Pk+l
t .

In the cache writing stage, the denoised zPk:Pk+l
0 is input to

the model again to compute its clean spatial and temporal
KV-caches, which will be used in the next AR step.

Temporal KV-Cache. Suppose that there are Pk generated
frames (i.e., the clean prefix) at AR step k. In the denois-
ing stage, the query, key, and value features at timestep
t are QPk:Pk+l

t ,KPk:Pk+l
t ,V Pk:Pk+l

t ∈ Rl×C′
(consider-

ing only one spatial grid). The model reads the clean
key and value caches as K0:Pk

0 ,V 0:Pk
0 ∈ RPk×C′

. Then,
they are concatenated to the noisy ones as K̃(k, t) =
[K0:Pk

0 ,KPk:Pk+l
t ] and Ṽ (k, t) = [V 0:Pk

0 ,V Pk:Pk+l
t ]. Fi-

nally, the causal temporal attention is computed as:

CausalAttn(QPk:Pk+l
t , K̃(k, t), Ṽ (k, t)), (5)

where the attention map has a shape of l × (Pk + l), as
shown in Figure 4(b). During denoising, the clean KV-
cache K0:Pk

0 and V 0:Pk
0 are shared for every timestep t.

In the cache writing stage, the clean temporal keys and
values are computed as KPk:Pk+l

0 and V Pk:Pk+l
0 . They are

then updated into the KV-cache queue, resulting in K
0:Pk+1

0

and V
0:Pk+1

0 , which will be used in AR step k + 1 (i.e.,
Pk+1 = Pk + l). As the autoregression progresses, the
earliest KV-cache will be dequeued when the length of the
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clean prefix Pk reaches a predefined Pmax (i.e., a maximum
number of conditional frames), as shown in Figure 4(c).

Cyclic-TPEs. Assume that the model was trained on video
clips with a maximum length of Ltrain = Pmax + l (i.e.,
with Pmax frames clean prefix and l frames denoising tar-
get). Ltrain is also the maximum length of TPE sequence
during training. As the autoregressive inference progresses
till Pk = Pmax, the TPEs are used up. When KV-cache is
disabled (cf. Figure 4(c)-left), to align the training pattern,
we can re-assign the TPEs from scratch after the earliest
clean frames are dequeued. However, when KV-cache is
enabled (cf. Figure 4(c)-right), the TPEs were bound to
keys and values at previous AR steps and had been stored
in preceding KV-cache chunks. As a result, we cannot do
reassignment to match the training pattern of TPEs. Here
we introduce a cyclic shift mechanism, where the denois-
ing target will be assigned those TPEs indexed from the
beginning. To support the training/inference alignment of
Cyclic-TPEs, in the training stage, each sample is assigned a
TPE sequence that is cyclically shifted with a random offset.

Spatial KV-Cache. Let hPk:Pk+l
t be the input to the prefix-

enhanced spatial attention at AR step k. In the denois-
ing stage, the keys and values from the denoising target
are enhanced by the spatial KV-cache (a sub-prefix of P ′

frames) via spatial-wise concatenation. In the cache writ-
ing stage, the denoised latent frames are first enhanced via
self-repeat and then computed to obtain the clean spatial
keys and values. These operations are aligned with the
prefix-enhancement in Eq. (4) of the training stage. Since
P ′ is relatively small (P ′ < l), the prefix enhancement for
the current denoising target hPk:Pk+l

t only depends on spa-
tial KV-cache from the most recent generated chunk (i.e.,
hPk−l:Pk
0 ). Thus, in contrast to the queue structure for tem-

poral KV-cache, we only store the spatial KV-cache for one
chunk and overwrite it at every AR step.

Discussion. It’s worth noting that our KV-cache queue for
autoregressive VDMs is not a trivial extension of the KV-
cache techniques from large language models (LLMs): 1)
LLMs predict the next token at each AR step, and the KVs
are computed and cached simultaneously in each forward
call. For VDMs, however, the model is repeatedly called
during denoising (with different t). This brings the cache
computation and storage issues as introduced in Sec. 1. Our
implementation solves these two issues, sharing the cache
across every denoising step. 2) Caching visual KVs costs
much more storage than KVs for text since each token in
our setting corresponds to HW visual grids. The queue
structure for KV-cache is essential for VDMs considering
this heavy storage cost. Early KVs can be safely dequeued
as the appearance and motion of new frames are primarily
influenced by the most recent KVs. Meanwhile, we propose
Cyclic-TPEs to facilitate this mechanism.

4. Experiments
4.1. Experimental Setup

Model Details and Baselines. We built Ca2-VDM based
on spatial-temporal Transformer following (Ma et al., 2025;
Chen et al., 2024a) and initialized it with Open-Sora
v1.0 (Zheng et al., 2024). Following PixArt-α (Chen et al.,
2024a), we used T5 (Raffel et al., 2020) as the text en-
coder and used the VAE from StableDiffusion (Rombach
et al., 2022). The length of the clean prefix was randomly
sampled according to the multiples of chunk length l, i.e.,
P ∈ {1, 1 + l, . . . , 1 + nl} and Pmax = 1 + nl. We used
training videos of various lengths with Ltrain = P + l. As
comparisons, we built two bidirectional baselines (cf. Fig-
ure 1(a)) based on the same Open-Sora v1.0: One was
trained with fixed-length conditional frames (denoted as
OS-Fix), where P is fixed as P = Ltrain/2 in training and
inference. The other was trained with autoregressively ex-
tendable conditional frames using the same training configs
as Ca2-VDM (denoted as OS-Ext).

Training Details We conducted training on the text-to-
video (T2V) generation and video prediction (i.e., with-
out text prompt) tasks. For T2V generation, we trained
OS-Fix and Ca2-VDM on a large-scale video-text dataset
InternVid (Wang et al., 2024), by filtering it to a sub-set
of 4.9M high-quality video-text pairs. The models were
trained video clips at resolution 256×256 with l=16 and
Pmax= 1 + 3l = 49. For video prediction, we trained OS-Fix,
OS-Ext, and Ca2-VDM on the SkyTimelapse (Zhang et al.,
2020) dataset at resolution 256×256 with l=8. OS-Ext and
Ca2-VDM both used Pmax= 1 + 3l = 25. OS-Fix used a
fixed P = 8. More hyperparameters are left in Sec. C.

Evaluation Datasets and Metrics. We used MSR-VTT (Xu
et al., 2016), UCF101 (Soomro et al., 2012), and SkyTime-
lapse (Zhang et al., 2020) datasets at resolution 256×256,
and reported Fréchet Video Distance (FVD) (Unterthiner
et al., 2019) following previous works (Zeng et al., 2024;
Ge et al., 2023; Chen et al., 2024b). More details about
choosing text prompts and computing FVD scores on these
datasets are left Sec. D

4.2. Evaluation for Generation Quality

We first compared the in-chunk generation quality of Ca2-
VDM with SOTA VDMs. Then, we evaluated the temporal
consistency of the autoregressive generation. Finally, we
conducted ablation studies on Ca2-VDM’s design choices.

In-Chunk Generation Quality. We evaluated the zero-
shot text-to-video (T2V) FVD scores on MSR-VTT (Xu
et al., 2016) and UCF101 (Soomro et al., 2012), as shown
in Table 1. We compared Ca2-VDM to state-of-the-art T2V
models including two groups: 1) Text conditioned: Mod-
elScope (Wang et al., 2023b), VideoComposer (Wang et al.,
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Table 1: Zero-shot FVD scores on MSR-VTT (Xu et al., 2016)
and UCF101 (Soomro et al., 2012) test sets. All methods generate
video at a resolution of 16×256×256. C: condition. T and I are
text and image conditions, respectively.

Method C MSR-VTT UCF101
ModelScope (Wang et al., 2023b) T 550 410
VideoComposer (Wang et al., 2023c) T 580 -
Video-LDM (Blattmann et al., 2023b) T - 550.6
PYoCo (Ge et al., 2023) T - 355.2
Make-A-Video (Singer et al., 2023) T - 367.2
AnimateAnything (Dai et al., 2023) T+I 443 -
PixelDance (Zeng et al., 2024) T+I 381 242.8
SEINE (Chen et al., 2024b) T+I 181 -
Ca2-VDM T+I 181 277.7

Table 2: Finetuned FVD scores on UCF-101 (Soomro
et al., 2012) test set. Methods with ∗ were trained on
both train and test sets.

Method Res. FVD
MCVD (Voleti et al., 2022) 642 1143
VDT (Lu et al., 2024) 642 225.7
DIGAN∗ (Yu et al., 2022) 1282 577
TATS (Ge et al., 2022) 1282 420
VideoFusion (Luo et al., 2023) 1282 220
LVDM∗ (He et al., 2022) 2562 372
PVDM (Yu et al., 2023) 2562 343.6
Latte (Ma et al., 2025) 2562 333.6
Ca2-VDM 2562 184.5

Table 3: FVD results on MSR-VTT test set.

Method FVD between AR step 1 and i
i = 2 i = 3 i = 4 i = 5 i = 6

GenLV 282.8 291.4 299.0 318.2 310.3
StreamT2V 317.5 434.7 478.2 462.0 512.4
OS-Fix 182.9 210.6 260.8 284.3 315.1
Ca2-VDM 160.6 206.5 262.8 281.3 304.7

2023c), Video-LDM (Blattmann et al., 2023b), PYoCO (Ge
et al., 2023), and Make-A-Video (Singer et al., 2023). 2)
Text with extra image conditioned, e.g., for image-to-video:
AnimateAnything (Dai et al., 2023), PixelDance (Zeng
et al., 2024) and video transition: SEINE (Chen et al.,
2024b). We also finetuned Ca2-VDM on UCF101 at res-
olution 16×256×256 and reported the FVD scores in Ta-
ble 2. We compared it with SOTA video generation models:
MCVD (Voleti et al., 2022), VDT (Lu et al., 2024), DI-
GAN (Yu et al., 2022), TATS (Ge et al., 2022), LVDM (He
et al., 2022), PVDM (Yu et al., 2023), and Latte (Ma et al.,
2025). The FVD results in both Table 1 and Table 2 show
that our Ca2-VDM has a competitive T2V performance with
SOTA models. More qualitative examples are left in Sec. E.

Temporal Consistency. We compared Ca2-VDM with
the two baselines (i.e., OS-Fix and OS-Ext) and existing
SOTA autoregressive VDMs. To the best of our knowledge,
existing autoregressive VDMs all use fixed-length condi-
tional frames (similar to OS-Fix). We used Gen-L-Video
(GenLV) (Wang et al., 2023a) and StreamT2V (Henschel
et al., 2025). Specifically, GenLV utilizes a base model
AnimateDiff (Guo et al., 2024b) and conducts co-denoising
for overlapped 16-frame clips. We implemented it with an
overlapping length (i.e., the condition length) of 8 frames.
StreamT2V is based on Stable Video Diffusion (Blattmann
et al., 2023a) and finetunes it conditioned on preceding
frames to generate subsequent frames. It also generates 16
frames at each AR step, with 8 frames as the condition.

We evaluated the FVD scores of each autoregression (AR)
chunk w.r.t. the first chunk, as shown in Table 3. We can ob-
serve that Ca2-VDM has relatively lower FVD scores than

Table 4: Ablations of Pmax and prefix-enhancement (PE) on
SkyTimelapse (Zhang et al., 2020). Each variant of Ca2-
VDM generated 48 frames by 6 AR steps. The results were
divided into three 16-frame chunks for FVD evaluation.

Pmax PE Chunk Id
1 2 3

25 × 274.8 244.5 275.1
25 ✓ 257.4 216.5 238.5
41 × 187.3 209.3 263.2
41 ✓ 185.0 202.9 240.5

the others. This indicates that extendable (long-term) con-
dition helps to improve the temporal consistency. We also
show qualitative examples in Figures 5. It shows content
mutations in consecutive frames from the results of fixed-
length condition methods, e.g., the 24th and 25th frames in
GenLV, and the 65th and 66th frames in StreamT2V. We
further compared Ca2-VDM with the condition extendable
baseline, i.e., OS-Ext (cf. Figure 7). We see that Ca2-VDM
shows comparable results with OS-Ext (while being more
computationally efficient as demonstrated in Sec. 4.3). We
conducted further comparisons between Ca2-VDM and OS-
Ext in terms of video quality and long-term content drift.
The results are left in Sec. E of the Appendix.

Ablation Studies. We studied the effectiveness of longer
condition length and the prefix-enhancement (PE) in spatial
attention (cf. Eq. (4)). We trained variants of Ca2-VDM
with different Pmax or without PE. The results are reported in
Table 4. Each model was called with 6 AR steps to generate
a 49-frame video (with the given first frame) and evaluated
by the FVD scores of three 16-frame chunks (exclude the
first frame) w.r.t. the 16-frame ground-truth videos. We can
see that both increasing Pmax and using PE are beneficial in
improving the generation quality.

4.3. Evaluation for Autoregression Efficiency

We evaluated the efficiency in two aspects: 1) time cost for
autoregressive generation, and 2) detailed computational
costs for each component in the Transformer blocks.
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Figure 5: Qualitative examples from GenLV (Wang et al., 2023a),
StreamT2V (Henschel et al., 2025), OS-Fix (Zheng et al., 2024), and
Ca2-VDM. Yellow arrows highlight consecutive frames having mutations.
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Figure 6: Accumulated time cost w.r.t. frame
ids. We show OS-Ext and Ca2-VDM with
Pmax = 25 and 41, and OS-Fix with a fixed
P = 8.
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Figure 7: Results from OS-Ext and Ca2-VDM. They have comparable quality, while
Ca2-VDM is more computationally efficient, as evidenced in Table 5, Figure 6 and 8.

Table 5: Time cost for generating
80 frames at resolution 256×256.
OS-Fix used P=8. OS-Ext and
Ca2-VDM used Pmax=25. Ext.C.
means extendable condition.

Method Ext.C. Time (s)
StreamT2V 150
OS-Ext ✓ 130.1
OS-Fix 77.5
Ca2-VDM ✓ 52.1

Others

Temporal Attention

Spatial Attention

Visual-Text Attention

FLOPs (x 1012 )

OS-Fix

Ca2-VDM

OS-Ext

𝑃𝑃=8

𝑃𝑃 m
ax

=
25

Ca2-VDM

OS-Ext

𝑃𝑃 m
ax

=
33

Ca2-VDM

OS-Ext

𝑃𝑃 m
ax

=
41

19.7494.291             4.735      2.147

2.155 2.368 1.075

2.158 2.368 1.075

2.160 2.368 1.075

7.052                           7.737                 3.506

7.994                               8.752                   3.966

8.627                                9.428                       4.272

32.304

36.557

39.397

Figure 8: Number of floating-point operations (FLOPs) for
generating 56 frames (7 AR steps). All results were com-
puted by conducting only one denoising step for simplicity.

Time Cost. We first show the cumulative time cost of
autoregressive generation in Table 5. Our models were
tested on a single NVIDIA A100 GPU to generate 80 frames
at resolution 256×256, using improved DDPM (Nichol &
Dhariwal, 2021) with 100 denoising steps. The result of
StreamT2V (Henschel et al., 2025) is from its GitHub page,
which was tested on the same device and resolution. We can

see that Ca2-VDM significantly improved over OS-Fix, OS-
Ext, and StreamT2V (Henschel et al., 2025), while being
compatible with extendable condition. We further evaluated
the accumulated time cost till each AR step, as shown in
Figure 6. We can observe that: 1) Compared to OS-Fix,
the time cost in Ca2-VDM has a clear reduction since it
does not have redundant computations. 2) As the condition
extends, the time cost of OS-Ext grows quadratically (before
Pmax is reached), while the time cost of Ca2-VDM only
grows linearly. 3) As the Pmax grows to incorporate longer
condition, the increase of time cost for OS-Ext is significant,
while it is relatively slight for Ca2-VDM.

Computational Cost. We counted the floating-point opera-
tions (FLOPs) of temporal, spatial, and visual-text attention
layers in the Transformer blocks (cf. Figure 8). As the Pmax
grows, the increased computations are seen in all three types
of attention layers for OS-Ext. In contrast, for Ca2-VDM,
the number of FLOPs only slightly increases in the temporal
attention, while keeping constant in other operations. This
is because the extended conditional frames only participate
in the computation as temporal KV-caches.

Memory Cost. We conducted empirical GPU memory

8



Title Suppressed Due to Excessive Size

Table 6: GPU memory usage comparison between Live2diff (Xing et al., 2024) and Ca2-VDM. The comparisons are not
strictly aligned since Live2diff is Unet-based. The resolution of the generated video is 256 × 256. L is the number of
generated frames at each auto-regression step. H and W are after 8× VAE down sampling. The values of h′w′ and C ′ vary
across blocks due to the down-sampling and up-sampling in Unet. PE means prefix-enhancement (cf. Eq.(4)).

Method Denoising Model Forward Shape KV-cache Shape KV-cache Total
Steps (T ) (B,C,L,H,W ) (T, Lcond, hw,C

′) Memory Cost Memory Cost
Live2diff 4 (4 , 4, 1, 32, 32) (4, 16, h′w′, C ′) 1.42 GB 10.90 GB
Live2diff 50 (50, 4, 1, 32, 32) (50, 16, h′w′, C ′) 17.70 GB 29.46 GB

Ca2-VDM w/ PE 50 (1 , 4, 8, 32, 32) (1, 25, hw, C) 0.86 GB 4.79 GB
Ca2-VDM w/o PE 50 (1 , 4, 8, 32, 32) (1, 25, hw, C) 0.77 GB 3.95 GB

statistics, as shown in Table 6. We compared Ca2-VDM
with a concurrent work, Live2diff (Xing et al., 2024). It
stores KV-cache for every denoising step (with different
noise levels t and thus different KV features), which costs
much more GPU memory than ours. Note that Live2diff
uses a batch size that is equal to the number of denoising
steps, i.e., B = T . This is because it uses pipeline denois-
ing following StreamDiffusion (Kodaira et al., 2023), which
puts frames with progressive noisy levels into a batch and
generates one frame each autoregression step. Benefited
from cache sharing, Ca2-VDM’s memory cost is indepen-
dent of denoising steps, as its fixed shape (1, 25, hw,C)
ensures constant memory usage. In contrast, Live2diff’s
memory cost scales with T (e.g., from 1.42 GB at T = 4 to
17.70 GB at T = 50), confirming that cache sharing saves
T× GPU memory. As a result, Ca2-VDM requires only
0.86 GB (w/ PE) or 0.77 GB (w/o PE), with the difference
due to spatial KV-cache for prefix-enhancement (PE).

5. Conclusions
In this paper, we present an efficient autoregressive video
diffusion model, i.e., Ca2-VDM. It has two key designs:
causal generation and cache sharing. The former eliminates
the redundant computations of conditional frames. The
latter significantly reduces the storage cost. Our model
shows comparable generation quality with existing SOTA
VDMs with existing bidirectional attention while achieving
notable speedup for the autoregressive generation.
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Impact Statement
Our Ca2-VDM is a generic fast video generation paradigm.
It is potentially powerful to boost existing VDMs to gen-
erate high-quality live-stream videos. The live-stream (or
real-time) video generation techniques have a revolutionary
impact on the field of content creation industry, and have
great potential commercial values. Meanwhile, it’s neces-
sary to note that Ca2-VDM also has the inherent risks of
common image/video generation models, such as generating
videos with harmful or offensive content, or being used by
malicious actors for generating fake news. We can use some
watermarking technologies (e.g., (Lukas & Kerschbaum,
2023)) to avoid the generated videos being abused.
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Appendix
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• Sec. B: Detailed Training Objectives

• Sec. C: Training Details and Hyperparameters

• Sec. D: Evaluation Details

• Sec. E: More Experiment Results

• Sec. F: Limitations and Possible Future Directions

A. Illustration of Prefix-enhanced Spatial
Attention

We provide more details of Prefix-enhanced Spatial Atten-
tion (cf. Eq. (4)) in Figure 9.

B. Detailed Training Objectives
Recall that (cf. Sec. 3.2 in the main text) existing diffusion
models (Ho et al., 2020; Nichol & Dhariwal, 2021; Peebles
& Xie, 2023) are trained with the variational lower bound
of z0’s log-likelihood, formulated as

Lvlb(θ) = − log pθ(z0|z1)

+
∑
t

DKL(q(zt−1|zt, z0)∥pθ(zt−1|zt)). (6)

Since q and pθ are both Gaussian, DKL is determined by
the mean µθ and covariance Σθ. By re-parameterizing µθ

as a noise prediction network ϵθ and fixing Σθ as a constant
variance schedule (Ho et al., 2020), the model can be trained
using a simplified objective function:

Lsimple(θ) = E
z,ϵ,t

[
∥ϵθ(zt, t)− ϵ∥22

]
, ϵ ∼ N (0, 1). (7)

In our setting, the simplified objective function is

L̃simple(θ)= E
z,ϵ,t

[
∥(ϵθ([z0:P

0 , zP :L
t ], t)− ϵ)⊙m∥22

]
. (8)

Following prior works (Nichol & Dhariwal, 2021; Peebles
& Xie, 2023), we train the model with learnable covariance
Σθ to improve the sampling quality. This is achieved by
optimizing the full DKL term in Lvlb, resulting in an L̃vlb in
our setting, i.e., applied with the same timestep vector t and
loss mask m. Then, the model is optimized by a combined
loss function L̃simple + L̃vlb.

C. Training Details and Hyperparameters
Text-to-Video (T2V) Training. We trained Ca2-VDM and
the OS-Fix baseline on a large-scale video-text dataset In-
ternVid (Wang et al., 2024), by filtering it to a sub-set of
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Figure 9: Illustration of prefix-enhanced spatial attention.
For i ≥ P , the left part of K,V is from clean prefix (in
training) or cached K,V (in the denoising stage of infer-
ence).

4.9M high-quality video-text pairs with resolution 256×256.
For Ca2-VDM, the training consists of two stages. We first
train the causal modeling ability without the clean prefix
(i.e., without conditional frames) on 32-frame videos. Then
we use longer videos of 65 frames to train the model with
the clean prefix, i.e., with l = 16, Pmax = 1 + 3l = 49 and
max(Ltrain) = Pmax + l = 65. In the first stage, the model
was trained with a batch size of 288 for 32k steps. In the
second stage, it was trained with a batch size of 144 for 21k
steps. For OS-Fix, it was trained with Ltrain = 32 frames
and P = l = Ltrain/2 = 16 frames, i.e., the prefix length is
fixed. It was trained with a batch size of 288 for 20k steps 3.

Video Prediction Training. We trained OS-Fix, OS-Ext,
and Ca2-VDM on the SkyTimelapse (Zhang et al., 2020)
dataset at resolution 256 × 256 with l = 8. OS-Ext and
Ca2-VDM both used Pmax = 1+ 3l = 25 (i.e., Ltrain = 33).
OS-Fix used a fixed P = 8 and Ltrain = 16. All three
models were trained with a batch size of 8 for 11k steps 4.

Hyperparameters. For all the training, we used the
DDPM (Ho et al., 2020) schedule with T = 1000, β1 =
10−4, and βT = 0.02. The models were trained using
AdamW (Loshchilov & Hutter, 2019) optimizer with a learn-
ing rate of 2e-5. At the inference stage, we used the im-
proved DDPM schedule (Nichol & Dhariwal, 2021) with
100 steps. For text-to-video, we set the classifier-free guid-
ance scale as 7.5.

D. Evaluation Details
D.1. Datasets

MSR-VTT (Xu et al., 2016). we used its official test split
which contains 2990 videos, with 20 manually annotated

3OS-Fix converges faster than Ca2-VDM since it only needs to
learn fixed-length conditional frames.

4In contrast to text-to-video, the video prediction task on the
SkyTimelapse dataset has less diversity and converges faster. So
we used smaller batch size and training steps.
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Figure 10: Qualitative examples generated by GenLV (Wang et al., 2023a), StreamT2V (Henschel et al., 2025), OS-Fix, and
our Ca2-VDM. We sampled 32 frames with an interval of 8 frames for display. Note that GenLV does not strictly follow the
given first frame, since it was not finetuned on explicitly injected conditional frames. In the implementation of GenLV, we
used DDIM inversion to build the initial noise based on the first frame.

captions for each video. Following prior works (Ren et al.,
2024; Zeng et al., 2024) and for fair comparisons, we ran-
domly selected a caption for each video and generated 2990
videos for evaluation.

UCF101 (Soomro et al., 2012). As it only contains label
names, we employed the descriptive text prompts from PY-
oCo (Ge et al., 2023), and generated 2048 samples with
uniform distribution for each category following (He et al.,
2022; Ge et al., 2023; Ren et al., 2024).

SkyTimelapse (Zhang et al., 2020). It is a time-lapse dataset
showing dynamic sky scenes (e.g., cloudy sky with moving
clouds). We used it for video prediction (i.e., without text
input). Its training set contains 997 long timelapse videos,
which are cut into 2392 short videos. Its test set contains 111
long timelapse videos, which are cut into 225 short videos.
We trained the models on its training set and evaluated them
on its test set.

D.2. Quantitative Evaluation

Fréchet Video Distance (FVD) (Unterthiner et al., 2019)
measures the similarity between generated and real videos
based on the distributions on the feature space. We followed
prior works (Blattmann et al., 2023b; Ge et al., 2022; Ren
et al., 2024) to use a pretained I3D model5 to extract the
features. We used the codebase6 from StyleGAN-V (Sko-
rokhodov et al., 2021) to compute FVD statistics.

5https://github.com/songweige/TATS/blob/
main/tats/fvd/i3d_pretrained_400.pt

6https://github.com/universome/stylegan-v

For the autoregressive generation results (e.g., the results in
Table 3 and Table 4), we calculated the chunk-wise FVD.
Specifically, for Table 3, each model generated 48 frames
with 6 AR steps and l = 8. Since the I3D model accepts at
least 16 frames, we evaluated the FVD scores of three 16-
frame chunks (i.e., 2 AR steps in each) w.r.t. the 16-frame
ground-truth videos. For Table 4, each model generated 96
frames with 6 AR steps and l = 16. We evaluated the FVD
scores of the generated 16-frame chunk from each AR step
w.r.t. the first AR step. Each model generated 512 videos
for FVD calculation.

E. More Experiment Results
In Figure 10 and Figure 11, we show more qualitative exam-
ples from GenLV (Wang et al., 2023a), StreamT2V (Hen-
schel et al., 2025), OS-Fix (Zheng et al., 2024), and Ca2-
VDM. We can see that Ca2-VDM has comparable genera-
tion quality to existing SOTA models.

In Table 7, we evaluated Ca2-VDM and OS-Ext on the
VBench (Huang et al., 2024) benchmark. VBench is pri-
marily designed for text-to-video evaluation. For our assess-
ment, we selected four metrics: aesthetic quality, imaging
quality, motion smoothness, and temporal flickering. The
first two measure spatial (appearance) quality, and the last
two assess temporal consistency. The results in Table 7
show that Ca2-VDM achieves comparable performance in
both appearance quality and temporal consistency.

In Figure 12, we further compared the long-term content
drift (i.e., error accumulation) between Ca2-VDM and the
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Figure 11: Qualitative examples from GenLV (Wang et al., 2023a), StreamT2V (Henschel et al., 2025), OS-Fix, and our
Ca2-VDM. Yellow arrows highlight the consecutive frames having mutations.

Table 7: VBench (Huang et al., 2024) evaluation on Sky-
Timelapse (Zhang et al., 2020) test set. The resolution of the
generated video is 256× 256. Both models were evaluated
with Pmax = 25 and 6 autoregression steps.

Method Aesthetic Imaging Motion Temporal
Quality Quality Smoothness Flickering

OS-Ext 44.39 50.74 98.93 98.57
Ca2-VDM 44.30 50.55 97.59 97.14

OS-Ext baseline. As a result, they show comparable visual
quality. Both models exhibit a similar degree of error accu-
mulation over time. Given our primary focus on efficiency,
we conclude that Ca2-VDM matches the bidirectional base-
line while being more efficient in both computation and
storage for autoregressive video generation.

F. Limitations and Possible Future Directions
We analyze the limitations of the current work and propose
some possible directions for future work.

Causal Modeling in Pretraining. Currently, all the pre-
trained weights for video diffusion models (either UNet-
based, e.g., ModelScore-T2V (Wang et al., 2023b), Ani-
mateDiff (Guo et al., 2024b), or Transformer-based, e.g.,
Open-Sora (Zheng et al., 2024)) use bidirectional attention
in their temporal modules. Our Ca2-VDM is built upon
Open-Sora which was also pretrained using bidirectional
attention. However, finetuning these bidirectionally pre-
trained temporal modules using causal attention might be
sub-optimal. The weights between bidirectional and causal

temporal attention layers might have inherent gaps. Due
to the limited computational resources, we did not con-
duct causal pretraining. Pretraining the VDM’s temporal
modules from scratch (using causal attention) might have
potential improvements.

Training Efficiency Trade-off. Ca2-VDM uses extendable
conditional frames and cyclic TPEs. These designs require
the model to learn all the possible situations during training.
Compared to fixed-length conditional frames and conven-
tional TPEs, the model needs more time to achieve training
convergence. Meanwhile, the longer maximum condition
length (i.e., Pmax) we use, the more training is required.
On the other hand, once the model is trained, it is more
powerful for integrating long-term context. Consequently,
it’s also potentially beneficial for long-term autoregressive
video generation.

Quality Degradation in Long-term Generation. As a
common challenge, VDMs in long-term autoregressive gen-
eration suffer from frame appearance changes and quality
degradation. Some works (Henschel et al., 2025; Zhang
et al., 2023b) mitigate this issue by providing the VDM with
the global appearance information extracted from the initial
frame. However, during the long-term generation, video
content may change and not all frames commit the same
global appearance. In our setting, the long-term extendable
context (i.e., early context from the KV-cache queue) helps
mitigate the quality degradation, demonstrated by the re-
sults in Table 3 and Table 4. Further research on approaches
addressing quality degradation is warranted and may hold
potential significance for long-term video generation.
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Figure 12: Comparison between OS-Ext and Ca2-VDM in terms of long-term content drift (i.e., long-term quality
degradation). Both models were trained on Sky-Timelapse (Zhang et al., 2020). Frame IDs are labeled at top-left corner.
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